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Abstract

We seek to understand fundamental tradeoffs be-
tween the accuracy of prior information that a
learner has on a given problem and its learning
performance. We introduce the notion of pri-
oritized risk, which differs from traditional no-
tions of minimax and Bayes risk by allowing us
to study such fundamental tradeoffs in settings
where reality does not necessarily conform to the
learner’s prior. We present a general reduction-
based approach for extending classical minimax
lower-bound techniques in order to lower bound
the prioritized risk for statistical estimation prob-
lems. We also introduce a novel generalization
of Fano’s inequality (which may be of indepen-
dent interest) for lower bounding the prioritized
risk in more general settings involving unbounded
losses. We illustrate the ability of our framework
to provide insights into tradeoffs between prior
information and learning performance for prob-
lems in estimation, regression, and reinforcement
learning.

1. Introduction

We are motivated by the problem of understanding funda-
mental limits and tradeoffs in learning with prior informa-
tion: how much prior knowledge does one require in order
to learn quickly on a given task? In other words, for a given
problem, is there a fundamental limit on the performance of
a learner in the absence of sufficient prior information?

Fundamental limits in learning are typically formalized via
the classical notions of minimax risk and Bayes risk (Berger,
2013). Consider the standard setting in statistical learning
theory where a learner receives a dataset x“1 = fxig’i‘:1
containing n i.i.d. observations of a random variable X .
Suppose that the distribution P of X is defined by a pa-
rameter 2 which is a priori unknown to the learner.
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The learner’s task is to use the dataset to minimize risk (i.e.,
expected loss) for this unknown distribution. The minimax
risk then corresponds to the lowest worst-case risk (over the
family of distributions defined by 2 ) achievable by any
learner (see Sec. 2 for a formal definition). In other words,
the minimax risk corresponds to the minimax-optimal value
of the following game: the learner first chooses a particular
learning algorithm, and then an adversary chooses a distri-
bution parameter 2 ; the learner’s cost (negative payoff) is
equal to its risk.

The minimax risk does not allow one to take into account
prior information that a learner may have (beyond the weak
prior knowledge that belongs to the set ). As an alter-
native, one may assume that the learner is equipped with
prior knowledge of the distribution that the parameter is
drawn from. The Bayes risk then corresponds to the small-
est possible average risk assuming that is drawn from the
prior distribution (see Sec. 2 for a formal definition). How-
ever, the Bayes risk formulation assumes that the learner is
equipped with nature’s prior, i.e., the true distribution from
which is drawn. The Bayes risk formulation thus does
not capture settings where reality does not conform to the
learner’s prior.

Statement of contributions. We seek to address the chal-
lenges with using the minimax and Bayes risk for under-
standing fundamental limits of learning with prior informa-
tion. To this end, we make the following contributions:

We propose a quantity — which we refer to as priori-
tized risk — for analyzing settings where reality does
not fully conform to the learner’s prior. The key idea is
to consider a version of the minimax risk where the risk
associated with a given distribution P is weighted by
the prior that the learner has on . We show that this
quantity allows us to understand fundamental tradeoffs
between the accuracy of prior information and learning
performance (risk) on a given problem: a lower bound
on the prioritized risk allows one to establish a funda-
mental limit on learning performance in the absence of
sufficient prior information (Sec. 3).

We provide a general reduction-based strategy for ex-
tending classical techniques for lower bounding mini-
max and Bayes risk — including the methods of LeCam,
Assouad, and Fano (Tsybakov, 2008; Yang & Barron,
1999; Yu et al., 1997) — to obtain lower bounds on the
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prioritized risk for estimation problems (Sec. 4).

We derive a novel generalized Fano inequality for ob-
taining lower bounds on the prioritized risk for general
learning problems beyond estimation (Sec. 5). This in-
equality handles problems with unbounded losses (in
contrast to prior generalized Fano inequalities (Chen
et al., 2016; Gerchinovitz et al., 2020; Majumdar &
Pacelli, 2022)), and may thus be of independent interest.

We illustrate the ability of the prioritized risk frame-
work to provide insights into tradeoffs between prior
information and learning performance for various prob-
lems including prior-informed versions of the following
(Sec. 6): (i) Bernoulli mean estimation, (ii) logistic
regression, and (iii) reinforcement learning (RL) with
environments drawn from Zipfian distributions.

2. Background: Minimax and Bayes risk

We provide a brief introduction to the minimax and Bayes
risks, and refer the reader to (Berger, 2013; Tsybakov, 2008)
for a more thorough exposition. Consider a random variable
X that takes values in a sample space X. Suppose that
the distribution P of X is defined by a parameter 2 which
is unknown to the learner. A learner : X nl A
receives a dataset x’l = fxig:‘:1 of n i.i.d. realizations
of X, and must output an action a 2 A that is evaluated
according to a loss functionL : A | [0; 1). This setting
captures many problems of interest; in estimation
problems, one can take A = and evaluate the learner
using aloss L(; (x")). = { (x"))?. More broadly, A can
correspond to a hypo%hesis space H; the learner may then
be evaluated by its future expected performance L(; (x"))
= Exp [|1(X; {x1))] on data fromrP.

Minimax risk. The risk of a learner is defined as
RG) = B LGOX)) (2)

where the expectation is taken with respect to the dataset
used by the learner. We can then define the minimax risk:

Rminimax(L; ) =:inf sup R(;): (2)
2

This can be interpreted as a game where the learner fixes ,
and an adversary with knowledge of then chooses 2 in
order to maximize the risk. The minimax risk thus
corresponds to the lowest worst-case risk (over the family
of distributions defined by 2 ) of any learner.

Bayes risk. Since the minimax risk corresponds to the
worst-case risk, it does not capture prior knowledge that a
learner may have beyond the fact that 2 . One can in-
stead consider the Bayes risk, which is the smallest possible
average risk assuming that is drawn from a distribution :

VA

RBayes(; L;) = inf R(;) (d): (3)

A learner that implements Bayesian inference with the
prior and observation x" achieves the optimal Bayes risk
(Berger, 2013, Ch. 4). However, the Bayes risk formula-
tion makes a strong assumption on how is chosen and the
knowledge that the learner has, i.e., that the parameter is
drawn from a “true” distribution (“nature’s prior”) and
that this distribution is known to the learner. The Bayes risk
is thus not directly useful in analyzing settings where reality
does not conform to the learner’s prior.

3. Prioritized Risk

Motivated by the challenges associated with the notions of
minimax and Bayes risk for analyzing learning algorithms
with prior information, we propose a different quantity that
aims to capture the relationship between prior knowledge
and learning performance on a given task. We refer to this
quantity as prioritized risk and discuss its interpretation
below. Similar to the minimax risk, the prioritized risk
operates in a setting where nature chooses a particular value
2 (instead of randomly choosing from a distribution).
However, similar to the Bayes risk, we allow learners to
be equipped with prior information (which may not fully
capture the true value of ).

3.1. Definition

Let : ! Rso denote a function that captures prior in-
formation that a learner has about the learning problem (i.e.,
about the value of 2 that tfke learner will encounter). If
is normalized such that ()d = 1, it may be in-
terpreted as a density corresponding to a Bayesian prior.
However, here we eschew this Bayesian interpretation and
simply think of as a way for the learner to encode all
available prior knowledge or inductive bias it has on the
problem (specified before the learner observes any data). In
this sense, is similar to the “luckiness function” (Shawe-
Taylor et al., 1998) or the prior in PAC-Bayes approaches
(McAllester, 1999). In cases where does not integrate to
1, it may be interpreted as an energy-based model
(LeCun et al., 2006) which encodes prior information. Our
frame-work allows us to handle both normalized and
unnormalized priors.

Definition 3.1 (Prioritized risk). For a given family of dis-
tributions fPg,, loss function L , and prior function :
I R0, the prioritized risk is defined as:

Rprior(; L;) = inf sup ()R(;) (4)
2
= inf sup () E LG (X)), 2
1 xnp "
We will refer to the quantity:
RpriorG L;) = sup ()R(;) (5)
2

as the learner-specific prioritized risk.
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As we discuss below, the prioritized risk can provide insights
along two dimensions: (i) analyzing different learning algo-
rithms, and (ii) analyzing different learning problems.

3.2. Implications for Learning Algorithms

In order to interpret the prioritized risk, consider a learner
that achieves a small learner-specific prioritized risk:

ORG) 5 82: (6)

We will say that a parameter 2 chosen by nature con-
forms to the learner’s prior if () is high; conversely, we will
say that does not conform to the learner’s prior if () is low.
Then, we have the following implication for a learner that
satisfies (6): the more closely nature conforms to the
learner’s prior (i.e., the higher () is for the chosen ), the
lower the risk is guaranteed to be: R(; ) =().

The prioritized risk also allows us to compare different
learning algorithms. For a given learning problem and prior
, consider two learners and © that have learner-specific
prioritized risks and °respectively, with ®< . Then,

R(;) =(); 82; (7)R(%) °=()
< =(); 82: (8)

In such a case, one should prefer the learner © since it
affords a better tradeoff between learning performance (i.e.,
risk) and the accuracy of prior information (i.e., how much
conforms to the prior).

3.3. Implications for Learning Problems
In this work, we will focus on lower bounds for the priori-
tized risk. Consider a problem where one has established:

Rprior(; L;) : (9)

This implies® that no matter what learning algorithm one
chooses (i.e., for any choice of ),

92 suchthat () l:{z%}) |Le—a{r§m—gl (10)

(“Nature”) (“Nurture”)

This relationship between prior information (“nature”) and
learning (“nurture”) takes the form of an uncertainty princi-
ple? and captures a fundamental tradeoff: it is impossible for
both the risk and the prior to be low for all 2 . In other
words, for any learning algorithm , there exists 2 such that
if the learner achieves low risk, it must be the case that
reality conforms to the learner’s prior (i.e., () is large).

THere we assume for simplicity that the supremum and infimum
are achieved (i.e., sup = max, inf = min).

2Recall the form of uncertainty principles in quantum mechan-
ics, e.g., xp h=4, which states that there is a fundamental tradeoff
between knowing a particle’s position and its momentum.

Example 3.3. As an example of the kind of implications
one may derive from a lower bound (9) on the prioritized
risk, consider a learning problem with an associated prior
(with () 2 [0;1];8 2 ). Consider a learner that achieves
low risk for values of that have a high prior:
1

R(;) < ; 85.t.2 () 1:= (11)
Then, from (10), we see that there must exist a with low
prior where the learner performs poorly:

9s.t. ()< 2;v&hereR(;) > 20 ——

0
A lower bound on the prioritized risk thus establishes a
fundamental tradeoff for a given learning problem: any
learner that performs extremely well for values of with
high () must give up performance for a low value of ();
the learner may thus perform poorly if reality does not
conform to its prior (i.e., if () is low).

(12)

Remark 3.2 (Relationship to minimax and Bayes risk). We
make the following straightforward observations relating
the prioritized risk to the minimax and Bayes risks:

The prioritized risk reduces to the minimax risk if
() 1.1f() 18, then Rprior Rminimax-

In settings where is a countable set, the prioritized risk
lower bounds the Bayes risk (both computed using a
given prior that is normalized to be a valid proba-
bility distribution). Thists because for any learner :
sup, ()R(;) ,  OR(;). Since the
Bayes risk lower bounds the minimax risk, we have for
countable that: Rprior RBayes Rminimax.

In the more general setting of uncountable , the priori-
tized risk may be larger than the Bayes risk (e.g., take to
be the density function of a univariate Gaussian such
that () > 1 for some, andletR(;) 1).

4. Lower Bounds on Prioritized Risk:
Estimation Problems

We now describe techniques for obtaining lower bounds on
the prioritized risk. In this section, we focus on estimation
problems; here, a learner : X" |  receives a dataset x;
=nfxig;., of ni.i.d. realizations from a distribution P and

outputs an estimate = (x"f of the ynderlying parameter
. The learner is evaluated using a loss:

LG (x1)) = 5 () (13)
where : | Ry isa(pseudo)metric, e.g., k ka. A

4.1. Reduction from Estimation to Testing

In this section, we describe a general strategy for extending
classical techniques for lower bounding the minimax risk
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(e.g., the methods of LeCam, Assouad, and Fano) in order
to lower bound the prioritized risk for estimation problems.
The standard starting point for proving lower bounds on the
minimax risk is to reduce the problem of estimation to one
of hypothesis testing (see, e.g., (Tsybakov, 2008) (Duchi,
2016, Ch. 7)). One can then use information-theoretic
techniques to lower bound the Bayes risk for the testing
problem, which yields a lower bound for the minimax risk.
Here, we extend this classical reduction from estimation to
testing in order to lower bound the prioritized risk.

Consider a family of distributions fygyv2v, where V is a
finite index set. We will refer to this set as a (; )-packing if
balls (as defined by the pseudometric ) of radius -
centered around each y are non-overlapping. Now consider
the following hypothesis testing problem. First, we define
a random variable V corresponding to a uniform distribu-
tion over V. Conditioned on a choice V = v, a dataset
x" = fxijg" is drawn from P " . Given this dataset, the
hypothesis t&sting problem is to determine the underlying
indexv 2 V. A mapping :X" | Visreferredtoasa
test function. Its associated probability of error is:
1 X
P( (X:)=V);=ﬁ P (X"E:vjV:v:
Vi yav
We now establish the reduction from estimation (where a
learner is evaluated according to the learner-specific priori-
tized risk) to hypothesis testing via the following argument:

X" 1 with a low
~(;L;) (Eq. (5)) for the

rior

1. Suppose there exists a learner
learner-specific prioritized risk R o
original estimation problem.

2. Then, the following prior-weighted test function (which
uses as a subroutine) achieves a small error probability for
the hypothesis testing problem:

(x]) = argmin (v)(v; (x")): (14)

v2V

This reduction (stated formally below) allows us to turn a
learner that achieves low prioritized risk (for the estimation
problem) to a test function that achieves a small proba-
bility of error (for the hypothesis testing problem). The
contrapositive then allows us to translate lower bounds on
the testing problem (which can be obtained using standard
information-theoretic techniques) to lower bounds on the
estimation problem. Specifically, suppose we have a lower
bound on the achievable probability of error for the testing
problem. This lower bounds the probability of error for the
prior-weighted test function (14) (since this is just a particu-
lar test function). The reduction above then provides a lower
bound on the prioritized risk for the estimation problem.

Proposition 4.1 (Reduction from estimation to testing). Let
: X" 1 beanestimator for a learning problem defined by a
loss function of the form (13). Let fygya2v form a

(; )-packing and define the prior-weighted test function as
in (14). We then have the following bound:

Rprior(; L;) P( (Xq)= Vr): (15)
Hence, taking an infimum over estimators, we have:
Rprior(;L;) inf P( (Xy) = V): (16)

Proof. The proof is presented in Appendix A. The primary
distinctions of this reduction as compared to the standard
reduction from estimation to testing are: (i) the use of the
non-uniform (;)-packing, and (ii) the use of the prior-
weighted test function (14). If () 1, the reduction
presented here reduces to the standard reduction. O

As we demonstrate below, this reduction allows us to extend
classical techniques for lower bounding the minimax risk
(Tsybakov, 2008; Yang & Barron, 1999; Yu et al., 1997)
in order to lower bound the prioritized risk. Proofs of the
results below are deferred to Appendix A.

4.2. LeCam’s Method for Prioritized Risk

We first consider an extension of LeCam’s method in order
to lower bound the prioritized risk. This technique operates
by constructing a packing fygyvav, where V = f0; 1g, and
utilizing lower bounds for binary hypothesis testing.

Theorem 4.2 (LeCam’s method for prioritized risk). Con-
sider an estimation problem over a family of distributions
fPg, with a loss function of the form (13). A learner has
prior and will receive n i.i.d. observations from a
chosen distribution. Let fo; 1g form a (; )-packing. We then
have the following lower bound on the prioritized risk:
h i

Rprior(; L;) 1 7kPO PFkTV :n (17)

2

In order to understand the dependence of Rprior 0N the num-

ber of samples n, we can find a ((n); )-packing as a func-tion

of n such that the total variation distance is bounded:
2

(n)(n)

Theorem 4.2 then establishes that Rprior  1=(n).

kP! P Rry 1 (18)

4.3. Fano’s Method for Prioritized Risk

Next, we extend Fano’s method in order to lower bound the
prioritized risk; this operates by lower bounding the testing
error (16) via Fano’s inequality (Cover & Thomas, 2012).

Theorem 4.3 (Fano’s method for prioritized risk). Con-
sider an estimation problem over a family of distributions
fP g, with a loss function of the form (13). A learner has
prior and will receive n i.i.d. observations from a chosen
distribution. Let fy gv2v form a (; )-packing. Define a
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random variable V corresponding to a uniform distribution
over V. We can then lower bound the prioritized risk:
n #
I(V;X,)+I1dg(2
(V;Xy)+19(2) (19)
JlogjVv

Rprior(;L;) 1

where | (V ; X{") denotes the mutual information.

4.4. Assouad’s Method for Prioritized Risk

We now extend Assouad’s method in order to lower bound
Rprior; instead of reducing the problem of estimation to a
single hypothesis testing problem as in Prop. 4.1, Assouad’s
method proceeds via a reduction to multiple binary hypothe-
sis testing problems. We first extend the notion of Hamming
separation (Duchi, 2016, Ch. 7) to incorporate the prior .

Definition 4.4 ((2;)-Hamming separation). Consider a

family of distributions given by fygy2v indexed by the

hypercube V = f 1;1gd (for some d 2 N). This family

induces a (2; )-Hamming separation if there exists ¢ : !

f 1;1g9 such that 8v 2 V, we have:

x4 n o]
i) | A 0=y 582: (20)
V=1

Let Pj denote the joint distribution over the (uniformly
chosen) random index V and data X Iconditioned on the j-
th coordinate Vj = 1.

Theorem 4.5 (Assouad’s method for prioritized risk). Con-
sider an estimation problem over a family of distributions
fP g, with a loss function of the form (13). A learner has
prior and will receive n i.i.d. observations from a chosen
distribution. Let fy g2y -¢ 1,1¢ forma(2;)-Hamming
separation with ¢. We then have:

x4 h

inf P+j
i=1

Rprior(;l-;) (Xri)= +1 + @i
i
P (X)= 1
where the infimum is over tests : X" | f+1; 1g.
Combining this with the variational representation of the
total variation distance, we see:

xd h i
Rprior(; L;) 1 P+j pn i TV " (21)
j=1
1 d P . .
where P.j = 2 vjv =1 P, (and similarly for P ;).

Thus, similar to LeCam’s method, we can obtain lower
bounds on the prioritized risk by finding an appropriate
packing (forming a (2; )-Hamming separation) and lower
bounding the total variation distances in (21).

5. Generalized Fano Inequality for Lower
Bounds on Prioritized Risk

We now describe techniques for lower bounding the prior-
itized risk for learning problems beyond estimation. We
consider the general setting described in Sec. 2, where a
learner : X" ! A receives a dataset x" =: fxig",_, of n
i.i.d. realizations of X, and must output an actiona 2 A
(e.g., a hypothesis) that is evaluated according to a loss

functionL : A ! [0;1).

The key technical tool we use to obtain lower bounds on
prioritized risk in this setting is a generalized version of
Fano’s inequality. In its original form, Fano’s inequality
(Cover & Thomas, 2012) provides lower bounds on the
achievable error of estimating a signal given a potentially
corrupted observation of the signal. Recent generalized
Fano inequalities (Chen et al., 2016; Gerchinovitz et al.,
2020; Majumdar & Pacelli, 2022) allow one to establish
lower bounds on Bayes and minimax risks for various learn-
ing problems beyond estimation. Here, we present a novel
generalization of Fano’s inequality, which allows us to han-
dle learning problems with unbounded loss functions (in
contrast to Chen et al. (2016); Gerchinovitz et al. (2020);
Majumdar & Pacelli (2022), which assume that the loss is
bounded within [0; 1]). This is particularly important in our
setting for lower bounding the prioritized risk (4), where the
product ()R(; ) may not be bounded (even if the loss
function L is bounded). We first present a general version
of our result — which may be of independent interest —
for lower bounding the Bayes risk (3), and then use this to
lower bound the prioritized risk.

Theorem 5.1 (Generalized Fano inequality for unbounded
losses). For any prior distribution p on , the following
lower bound on the Bayes risk holds for all > 0:
z

. n
GELGIXM) pfd)

1

RBayes(p; L; ) =:inf
h i
I(;3X1Y ; n

where | (; X") is the mutual information, and Z

(22)

?

.’ =: suplog exp L(;a) p(d): (23)
a

Proof. The proof is in App. A. In contrast to (Chen et al.,
2016; Gerchinovitz et al., 2020; Majumdar & Pacelli, 2022),
we use the Donsker-Varadhan change of measure inequality
(Gray, 2011, Thm. 2.3.2) to handle unbounded losses. [

Consistent with intuition, this bound increases when the data
X7 do not provide much information about the underlying
(i.e., when the mutual information is small). The term ?,L
is related to the best achievable (exponentiated) average ioss
when one simply chooses an action a without observing any
data. This term may be easily computed when A and
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are finite; here, the supremum over a and the expectation
can both be computed exactly. In addition, one may also
compute a bound when A is finite, but is not (by comput-
ing or bounding the expectation above with high probability
via sampling and applying a concentration inequality; the
supremum over a can then be computed by enumeration).
We also note that ?_L is similar to the “small-ball proba-
bility” that appears in previous Fano inequalities Chen et al.
(2016); Gerchinovitz et al. (2020). While there is no general
recipe for bounding the small-ball probability, this can be
achieved on a case-by-case basis for particular examples
(see Chen et al. (2016)). The quantity ?,L similarly needs
to be computed on a case-by-case basis in general.

Corollary 5.2 (Prioritized risk lower bound via generalized
Fano inequality). For any distribution p on , we have the
following lower bound for all > 0:
1 h i
Rprior(;l-;) ;L *I(;?Xl ) n (24)
where | (; X") is the mutual information (computed using p
for ), and
z

.2 = . sup log exp
a

(OL(;a) p(d):

Proof. The result follows directly by combining Thm. 5.1
with the following (which follows from the fact that a supre-
mum is lower bounded by an average): Rprior(;L;)

Reayes(p; L ;), whereL (;a) = (JL(; a). O

We note that the bound above holds for any choice of p and ;
thus, we are free to choose p and judiciously in order to
obtain a lower bound on the prioritized risk.

6. Examples

We illustrate the ability of the prioritized risk framework to
provide insights into tradeoffs between prior information
and learning performance for prior-informed versions of: (i)
Bernoulli mean estimation, (ii) logistic regression, and (iii)
RL with environments drawn from Zipfian distributions.

6.1. Bernoulli Mean Estimation with Priors

We start by considering the problem of estimating the mean
of a Bernoulli distribution in the presence of prior informa-
tion. Suppose we have a family of Bernoulli distributions P
over X 2 f0; 1g; the distributions are parameterized using
the mean 2 = [0;1]. Suppose a learner has a prior over
. The learner’s goal is to estimate given data from P. The
learner : X" ! outputs an estimate =7(x")

and is evaluated using the loss L(; ) = j. *

1

In order to obtain numerical results, we choose a prior of a
particular form. Let correspond to the density function of a
Beta distribution Beta( = 1, = 2); this prior assigns

0.05
o e-- Minimax risk
0.04 --e-- Prioritized risk
o o °
§ 0.03 1 \.\\i o
P T3
% 0.02 1.‘52‘-3&&_3
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0003 4 ' : 10 12 12 16

6 8
Number of samples (n)

Figure 1. Lower bounds on Rprior(; L; ) and Rminimax(L; ) for
Bernoulli mean estimation.

higher weight to low values of the mean (specifically, is
linear in with (0) = 2 and (1) = 0). We can then apply
LeCam’s method for lower bounding the prioritized risk
(Thm. 4.2). By applying Pinsker’s inequality and the
tensorization property of the KL divergence, we obtain:
" ; #
. nKL(P,kP,) )
Rprlor(, I-; ) 1 2 2 ’

(25)
where fo; 1g forms a (;)-packing. Since the KL di-
vergence can be computed analytically for Bernoulli distri-
butions, we can then find a value of that maximizes this
bound for each n.

Fig. 1 plots the lower bound on the prioritized risk Rprior as
a function of the number of samples n. As described in Sec.
3.3, this establishes a fundamental tradeoff for learners for
this problem (for each value of n). We also compare the
lower bound for the non-uniform prior Beta( = 1, = 2) with
the lower bound for a uniform prior (() = 1;8 2 [0;1]),
which corresponds to the minimax risk.

In Appendix B, we present upper bounds on prioritized
risk for this problem computed using (i) Bayesian infer-
ence with prior and (ii) a learner that does not exploit
the prior (Bayesian inference with uniform prior). As ex-
pected, Bayesian inference with achieves a lower learner-
specific prioritized risk. However, we also demonstrate that
Bayesian inference with is not optimal in general from the
perspective of the prioritized risk; we do this by construct-
ing a different learner that achieves a lower learner-specific
prioritized risk. This thus motivates the search for learning
algorithms that achieve optimal prioritized risk.

6.2. Logistic Regression with Directional Priors

We now consider the problem of logistic regression with pri-
ors, and utilize Assouad’s method to obtain lower bounds on
the prioritized risk. Given a fixed set of regressors fz;g_,,
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where z; 2 RY, the logistic regression model assigns the
following probability to the label y 2 f 1;1g:

1

P(Yi= yjzi;)s —
( vizi;) 1+ exp( yz)

(26)
The goal of the learner is to infer the unknown parameter
2 RY given n observations of labels fy;g,_," Here, we use
the Ly-error L(; ) = K -kq to ev8luate the learner.

The learner has a prior on the parameter . Let V = f
1; 1g9 denote the vertices of the hybercube, and suppose that
is normalized such that (v, ) + (v ;) = 1. Define:
" #
1 1 1

R 27
This quantity captures directional biases imposed by the
prior. Specifically, given the logistic model (26), we see that
if (v) |s higher than (v ), thls implies confidence that
the j- th component of z being posmve will lead to the label
y being positive (and that the j-th component of z being
negative will lead to the label y being negative). Such
asymmetries are captured by . Specifically, if the prior is
symmetric such that (v ) = (v ) = 0:5,thenj = 1.If the
prior is asymmetric, thenJ > 1 (with the distance from 1
capturing the degree of asymmetry).

Defining [¥()]; = sign(;), we see thatV formsa (;)-
Hamming separation (Defn. 4.4). We can thus apply As-
souad’s method (Thm. 4.5) to lower bound the prioritized
risk (see Appendix A for the proof):

1 d?
Rorior(; L;) 16 q—ipd = P . > (28)
j=1 =1 ij
As a special case, if j = :(8j), we obtain:
1 d:
Rorior(; L; — 29
pl’lOl‘(l ;) 16 kaFr’ ( )

where kZ kg, is the Frobenius norm of the matrix Z 2 Rd4"
consisting of the regressors z;.

We observe that for a fixed dimension d, the bound (29) on
Rprior is determined by the product between and kZ ke,
(and, similarly for (28), the bound depends on the products
izij). Thus, for a given prior, we see that regressors with a
smaller Lo-norm induce a more stringent tradeoff between
prior information and risk of a learner. As a concrete exam-
ple, we build on the analysis in Example 3.3. Consider two
learning problems corresponding to two sets of regressors
with kZker  kZ%kgr. Suppose we have a learner © that
achieves low risk for high values of the prior using Z ¢

1
R(®;;z% < ©: =——8t 1:
;20 6 st ¢

Now, suppose we have a learner that achieves the same
level of performance as ° for high values of the prior using
regressors Z:

1 d; 1

.. o_- . 1o _. b

R(;;2Z) < 6 k7 kFigﬁJr,' + () 1=
16 K2k (30)

Then, building on Example 3.3, we see that for the problem
with regressors Z°,

Jw

! 0..0 1 _d
95.t.()<2;v\ﬂ1ereR(;;Z)>8kzk R o
(31)
whereas using regressors Z, we have:
3
9s.t.() < 'v&hereR("Z)> 1 3
o 2’ Y 8 kZkg, -
8 Yzokdt

The bounds on prioritized risk thus suggest that in order for
to achieve the same level of performance (using Z) as ©
(using Z°) for high values of the prior, must sacrifice a
greater level of performance for low prior values.

6.3. Reinforcement Learning in Zipfian Environments

In our final example, we consider a reinforcement learning
(RL) setting where an agent interacts with environments
that are drawn from a Zipfian (i.e., discrete power law)
distribution. Specifically, we build on the Zipfian Gridworld
environments from Chan et al. (2022), where an agent must
find objects using visual feedback. Each environment (Fig. 2
left) consists of a grid-world with four rooms containing
20 objects. There are a fixed set of 400 environments that
the agent may be deployed in; the agent’s start location,
target object, as well as the other object shapes, colors,
and locations are fixed within each environment. In each
episode, the agent receives a top-down camera view of its
immediate surroundings along with a visual depiction of the
target object. The agent receives a loss of O for the episode if
it reaches the target; the episode ends if the agent touches any
other object, and a loss equal to the number of steps taken
is then assigned.

Let X = fexg?29 denote the set of possible environments.
The distribution P over environments is defined by a dis-
crete power law (Zipfian distribution) p(x) / 1, where
the exponent determines how skewed the distribution is.
Such a distribution captures the heavy-tailed nature of many
real-world environments (Chan et al., 2022). In our setting,
is chosen from a set of 50 possible exponents between 0 and
5. Here, we use the prioritized risk to study fundamen-tal
limits on the agent’s learning performance when (i.e.,
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Figure 3. Lower bounds on prioritized risk (Zipfian environments).

how heavy-tailed the distribution is) does not conform to the
learner’s prior. The agent does not have a priori knowledge
of , but has a prior () = exp( ( 2:5)2), which cap-tures
the prior knowledge that real-world distributions are likely
to have Zipf exponents close to 2.5 (Fig. 2 right). For
training, the agent receives n environments from P. Based
on this training set, it must choose a policy (i.e., a mapping
from images to actions) from a set A. Here, we choose a
(pre-computed) set A of policies, each trained on a given
Zipfian exponent using IMPALA (Espeholt et al., 2018).

We use the generalized Fano inequality to compute lower
bounds on the prioritized risk (Cor. 5.2); since and A are
finite, we can compute all quantities in the bound exactly.
Fig. 3 plots the resulting bounds for different sizes of A. We
see that a learning agent that has access to a smaller set A
faces a more stringent tradeoff between prior information
and expected cost. Analogous to the analysis in Sec. 6.2, the
bound suggests that for an agent jaj-5 (with accessto A of
size 5) to achieve the same level of performance as jaj-s0
(with access to A of larger size) for high values of the prior
(i.e., close to 2.5), jaj=5 must sacrifice a greater level of
performance for less likely values of .

7. Related Work

No-free-lunch theorems and minimax lower bounds.
The no-free-lunch (NFL) theorem (Wolpert, 1996)(Shalev-
Shwartz & Ben-David, 2014, Ch. 5) establishes fundamen-
tal limits on learners that have no prior information. One
statement of the NFL theorem is via the minimax risk: if

one considers binary classification tasks and allows for any
distribution whatsoever over samples, then the minimax is
lower bounded by a constant (for all sample sizes n). In
general, lower bounds on the minimax risk for a given learn-
ing problem allow us to formalize the fundamental limits of
learning on that problem. Minimax lower bounds have been
established for many learning problems of practical interest,
e.g., sparse linear regression (Raskutti et al., 2011), nonpara-
metric classification (Yang, 1999), crowdsourcing (Zhang
et al., 2014), differentially private learning (Duchi et al.,
2013), and inverse reinforcement learning (Komanduru &
Honorio, 2021). Such lower bounds are typically proved us-
ing information-theoretic techniques, e.g., LeCam’s method,
Fano’s inequality, or Assouad’s method (Tsybakov, 2008;
Yang & Barron, 1999; Yu et al., 1997). As highlighted in
Sec. 2, the minimax risk does not reason about prior knowl-
edge beyond the weak knowledge that the data-generating
distribution belongs to a certain set.

Lower bounds on Bayes risk. The Bayes risk (Eq. (3))
considers the average risk relative to a prior over data-
generating distributions (i.e., over ). Bayes risk lower
bounds are known for a variety of problems including finite-
dimensional estimation problems with quadratic losses
(Van Trees, 1968; Brown & Gajek, 1990; Gill et al., 1995),
estimation problems involving generalized linear models
(Chen et al., 2016), and high-dimensional sparse linear re-
gression (Chen et al., 2016). As highlighted in Sec. 2, the
Bayes risk framework assumes that the learner has access
to the “true” distribution over , and thus does not capture
settings where reality does not conform to the prior.

More refined versions of the Bayes risk include “local” ver-
sions (Zhang, 2006) where one partitions the parameter
space into disjoint balls (of small size) and computes a
lower bound on the Bayes risk defined relative to a local
prior. This quantity is distinct from the one considered here.
The work presented by Haussler et al. (1994) considers the
tradeoff between prior knowledge and sample complexity
by analyzing the impact of a misspecified prior on the Bayes
risk. However, Haussler et al. (1994) only provide upper
bounds on sample complexity in the setting with misspec-
ified priors; lower bounds are only provided for the case
where the learner has access to nature’s prior. More recently,
Chollet (2019) considers a formalism based on algorithmic
information theory for capturing tradeoffs between prior
knowledge and learning efficiency (but computing the rele-
vant quantities is generally computationally intractable).

PAC-Bayes generalization bounds. One motivation for
studying fundamental limits on learners with prior infor-
mation comes from PAC-Bayes theory (McAllester, 1999),
which provides upper bounds on risk for learners equipped
with prior information. In PAC-Bayes learning, one defines
a prior distribution over the space of hypotheses, and then
obtains a bound on the risk that holds for any choice of
posterior. This bound can be operationalized by fixing a
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data-independent prior and then finding a data-dependent
posterior that minimizes the PAC-Bayes bound (Dziugaite
& Roy, 2017). The idea of using such prior information to
improve generalization bounds is also a key component of
the “luckiness” framework (Shawe-Taylor et al., 1998), Oc-
cam’s razor bounds (Blumer et al., 1987; Langford, 2005),
and the minimum description length principle (Rissanen,
1989). PAC-Bayes provides some of the tightest
known generalization bounds for neural networks for
supervised learning (Dziugaite & Roy, 2017; Neyshabur et
al., 20173a;b; Bartlett et al., 2017; Arora et al., 2018;
Rivasplata et al., 2019; Perez-Ortiz et al., 2020; Jiang et al.,
2020; Lotfi et al., 2022) and policy learning (Fard et al.,
2012; Majumdar et al., 2021; Veer & Majumdar, 2020; Ren
et al., 2021).

These results provide a motivation for the question we con-
sider here: how can we establish fundamental limits on

learners with imperfect prior information? Empirically,
one often observes that the strength of PAC-Bayes bounds

depends significantly on how good the prior is. If the

data-generating distribution conforms to the PAC-Bayes

prior (e.g., if the prior achieves low expected loss on the

data-generating distribution), then the resulting PAC-Bayes

bound can be strong (i.e., the upper bound on the expected

loss can be low). However, if the prior is not well-matched

with the data-generating distribution, the posterior may have
to deviate significantly from the prior, resulting in a poor

upper bound. Thus, one observes a tradeoff with PAC-

Bayes bounds: if the data-generating distribution conforms
to the learner’s prior, one can achieve low risk; however,
if the data-generating distribution does not conform to the

learner’s prior, the PAC-Bayes bound on the risk is high.
This tradeoff is very similar to the one the prioritized risk
attempts to capture. However, while the PAC-Bayes frame-
work provides upper bounds on risk, we focus on lower
bounds. We are thus motivated by the goal of establishing

fundamental tradeoffs (i.e., ones that hold for any learn-
ing algorithm) between the accuracy of prior information

and learning performance, while the PAC-Bayes approach

provides a particular such tradeoff.

8. Discussion and Conclusions

We have introduced the notion of prioritized risk, which
differs from classical notions of minimax and Bayes risk by
allowing us to study fundamental tradeoffs in settings where
reality does not conform to the learner’s prior. Specifically,
lower bounds on the prioritized risk for a given problem
establish that it is impossible for both the risk of a learner
and the prior to be low for all distributions. We have ex-
tended classical techniques based on the methods of LeCam,
Assouad, and Fano for obtaining lower bounds on the pri-
oritized risk for estimation. We also presented a technique
for obtaining lower bounds in more general settings via a
novel generalized Fano inequality (which may be of inde-
pendent interest for lower bounding Bayes risk in settings
with unbounded loss functions).

8.1. Future Work

There are a number of exciting directions for future work.
First, developing prior-informed learning algorithms that are
optimal from the perspective of the prioritized risk would be
of practical interest (e.g., based on variants of PAC-Bayes
bounds). Empirically, one often observes tradeoffs between
accuracy of prior information and learning performance: for
some problems, the choice of neural network architecture
or regularization technique (which can both be interpreted
as forms of inductive bias / prior knowledge) seem to have
little impact on learning performance, while for other prob-
lems these choices can have significant impact. This raises
the following important question: do the empirical obser-
vations reflect fundamental tradeoffs (as formalized by the
prioritized risk), or are they artifacts of the specific learning
algorithms we happen to be using? If the latter, this mo-
tivates the search for different learning algorithms for our
problems of interest.

Second, an interesting theoretical direction is to explore if
there are settings where the optimal asymptotic dependence
on n (number of examples) for prioritized risk and mini-
max/Bayes risk are different (analogous to the difference
between universal learning (Bousquet et al., 2021) and PAC
learning). To expand on this, consider a learner minimax
that achieves the optimal asymptotic rate for the minimax
risk. There are then two possibilities. First, it may be the
case that minimax does not achieve the optimal asymptotic
rate for the prioritized risk. The practical implication is
that one should use a different learner based on whether
or not one has a uniform or non-uniform prior (even for
large amounts of data). Second, it may be the case that
minimax does achieve the optimal asymptotic rate for the
prioritized risk. This implies that the same learner achieves
a different asymptotic tradeoff between prior knowledge
and learning performance depending on whether or not one
has a uniform prior. Each possibility is interesting in its own
right, and provides insights into the tradeoffs between prior
knowledge and learning performance for the problem under
consideration.

Finally, we are interested in using the prioritized risk frame-
work to understand how much prior information (“nature”)
one needs in order to achieve a certain level of learning
performance (“nurture”) in a broader set of applications of
practical interest (e.g., RL in robotics).
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A. Proofs
Proposition A.1 (Reduction from estimation to testing). Let : X" |  be an estimator for a learning problem defined by a
loss function of the form (13). Let f, gy2v form a (; )-packing and define the prior-weighted test function as in

(14). We then have the following bound:
Rprior(; L;) P( (Xq)= V): (15)
Hence, taking an infimum over estimators, we have:

Rorior(; L;) inf P( (Xq) = V): (16)

Proof. Let : X" | be an estimator. We first observe:

Rorior (i L3) = sup () E_ (5 (X") (33)
2 1 !
=sup 2B OGEXM) 1 (34)
sup E 1 ()G (X") 1 i (35)
2 1X"P N
= sup POGIX™)) = (36)

Now consider a family of distributions f, gy2v that forms a (; )-packing, and define the prior-weighted test function:

(x]) = argmin (v)(v; (x")): (37)
v2V

Now suppose that (v)(v; (x1)) < "Then, we claim that (x4) = v. To see this, suppose not. Then,

N st (vo)lvo; (x1)) < B)(v; (X1)) & " (38)
(v)(v; (Xn))

= 0; (X < < —

) (v (x 1)) () ) ) (39)

Thus, (x"), is in the -ball of radius =(vs) around vo. But, we said that (x") is in the -ball of radius =(v) around v, and that the
balls are non-overlapping (since we have a (; )-packing). Thus, (x1) = V. n

Considering the contrapositive, we see thatif (x{) = v, then (v; (x1)) ™=(v). Averaging over V, we see:
h i X h i
sup P (; (X)), P (X)) V=g ) P (Xy)
() v () Vi,
h1 X i
—_— " =vV=yv (41)
=:P( (X{)= V) (42)

i,

Combining this with (36) establishes the claim in the proposition.

Theorem 4.2 (LeCam’s method for prioritized risk). Consider an estimation problem over a family of distributions fP g, with
a loss function of the form (13). A learner has prior and will receive n i.i.d. observations from a chosen distribution. Let
fo; 18 form a (; )-packing. We then have the following lower bound on the prioritized risk:
h i
Rprior(; L; ) 2 1 7kPn Pon kTV 1: (17)

Proof. The proof follows directly by combining Proposition 4.1 with the well-known variational representation of the total
variation distance (see, e.g., (Duchi, 2016, Proposition 2.17)): for distributions Po and P1 on sample space X, we have

inffPo( (X)=0)+ P1i( (X)=1)g=1 kPo Pikyy;
where the infimum is over test functions :X | f0;1g. O

12
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Theorem 4.3 (Fano’s method for prioritized risk). Consider an estimation problem over a family of distributions fP g, with
a loss function of the form (13). A learner has prior and will receive n i.i.d. observations from a chosen distribution. Let
fvgvav form a (;)-packing. Define a random variable V corresponding to a uniform distribution over V. We can

then lower bound the prioritized risk:
n #
1(V; X, ) +1dB(2)

Roprior(; L; 1 -- " N ; 19
prior(; ;) Tos v (19)

where I (V ; X{") denotes the mutual information.

Proof. The proof follows directly by combining Proposition 4.1 with Fano’s inequality (Cover & Thomas, 2012):
LV Xy )+ log(2),

inf P( (X')=V) 1 o]V

(43)

O

Theorem 4.5 (Assouad’s method for prioritized risk). Consider an estimation problem over a family of distributions
fPg, with a loss function of the form (13). A learner has prior and will receive n i.i.d. observations from a chosen
distribution. Let fy g,y = 1,14¢ forma (2;)-Hamming separation with ¢. We then have:

X b (X1)=+1+ :::
Rorior(;L;)  inf P h .

where the infimum is overtests :X" I f+1; 1g.

Proof. Fix an arbitrary estimator : X" | . We then have:
1 X
RoriorGL;) = sup () E_ (;(X")) 1 (44) (v)
2 XU OPTy
E (i (XM) (45)
vivzy o ox,e o
1 X h x d i
— E 2 1[V((Xy)] ="v; (By (2; )-Hamming separation.) (46)
Vi *aPty j=1
Xd 7 X
= —  PI((X")]j 5 v (47)
j=1 Vi,
x? X X #
ST TRV E P, [((X:)T) = v (48)
j=1J J vjvj=+1 vjvj= 1
Xd n #
= Pej [¢((Xy hj = vi + P j [¢((X1)lp= v : (49)
j=1
Taking an infimum over estimators (on the LHS) and test functions : X" | f+1; 1g (onthe RHS) establishes the

desired result.

Theorem 5.1 (Generalized Fano inequality for unbounded losses). For any prior distribution p on, the following IowerD

bound on the Bayes risk holds for all > 0:
z

: E
Roayea(P3 L) = inf  L(; (X")) p(d)’
T AGxY ;] (22)
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where | (; X4 } is the mutual information, and
z
.2 =. suplog exp L(;a) p(d): (23)
a

Proof. The Donsker-Varadhan change of measure inequality (Gray, 2011, Theorem 2.3.2) states that for any random variable
Z, we have the following inequality for all distributions P and Q:

zEp[Z] KL(P kQ) + IogZquxp(Z): (50)
ChoosingZ = L(; (X)), We then have:
h i
E LG(X™)) , KL(p(;X")kp()g(X")) lo E exp LG(XT)) (51)
P, ) ' 1 § pO)a(X, ) !

where p(; X") is the joint distribution defined by p and P, and q is any arbitrary distribution on X". Taking an infimum
over on both sides, we have:

h i
inf  E LG (X")) | KL(p(GX")kp()gq(X")) sup log Eexp  LG(X")), (52)
pLX, ) .\ pOalx, "
h :
= KL(p(; X")}kp()a(X")} log sup Eexp  LG(X")), " (53)
pa(Xyy"

The equality above follows from the monotonicity of the log function. Now, via the Fubini-Tonelli theorem, we have:

n h i# n h i#
log sup E E exp L(;(X”))1 =log sup E E exp L(;(X”))1 (54)
pla(Xyy" a(Xy ¥e()
h i#
log E E supexp L(;(X™)) 1 (55)
IIC|(X1")p()
h i#
=log E E supexp L(; a) (56)
q(Xi)p() a
h i#
= sup log E exp L(; a) (57)
a p()
=: . (58)
We thus have:
inf p(_; OL(; (X1)) "KL(p(; X1)kp()al(Xy)) + ;02" ? (59)
77
Noting that this inequality holds for any choice of g, we can supremize over q to obtain the tightest bound:
sup  KL(p(; X1 Tkp()a(Xy)]'= inquL(p(;Xl)kﬁ()q(Xl))=” 1GXg ) " (60)
q
We thus obtain the desired result:
Reayes(p; L;) = inf B L(;(Xy)) " (61)
Pl "X,
1h i
T 1GXg) " (62)
O
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Lower bound for logistic regression (Sec. 6.2). We prove the following lower bound for the logistic regression problem
described in Sec. 6.2:

1 d3
Rprior(; L;) § o n2 (63)
16 Fda Tn 2.2
j=1 i=1j“ij
Proof. Using Assouad’s method (Thm. 4.5) and (21) we see:
X h d i
Rprior(; L;) 1 I:)+j P r}Tv n (64)
j=1
n | | 17#,
d 11X 1 X ’
ff d 5d kPv;+j  Py; jk%v ; (65)
j=1 < vav
where Py;; is defined as the distribution P where coordinate j takes the value vj = 1. The inequality above follows
from the Cauchy-Schwarz inequality and convexity of the total variation distance (see (Duchi, 2016, p.165)).
Define: 1
pv(z) = (66)

1+ exp( )va)'
and let KL(pkgq) denote the binary KL-divergence between Bernoulli(p) and Bernoulli(q). By Pinsker’s inequality, we have
for any v; v°:

kP PRk %KL(P”VkPJ;)+KL(PVﬂ<PV)“= % KL(pv(zi)kpve(zi)) + KL(pvo(zi)kpy(zi)) :  (67)

0
i=1

Letting pa = 1=(1+ e?) and pp = 1=(1+ eP), we have (see (Duchi, 2016, p.167)):

KL(pakpb) + KL(pokpa) (@ b)%: (68)
This implies:
n #
2 1 X L i (69)
kp " P¥ k a 2Ty z.
SV g ) (vo) “!
2 X0 ; v 'Q,o 2
= — Zi _— .
I (70)

In order to lower bound (65), we use the preceding bound to note:

n !#
1 XX k k2 2 Xoxxd 1 1 ’
a3 Pv;+j  Pv; jkfy o Zij —r, (71)
zddjzl vav #d2 V2V j=1 i=1 (i) )
4 X X X n s
= Zijj (72)
EVZVJ’=1 i=1
42 X X n
-5 T m (73)
j=1i=1
Thus, using (65), we have:
n ! #
d 42 d n ZL
Rprior(; L; ) 1 — —X X (74)
2 o zd b .
j=1i=1
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Setting
2 d
= 4PTPH—2,2 (75)
16 ;05 -1z
we obtain the desired result:
d 1 dz
Rprior(; L;) = GI—? P - (76)
4 16 d i=1 n_4q ZiLj f
O

B. Bernoulli Mean Estimation: Upper Bounds

Fig. 4 presents upper bounds on prioritized risk computed using Bayesian inference (with prior ) for the problem of
Bernoulli mean estimation. Specifically, we present the learner-specific prioritized risk where the learner outputs the mean of
the posterior distribution computed using the prior and a dataset of size n; since is chosen to be a Beta distribution (Beta(
= 1, = 2))and the underlying random variable has a Bernoulli distribution, one can analytically perform Bayesian inference in
this setting. We estimate the expectation over datasets by averaging the loss over 10,000 datasets. We compare the results with
two other learners corresponding to performing (i) performing Bayesian inference with a uniform prior, and (ii) Bayesian
inference with a different prior (specifically, we use Beta( = 1, = 4), which concentrates the prior towards values of where
is higher). As the figure indicates, Bayesian inference with achieves a lower learner-specific prioritized risk than Bayesian
inference with a uniform prior. However, the figure also shows that the custom inference algorithm (Bayesian inference
with a more concentrated prior) achieves a lower learner-specific prioritized risk compared to Bayesian inference with . Thus,
Bayesian inference with prior is not necessarily optimal from the perspective of the prioritized risk. This observation thus
leaves open the interesting direction for future work of identifying algorithms that achieve optimal prioritized risk.

¥ Bayesian with uniform
Bayesian with prior
Custom inference

0.150

0125

0.100 |

0.075

Learner-specific prioritized risk

0.050

20 40 &0 80 100

. o . . Number of training examples (n) L . .
Figure 4. Upper bounds on prioritized risk using Bayesian inference with uniform prior, Bayesian inference with prior, and a custom

inference algorithm (Bayesian inference with a modified prior).
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