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An extremal problem on rainbow spanning trees
in graphs
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Abstract

A subgraph of an edge-colored graph is rainbow provided that no color
appears on more than one edge. In this paper we consider the natural
extremal problem of maximizing and minimizing the number of rainbow
spanning trees in a graph G. Such a question clearly needs restrictions on
the colorings to be meaningful. For edge-colorings using n — 1 colors and
without rainbow cycles, known in the literature as JL-colorings, there
turns out to be a particularly nice way of counting the rainbow spanning
trees and we solve this problem completely for JL-colored complete graphs
K, and complete bipartite graphs K, ,,. In both cases, we find tight
upper and lower bounds; the lower bound for K, in particular, proves
to have an unexpectedly chaotic and interesting behavior. We further
investigate this question for JL-colorings of general graphs and prove
several results including characterizing graphs which have JL-colorings
achieving the lowest possible number of rainbow spanning trees. We
establish other results for general n — 1 colorings, including providing an
analogue of Kirchoff’s matrix tree theorem which yields a way of counting
rainbow spanning trees in a general graph G.
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1 Introduction

Let G be an edge-colored simple graph with |V(G)| = n and note that the edge-
coloring need not be proper. A rainbow spanning tree (RST) in G is an acyclic,
connected, spanning subgraph such that no color appears on more than one edge.
Given a coloring ¢ : E(G) — N let

R(G, ) ={T C E(G) : T is a rainbow spanning tree}.

The study of rainbow spanning trees in complete graphs, and more general graphs,
has attracted a great deal of attention lately, especially on work related to the
Brualdi-Hollingsworth conjecture which posits that if the edges of Kj, are colored
via a one-factorization then the edge set can be partitioned into edge-disjoint RSTs.
See [1, 3, 4, 5, 9, 10, 14, 15] for the conjecture and some recent developments along
these lines.

In this paper we are concerned with a natural extremal problem regarding rainbow
spanning trees: maximizing and minimizing |R(G, ¢)| over a collection of colorings.
One immediately notes that the problem, without restrictions on the colorings, is
not interesting: any coloring with fewer than n — 1 colors cannot possibly contain
a rainbow spanning tree so for such a coloring, |[R(G,¢)| = 0. On the other hand,
if all edge colors are distinct, the number of RSTs is simply the number of trees in
the graph. This can be easily computed by the matrix tree theorem of Kirchoff (see
[13]) for a general graph G and is n"~? by Cayley’s formula for the special case where
G = K, (see [2]).

To make the problem interesting and non-trivial, and in the spirit of anti-Ramsey
results, we consider this extremal problem on a certain class of colorings, known in
the literature as JL-colorings [6, 8, 11, 12]. A coloring ¢ : E(G) — [n — 1] is a
JL-coloring if it is surjective and rainbow cycle free. Note that these properties are
rather delicately balanced with respect to an interplay between RSTs and cycles: if
n colors appear in an edge coloring, then G necessarily contains a rainbow cycle, but
if fewer than n — 1 colors appear in an edge coloring, then no RSTs can exist.

Given a JL-coloring ¢, let Cy,...,C,_1 denote the color classes of . If a single
edge of each color is selected, this gives n — 1 edges of distinct colors; further, since
@ is a rainbow cycle free coloring, this collection of edges yields a rainbow spanning
tree. This simple observation means that for a JL-coloring ¢,

n—1
R(G, o)l =TIl (i)
i=1
Further, since ) |C;| = |E(G)|, convexity immediately implies that

- B\ .

(B~ (-2 1 < RG.o) < (29) (i)

How good are these particular estimates? While both can be tight (simultaneously,
in the case where G is itself a tree), for the interesting special case where G = K,

they are both far from tight. In particular, we prove that
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Theorem 1.1. Let ¢ : E(K,) — [n — 1] be a JL-coloring. Then,

22n—0(logn) — M < |R(Kn,gp)| < (n — 1)'
n

where n > 1, p(n) has the defining property that if s is the unique integer power of
2 such that % <s< 2?" then,

p(n) =mn-pu(s) - p(n—s)
and (1) = 1. For each inequality there is a coloring ¢ for which equality holds.

As we shall see, this gives a surprisingly (to us) chaotic lower bound for |R(G, ¢)|
(cf. Figure 3 in Section 3.2 and the surrounding discussion), which grows exponen-
tially in n, as opposed to the trivial linear lower bound in the inequality in (ii). For
n < 14, this evaluates to the lower bounds given below:

| n= [2[3]4]5]6]7][8 ]9 ] 10| 11 | 12 [ 13 | 14 |
[[R(Kn, @) > 1]2]4]12]32]96 256 ] 960 | 3072 | 10752 | 32768 | 122880 | 393216 |

We further study the extremal problem on complete bipartite graphs, proving
Theorem 1.2. Let p : E(K, ) — [n+m — 1] be a JL-coloring. Then for n > m,

(n—1(m—1)+1 < |R(Kpm, )| <m" " ((m — 1))
Both inequalities have colorings ¢ for which they are tight.

Particularly interesting here, to us, is the stark difference between this case and
the case of K, in terms of the proof mechanics: in particular, the lower bound,
difficult in K, is now the trivial bound, while the upper bound, quite easy in the
K, case, is comparatively more difficult.

Finally, we consider some related problems: What happens if we work with more
general graphs and/or more general colorings? Here, we are able to characterize
graphs with JL-colorings for which the trivial lower bound from (i) is tight and we
prove an analogue of the matrix tree theorem counting rainbow spanning trees in
general graphs that may be of interest in future investigations along these lines for
non-JL colorings (cf. Theorem 5.4).

The remainder of the paper is organized as follows: In the next section we intro-
duce a particularly nice way of thinking about JL-colorings which allows us to derive
our bounds. We then turn our attention to the proof of Theorem 1.1 in Section
3 before proving Theorem 1.2 in Section 4. We conclude with results concerning
general graphs and colorings, some open questions, and directions for future work.
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2 The Structure of JL-Colorings

Recall that a JL-coloring ¢ is a rainbow cycle free (n—1)-edge-coloring of a connected
graph G with order n. There is a representation of JL-colorings as labeled binary
trees which we will use to count RST’s in a given JL-colored graph. The key to this
approach, which has appeared in a series of papers of Johnson and collaborators (see
[6, 8, 11, 12]), is the following proposition:

Proposition 2.1. Suppose ¢ is a JL-coloring of a connected graph G. Then there
is a partition of V(Q) into sets A and A, so that e(A, A), the set of edges between
vertices in A and A, is monochromatic in p, and both ¢|a and ¢|z are JL-colorings
of the graphs induced on A and A respectively. Furthermore, both subsets A and A
of V(QG) induce connected subgraphs of G.

This was originally proved for complete graphs in [6], complete bipartite graphs
in [11], and finally for complete multipartite graphs in [12]. Recently, it has been
established for arbitrary connected graphs in [8]. Iterating Proposition 2.1 on the
induced subgraphs gives iteratively nested subsets so that each non-trivial subset A
is partitioned into two subsets A’ and A’ where the edges between the subsets are
monochromatic and the coloring induced on each is a JL-coloring.

This allows us to create a rooted binary tree with n — 1 internal vertices from
every JL-coloring. Here, each vertex is labeled with sets: the root is labeled with
V(G) and the children of a vertex labeled A are the two subsets A’ and A’ guaranteed
by Proposition 2.1.

It is easy to see that this construction of a tree from a JL-coloring actually gives
a correspondence between JL-colorings of a graph and subgraph-labeled binary trees
with n — 1 internal vertices, where each subgraph is connected and the label of any
internal vertex is partitioned by the labels of its two children. The colors of the
corresponding JL-coloring can be associated with the internal vertices so that the
edges of a color are exactly the edges between the two children of the associated
internal vertex.

These representations can be simplified for the two main graph classes considered
in this paper: complete graphs and complete bipartite graphs, and we do so below.

2.1 JL-Colorings of K,

For the case where G = K, the exact sets labeling the vertices in the associated tree
make no difference when enumerating rainbow spanning trees: only the number of
vertices in each label matters. Thus, a JL-coloring of K, is equivalent (up to vertex
labeling) to a rooted binary tree with n — 1 internal vertices, so that the root is
labeled by n and the two children of a vertex labeled r > 2 are labeled p and ¢ with
r=p-+4q, p,qg > 1, and all n leaves are labeled 1. We call such a tree a JL-tree.
Equivalently, a JL-tree is a rooted binary tree in which every vertex is labeled with
the number of leaves below (or including) itself. Further, there is a bijection between
JL-trees and JL-colored K,,’s.
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As a clarifying example, we illustrate a JL-coloring and its respective JL-tree for
K5 in Figure 1.

Figure 1: A JL-coloring of K5 and its associated JL-tree.

2.2 JL-Colorings of K, ,,

If G = K, , then the trees described above can also be simplified. In this case,
the connected subgraphs A and A are smaller complete bipartite graphs. The tree
is determined by the size of each bipartite label and from which part in the parent
label each smaller part originates.

e

(1,0) (0,1) (1,0) (0,1)

Figure 2: A JL-coloring of K 3 and its associated JL-tree.

In light of this, a JL-coloring of K, ,, is equivalent to a rooted full binary tree
with n+m—1 internal vertices so that the root is labeled (n, m) and the children of a
vertex labeled (71, 75) are labeled (p1, p2) and (q1, ¢2) so that p1+q = r1, pa+q2 =12
with the p;, ¢; non-negative and if p; = 0 then p, = 1 (respectively if po = 0, then
p1 = 1). This last restriction is because a single vertex — K; o — is connected, but
K, 0, p1 > 1is not. Note that the vertices labeled (1,0) or (0,1) are exactly the
leaves of the tree. We again observe that there is a bijection between the JL-trees
and JL-colored K,,,’s.

An example of a JL-tree for Kj3 is given in Figure 2.
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3 Rainbow spanning trees in K,

We begin by considering the case where the graph G is complete. In this instance,
we observe that the JL-tree (introduced above in Section 2.1) captures not only the
structure of the JL-coloring, but also the number of rainbow spanning trees in the
coloring.

Since the graph is complete, the number of edges with a given color associated
with an inner vertex r is the product of the sizes of its two children, p and ¢. It
follows that multiplying the sizes of all color classes together in a JL-coloring of K,
(as in (7)) is equivalent to taking the product of all non-root labels of its associated
JL-tree (or, equivalently, finding the product of all labels of the associated tree and
dividing by n).

3.1 The Upper Bound

We first turn our attention to the upper bound in Theorem 1.1. This turns out to be
relatively simple after the discussion above. We prove that the JL-tree maximizing
the product is the one where the two children of a vertex labeled r are labeled r — 1
and 1.

Proof of the upper bound in Theorem 1.1. We prove that the JL-tree maximizing the
product is as described in the paragraph above: a tree where the vertex labeled r
has children labeled » — 1 and 1. Such a tree has product n! and hence, describes a
coloring with (n—1)! RSTs. We proceed by induction on n, noting that it is trivially
true for n = 1. Now, suppose that in a maximizing tree, a vertex r is split as p and
q with p,q > 1: By the inductive hypothesis, the labels below the vertex labeled r
have product at most plg!, but it is easy to see that pl¢! < (r — 1)!'if p+ g =1 as
this is equivalent to the statement that (T) >rfor 1 <p<r—1. Thus, the optimal

split is p =1 and ¢ =r — 1, and the reSLﬁt follows. O]

3.2 The Lower Bound

We now turn to the significantly harder case of the lower bound. Since the upper
bound was obtained by taking the splits in the JL-tree to be as unbalanced as possible
one might expect, or hope, that the lower bound would be achieved by taking the
split to be as balanced as possible, namely a vertex labeled n should split as |5 | and
[51. While this holds for powers of 2, it turns out to be false in general: one part of
the optimal split is always a power of 2, specifically the unique power of 2 between

7 and %" To show this we study the following function.
For n € N, let

p(n) = min n-pu(p)-p(n—p), (iii)

and let pu(1) = 1.

This function corresponds to n times the minimum number of RSTs. This can
be seen by noticing that if one takes an interior vertex of a JL-tree, as well as the
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vertices below it, one obtains a JL-tree for a smaller complete graph. Thus, u(n)
is taking the product of all of the labels of the vertices of our ‘minimum’ JL-tree
recursively.

In light of this, we are interested in proving the following theorem, which is the
lower bound of Theorem 1.1:

Theorem 3.1. Let n > 1 and s denote the unique integer power of 2 so that 3 <
5 < %" Then,
(n) = npu(s)p(n — s).

Remark: This does not quite finish the stated bound in Theorem 1.1 that

/L(TL) — 22n—O(log n)
n

9

the final step in this equality is recorded in Proposition 3.1 at the conclusion of this
section.

In order to prove Theorem 3.1, we first introduce the following continuous ana-
logue of pu. For & > 1, consider the function

22x72

T(z) = ) (iv)

X

It is not necessarily obvious that 7 is, in any sense, a continuous analogue of .
To this end, note that
log, 7(z) = 2z — log,(z) — 2

is a convex function of x. This log convexity means that for x > 2,

1Srz§1§i§:l—1x -7(p) - T(x — p) = a7(x/2)?

22174

~ ey
2217—2

= =),

so that 7(x) satisfies the defining property (iii) of ¢ while extending the minimization
to all real numbers as opposed to merely integers, and 7(1) = p(1) = 1. We now
make some elementary observations.

Claim 1: For all integers n > 1, u(n) > 7(n).

Proof. To see this, proceed by induction. Equality holds if n = 1, and for n > 2 note
that for some 1 <p<n-—1,

p(n) =n-p(p) - pln—p) =2n-7(p)-7(n—p) 2 n-7(n/2)-7(n/2) = 7(n).
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Claim 2: For all integers i > 0, u(2') = 7(2°).

Proof. This is also shown by induction. Equality holds for ¢ = 0 and for ¢« > 1
observe that,

pl2) > 7(2) = 2r(2 = 22 > (2.

Here, the first inequality is Claim 1 and the final inequality is from the definition
of p (ili). Combined, the inequalities force equality and complete the inductive
step. O

We remark here that Claims 1 and 2, in fact, prove the lower bound in Theo-
rem 1.1 is achieved since M > ( ) — 92n=2logan=2 and y(n) = 7(n) when n is a
power of 2. It remains to show that p(n) is always of the order 227~CUogn)  This is
done in Proposition 3.1 at the end of this section.

Ultimately, we are interested in the relationship between p(n) and 7(n); to this
end let

_ p(n) Y

To get a sense of values of (3, u, and 7, we include some values of them below:

(n=J2[3]4] 5[ 6 | 7 [ 8] 9 [ 10 [ 11 [ 12 | 13 |

p(n) [2] 6 [16] 60 [ 192 [ 672 [2048 | 8640 | 30720 [ 118272 | 393216 | 1597440

m(n) [[2 |53 [16 | 512 | 1702 | 5851 | 2048 | 72817 | 262142 [ 953254, | 3495255 | 129055

Bn) [ 1 9 1 (63 9 147 1 1215 n 2541 El 2535
8 64 8 128 1024 64 2048 8 2048

By Claim 1, we know that 5(n) > 1 for all n. A straightforward calculation
reveals that if u( ) = nu(p)u(n — p), then

2

_pn) _n?-p(p)p(n—p) _ n . ;
5(’@) o T(n) - 22n—2 - 4p(n—p)ﬁ<p)6( p)7 ( )

and finding the minimizing split that defines p(n) is equivalent to finding the value
of p that minimizes (vi). To emphasize the above observations and allow the reader
an easy way to refer back, we collect the above statements into the following Lemma,
a proof of which is left to the reader.

Lemma 3.1. For all integers n > 1, let f(n) = % Forp e {1,2,...n — 1}, if
p(n) = nu(p)p(n — p), then B(n) = =—PB(p)B(n — p) and finding the value of p

that minimizes nu(p)u(n — p) is equivalent to finding the value of p that minimizes

e B)B(n — p).

We now proceed with the proof of Theorem 3.1 which will show that if s is the
unique power of 2 so that £ <'s < 20 then s is the value of p that minimizes (vi).
As used earlier, a split of n 1s a pair (p, q) of positive integers such that p+q = n. We
will say that an optimal split of n is a split (p, q) of n such that p(n) = nu(p)u(q).

We remark here that working with 3 proves to be a bit simpler than dealing with
w directly, as we at least have some information (and some clue as to why the powers
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of 2 occur): f(n) > 1 with 4(2") = 1, so minimizing the product (vi) ‘prefers’ powers
of 2. Unfortunately, this is not enough to complete the proof as the § function is
quite chaotic and lim sup 5(n) = co.

We present in Figure 3 the values of 5(n) for 1 < n < 256.

1.4}

1.2

1 ‘e | : | | 4 | | | : | | | | | |
0 20 40 60 80 100 120 140 160 180 200 220 24

Figure 3: A plot of 8(n) for 1 < n < 256 (linearly interpolating between points).

Several striking features of (n) appear in Figure 3: for instance it appears
that (n) has some self-similarity properties, and alternates between increasing and
decreasing. Both of these turn out to be true: it is not difficult to verify that
B(2n) = B(n), and a more involved argument shows that 5(n) for even n is smaller
than S(n — 1) and f(n + 1). These facts, however, turn out to be not important
for solving the recurrence, so we do not record their (rather laborious, in the second
case) proofs here.

Proof of Theorem 3.1. We proceed by induction. Theorem 3.1 holds for n = 2 so let
us assume that n > 2 and Theorem 3.1 holds for all integers 1 < k£ < n. We shall
prove that it holds for n.

For any positive integers p,q with p + ¢ = n, let

2

B(p,q)

= 1,4 WP

We observe here that by Lemma 3.1, (n) < B(p,q) when p+ g = n. We want
to show that 3(p,q) > B(s,n — s) where s is unique power of 2 with  <s < 2?”

We first prove the following lemma:

Lemma 3.2. Let p,q be positive integers with p+q =mn and p < q. Let (p1,ps) and
(q1,q2) be optimal minimizing splits of p and q respectively, with the two numbers in
the splits ordered arbitrarily. Then:

(a)

B(p,q) > )5(]91—1-(11,1?2-1-92)

(1 +a)(p2 + @
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(b)
B(p,q) >

+ q1,
p—l—qlﬁ(p q1 Q2)

Proof. To prove (a), we observe:

B(p)B(q)

77,2

4-p-q
2

=B _p? -}I: Zl : q26(pl)ﬁ<p2)6((h)ﬁ<(h)

_ n?-p-q(pr + q1)*(p2 + ¢)*
T pr g qe (o +@)2(pa + q2)2ﬁ<p1)5(p2>ﬁ((h)5((h)

= b o) (2 +a)
T4+ @)t @)? 4opoq Bp1)B(a) 1 py-0 B(p2)B(g2)

n’-p-q
= 4-(p1+aq)*(p2 + CI2)25(p1 TPt a)
2

D-q n
- ' B+ q1)B(p2 + ¢
(+a)p2+a) 4-(pr+a)p2+ @) (p1+ 0)5(p> + @)
p-q
- B(p1+ q1, p2 + @)
(p1 + @) (P2 + ¢2)
where the inequality comes from the fact that (p1,¢1) and (pa, g2) might be subopti-

mal splits for p; + ¢; and ps + ¢, respectively.

B(p,q) =

The proof of (b) follows in the same manner, only splitting ¢ instead of both ¢
and p. O

We now proceed by comparing an arbitrary split p + ¢ = n, p < ¢, to our
conjectured optimal split, s + ¢t = n, where s is the unique power of 2 so that
7 <s< %” (For the remainder of this section, let s and ¢ be defined as such.)
We consider two cases: the first in which (p, ¢) is a more balanced split than (s,t)
and Case 2 in which (p, q) is less balanced. In both cases, we show 5(p,q) > 5(s, 1),
thus proving the theorem. To clarify the mechanics of this section, we give a brief
example of the balancing and then unbalancing in Case 1 after the conclusion of the

proof for the benefit of the reader.
Case 1 (More Balanced Split): min(s,t) < p < ¢ < max(s, ).

Suppose that min(s,t) < p < ¢ < max(s,t). Let (p1,p2) and (qi,¢q2) be the
optimal splits of p and ¢, respectively. By induction, p and ¢ split as conjectured; let
p1 and ¢; denote the guaranteed powers of 2, respectively. We note that as p < ¢,
p1 < q1. We now establish the following claim.

Claim: The following inequalities hold:
i < < > > < < < <2
- =; = s; :
4_291_27 2_611_7 P1>q1 = 2p1
We begin with the first inequality. Note that,

P> g > min{s, t}/3.
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In particular, if s = min{s,¢} then this means that p; > 3, and thus, 5 is a lower

bound for p; (as p; is a power of 2). Otherwise, if ¢ = min{s, ¢}, note that s < 2t
so that £ > % > & and the smallest power of 2 greater than 2 is 7. In either case,
P> g

On the other hand, p; < as

(s+1)
2

Y

p < <

3s
2
and p; < %p, so that p; < s. This establishes the first inequality and we note that
we have actually shown that if s = min{s,#}, then p; = .

We now turn to the second inequality. First, note that

2 2 ;
¢ < 54 < 3 max{s,t}.

By definition s is the unique power of 2 such that 3 < s < 2?” Thus, 3 is the
unique power of 2 between ¢ and %.

If s = max{s,t}, observe that I < $ < § while 2 > % (since ¢ > %) so that
q1 > 5. We also observe that ¢; < ¢ < s and note that since ¢; and s are powers of
2, we have that ¢ < 3. This establishes the second inequality and we note that we
have actually shown that if s = max{s,}, then ¢; = 3.

Otherwise, if ¢ = max{s,¢}, note that ¢ > 3 since

25 > q.
The third inequality follows from our already extant work; we have already ob-
served that p; < ¢;. If s = min{s,¢} we have that p; = 5 while ¢; < 550 1 < 2p;.

> 2 whilst ¢; < s since

N

If s = max{s,t} we have that ¢ = 3, and as p; > § so again, ¢; < 2p;, and the
third inequality holds.

Combining, we have three possibilities: p; = ¢; = 5, p1 = § while ¢; =

p1 = 5 while ¢; = s.

S
5, and

Balancing:

If py = ¢1 = 5 then we apply Lemma 3.2 to see that

pq _pq
(1 + q1)(p2 + q2)5(p1 Tt )= stﬁ(s’t) > B(s, ).

Here we use the fact that p; + ¢ = s so pa + g2 = t, and the earlier observation that
pq > st.

B(p,q) >

We use the same argument if p» = ¢; = 3. This happens if p = 3 - 2% for some
integer k. In this case, p; = %; however, letting p, = J play the role of p; in the
above computation similarly shows that the less balanced partition (s, t) is preferred.

Balancing then Unbalancing :

Now suppose that either p; = § while ¢y = s or p; = § while ¢ = 5. In the
case where p; = §, we may further assume that p, < 5 as otherwise the preceding

argument applies.
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We proceed by first comparing (p, q) to a more balanced split (p',¢") such that
p'=pi+qand ¢ =ps+ .

If py = 5 and ¢, = s, observe that p' = % > 5 by definition of s. However, since
P1 # q1, p # ¢, so we must have that p < § and thus, p’ > p. If p; = § while ¢; = 3,
then as shown above, we may assume p, < 5 which implies p, < 2p;. It follows that
p'>psincep =pi+q=45+35=pi+2p>p+p=p

Furthermore, p’ < ¢ since p; = 4 < ¢ so that this split is truly more balanced.

B(p,q) > P B(p1+ q1.p2 + q2) = %5(?’7 q).

(1 +q) (P2 + ¢2) Pq
By construction, p’ splits optimally as (p},p5) = (p1,¢1). Note that one of the
two terms is necessarily 5 —this may be either p; or ¢i; by possibly reordering, we

assume pj = 5. We claim that the optimal split of ¢’, (¢, ¢3) also contains 3 as its
unique power of 2 (which we denote by ¢j).

There are two possibilities. First, if ¢; = s, this means that s = min{s,t} (since
if s = max{s,t}, then ¢ < ¢ < s, a contradiction). In this case ¢ > s since

s<p<yp,¢d <q<tso that %/ > 35, so that ¢; > 5. In the other direction, note

that
¢ =pr+q@=0p—-5/2)+(q—3s)=n—3s/2,
so that
2¢  2n n
3 T3 Sy ss

where the last inequality holds as s > % by definition of s as the power of 2 in the

(conjectural) optimal (s,t) split of n. Since ¢; is the power of 2 in the split of ¢’ and

is less than 2¢'/3, it hence is at most 3. Thus, if ¢; = s, we have that ¢; = 3.
Otherwise, 1 = 5 and p; = § so that s = max{s,¢} (since, as we showed above,

s

2

and hence ¢; < 2. In the other

p1 = 5 when s = min{s,t}). In this case, %/ < 5

direction, note that

¢ =p+q=0p—s/4)+(qg—s/2) =n—3s/4

whence )
q n s

B s s
373 172 44

where we used that s < %” to derive that § < . But this means ¢; > 7, and hence

q; > 5 —and so again, ¢; = 5. Now we combine, obtaining

S

P4 L, . Pq r'q
B(p,q) > —=pB.¢) >
) p'q P'q (/24 5/2)(py + 5)

- % (s,t) > B(s,1).

B(s/2+ s/2,py + ¢5)

Case 2 (Less Balanced Split): p < min(s,?) < max(s,t) < q.
This case works much like Case 1, with somewhat of an opposite feel since the
split we are considering is less balanced than our conjectured optimal split. To that
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end, suppose that p < min(s,t) < max(s,t) < g. As above, let (g1, ¢2) be the optimal
split of ¢ and note that, by induction, ¢ splits as conjectured; let ¢; denote the power
of 2. It follows that q; = s or 3 since n > q > s.

Balancing:
If g1 = s, this is quite easy. We apply Lemma 3.2 directly to see that

Bp,a) 2 B0+ 42.01) = 15(65) > 65, 1)

where we use the fact that ¢ > max(s,t) and also the fact that n = s+t = ¢ +p+ ¢
implies t = p + qo.
Unbalancing then Balancing:

If g1 = 5 we first note that

B(p,q) >

> B(q1,p + q2).
P+ q ( )

Now, consider the optimal split 71,75 of p+ g2 = n — 5, where r; denotes the power

of 2. Observe that since s < %”, then 5 < 2, and hence p + ¢ > %” > max(s,t).

Thus, this split is also less balanced than s,¢ (and potentially less balanced than
P, q so that the ratio Z#QQ appearing above may be less than one.) Nonetheless, we
proceed noting that since n > p + go > s, either 1y = s or ry = 3.
If r; = s, then we again apply Lemma 3.2 to see that:

B0.0) = —flarp+a) = —— P50 = D5 1) > 5(s, 1)

ptaq P+q q+7T2

Otherwise, if r; = s/2, then we balance slightly differently:

B(p,q) > ——Blgr,p + go) > — 'p+q25(

q
> g1+ 11,7m2) = =0(s,t) > B(s,1).
P+ q2 P+q q+n ! 172) s( ) (5,2)

In both cases, we see that 5(p,q) > [(s,t), thus proving the theorem. ]

Example 3.2. To better understand the mechanics of the proof above, it is rather
helpful to work through an example. We will show an example of the balancing then
unbalancing of Case 1, where we compare the optimal split to a more balanced split.

To that end, consider the case n = 187, whose optimal split is s = 64 and
n —s = 123. To show this, we want to compare (64,123) to an arbitrary split
of 187. Suppose we start with a more balanced split: (90,97). To compare these
splits, we first compare the (90,97) split to the more balanced split (91,96), and
then ultimately to the (less balanced, but optimal) (64, 123) split. Figures 4, 5, and
6 illustrate the optimal split for n = 187, along with the splits we compare them to
which, by induction, we know split optimally below the first step.
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/187\123 /187\ /187\
32/ \32 64/ \59 32/ \ / \ 32/ \ 32/ \

Figure 4: The optimal split. Figure 5: The (90,97) split.  Figure 6: The (91, 96) split.

1872
mﬂ(go)ﬂ(w)

1872 -90 - 97
1872 -90 - 97
> 917 o6z P O1B(%6)
2
90 - 97 { 187 5(91)5(96)]
90 - 97 [ 1872 .91 - 96

5(90,97) =

©91-96 |4-91-96

T 91-96 |43-322.59- 64
90 - 97 1872

T 64123 [4-64-123

87
4-64-123

ﬁwm%@%mmﬂ

mmwaxﬂ

B(64)B(123) = B(64,123).

Hence, the (90,97) split of n = 187 is not an optimal split since there exists a split
of (64, 123) with smaller .

We conclude this section with a final proposition, completing the claimed bound
that @ = 22n=0(ogn) from Theorem 1.1 for all n.

Proposition 3.1. 5(n) < n°M and B(n) > % for all n which are not powers of 2.

Proof. Both statements follow from (vi) and Theorem 3.1 which together show

n
B(n) = mﬁ(s)ﬂm - s),
where s is the unique integer power of 2 satisfying 3 <'s < 2% Since 3(s) = 1, one

obtains that 9
Bn) < 26(n — )

Now we iterate, letting n — s = n; and noting that n; < %n Then (again letting s;

be the unique power of 2 in the decomposition of n;) we obtain f(n) < %ﬂ(nl) <

(%)25(711 — s1). We continue to iterate, letting no = ny — 57 < %nl < (%)271, until
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n; is a power of 2; since it decreases exponentially this takes at most logs /Q(n) steps.
Hence B(n) < (9/8)1083/2(") — ploa(9/8)/108(3/2) " and this proves the first statement.

The second statement follows by strong induction, noting that it is true for n =

. . . 2 .
2t + 21 from the fact that for such integers, 4-5-"(178) = g, and for other integers, at
least one of the terms appearing in the decomposition of §(n) is not a power of 2

and hence is at least %. O

Remark: The fact that 3(n) < n°®Y completes the claimed bound on @ from
Theorem 1.1 as

M(n) _ 5(”) _ B(n)ZQn—210g2(n) _ 22n—0(logn)‘

4 Rainbow Spanning Trees in K, ,,

We now consider the case where the graph G is complete bipartite. As with the
JL-tree associated with a complete graph, the JL-tree (introduced in Section 2.2)
associated with a complete bipartite graph captures both the structure of the JL-
coloring and the number of RSTs in that coloring.

In this instance, the number of edges with color C; associated with an inner vertex
(p,q) and children (py, ps) and (g1, g2) would be the sum p1ga + paqi.

Now, we turn our attention to the proof of Theorem 1.2. As used earlier, a split
of (n,m) is a split (ny,my), (n2, my) such that n; + ny = n and m; + my = m. An
optimal minimizing [maximizing] split of (n,m) is a split that minimizes [maximizes]
v(n,m). When it causes no confusion to the reader, we will simply refer to an optimal
minimizing or maximizing split as an optimal split.

We begin by proving the lower bound, followed by the upper bound.

4.1 The Lower Bound

We first consider the lower bound in Theorem 1.2. We prove that |R(K, ., @) >
(n—1)(m—1)+1 and further, that there exists a coloring achieving this lower bound.

Proof of the lower bound in Theorem 1.2. Let G = K, ,, be a complete bipartite
graph with partitions N and M, respectively. By (ii), for a graph G of order n,
IR(G, )| > |E(G)| — (n —2), so it follows that for K, n,

IR(Kpm, 0)| > (n—1)(m —1) + 1.

We construct a coloring achieving this bound as follows. Fix one vertex a € N and
b € M from each partite set. Color the edges incident to a and b with distinct colors,
and color all other edges the same as the ab edge, so that all color classes except for
one have size one. This coloring has n+m—1 colors, it has n+m—2 color classes class
of size one, and the remaining class has size nm — (n+m —2) = (n—1)(m—1) + 1.
This coloring is also rainbow cycle free, as any cycle must use two edges of the ab
edge’s color. This realizes the bound of (ii) and proves the theorem. O]



M. DEVILBISS ET AL./ AUSTRALAS. J. COMBIN. 86 (1) (2023), 1-23 16

Note that the coloring described above is represented by the JL-tree where the
children of the root vertex labeled (n,m) are (1,m — 1) and (n — 1,1), respectively.

4.2 The Upper Bound

We now turn our attention to proving the upper bound in Theorem 1.2. To that
end, we let the function v(n,m) for n,m € N be the maximum number of rainbow
spanning trees occurring in any JL-coloring of K, ,,. We are interested in proving
the following theorem.

Theorem 4.1. Let n > m € N. Then

v(n,m) =m" " ((m — 1)2

Observe that proving Theorem 4.1 proves the upper bound in Theorem 1.2.

Proof of the upper bound in Theorem 1.2. The proof proceeds by induction. Ob-
serve that the upper bound in Theorem 1.2 holds for the base case K ;. We shall
prove it holds for K, ,,.

Now, we first claim that for a vertex (a,b) with a > b in the JL-tree, the optimal
split for producing the most RSTs is the two vertices (1,0) and (a — 1,b). Notice
that for K, ,, with n > m, these splits, applied starting with the root (n,m), yield
n —m + 1 color classes of size m and two color classes of each size 1 through m — 1.
By the observations made above, this split produces m™ ™% ((m — 1)!)*> RSTs.

Now, suppose to the contrary that the split described above does not maximize
|R(Kpm, )| Then there exists some split, (n1,m1) and (ng, mg) with ny + ne = n,
my + my = m, of (n,m) that produces more RSTs. We claim this cannot be the
case.

To that end, notice that either ny > m; or ny > my. Without loss of generality,
suppose n; > my and observe that by induction, (ny,m;) splits in the conjectured
optimal way. Thus, the number of RSTs produced by this (nq,m;) and (ns, ms) split
is the following:

(nymg + nomy )v(ng, my)v(ng, ma) = (nyms + nomy)miv(1,0)v(ng — 1, mq)v(ng, ms)

= my(nyma + nomy)v(ng — 1, my)v(ng, mo)

Now, the number of RSTs produced by the conjectured optimal split, (1,0) and
(n—1,m), is mv(n—1,m). Thus, proving our claim is equivalent to showing muv(n —
1,m) > my(nymy + nomy)v(ny — 1, my)v(ng, ms).

To that end, observe that

mr(n—1,m) =mv((ny — 1) + ng, my + my)

> m[(n1 — 1)ma + nomq|v(ng — 1, mq)v(ng, ms)

where the inequality comes from the fact that (ny — 1,m;) and (ng, my) might be
suboptimal splits for (n — 1, m).
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Therefore, it is enough to show that
mi(nime+nomy)v(ng—1, mq)v(ng, me) <mf(ny—1)me+nomq|v(ny—1, my)v(ng, mo).

Using the fact that m = my 4+ my and rearranging, this is equivalent to showing
that
0 S (n1 — 1)(m2)2 + (ng - l)mlmg.

If ny,ny > 0, then (ny — 1)(m2)? + (ng — 1)mymy > 0. Now, observe that n; # 0
because we assumed m; < ny and (0,0) is not a valid vertex in a JL-tree. Thus, it
remains to consider the case where ny = 0. If ny = 0 then my = 1 and thus,

(n1 —1)(mo)* + (ng — Dmimy =n —1— (m — 1)
>0

It follows that (n; — 1)(mg)? + (ng — 1)mymy > 0, thus completing the proof. O

5 General Graphs, General Colorings, and Further Ques-
tions

In this section we briefly investigate a few related questions: How do the results
above generalize to arbitrary graphs? How do these results generalize to other n — 1
colorings, when rainbow cycles are allowed? We note that there are a myriad of
interesting open questions in these areas, some of them raised below, that will likely
require new ideas to address.

5.1 General Graphs with JL-colorings

As noted in the introduction, the number of rainbow spanning trees in a JL-coloring
of a general graph is the product of the sizes of the color classes. In (ii) we observed
that by convexity,

B(G)| - (n—2) < [R(G, )| < ('E@‘)n_ ,

n—1

when ¢ is a JL-coloring of G.

We have seen that, in the case of a complete bipartite graph, the lower bound
is actually achievable. Furthermore, as also observed in the introduction, a rainbow
coloring of any tree meets both bounds. The following are natural questions which
arise when considering the strength of these bounds.

For the remainder of Section 5.1, assume that G is connected and all colorings
are JL-colorings.

(1) Sharpness of the lower bound: For which graphs is there a coloring so that
the lower bound is sharp? Can they be characterized?
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(2) Sharpness of the upper bound: Are there any non-trivial examples of the
sharpness of the upper bound? The trivial upper bound given above can be
strengthened, somewhat, as the sizes of color classes must be integral. Let
ai,...,an,—1 be positive integers so that Y a; = |E(G)| and |a; — a;] < 1, for
1 <i<j<n-—1. Then (applying convexity more carefully),

n—1

IR(G, o) < | ]| @ (vii)

.
Il

For which graphs is there a coloring so that (vii) is sharp?

(3) Graphs maximizing rainbow spanning trees: Note that for the com-
plete graph, the upper bound (vii) is not satisfied and a coloring maximizing
|R(K,, ¢)| does not have all color classes the same size. (In fact, at least one
color appears on only one edge; this holds true for any connected graph on
at least two vertices, by the main result of [8].) This leaves open the pos-
sibility that some other connected n-vertex graph GG has a coloring so that
max,, |R(K,, p)| < max, |R(G,¢)|. Does such a graph exist?

We give brief answers, partial in some cases, to these questions. The first question,
in (1), we can answer precisely and we obtain the following.

Theorem 5.1. The lower bound
|E(G)] — (n —2) < [R(G, ¢)|

is realized for some coloring iff V(G) can be partitioned into two parts (X,Y') so that
G[X] and G[Y] are trees and |E(X,Y)| > 1.

Remark: This is not the traditional presentation of K, ,,, where we have already
observed this bound to be tight. We note, however, that K, ,, can also be thought
of as two stars, K ,,—1 and K,_;1, along with a complete bipartite graph between
the leaves and a single edge connecting the roots.

Proof. 1f G has the desired form, then one colors each of the trees in a rainbow way,
with each color used once and each tree using disjoint sets of colors, and then the
bipartite graph on (X,Y") a distinct color. Then the coloring has no rainbow cycle
(as any cycle must use multiple edges of the bipartite graph (X,Y"), uses (| X|—1)+
(Y| —1)+ 1 =n—1 colors, and furthermore, only one color class has size larger
than one so the lower bound is realized.

In the other direction, suppose G has a JL-coloring realizing the lower bound.
Such a coloring has at most one color class of size larger than one. If each is of size
one, G is a tree, which is of the desired form with X and Y being any partition
into connected subtrees. So suppose G is not a tree. Since the coloring is rainbow
cycle free, the n — 2 color classes of size one induce a forest with two components
(X and Y). The remaining (larger) color class cannot have any edges within X or Y
without forming a rainbow cycle, and hence forms a bipartite graph between them,
as desired. O]
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In the complete graph, however, the lower bound is exponential and this leaves
many related open questions. In particular, can one characterize graphs for which
this number grows exponentially (or polynomially)? Is it true, for instance, that in
a non-bipartite expander graph |R(G, )| is necessarily exponential in the number
of vertices?

We answer (2), the second question, as follows:

Theorem 5.2. Let G be a connected graph and let aq,as,...,a, denote positive
integers so that Y1 a; = |E(G)| and, for all indices i and j, |a; — a;| < 1. Then,
as noted above, convexity implies that

If |[E(G)| > 2(n — 1), then the first inequality is strict.

Remark: When G is a tree both inequalities above are equalities, but it is also
easily seen that the first (lower) inequality is equality when G is unicyclic (that is,
when |E(G)| = n). An interesting open question would be to find the largest |E(G)|
for an n-vertex graph G where this inequality can be tight.

Proof. If |E(G)| > 2(n — 1), then the values a; satisfying the hypothesis of the
theorem are all at least 2. On the other hand, the tree decomposition of a JL-
coloring described in Section 2, by iteratively partitioning the graph, ends with two
parts of size one—and hence, with a color class of size 1. Thus, in any JL-coloring
|C;| =1 for some i and the bound on the product given is never sharp. O

This leaves open the rather interesting question of whether there is a general
improvement to (vii).

Finally we answer the third question, (3), completely with the following.

Theorem 5.3. If G is an n-vertex non-complete graph, then

max |R(K,, )| > max |R(G, p)|.
) @

Proof. This follows immediately from the decomposition of JL-colored graphs given
in Section 2. Given a graph G and cut (A, A) in the decomposition of G guaranteed
by Proposition 2.1, increasing the number of edges in such a cut gives a JL-colored
graph with more edges in the color class (and hence, more rainbow spanning trees).
[terating eventually gives a JL-colored complete graph. This has more rainbow
spanning trees than in G, as not all of the cuts augmented were originally complete
(as G is not complete). O
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5.2 General Colorings

Another interesting set of questions deals with the case where instead of JL-colorings,
one considers general colorings. As noted in the introduction, if too general colorings
are allowed, the question of counting RSTs can become trivial. To this end, for an
n vertex graph G, let

J(G)={¢: E(G) = [n—1]: ¢ is a JL-coloring}, and
C(G) ={p: E(G) = [n—1]}

denote the set of JL-colorings and set of general colorings, possibly with rainbow
cycles, but restricted to having no more than n—1 colors. It is easy to see that when
V(G) > 2
0= min |R(G, < min |R(G,p)|.
min [R(G,¢)| < _min [R(G.)|
The question of maximizing the number of rainbow spanning trees, however,
seems quite interesting. In particular we raise the following question.

Question: Is the following true?

max |R(K,, = max |R(K,, =(n—1)!
e [R(Kp) = max [R(Kye)| = (0 1)

The inequality max, ey |R(K,, ¢)| < max,ec |R(K,,p)| is trivial, as the first
maximization is over a smaller set. The inequality in the other direction, that
maxyes |R(Kn, ¢)| > max,ec |R(K,, )| initially appeared unlikely to us, but af-
ter some experimentation and thought, it seems plausible. We can show, at least,
that colorings with more rainbow spanning trees than the maximizing JL-coloring
are quite rare.

Theorem 5.4. Let C'(K,) C C(K,) denote the set of colorings ¢ of E(K,,) satisfying
R(Kn,p) > (n—1). Then
e,

Sl ),
n=voo |C(F)]

Proof. Let ¢ denote a uniform random coloring of the edges of K, so that the color
of each edge is independently and uniformly chosen from [n—1]. For a fixed spanning
tree T, the probability that T is rainbow is (n — 1)!/(n — 1)"~'. Then by Cayley’s
formula and linearity of expectation

firical] =t O o (1) s e

The result then follows by Markov’s inequality, as

IC'(K,)|
e = B(RUS. 212 (1)) <

n—1
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In general, understanding |R(G, )| for an arbitrary ¢ € C seems difficult. It is
clear that, if Cy,...,C,_; are the color classes of ¢, then

n—1
R(G, ) <[] lcil
i=1

The inequality is strict when collections of n — 1 edges, one of each color, include
cycles. Understanding these collections in a simple way, however, seems difficult.

As a first step in this direction, we observe that we can prove an analogue of the
matrix tree theorem of Kirchoff, which gives a way of counting rainbow spanning
trees in a general graph.

Recall that the combinatorial Laplacian matrix of a graph is the matrix
L=D-—A,

where D is a diagonal matrix consisting of vertex degrees and A is the adjacency
matrix. Note that both A and D above are formed with reference to the same
ordering of the vertices of a graph. Then the matrix tree theorem states that the
determinant of any cofactor of L is the number of spanning trees in this graph.

We generalize this result to colored graphs. Because we deal with n — 1 edge
colored graphs, and because the statement is cleaner in this case, we focus on the
n — 1 colored case. Given a graph G and an edge coloring ¢ : E(G) — [n — 1], we
define the colored graph Laplacian L, of G so that

0 if ¢ 7é ja V; ’7(’ Vj
[Lolis = ~Coo(vivy) if i # j and v; ~ v; ’
Cop(vivg) ifi=j
kv~
where ¢; for i = 1,...,n — 1 are indeterminates. Note that if one sets ¢; = 1, for all

1, then one recovers the ordinary graph Laplacian, as above.

Theorem 5.5 (Matrix Tree Theorem for Rainbow Spanning Trees). Let G be a
graph and ¢ : E(G) — [n—1] an edge coloring of G. Let L, of G be the colored graph
Laplacian defined above. Let L' denote a principle cofactor of L,(G) and

f(Cl, Cen 7Cn—1) = det L,.

Then
0 0 0

= o -~ ... L.
|R(G7 90)’ [f(c].7 7Cn 1)]6162...Cn_1 861 862 det

(?cn, 1

Remark: The proof, a simple modification of the usual proof of the matrix tree
theorem, actually shows that det L’ is a generating function for different colorings of
spanning trees. This remains true for colorings with more than n—1 colors. Rainbow
spanning trees, in this setting, are counted by the coefficients of squarefree terms.
The advantage in stating the n — 1 color case is that there is only one such term.
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Proof. The proof largely follows that of the standard matrix tree theorem.

Let B, be a |V| x |E| matrix, indexed by vertices and edges respectively. The
column indexed by edge v;v; has non-zero entries only in the v; and v; positions:
one of these is set to be , /C,(,0,) and the other —, /€o,0;), with the signing chosen
arbitrarily. Then it is easy to check that

L, = B,B,

just as with the standard Laplacian. If the v;th row and column of the Laplacian are
removed, then L' = B'(B")", where B’ is obtained by removing the v;th row of B,,.

Then, by the Cauchy-Binet formula,
flei,. .. cnoy) = det L' = det(B')(B)"
= Z det(B'|4) det((B")T|4)

ACE(G)
|A]=n—1
= det(B’'|4)?,
ACE(G)
|[A|l=n—1
and it is straightforward to verify that

det(B|4) = 0 if the edges in A contain a cycle
¢ AT+ [lcca /Coe) if the edges in A form a spanning tree

Thus,
f(cla e 7Cn71) = Z H Col(e)-

T spanning e€T
tree of G

Then the number of rainbow spanning trees is exactly the coefficient of the monomial
where each of the ¢;s has degree one, as claimed. As this polynomial is homogeneous
of degree n — 1 in the variables ¢;, the coefficient can be recovered by iteratively
taking derivatives.

As a quick observation, often in such a result one would then evaluate at ¢; = 0
for all 7 to remove unwanted contributions. In this case, however, this is unnecessary
— all non-rainbow trees will be be missing some variable c¢;, and will be destroyed
when taking that derivative so that after taking the partial derivatives only the
contribution from rainbow trees remains. O

Acknowledgements

The work described in this article is a result of a collaboration made possible by
the National Science Foundation (DMS-134365) and the SAMSA-Masamu Program.
The work for this article began during a 10 day workshop, hosted by the Masamu
Advanced Study Institute in November 2019. We also acknowledge the Simons Foun-
dation (Grant 52503), National Research Foundation in South Africa, University of
Denver, and Auburn University. We also generously thank the reviewers for their
thoughtful comments and careful read of this paper.



M. DEVILBISS ET AL./ AUSTRALAS. J. COMBIN. 86 (1) (2023), 1-23 23

References

1]

ORI

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

R. Brualdi and S. Hollingsworth, Multicolored trees in complete graphs, J. Com-
bin. Theory Ser. B 68(2) (1996), 310-313.

A. Cayley, A theorem on trees, Quart. J. Pure Appl. Math. 23 (1889), 376-378.

J. Carraher, S. Hartke, and P. Horn, Edge-disjoint rainbow spanning trees in
complete graphs, European J. Combin. 57 (2016), 71-84.

H.L. Fu, Y.H. Lo, K. E. Perry and C. A. Rodger, On the number of rainbow
spanning trees in edge-colored complete graphs, Discrete Math. 341 (8) (2018),
2343-2352.

S. Glock, D. Kiihn, R. Mongtgomery and D. Osthus, Decompositions into iso-
morphic rainbow spanning trees, J. Combin. Theory Ser. B 146 (2021), 439-484.

A. Gouge, D. Hoffman, P. Johnson, L. Nunley and L. Paben, Edge colorings of
K, which forbid rainbow cycles, Utilitas Math. 83 (2010), 219-232.

R. L. Graham and H. O. Pollak, On embedding graphs in squashed cubes, Graph
theory and applications, Lec.Notes in Math. 303; Springer, Berlin, (1972), 99—
110.

D. Hoffman, P. Horn, P. Johnson and A. Owens, On rainbow-cycle-forbidding
edge colorings of finite graphs, Graphs Combin. 35 (6) (2019), 1585-1596.

P. Horn, Rainbow spanning trees in complete graphs colored by one factoriza-
tions, J. Graph Theory 87 (3) (2018), 333-346.

P. Horn and L. Nelsen, Many edge-disjoint rainbow spanning trees in general
graph, (preprint).

P. Johnson and C. Zhang, Edge colorings of K, ,,, with m +n — 1 colors which
forbid rainbow cycles, Theory and Applicns. of Graphs 4 (1) Art.1 (2017), 17.

P. Johnson and A. Owens, Edge colorings of complete multipartite graphs for-
bidding rainbow cycles, Theory and Applicns. of Graphs 4 (2) Art.2 (2017), 9.

G. Kirchhoff, Uber die Auflésung der Gleichungen, auf welche man bei der
untersuchung der linearen verteilung galvanischer Strome gefiihrt wird, Ann.
Phys. Chem. 72 (1847), 497-508.

R. Montgomery, A. Pokrovskiy and B. Sudakov, Decompositions into spanning
rainbow structures, Proc. Lond. Math. Soc. (3) 119 (4) (2019), 899-959.

A. Pokrovskiy and B. Sudakov, Linearly many rainbow trees in properly edge-
coloured complete graphs, J. Combin. Theory Ser. B 132 (2018), 134—156.

(Received 16 June 2021; revised 6 May 2022, 23 Jan 2023)



