2204.10319v1 [cs.LG] 21 Apr 2022

arxiv

TORCHSPARSE: EFFICIENT POINT CLOUD INFERENCE ENGINE

Haotian Tang * ! Zhijian Liu * * Xiuyu Li 2 Yujun Lin 1 Song Han !

https://torchsparse.mit.edu

ABSTRACT
Deep learning on point clouds has received increased attention thanks to its wide applications in AR/VR and
autonomous driving. These applications require low latency and high accuracy to provide real-time user
experience and ensure user safety. Unlike conventional dense workloads, the sparse and irregular nature of
point clouds poses severe challenges to running sparse CNNs efficiently on the general-purpose hardware.
Furthermore, existing sparse acceleration techniques for 2D images do not translate to 3D point clouds. In this
paper, we introduce TorchSparse, a high-performance point cloud inference engine that accelerates the sparse
convolution computation on GPUs. TorchSparse directly optimizes the two bottlenecks of sparse convolution:
irregular computation and data movement. It applies adaptive matrix multiplication grouping to trade
computation for better regularity, achieving 1.4-1.5x speedup for matrix multiplication. It also optimizes the
data movement by adopting vectorized, quantized and fused locality-aware memory access, reducing the
memory movement cost by 2.7x. Evaluated on seven representative models across three benchmark datasets,
TorchSparse achieves 1.6x and 1.5x measured end-to-end speedup over the state-of-the-art MinkowskiEngine

and SpConv, respectively.
1 INTRODUCTION

3D point cloud becomes increasingly accessible over the
past few years thanks to the widely available 3D sensors,
such as LiDAR scanners (on the self-driving vehicles and,
more recently, even the mobile phones) and depth
cameras (on the AR/VR headsets). Compared with 2D RGB
images, 3D point clouds provide much more accurate
spatial/depth information and are usually more robust to
different lighting conditions. Therefore, 3D point cloud
processing becomes the key component of many real-
world Al applications: e.g., to understand the indoor scene
layout for AR/VR, and to parse the driveable regions for
autonomous driving.

A 3D point cloud is an unordered set of 3D points. Unlike
2D image pixels, this data representation is highly sparse
and irregular. Researchers have explored to rasterize the
3D data into dense volumetric representation (Qi et al.,
2016) or directly process it in the point cloud
representation (Qi et al., 2017b; Li et al., 2018). However,
both of them are not scalable to large indoor/outdoor

scenes (Liu et al., 2019). Alternatively, researchers have
also investigated to flatten 3D

* 1
Equal contribution
2
Cornell University. Correspondence to:
<songhan@mit.edu>.

Massachusetts Institute of Technology

Song Han

Proceedings of the 5th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).
Self-driving cars

-t

AR/VR glasses

B

iPhone13Pro
3D Sensors

Data Orchestration MatMul B Mapping
Conv2D / NMS Misc

1775100 >~

75 - faster

— ()

—
faster

25

0 Before After 0 Before After
(Seq) (Seg) (Det) (Det)

TorchSparse Optimizations

3D Object Detection (Waymq
Real-World Perception Tasks

Figure 1: Widely available 3D sensors (left) have enabled
more and more real-world Al applications to perceive the

https://torchsparse.mit.edu/

TorchSparse: Efficient Point Cloud Inference Engine

world using 3D point clouds (middle). However,
processing 3D point cloud requires sparse computation
that is not favored by general-purpose hardware.
TorchSparse reduces the irregular computation and
optimizes the data movement, achieving 1.7x to 2x
measured speedup (right).

point clouds into dense 2D representations using
spherical projection and bird’s-eye view (BEV) projection.
However, their accuracy is much lower due to the physical
dimension distortion and height information loss.

Recently, state-of-the-art 3D point cloud neural networks
tend to rely largely or fully on sparse convolutions (Graham
etal., 2018), making it an important workload for machine
learning system: all top 5 segmentation submissions on
SemanticKITTI (Behley et al., 2019) are based on
SparseConvy, 9 of top 10 submissions on nuScenes (Caesar
et al., 2020) and top 2 winning solutions on Waymo (Sun
et al., 2020) have exploited SparseConv-based detectors
(Yin et al.,, 2021; Ge et al., 2021). Given the wide
applicability and dominating performance of SparseConv-
based point cloud neural networks, it is crucial to provide
efficient system support for sparse convolution on the
general-purpose hardware.

Unlike conventional dense computation, sparse
convolution is not supported by existing inference libraries
(such as TensorRT and TVM), which is why most industrial
solutions still prefer 2D projection-based models despite
their lower accuracy. It is urgent to better support the
sparse workload, which was not favored by modern high-
parallelism hardware. On the one hand, the sparse nature
of point clouds leads to irregular computation workloads:
i.e., different kernel offsets might correspond to drastically
different numbers of matched input/output pairs. Hence,
existing sparse inference engines (Yan et al., 2018; Choy et
al., 2019) usually execute the matrix multiplication for
each kernel offset separately, which cannot fully utilize the
parallelism of modern GPUs. On the other hand,
neighboring points do not lie contiguously in the sparse
point cloud representation. Explicitly gathering input
features and scattering output results can be very
expensive, taking up to 50% of the total runtime. Due to
the irregular computation workload and expensive data
movement cost, SparseConv-based neural networks can
hardly be run in real time: the latest sparse convolution
library can only run MinkowskiNet at 8FPS on an NVIDIA
GTX 1080Ti GPU, let alone other low-power edge devices.

In this paper, we introduce TorchSparse, a high-
performance inference engine tailored for sparse point

cloud computation. TorchSparse is optimized based upon
two principles: (1) improving the computation regularity
and (2) reducing the memory footprint. First, we propose
the adaptive matrix multiplication grouping to batch the
computation workloads from different kernel offsets
together, trading #FLOPs for regularity. Then, we adopt
quantization and vectorized memory transactions to
reduce memory movement. Finally, we gather and scatter
features in locality-aware memory access order to
maximize the data reduce. Evaluated on seven models
across three datasets, TorchSparse achieves 1.6x and 1.5x
speedup over state-of-the-art MinkowskiEngine and
SpConv, paving the way for deploying 3D point cloud
neural networks in real-world applications.

2 BACKGROUND

The point cloud can be formulated as an unordered set of
points paired with features: {(p;X;)}, where x; € RCis a C-
dimensional feature vector for point p; € ZP in a D-

dimensional space. For a convolution of kernel size K, let

W € RKpxCnxCou b s weights and AP(K) be its kernel offsets
(e.g., A2(5) = {-2,-1,0,1,2}2 and A3(3) = {-1,0,1}3). The
weights W can be broken down into KP matrices of shape
Cn x C°4, denoted as Ws for 6 € AP(K). With these
notations, the convolution with stride s can be represented

as

xoutk = X X1[pj = sqk + 8] (xjin - We), (1) sear(x)jwhere p;
€ Pingr€ P°ut, and 1[-] is the binary indicator.

For dense convolution (Figure 3a), each nonzero input is
multiplied with all nonzero weights, leading to rapidly
growing nonzeros (P " € P °4), On the other hand, the
computation of sparse convolution (Figure 3b) is
determined by maps M = {(p;qxWs)} in Equation 1 (also
written as {(p;q,Wn)}, where n is the weight index) and
keeps the sparsity pattern unchanged (P ™ = P ou), |t
iterates over all maps and performs Xoutk = Xoutk + Xinj - W5.

2.1 Mapping Operations

Mapping is a step to construct the input-output maps M =
{(p;,grWs)} for sparse convolution. Here, j is the index of
input point p in P ", k is the index of output point g in P °U,
and Wsis the weight matrix for kernel offset 8. Generating
maps typically requires two steps: calculating the output

TorchSparse: Efficient Point Cloud Inference Engine

Mapping (Sec 4.4) Gather (Sec 4.3) Matrix Multiplication (Sec 4.2) Scatter-Add (Sec 4.3)
Symmetry-Aware Construction Locality-Aware Access Adaptive Grouping Locality-Aware Access
PO Key Value Maps X0 PSUM 1
P1 (coords) (index) (I, Out, Wgt) x3 %X W-11= pPsum4
P2 Build Hash Table 1,1 0 Compute from (P O, Wr1,'1) X1 PSUM 3
P3 22 1 Hash (P3, Os, W-1,-1) pad X W-1,0=
CoordsInputP4 W.1-1W-1oW-1,1 23,42 23 Table((PP1o, , , » WW-10,,00)) X0X1 Gather padx3 ¥ W1,0= psum1Scatter
XO0X1
43 4 ~
j Wo,-1 Wo.0 Wo,1 (P1, Q1, Wo,0) X2 @ [‘ ’—ESU-M-D—‘ X2
—| (P2, @2, Wo0) X3 B x4/ % Wi1= Ps%ma X3
:‘ Wi,-1 W10 Wi,1 Query Hit | (P , Wo) M X4
] Sai= o=l e
rnel Offset .
1 Query Possitjle (P4, 04, Wo,0) | |Featur x T 51 ’JJND_O_EL Jm{ x FeaturesOutput
O (P3, Q1, W1,0) - e
Input Candidates Inferred I l PSUM2 |)
Q3 from (P1, Qo, WM) a PSUM 3
Q4 symmetry+ -
Output (P4, Q3, W1,1) | 7] Apply MM |PSUM 4
Coords [

Figure 2: TorchSparse aims at accelerating Sparse Convolution, which consists of four stages: mapping, gather, matmul

and scatter-accumulate. Our optimization follows two pri

mci&s: improve the regularity of sparse workl reduce

the memory footprint. To achieve that, TorchSparse exploits adaptively batched matmul (Principle , Section 4.2);
quantized, vectorized, locality-aware scatter/gather (Principle , Section 4.3); and mapping kggnel fusion (Principle ,
Section 4.4).

coordinates P °“t, and searching maps M. These operations
only take coordinates as input.

2.1.1 Output Coordinates Calculation

When the convolution stride is 1, the output coordinates

To efficiently examine whether the possible input g;+ & is
nonzero, a common implementation is to record the
coordinates of nonzero inputs with a hash table. The key-
value pairs are (key=input coordinates, value=input index),
i.e., (key =pjvalue =j). The hash function can simply be
flattening the coordinate of each dimension into an integer.

are exactly the same as the input coordinates, i.e., P °'t= P ®

in

When the convolution stride is larger than 1, the nonzero
input coordinates will first be dilated for each kernel offset
(i.e., p—6). After that, only these points on the strided grids
within boundaries will become outputs g, where s-g = p-6.
Take the input coordinate (3,5) as an example (with stride
of 2). For offset 6 = (1,1), the output coordinate will be
((3,5) - (1,1))/2 = (1,2), while for offset 6 = (0,0), there
is no valid output coordinate since ((3,5) - (0,0)) is not a
multiple of stride s = 2. We refer the readers to Appendix
A for more details.

2.1.2 Map Search

As in Algorithm 1, map search requires iterating over all
possible input coordinates for each output coordinate. A
map is generated only when the input is nonzero.

Pal 1| W[Wao| Woeo| @, a1 sfea12]r 5@
P2 | [Was[WaoWas| [C2s(Q1 Q221023 Qe
W WaolWaal | [Gag @2 0agjead

L Tufadeded

Outputs

Inputs Weights IN P1.1P32P22P1.1P22...P32P22 Pas
WG TIW-11 W] W[Woo Woo ... [WidWas
(a) Conventional Convolution OUT‘ ‘ W 1 TW*“
Q22Q43Q32Q11Q22...Q22 Q11 Q32

(each nonzero input is multiplied with (b) Sparse Convolution all
nonzero weights) (Sparse computation determined by
maps)

Figure 3: Sparse convolution (b) does not multiply each
nonzero input with all nonzero weights as conventional
convolution (a) does.

2.2 Data Orchestration and Matrix Multiplication

TorchSparse: Efficient Point Cloud Inference Engine

After maps are generated, sparse convolution will
multiply the input feature vector x"; with corresponding
weight matrix Wsand accumulate to the corresponding
output feature vector x°U%, following the map

{(03 1 W)}

The utilization of matrix-vector multiplication is rather low
on GPU. Therefore, most existing implementations follow
the gather-matmul-scatter computation flow in Algorithm
2. First, all input feature vectors associated with the same
weight matrix are gathered and concatenated into a
contiguous matrix. Then, matrix-matrix multiplication
between feature matrix and weight matrix is conducted to
obtain the partial sums. Finally, these partial sums are
scattered and accumulated to the corresponding output
feature vectors.

2.3 Difference from Other Tasks

vs. conventional convolution with sparsity. The sparsity in
conventional convolution comes from the ReLU activation
function or weight pruning. Since there is no hard
constraint on the output sparsity pattern, each nonzero
input is multiplied with every nonzero weight, so the
nonzeros will Algorithm 1 Map Search

Input: input coordinates P ™", output coordinates P °ut
kernel size K, stride s Output: maps M
N « AP(K).size
M« {0} x N
for k,qrin enumerate(P °Ut) do # Traverse
the neighbors of an output point.
for n,6 in enumerate(A2(K)) do
Calculate input coordinates.
res-qg+é
Add new map if input exists.
if Pin.contain(r) then
j < PingetIndex(r)
M[Ws] < M[Ws] U {(0;q We)}
end if
end for
end for

Algorithm 2 Gather-MatMul-Scatter

Input: input features X", weights W, maps M
Output: output features Xout

Xout<— 0
Separately perform gather-matmul-scatter for each weight.
for & in AP(K) do

Fe<0

Gather features for wh.

for m,(p;qrWs) in enumerate(M[W5]) do

F[m] < Xn[j] end
for
Matrix-matrix multiplication.
FeF-Ws
Scatter partial sums to X°ut.
for m,(p; gk Ws) in enumerate(M[Ws]) do
Xout[gk] < Xout[gk] + F[m] end

for end for
Data Mov. GEMM Mapping 2D/NMS Misc.
5%
49, 7%
A 12%
o 43%
47% 15%
44%
23%

(a) Segmentation (b) Detection
Figure 4: Data movement and GEMM constitute a
significant proportion of the runtime of sparse CNNs.

dilate during the inference, i.e., P " c P °'t(see Figure 3a).
The existing sparse computation libraries leverage such
computation pattern by travelling all nonzero inputs with
all nonzero weights to accelerate the conventional
convolution. On the contrary, sparse convolution requires
pin=pout and thus the relationship among inputs, weights
and outputs requires to be explicitly searched with
mapping operations, which makes it a hassle for previous
sparse libraries.

vs. graph convolution. In graph convolution, the
relationship between inputs and outputs are provided in
the adjacency matrix which stays constant across layers.
Contrarily, sparse convolution has to search maps for every
downsampling block. Furthermore, graph convolution
shares the same weight matrix for different neighbors, i.e.
all Ws are the same. Hence, graph convolution only needs
either one gather or one scatter of features: 1) first gather
input features associated with the same output vertex, and
then multiply them with shared weights and reduce to the
output feature vector; or 2) first multiply all input features
with shared weights, and then scatter-accumulate the
partial sums to the corresponding output feature vector.
However, sparse convolution uses different weight
matrices for different kernel offset § and thus needs both
gather and scatter during the computation. Consequently,
existing SpMV/SpDMM systems for graph convolution
accleration (Wang et al., 2019a; Hu et al., 2020) are not
applicable to sparse convolution.

TorchSparse: Efficient Point Cloud Inference Engine

3 ANALYSIS

We systematically profile the runtime of different
components in two representative sparse CNNs: one for
segmentation (Figure 4a) and one for detection (Figure
4b). Based on observations in Figure 4, we summarize two
principles for sparse convolution optimization which lays
the foundation for our system design in Section 4.

Principle I. Improve Regularity in Computation Matrix
multiplication is the core computation in sparse
convolution and takes up a large proportion of total
execution time (20%-50%). Algorithm 2 decouples the
matrix multiplication computation from data movement so
that we can use well-optimized libraries (such as cuDNN)
to calculate X°Ut « Xn-Ws. However, the computation
workloads are very non-uniform due to the irregular
nature of point clouds (detailed in Figure 12, where map
sizes for different weights can differ by an order of
magnitude, and most map sizes are small). As a result, the
matrix multiplication in MinkUNet

(0.5% width) runs at 8.1 TFLOP/s on RTX 2080 Ti with FP16
guantization, achieving only 30% device utilization.
Therefore, improving the regularity of matrix
multiplication will potentially be helpful: we boost the
utilization to 44.2% after optimization (detailed in Table 2).

Principle 1l. Reduce Memory Footprint Data movement is
the largest bottleneck in sparse CNNs, which takes up 40%-
50% of total runtime on average. This is because scatter-
gather operations are bottlenecked by GPU memory
bandwidth (limited) rather than computation resources
(abundant). Worse still, the dataflow in Algorithm 2
completely separates scatter-gather operations for
different kernel offsets. This further ruins the possibility of
any reuse in the data movement, which will be detailed in
Figure 9. It is also noteworthy that the large mapping
latency in the CenterPoint detector (Figure 4b) also stems
from memory overhead: hashmap construction and
output coordinate calculation both require multiple DRAM
accesses. Thus, reducing memory footprint is at the heart
of data movement and mapping optimization.

4 SYSTEM DESIGN AND OPTIMIZATION

This section unfolds our TorchSparse as follows: Section
4.1 provides an overview and API design for TorchSparse,
Section 4.2 introduces improvements on matrix
multiplication operations, Section 4.3 elaborates the
optimizations for data movement operations

(scatter/gather), and Section 4.4 analyzes the
opportunities to speed up mapping operations.

4.1 System Overview

Figure 5 provides an overview of our TorchSparse. At the
top level, users define their sparse CNNs using TorchSparse
APIs, which have minimal differences with native PyTorch
APIs. Also, TorchSparse does not require users to add
additional fields such as indice key and spatial shape
in SpConv (Yan et al., 2018), and coordinate manager in
MinkowskiEngine (Choy et al.,, 2019) when defining
modules and tensors. TorchSparse converts the high-level
modules to primitive operations: e.g., Conv3d s
decomposed to output construction, mapping operations
and gather-matmulscatter. For each part, Python APIs
interact with backend CUDA implementations via pybind.
Note that TorchSparse also provides support for CPU
inference and multi-GPU training, but this paper will focus

on the GPU inference.
(a) Dense Computation
I Em:n;matien:w.lzd‘
(Small overhead) (Large overhead)
SEIEEE III

DD
(b) Separate MatMul
Extra computauon 2[25
OECEENCE [T G
(c) Fixed Grouping
Exh'accmputahon 6!42
(Slightly large overhead, but better regularity)

||I||

HIH

HHII

IHH

1111

Adaptively choosing MM / BMM in each group
based on runtime statistics.

OEECTTEES 0 CD I CrD
(d) Adaptive Grouping

TorchSparse: Efficient Point Cloud Inference Engine

SparseConvNets: MinkUNet, CenterPoint, ...

TorchSparse APIs:

spnn.Conv3d, spF.conv3d...

Construction (4.4)

Output Coord.

[Map Search (4.4)]

/

Fused Locality-Aware [

Adaptively

- Seatter/Gather (473)77 7Ty T " GroapedMatMar (4:2) "

[

. NVIDIA

]

CHDA
Ty TOrCCODATXenston

)

import torchsparse.nn as spnn
class
(nn.Sequential):
def __init__(
sint,
int,
: Union[int, list, tuple],

import torch.nn as nn class
(nn.Sequential):
def __init__(
sint,
:int,

: Unionl[int, list, tuple],

: Unionlint, list, tuple] =1,

: Unionl[int, list, tuple] = 1, :int=1)-> None:
tint= 1) -> None: super().__init__(nn.Conv2d(in_channels,
super().__init__(out_channels, kernel_size,
=stride, =dilation),

spnn.Conv3d(in_channels,

out_channels, kernel_size, nn.BatchNorm2d(out_channels),
de=stride, N nn.ReLU(True)
=dilation),)

spnn.BatchNorm(out_channels),
spnn.ReLU(True)

)

TorchSparse APIs are very close to PyTorch native APls.

Figure 5: System overview for TorchSparse: our TorchSparse provides handy Python APIs similar to PyTorch and applies
low-level optimizations to data movement, matrix multiplication and mapping operations in sparse convolution.

Figure 6: Different matrix multiplication grouping
strategies: (a) dense computation suffers from large FLOPs
overhead; (b) separate matrix multiplication suffers from
low device utilization and excessive kernel calls; (c) fixed
grouping trades FLOPs for regularity; (d) adaptive grouping
searches for the best balance point.

4.2 Matrix Multiplication Optimization

Matrix multiplication is the core computation in sparse
convolution. Due to the irregularity of point clouds,
existing implementations rely on cuDNN to perform many
small matrix multiplications on different weights (Figure
6b), which usually do not saturate the utilization of GPUs.
In order to increase the utilization, we propose to trade
computation for regularity (Principle 1) by grouping matrix
multiplication for different weights together. We find it
helpful to introduce redundant computation but group
more computation in a single kernel. In Figure 12, we
collect the real workload for MinkUNet (Choy et al., 2019)
on SemanticKITTI (Behley

216
= Increasing regularity helps 6 groups
] improve latenc
® 1.2 e
O T s 13groups N\ » 3 groups
-
208 23§ groups Padding overhead hurts
o ¢ ; assume latency \d
o offset=(0,0,0) s;;)zarately
computed.
_§ 0.4
o 1 group
Q 0
@ 8 6 4 2 26242220
1816141210 0
Number of Groups

Figure 7: Trading FLOPs for computation regularity via
batched matrix multiplication brings 1.5x speedup.

et al., 2019) and analyze the efficiency of matrix
multiplication in the first sparse convolution layer with
respect to the group size. It turns out that batched matrix
multiplication can be significantly faster than sequentially
performing the computation along the batch dimension,
thanks to the better regularity. This motivates us to
explore the opportunity of grouping in the matrix
multiplication computation.

4.2.1 Symmetric Grouping

With sparse workloads, the map sizes for different weights
within one sparse convolution layer are usually different.
Fortunately, for sparse convolutions with odd kernel size
and stride of 1, the maps corresponding to kernel offset
(a,b,c) will always have the same size as the maps
corresponding to the symmetric kernel offset (-a,-b,—c).
For a map entry

(pyqiWanc), we have grx = p;j + (ab,c). Then, p; =
qi+(-a,~-b,~c), which implies that (qrp;W-4,-5-c) is also a
valid map entry. As such, we can establish an oneto-one
correspondence between maps for weights *(a,b,c).
Therefore, we are able to group the workload for
symmetric kernel offsets together and naturally have a
batch size of 2.

Note that the workload corresponding to the kernel offset
(0,0,0) is processed separately since it does not require
any explicit data movement. From Figure 7, the symmetric
grouping (13 groups) can already be up to 1.2x faster than
the separate matrix multiplication.

4.2.2 Fixed Grouping

Though symmetric grouping works well for sparse
convolutions with the stride of 1, it falls short in
generalizing to downsampling layers. Also, it cannot push
the batch size to > 2, which means that we still have a large
gap towards the best GPU utilization in Figure 7.

TorchSparse: Efficient Point Cloud Inference Engine

Nevertheless, we find that clear pattern exists in the map
size statistics (Figure 12): for submanifold layers, the maps
corresponding to Wy to W5 tend to have similar sizes and
the rest of the weights other than the middle one have
similar sizes; for downsampling layers, the maps for all
offsets have similar sizes. Consequently, we can batch the
computation into three groups accordingly. Within each
group, we pad all features to the maximum size (Figure 6c).
Fixed grouping generally works well when all features
within the same group have similar sizes (Figure 6c¢ left),
and this usually happens in downsampling layers. For
submanifold layers (Figure 6c right), the padding overhead
can sometimes be large despite the better regularity,
resulting in wasted computation.

4.2.3 Adaptive Grouping

The major drawback of fixed grouping is that it does not
adapt to individual samples. This can be problematic since
workload size distributions can vary greatly across
different datasets (Figure 12). It is also very labor-intensive
to design different grouping strategies for different layers,
different networks on a diverse set of datasets and
hardware. To this end, we design an adaptive grouping
algorithm (Figure 6d) that automatically determines the
input-adaptive grouping strategy for a given layer on
arbitrary workload.

The adaptive grouping algorithm builds upon two auto-
tuned parameterse and S, where indicates our tolerance
of redundant computation, and S is the workload
threshold. Given , we scan over sizes of all maps in the
current workload

for Wy to Wk-1 (where K is the kernel volume) and
dynamically maintain two pointers indicating the start and
end of the current group. We initiate a new group

whenever the redundant computation ratio
1— Theoretical FLOPs
(Actual FLOPs) exceeds

. Then, given S, we inspect the maximum workload size
within each group. Each group performs bmm if the

workload size is smaller than S and performs mm otherwise.

This is because bmm can improve device utilization for small
workloads but has little benefit for large workloads. We
refer the readers to Appendix B for more details of this
algorithm. Note that even if and S are fixed, the generated
strategy itself is still input-adaptive. Since different input
point clouds have different map sizes, even the same can
potentially generate different group partition strategies for
different samples. The (€, 5) parameter space is simple but
diverse enough to cover dense computation
(€ =158 = +x), sep-

arate computation (S = 0) as well as symmetric grouping
(e=0;5= +00) as its special cases.

co c1 o C30 C31 €32 C33 e c62 c63 e aen €255

(a) FP32, Scalar Scatter-Gather; 4B/channel (co-C2s5), 128B/warp

co-1 | €2-3 C60- | C62- | C64 - | C66 - ... |C124 -|C126 -| ...
61 63 65 67 125 127

(b) FP16, Vectorized Scatter-Gather; 2B/channel (co-C2s5), 128B/warp

Figure 8: TorchSparse applies vectorized and quantized
scatter-gather to greatly reduce the data movement
latency.

(a) Weight-Stationary Memory Access

(Po, ©) (P3, ©1) (P4, ©2) (P, ©0)
(Ps, Qs) (Pa,) (Ps, ©) (Pa, ©2)
(Pos020y) | (Pasorry) | (Posisoy) ((P%mw)
(P95077¢) (P95133+) (P95229$) (P95181¢)

W-b-1,-1

v
W.1,0,-1 W1,-1,0 W1,1,1

W-1,-1,0 Wv.o Wi1,1,1
Unique inpu+/ outpuﬂndices fcir each weight
PoW-1,-1,-1 W-1,1,0 W1,0,1

A

—4
P1 Wi1,0,4 Wi,1,1 ot Wego1,.1 Wa1,1 100%
> > -> >

Pos229 W1,1,0 W-1,11,0

Input-stationary gather Output-stationary scatter Cache Hit (b)
Locality-Aware Memory Access Cache Miss

Figure 9: TorchSparse proposes cache-friendly
localityaware and memory access pattern. In contrary,
baseline implementation (a) cannot exploit cache reuse
due to uniqueness in input/output indices for each weight.

For a given sparse CNN, we determine (€:5) for each layer
on the target dataset and hardware platform via
exhaustive grid search on a small subset (usually 100
samples) of the training set. We formalize this process in
Appendix B. The search is inference-only. It explores a
space of around 1,000 configurations and requires less
than 10 minutes of search time on a desktop GPU. The
strategy derived on the small subset can be directly
applied and does not require any parameter optimization
during the inference time.

TorchSparse: Efficient Point Cloud Inference Engine

4.3 Data Movement Optimization

From Section 3, data movement usually takes up 40-50%
of the total runtime. Thus, optimizing data movement will
be of high priority as well (Principle Il). Intuitively, it is
most effective to reduce data movement cost by reducing
the total amount of DRAM access and exploiting the data
reuse.

4.3.1 Quantized and Vectorized Memory Access

FP16 quantization brings 2x theoretical DRAM access
saving compared with the FP32 baseline. However, as in
Figure 8, this reduction cannot be translated into real
speedup without vectorized scatter/gather.

NVIDIA GPUs group memory access requests into
transactions, whose largest size is 128 bytes. Considering
the typical memory access pattern in scatter/gather, where
a warp (32 threads) issues contiguous FP32 (4 bytes)
memory access instructions simultaneously, the 128-byte
transaction is fully utilized. However, when each thread in
the warp issues an FP16 memory request, the memory
transaction has only 64/128=50% utilization, and the total

number of memory transactions are essentially unchanged.

As a result, we observe far smaller speedup (1.3x)
compared to the theoretical value (2x) on scatter/gather if
scalar scatter/gather (Figure 8a) is performed.

Contrarily, vectorized scatter-gather Figure 8b doubles the
workload of each thread, making the total work of each
warp still 128 bytes, equivalent to a full FP32 memory
transaction. Meanwhile, the total number of memory
transactions is halved while the work for each memory
transaction is unchanged, and we observe 1.9x speedup
over FP32 data movement on various GPU platforms. This
closely aligns with the theoretical reduction in DRAM
access.

Further quantizing the features to INT8 offers diminishing
return, as the multi-way reduction in the scatter
operation requires more than 8-bit for the final result. In
this case, all scatter operations are still in 16 bits since
CUDA requires aligned memory access. Thus, scattering
(which takes 60% of the data movement time) cannot not
accelerated with the INT8 quantization, leading to limited
overall speedup.

4.3.2 Fused and Locality-Aware Memory Access

Despite the limitation of aggressive feature quantization, it
is still possible to achieve faster scatter/gather by

exploiting locality. Intuitively, for a sparse convolution layer,

the total amount of gather read and scatter write is N1 =
M| (Cin +Cout), where M is the map for this layer (defined in
Section 2.1), and Cin and Cou: correspond to input and
output channel numbers. However, the total feature size
of this layer is N2 = NinCin + Nou:Cout. Empirically, the feature
of each point is repetitively accessed for at least 4 times
(N1 = 4N3). Based on this, we can ideally have 1.6x more
DRAM access saving for scatter/gather (the amount of
gather write and scatter read is also N; and cannot be
saved).

As shown in Algorithm 2 and Figure 9a, the current
implementation completely separates gather/scatter for
different weights. When we perform gather operation for
Wi+1, the GPU cache is filled with scatter buffer features
for Wi as long as the GPU cache size is much smaller than
N (typically > 40MB, much larger than the 5.5MB L2 cache
of NVIDIA RTX 2080 Ti). Intuitively, for gather operation on
Wi+1, we hope that the cache is filled with gather buffer
features from Wi. This suggests us to first fuse all gather
operations before matrix multiplication, and fuse all

scatter
D D

[Candidate] [Modular] R [Boundary R L nD->1D J R [Unique]
Caleulati Cheek A Ch A 4G A Filtering
M M

v "
Candidate Ular Reg. Boundary Reg. Coord. [_;]

D

R

Calculation Check Check Conversion A Filtering
Single Fused Kernel: No intermediate DRAM access M

o

> 2

=
=E> =2

2 >»x O
=E>»® 0O

Figure 10: TorchSparse reduces mapping DRAM access and
improves mapping latency via kernel fusion.

operations afterwards. As such, the GPU cache will always
hold data from the same type of buffer.

Moreover, the memory access order matters. In the
weightstationary order (Figure 9a), all map entries for
weight Wy are unique, so there is no chance of feature
reuse, and each gather/scatter leads to a cache miss. As in
Figure 9b, we instead take a locality-aware memory access
order. We gather the input features in the input-stationary
order and scatter the partial sums in the output-stationary
order.

Without loss of generality, we will focus on the
implementation of input-stationary gather. We first
maintain a neighbor set N; for each input point p;: i.e., for
the i"" map entry (p;gr, Wa), we insert (W, i) into N;. Then,
we iterate over every input point p;, fetch its feature vector
X/ into the register, and write it to the corresponding

n—1 .
DRAM location 2—k—o MWkl + ifor each (Wni) € N;.
Here,

TorchSparse: Efficient Point Cloud Inference Engine

M[W/] is the map for weight Wi. Note that each Xj"is read
from DRAM only once and held in the register. Hence, this
algorithm achieves the optimal reuse for gather. Similar
technique can be applied to scatter, where we read
neighbors’ partial sums for each output point from DRAM,
perform reduction in the register, and write the result back
only once. This optimization alone leads to 1.3-1.4x
speedup in data movement on real-world point cloud
datasets.

4.4 Mapping Optimization

From Figure 4, mapping operations in our baseline
implementation take up a significant amount of time (15%)
in detectors on the Waymo (Sun et al., 2020) dataset. It is
important to reduce the mapping overhead in sparse CNNs.

We first choose the map search strategy for each layer
from [grid, hashmap] in a similar manner to the adaptive
grouping. Here, grid corresponds to a naive collision-free
gridbased hashmap: it takes larger memory space, but
hashmap construction/query requires exactly one DRAM
access perentry, which is much smaller than conventional
hashmaps. We then perform kernel fusion (Figure 10) on
output coordinates computation for downsampling. T

downsample operation applies a sliding window around
ech point. It calculates carﬂdate activated points with
broadcast add, performs modular check, pe‘)rms

boundary check and generates a mask on whether each
@ [Baseline Implementation [MinkowskiEngine

[l sPConv (FP32)

®into a single kernel and use registers to store
intermediate results, which eliminates all intermediate
DRAM write. For the fused kernel, we further perform
control logic simplification, full loop unrolling and utilize
the symmetry of submanifold maps. Overall, the mapping
operations are accelerated by 4.6x on detection tasks with
our optimizations.

5 EVALUATION

5.1 Setup

TorchSparse is implemented in CUDA and provides easyto-
use PyTorch-like interfaces (described in Section 4.1). We
build TorchSparse based on PyTorch 1.9.1 with CUDA
10.2/11.1 and cuDNN 7.6.5. Our system is evaluated
against a baseline FP32 design without optimizations in
Section 4 and the latest versions of two state-of-the-art
sparse convolution libraries MinkowskiEngine v0.5.4 (Choy
et al,, 2019) and SpConv v1.2.1 (Yan et al., 2018) on three
generations of NVIDIA GPUs: GTX 1080Ti, RTX 2080Ti and
RTX 3090. Necessary changes are made to
MinkowskiEngine to correctly support downsample
operations in detectors and to SpConv to avoid OOM in
large-scale scenes.

All systems are evaluated on seven top-performing sparse
CNNs on large-scale datasets: MinkUNet (Choy et al., 2019)

[SPConv (FP16) [l TorchSparse

o 1,00 1.00 1,00 U5 1.00 1.00 1.00 1.00 1,00
0.81 0.85 083
2 67 073 67 075 0078 0.69
3 D58 47 0.44 053 peens 050052 B8 e85 220 oss 057 288 060054 062554 085 066 g 59 085
w ..
=
14 I_IH H
SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f) NS-MinkUNet (1f) NS-CenterPoint (10f) WM-CenterPoint (3f) WM-CenterPoint (1f) Geomean
E 1.00 1.00 1.00 02 1.00 080t n.91.L00 R unw.uu
@ 069 0.660.66 067 068068 068 BI8E L 5o 270 062 061061 :
Q| 852048047 = Ik 053 055 0.02 059
x
14
SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f) NS-MinkUNet (1f) NS-CenterPoint (10f) WM-CenterPoint (3f) WM-CenterPoint (1f) Geomean
— 1.00 1.00 1.00 —— 1,00 1.00 1.00 1.00 1.00
= = 0.740.74 p 70 %2 081077 £ g = = 083
g 0.68 5 5 0.64 0.70 0.67.0.68 0.68 0.4 357060 054054 05‘3055 0,69 0.68 0.68
5
SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f) NS-MinkUNet (1f) NS-CenterPolnt (10f) WM CenlerPoml (3f) WM CenterPoint (1f) Geomean

Figure 11: TorchSparse consistently outperforms state-of-the-art inference engines in both detection and segmentation
benchmarks and achieves up to 1.5-1.6x geomean speedup, 2.3x single model speedup over MinkowskiEngine and

SpConv.

point is kept, converts the remaining candidate point
coordinates to 1D values, and performs unique
operation to keep final output coordinates (detailed in
Appendix A). There are DRAM accesses between every two
of the five stages, making downsampling kernels memory-
bounded. We therefore fuse stages to

(0.5x/1x width) on SemanticKITTI (Behley et al., 2019),
MinkUNet (1/3 frames) on nuScenes-LiDARSeg (Caesar et
al., 2020), CenterPoint (Yin et al., 2021) (10 frames) on
nuScenes detection and CenterPoint (1/3 frames) on
Waymo Open Dataset (Sun et al.,, 2020). We report the
normalized

TorchSparse: Efficient Point Cloud Inference Engine

0000§° g 000H°
10906 ooot”

N

L _

8dd’ 1007

E

1007 10m? | |

1 4 7 10 13 16 19 22 2527 1 4 7 10 13 16 19 22 2527

Weight Index Weight Index

(a) Map size on SemanticKITTI (b) Map size on nuScenes

Figure 12: Grouping strategy on different datasets. Maps
on nuScenes are much smaller than on SemanticKITTI for
MinkUNet. Thus, to fully utilize GPU, the grouping strategy
is more aggressive on nuScenes (8 groups vs. 10 groups).

FPS for all systems (with TorchSparse to be 1).

5.2 Evaluation Results

Our TorchSparse achieves the best performance compared
with the baseline design, MinkowskiEngine and SpConv.

From Figure 11, TorchSparse achieves up to 2.16x speedup
on segmentation models and 1.6-2x speedup on detection
models over MinkowskiEngine on RTX 3090. We achieve a
smaller speedup for the 1-frame MinkUNet on
nuScenesLiDARSeg because MinkowskiEngine applies
specialized optimizations to small models by using the
fetch-on-demand dataflow (Lin et al., 2021) instead of the
gather-matmulscatter dataflow.

TorchSparse also demonstrates a 1.2x faster inference
speed compared with the FP16 version of SpConv for
detectors on RTX3090 thanks to our fused and locality-
aware access pattern and almost perfect speedup from
vectorized data movement. Note that we report end-to-
end speedup in Figure 11. However, 10% of total total
runtime in CenterPoint (Yin et al., 2021) is not related to
point cloud computation (image convolution and non-
maximum suppression, as in Figure 4). Therefore, our
speedup ratio on sparse convolution is 10% more for
CenterPoint. The performance gain over SpConv (FP16) is
even larger on segmentation models on various hardware
platforms thanks to the effectiveness of adaptively
batched matrix multiplication, which will be discussed in
Section 6.1. GPUs are usually more under-utilized for
segmentation models as they usually have smaller
workload compared with detectors, making it necessary to
apply batching strategies to improve the device utilization.

TorchSparse achieves consistent speedup over other
systems on GTX 1080Ti, which has no FP16 tensor cores.
Compared with the baseline design, our TorchSparse still
achieves a 1.5x speedup, only 11% less than the speedup

we achieved on RTX 2080Ti with tensor cores. This
validates that the native tensor-core speedup only
constitutes a very minor proportion of our performance
gain.

Our TorchSparse runs MinkUNet (1.0x on SemanticKITTI)
at 36, 26 and 13 FPS on RTX 3090, RTX 2080Ti, GTX
1080Ti, respectively, all satisfying the real-time
requirement

(= 10 FPS). For the 3-frame model on nuScenes-LiDARSeg,
TorchSparse achieves 45, 40 and 25 FPS throughput on the
three devices, at least 2x faster than the LiDAR frequency.
Even for the heaviest 3-frame CenterPoint model on
Waymo, our TorchSparse is still able to achieve the real-
time inference on GTX 1080Ti. As such, our system paves
the way for real-time LiDAR perception on self-driving cars.

6 ABLATION STUDY

6.1 Matrix Multiplication Optimizations

We first examine the performance of different grouping
strategies on SemanticKITTI with MinkUNet (0.5x) and on
nuScenes with MinkUNet (3 frames). From Figure 6, our
adaptive grouping strategy outperforms all handcrafted,
fixed strategy and achieves 1.4-1.5x over no grouping
baseline. Table 2 also suggests that manually-designed
strategy cannot generalize to all datasets: fixed 3-batch
grouping achieves large speedup (1.5x) on nuScenes, but
is 13% slower than the separate computation baseline on
SemanticKITTI. Note that although this strategy has the
best device utilization (largest TFLOP/s) on nuScenes, it
does not bring greater latency reduction than adaptive
grouping due to much more extra computation, indicating
the importance of in our adaptive grouping algorithm. We
also show the effectiveness of grouping strategy
specialization for different datasets, model and hardware
in Table 1. In Table 1a, we found that the same model (1-
frame MinkUNet) on the same hardware platform benefits
more from the datasetspecialized strategy. This is because
map size distributions (which decides the workload of
matrix multiplication) significantly differ between
SemanticKITTIl and nuScenes, as

Specialization Optimized for

for Different

Datasets SemanticKITTI nuScenes
SemanticKITTI 10.11 10.87
Execute
on nuScenes 5.30 4.67

(a) Specialization for Datasets (MinkUNet, 2080Ti)

TorchSparse: Efficient Point Cloud Inference Engine

Specialization
for Different

Optimized for

Models MinkUNet (1.0x) | MinkUNet (0.5x)
MinkUNet (1.0x) 10.11 10.70
Execute
on | MinkUNet (0.5) 5.37 472

(b) Specialization for Model (SemanticKITTI, 2080Ti)

Specialization
for Different

Optimized for

Hardware RTX2080Ti GTX1080Ti
RTX2080Ti 4.67 4.80
Execute
on GTX1080Ti 14.95 14.01

(c) Specialization for Hardware (nuScenes, MinkUNet)

Table 1: Specializing adaptive batching strategies for
different datasets, models and hardware platforms helps
improve efficiency (TFLOP/s) by up to 13.5%.

Grouping Method

MatMul speedup (SK) MatMul Speedup (NS)

FP16 Vec. Fused Loc.—Aware‘Speedup (G) Speedup (S) Speedup (SG)

7 7 7 7 1.00 1.00 1.00
3 7 7 7 1.17 1.48 1.32
3 3 7 7 191 1.95 1.93
3 3 3 7 1.91 2.12 2.02
3 3 3 3 2.86 2.61 2.72

Table 3: Speedup breakdown of different optimizations to
reduce data movement. Feature quantization, vectorized
memory access, and fused and locality-aware access bring
1.3x, 1.5x and 1.4x speedup, respectively. Here, G and S
denote gather and scatter.

Baseline
+ Grid HM. 16X
+ Fused Kernel 1.5%
+ Simplify Ctl. 1.8% Output Construction
+ Symmetry 1.1% M Map Search

Figure 13: Speedup breakdown of mapping optimizations.
Grid-based hashmap, fused kernel, simplified control logic
and symmetry bring 1.6x, 1.5x, 1.8x and 1.1x measured

8.1 TFLOP/s (1.00x)
Symmetric 8.2 TFLOP/s (1.02%)

Fixed 8.7 TFLOP/s (0.87%)
Adaptive 11.9 TFLOP/s (1.39x)

10.4 TFLOP/s (1.00x)
14.6 TFLOP/s (1.39x)
21.1 TFLOP/s (1.50%)
16.9 TFLOP/s (1.54x)

Separate

Table 2: Ablation analysis on matrix multiplication:
adaptive batching consistently outperforms all other
strategies in latency and brings about 1.4x-1.5x speedup
for matmul (SK=SemanticKITTI, NS=nuScenes). As we trade
FLOPs for regularity, TFLOP/s and speedup are non-
proportional.

shown in Figure 12. The maps on nuScenes are much
smaller than those on SemanticKITTIl. As a result, if we
directly transfer SemanticKITTI strategy to nuScenes, the
groups will not be large enough to fully utilize hardware
resources. On the other hand, if the nuScenes strategy is
transferred to SemanticKITTI, the efficiency will be
bottlenecked by computation overhead. We notice similar
effect for model and hardware specialization in Table 1b
and Table 1c, where specialized strategies always
outperform the transferred ones.

6.2 Data Movement Optimizations

We then perform ablation analysis on MinkUNet (Choy et
al., 2019) (1.0x) on the SemanticKITTI dataset (Behley et
al., 2019). As in Table 3, naively quantizing features to

speedup, respectively.

16-bit will not provide significant speedup for
scatter/gather: especially for gather, the speedup ratio is
only 1.17x, far less than the theoretical value (2x). Instead,
quantized and vectorized scatter/gather improves the
latency of scattergather by 1.93x, which closely matches
the DRAM access reduction and verifies our analysis in
Section 4.3 on memory transactions. We further observe
that fusing gather/scatter itself will not provide substantial
speedup, as the weight-stationary access pattern cannot
provide good cache locality due to the uniqueness of maps
for each weight. However, when combined with locality-
aware access, we achieve 2.86x speedup on gathering,
2.61x speedup on scattering and 2.72x overall speedup
against FP32. This demonstrates the fact that all
techniques in Section 4.3 are crucial in improving the
efficiency of data movement.

6.3 Mapping Optimizations

We finally present analysis on optimizing mapping
operations in 3-frame CenterPoint (Yin et al.,, 2021)
detector on Waymo (Sun et al., 2020). Grid-based map
search is 2.7x faster than a general hashmap-based
solution thanks to its no-collision property, resulting in a
1.6x end-to-end speedup for mapping. Fusing four small
kernels accelerates output construction by 2.1x and brings

TorchSparse: Efficient Point Cloud Inference Engine

1.5x further end-toend mapping speedup. Finally,
simplifying the control logic, loop unrolling and utilizing
the symmetry of maps substantially accelerates map
search by another 4x and pushes the final end-to-end
mapping speedup to 4.6x.

7 RELATED WORK

Deep Learning on Point Clouds. Early methods (Chang et
al., 2015; Qi et al., 2016; Cicek et al., 2016) first convert
point clouds to the dense volumetric representation and
apply dense CNNs to extract features. Another line of
research (Qi et al., 2017a;b; Li et al., 2018; Wu et al., 2019;
Thomas et al., 2019; Wang et al., 2019b) directly performs
convolution on the k-nearest neighbor or spherical nearest
neighbor of each point. Both streams of methods struggle
to scale up to large scenes due to large or irregular
memory footprint (Liu et al., 2019; 2021). Recent state-of-
the-art deep learning methods on point cloud
segmentation / detection (Graham et al., 2018; Choy et al.,
2019; Tang et al., 2020; Shi et al., 2020; 2021; Yin et al.,
2021) are usually based on sparse convolution, which is
empirically proven to be able to scale up to large scenes
and is the target for acceleration in this paper.

Point Cloud Inference Engines. Researchers have
extensively developed efficient inference engines for
sparse convolution inference. SpConv (Yan et al., 2018)
proposes gridbased map search and the gather-matmul-
scatter dataflow. SparseConvNet (Graham et al., 2018)
proposes hashmapbased map search and is later
significantly improved (in latency) by MinkowskiEngine,
which also introduces a new fetch-on-demand dataflow
that excels at small workloads and allows generalized
sparse convolution on >3D point clouds and on arbitrary
coordinates.

8 CONCLUSION

We present TorchSparse, an open-source inference engine
for efficient point cloud neural networks. Guided by two
general principles: trade computation for regularity and
reduce memory footprint, we optimize matrix
multiplication, data movement and mapping operations in
sparse convolutions, achieving up to 1.5x, 2.7x and 4.6x
speedup on these three components, and up to 1.5-1.6x
end-to-end speedup over previous state-of-the-art point
cloud inference engines on both segmentation and
detection tasks. We hope that our in-depth analysis on the
efficiency bottlenecks and optimization recipes for sparse

convolution can inspire future research on point cloud
inference engine design.

ACKNOWLEDGMENTS

We would like to thank Hanrui Wang and Ligeng Zhu for
their feedback on the artifact evaluation. This research was
supported by NSF CAREER Award #1943349, Ford and
Hyundai. Zhijian Liu and Yujun Lin were partially supported
by the Qualcomm Innovation Fellowship.

REFERENCES

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S.,
Stachniss, C., and Gall, J. SemanticKITTI: A Dataset for
Semantic Scene Understanding of LiDAR Sequences. In
IEEE/CVF International Conference on Computer Vision
(Iccv), 2019.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E,,
Xu, Q., Krishnan, A., Pan, Y., Baldan, G., and Beijbom,
O. nuScenes: A Multimodal Dataset for Autonomous
Driving. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H.,
Xiao, J., Yi, L., and Yu, F. ShapeNet: An InformationRich
3D Model Repository. arXiv, 2015.

Choy, C., Gwak, J., and Savarese, S. 4D Spatio-Temporal
ConvNets: Minkowski Convolutional Neural Networks.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., and
Ronneberger, O. 3D U-Net: Learning Dense Volumetric
Segmentation from Sparse Annotation. In Proc. Medical

Image Computing and Computer Assisted Intervention
(MICCAI), 2016.

Ge, R., Ding, Z., Hu, Y., Shao, W., Huang, L., Li, K., and Liu,
Q. 15t Place Solutions to the Real-time 3D Detection and
the Most Efficient Model of the Waymo Open Dataset
Challenge 2021. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
2021.

Graham, B., Engelcke, M., and van der Maaten, L. 3D
Semantic Segmentation With Submanifold Sparse
Convolutional Networks. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Hu, Y., Ye, Z., Wang, M., Yu, J., Zheng, D., Li, M., Zhang,

TorchSparse: Efficient Point Cloud Inference Engine

Z.,Zhang, Z., and Wang, Y. FeatGraph: A Flexible and
Efficient Backend for Graph Neural Network Systems. In
International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), 2020.

Li, Y., Bu, R., Sun, M., Wu, W,, Di, X., and Chen, B. PointCNN:
Convolution on X-Transformed Points.
In Advances in Neural Information Processing Systems
(NeurlPS), 2018.

Lin, Y., Zhang, Z., Tang, H., Wang, H., and Han, S.
PointAcc: Efficient Point Cloud Accelerator. In 54th
Annual |EEE/ACM International Symposium on
Microarchitecture (MICRO), 2021.

Liu, Z., Tang, H., Lin, Y., and Han, S. Point-Voxel CNN for
Efficient 3D Deep Learning. In Advances in Neural
Information Processing Systems (NeurlPS), 2019.

Liu, Z., Tang, H., Zhao, S., Shao, K., and Han, S. PV-
NAS: 3D Neural Architecture Search with Point-Voxel
Convolution. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2021.

Qi, C. R, Su, H., Niessner, M., Dai, A., Yan, M., and Guibas,
L. J. Volumetric and Multi-View CNNs for Object
Classification on 3D Data. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

Qi, C. R, Su, H., Mo, K., and Guibas, L. J. PointNet: Deep
Learning on Point Sets for 3D Classification and
Segmentation. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2017a.

Qi, C. R, Yi, L, Su, H., and Guibas, L. J. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric
Space. In Advances in Neural Information Processing
Systems (NeurlPS), 2017b.

Shi, S., Guo, C,, Jiang, L., Wang, Z., Shi, J., Wang, X., and Li,
H. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D
Object Detection. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

Shi, S., Jiang, L., Deng, J., Wang, Z., Guo, C., Shi, J.,
Wang, X., and Li, H. PV-RCNN++: Point-Voxel Feature Set
Abstraction With Local Vector Representation for 3D

Object Detection. arXiv preprint arXiv:2102.00463, 2021.

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A.,
Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B.,
Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeey,

A, Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang, Y.,
Shlens, J., Chen, Z., and Anguelov, D. Scalability in
Perception for Autonomous Driving: Waymo Open
Dataset. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., and Han,
S. Searching Efficient 3D Architectures with Sparse
Point-Voxel Convolution. In European Conference on
Computer Vision (ECCV), 2020.

Thomas, H., Qj, C. R., Deschaud, J.-E., Marcotegui, B.,
Goulette, F., and Guibas, L. J. KPConv: Flexible and
Deformable Convolution for Point Clouds. In IEEE/CVF
International Conference on Computer Vision (ICCV),
2019.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou,
J,, Ma, C,, Yu, L, Gai, Y, Xiao, T., He, T., Karypis, G., Lin, J.,
and Zhang, Z. Deep Graph Library: A GraphCentric,
Highly-Performant Package for Graph Neural Networks.
arXiv preprint arXiv:1909.01315, 2019a.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic Graph CNN for Learning
on Point Clouds. In ACM SIGGRAPH, 2019b.

Wu, W., Qj, Z., and Fuxin, L. PointConv: Deep Convolutional
Networks on 3D Point Clouds. In /[EEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Yan, Y., Mao, VY., and Li, B. SECOND: Sparsely Embedded
Convolutional Detection. Sensors, 2018.

Yin, T., Zhou, X., and Krahenb™ uhl, P. Center-based 3D~
Object Detection and Tracking. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2021.

A OuTtPUT COORDINATES CALCULATION

Here, we illustrate the output coordinates calculation
algorithm for s > 1 in sparse convolution. We apply a
sliding window on each input point and check whether
each candidate output point within the window passes
modular and boundary check. If both checks are passed,
we add the candidate output point to P °ut, We finally
filter out duplicate coordinates in P °ut,

Algorithm 3 Output Coordinates Calculation

Input: kernel size K, stride s, input coordinates P, output
coordinates boundary b
Output: output coordinates P °ut

if s=1 then

Pout< Pinelse

Pout<— @ forp
in Pindo
Traverse the neighbors of an input point.
for 6 in AP(K) do
Calculate the candidate coordinates.
uep-~6
Add output if it passes modular and boundary check.
ifu%s==0andu<s-bthen
P out e P outU {u/s} end if
end for
end for
Filter out duplicate coordinates.
P out < Unique(P out) end

B ADAPTIVE GROUPING ALGORITHM

Here, we provide detailed illustration for the adaptive
grouping algorithm. The algorithm is divided into two
parts: grouped matrix multiplication (Algorithm 4) and
adaptive group search (Algorithm 5).

B.1 Group Matrix Multiplication

We describe the process of applying the adaptive grouping
strategies for each layer in Algorithm 4, which is
performed via two steps. First, we maintain two pointers
to track the start and the end of the current group. Once
1-Nmin/Nmax Updated by the end pointer exceeds the

tolerance of redundant computation , we return the
working group to the groups list and move pointers to start
a new group. Second, for each group, we determine if
batched matmul is performed on it based on the value of
S.

B.2 Adaptive Strategy Search

For each layer, we search for a specific configuration to

Input: input features X", weights W, maps M,
redundant computation tolerance ,
mm/bmm threshold S

Output: output features Xout

G<0Qi
<0
Traverse each weight index with unique number of inputs.
while i < range(bAP(K).size/2c) do nmin <
0; Nmax < len(M[Wi])
Always push the first index to the current group.
ge{ili—i+1
for j in range(i,bA?(K).size/2c) do
n « len(M[W)]) nmin < min{n,nmin}, Nmax <
max{n,nmax}
Push the index to the group if the ratio no larger
than . if 1 — Mmin/Nmax < ¢then g<gu{j}
else
Otherwise return and start a new group.
break
end if
end for
Push the returned group to the groups list.
G<GU{g}
end while for g in G do nmax < max{len(M[W;]) for i in g}
Pad inputs and apply bmm when workload smaller than
S. if nmax < S then
gather input feature matrices Fiwith X"and M[W;] fori €
g; pad zeros to each F;to become length nmax; perform
batched matrix multiplication between Fie;and
Wiegand then scatter results to corresponding X°ut
else
Otherwise apply mm.
perform Algorithm 2 in main paper with Xi"fori € g to
get Xout
end if
end for

TorchSparse: Efficient Point Cloud Inference Engine

[Baseline Implementation [MinkowskiEngine

[l sPcConv (FP32)

[l SPConv (FP16) Bl TorchSparse

SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f)

NS-MinkUNet (1f)

78
423 44.5 478 44.8
§ 355 02
281 284 30.2 284 283
@ 245 255 229 237 23.4
5 (e o B o5 123 120 187 A2 177 455 198
% L[
SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f) NS-MinkUNet (1f) NS-CenterPoint (10f) WM-CenterPoint (3f) WM-CenterPoint (1f)
i= 396 38.9 22
5 = 266 2638 270 B 259
926 : 254 2
& 272 22 177 167185 S 17.5 186 o =
= |—|m o8 99 120 128 12.3 14
Q=
14
SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f) NS-MinkUNet (1f) NS-CenterPoint (10f) WM-CenterPoint (3f) WM-CenterPoint (1f)
343
- Cal) 31.7
5 223 T N
(=) 164 188 158 124 202 194 467171 204 g 108 TE2
T es 110 128 122 170 2% 01 103 [rypCames]
ﬁ 8 78 83 |_||_T 56 66 12 73 65 B
Q

NS-CenterPoint (10f) WM-CenterPoint (3f) WN-CenterPoint (1f)

Figure 14: TorchSparse evaluation results in absolute values.

algorithm is shown in Algorithm 5, where we enumerate ,S
in a predefined search space (usually < 1000
configurations), use Algorithm 4 to perform the matrix
multiplication for the target layer, and select the ,S pair
which leads to the smallest average latency.

Algorithm 5 Adaptive Group Search

Input: sampled inputs subset D, weights W, maps M, redundant

computation tolerance search space S,, mm/bmm
threshold search space S;

Output: selected redundant computation tolerance *, mm/bmm
threshold S*

f < cost function to compute elapsed time on hardware cmin

<0
fore€ in Sa do
forSinSydoc
<0
for X"in D do
¢ « c+f(run Algorithm 4 with M",W.- M;e, S)
end for

Update selected config tol€: Stor smaller latency.
Cmin = Oore < Cmin
Cmin €

ife e S"« S then

end if
end for
end for

C REsuLTts DETAIL

We show TorchSparse evaluation results in absolute FPS in

TorchSparse: Efficient Point Cloud Inference Engine

Figure 14. TorchSparse is able to run all models in real-time (>
10 FPS) on all hardware platforms.

	1 INTRODUCTION
	2 BACKGROUND
	3 ANALYSIS
	4 SYSTEM DESIGN AND OPTIMIZATION
	5 EVALUATION
	6 ABLATION STUDY
	7 RELATED WORK
	8 CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	A OUTPUT COORDINATES CALCULATION
	B ADAPTIVE GROUPING ALGORITHM
	C RESULTS DETAIL

