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ABSTRACT 
Deep learning on point clouds has received increased attention thanks to its wide applications in AR/VR and 
autonomous driving. These applications require low latency and high accuracy to provide real-time user 
experience and ensure user safety. Unlike conventional dense workloads, the sparse and irregular nature of 
point clouds poses severe challenges to running sparse CNNs efficiently on the general-purpose hardware. 
Furthermore, existing sparse acceleration techniques for 2D images do not translate to 3D point clouds. In this 
paper, we introduce TorchSparse, a high-performance point cloud inference engine that accelerates the sparse 
convolution computation on GPUs. TorchSparse directly optimizes the two bottlenecks of sparse convolution: 
irregular computation and data movement. It applies adaptive matrix multiplication grouping to trade 
computation for better regularity, achieving 1.4-1.5× speedup for matrix multiplication. It also optimizes the 
data movement by adopting vectorized, quantized and fused locality-aware memory access, reducing the 
memory movement cost by 2.7×. Evaluated on seven representative models across three benchmark datasets, 
TorchSparse achieves 1.6× and 1.5× measured end-to-end speedup over the state-of-the-art MinkowskiEngine 
and SpConv, respectively. 

1 INTRODUCTION 

3D point cloud becomes increasingly accessible over the 
past few years thanks to the widely available 3D sensors, 
such as LiDAR scanners (on the self-driving vehicles and, 
more recently, even the mobile phones) and depth 
cameras (on the AR/VR headsets). Compared with 2D RGB 
images, 3D point clouds provide much more accurate 
spatial/depth information and are usually more robust to 
different lighting conditions. Therefore, 3D point cloud 
processing becomes the key component of many real-
world AI applications: e.g., to understand the indoor scene 
layout for AR/VR, and to parse the driveable regions for 
autonomous driving. 

A 3D point cloud is an unordered set of 3D points. Unlike 
2D image pixels, this data representation is highly sparse 
and irregular. Researchers have explored to rasterize the 
3D data into dense volumetric representation (Qi et al., 
2016) or directly process it in the point cloud 
representation (Qi et al., 2017b; Li et al., 2018). However, 
both of them are not scalable to large indoor/outdoor 

scenes (Liu et al., 2019). Alternatively, researchers have 
also investigated to flatten 3D 
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Figure 1: Widely available 3D sensors (left) have enabled 
more and more real-world AI applications to perceive the 
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world using 3D point clouds (middle). However, 
processing 3D point cloud requires sparse computation 
that is not favored by general-purpose hardware. 
TorchSparse reduces the irregular computation and 
optimizes the data movement, achieving 1.7× to 2× 
measured speedup (right). 

point clouds into dense 2D representations using 
spherical projection and bird’s-eye view (BEV) projection. 
However, their accuracy is much lower due to the physical 
dimension distortion and height information loss. 

Recently, state-of-the-art 3D point cloud neural networks 
tend to rely largely or fully on sparse convolutions (Graham 
et al., 2018), making it an important workload for machine 
learning system: all top 5 segmentation submissions on 
SemanticKITTI (Behley et al., 2019) are based on 
SparseConv, 9 of top 10 submissions on nuScenes (Caesar 
et al., 2020) and top 2 winning solutions on Waymo (Sun 
et al., 2020) have exploited SparseConv-based detectors 
(Yin et al., 2021; Ge et al., 2021). Given the wide 
applicability and dominating performance of SparseConv-
based point cloud neural networks, it is crucial to provide 
efficient system support for sparse convolution on the 
general-purpose hardware. 

Unlike conventional dense computation, sparse 
convolution is not supported by existing inference libraries 
(such as TensorRT and TVM), which is why most industrial 
solutions still prefer 2D projection-based models despite 
their lower accuracy. It is urgent to better support the 
sparse workload, which was not favored by modern high-
parallelism hardware. On the one hand, the sparse nature 
of point clouds leads to irregular computation workloads: 
i.e., different kernel offsets might correspond to drastically 
different numbers of matched input/output pairs. Hence, 
existing sparse inference engines (Yan et al., 2018; Choy et 
al., 2019) usually execute the matrix multiplication for 
each kernel offset separately, which cannot fully utilize the 
parallelism of modern GPUs. On the other hand, 
neighboring points do not lie contiguously in the sparse 
point cloud representation. Explicitly gathering input 
features and scattering output results can be very 
expensive, taking up to 50% of the total runtime. Due to 
the irregular computation workload and expensive data 
movement cost, SparseConv-based neural networks can 
hardly be run in real time: the latest sparse convolution 
library can only run MinkowskiNet at 8FPS on an NVIDIA 
GTX 1080Ti GPU, let alone other low-power edge devices. 

In this paper, we introduce TorchSparse, a high-
performance inference engine tailored for sparse point 

cloud computation. TorchSparse is optimized based upon 
two principles: (1) improving the computation regularity 
and (2) reducing the memory footprint. First, we propose 
the adaptive matrix multiplication grouping to batch the 
computation workloads from different kernel offsets 
together, trading #FLOPs for regularity. Then, we adopt 
quantization and vectorized memory transactions to 
reduce memory movement. Finally, we gather and scatter 
features in locality-aware memory access order to 
maximize the data reduce. Evaluated on seven models 
across three datasets, TorchSparse achieves 1.6× and 1.5× 
speedup over state-of-the-art MinkowskiEngine and 
SpConv, paving the way for deploying 3D point cloud 
neural networks in real-world applications. 

2 BACKGROUND 

The point cloud can be formulated as an unordered set of 
points paired with features: {(pj,xj)}, where xj ∈ RC is a C-
dimensional feature vector for point pj ∈ ZD in a D-
dimensional space. For a convolution of kernel size K, let 

W ∈ RKD×Cin×Cout be its weights and ∆D(K) be its kernel offsets 

(e.g., ∆2(5) = {−2,−1,0,1,2}2 and ∆3(3) = {−1,0,1}3). The 
weights W can be broken down into KD matrices of shape 
Cin × Cout, denoted as Wδ for δ ∈ ∆D(K). With these 
notations, the convolution with stride s can be represented 
as 

xoutk = X X1[pj = sqk + δ] (xjin · Wδ), (1) δ∈∆D(K) j where pj 

∈ P in,qk ∈ P out, and 1[·] is the binary indicator. 

For dense convolution (Figure 3a), each nonzero input is 
multiplied with all nonzero weights, leading to rapidly 
growing nonzeros (P in ⊂ P out). On the other hand, the 
computation of sparse convolution (Figure 3b) is 
determined by maps M = {(pj,qk,Wδ)} in Equation 1 (also 
written as {(pj,qk,Wn)}, where n is the weight index) and 
keeps the sparsity pattern unchanged (P in = P out). It 
iterates over all maps and performs xoutk = xoutk + xinj · Wδ. 

2.1 Mapping Operations 

Mapping is a step to construct the input-output maps M = 
{(pj,qk,Wδ)} for sparse convolution. Here, j is the index of 
input point p in P in, k is the index of output point q in P out, 
and Wδ is the weight matrix for kernel offset δ. Generating 
maps typically requires two steps: calculating the output 
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coordinates P out, and searching maps M. These operations 
only take coordinates as input. 

2.1.1 Output Coordinates Calculation 

When the convolution stride is 1, the output coordinates 
are exactly the same as the input coordinates, i.e., P out = P 

in. 

When the convolution stride is larger than 1, the nonzero 
input coordinates will first be dilated for each kernel offset 
(i.e., p−δ). After that, only these points on the strided grids 
within boundaries will become outputs q, where s·q = p−δ. 
Take the input coordinate (3,5) as an example (with stride 
of 2). For offset δ = (1,1), the output coordinate will be 
((3,5) − (1,1))/2 = (1,2), while for offset δ = (0,0), there 
is no valid output coordinate since ((3,5) − (0,0)) is not a 
multiple of stride s = 2. We refer the readers to Appendix 
A for more details. 

2.1.2 Map Search 

As in Algorithm 1, map search requires iterating over all 
possible input coordinates for each output coordinate. A 
map is generated only when the input is nonzero. 

To efficiently examine whether the possible input qj + δ is 
nonzero, a common implementation is to record the 
coordinates of nonzero inputs with a hash table. The key-
value pairs are (key=input coordinates, value=input index), 
i.e., (key = pj,value = j). The hash function can simply be 
flattening the coordinate of each dimension into an integer. 

Inputs Weights IN P1,1 P3,2 P2,2 P1,1 P2,2 …P3,2 P2,2 P4,3 
 (a) Conventional Convolution  OUT 
Q2,2 Q4,3 Q3,2 Q1,1 Q2,2 …Q2,2 Q1,1 Q3,2 

(each nonzero input is multiplied with   (b) Sparse Convolution all 
nonzero weights) (Sparse computation determined by 
maps) 

Figure 3: Sparse convolution (b) does not multiply each 
nonzero input with all nonzero weights as conventional 
convolution (a) does. 

2.2 Data Orchestration and Matrix Multiplication 

 Mapping (Sec 4.4) Gather (Sec 4.3)   Matrix Multiplication (Sec 4.2) Scatter-Add (Sec 4.3)  
 Symmetry-Aware Construction Locality-Aware Access Adaptive Grouping Locality-Aware Access 
 P0 Key Value Maps  X0 PSUM 1 

 P1 (coords) (index) (In, Out, Wgt) X3 × W-1,-1 = PSUM 4 
 P2 Build Hash Table 1,1 0 Compute from  (P0, Q1, W-1,-1

) 
X1 PSUM 3 

 P3 2,2 1 Hash  (P3, Q4, W-1,-1) pad × W-1,0 = 

CoordsInputP4 w-1,-1 w-1,0 w-1,1 23,,42 23 Table((PP10, , QQ30, , WW-10,,00)) X0X1 Gather  padX3 × W1,0 = PSUM 1Scatter 
 X0X1 
 4,3 4 
 w0,-1 w0,0 w0,1 (P1, Q1, W0,0) X2 X1 PSUM 0 X2 

 (P2, Q2, W0,0) X3 X4 × W1,1 = PSUM 3 X3 
 w1,-1 w1,0 w1,1 Query Hit (P 3, W0 ) X4 Apply BMM X4 

3, Q ,0 Q0 
Kernel Offset 

 Q1 Query Possible  (P4, Q4, W0,0) FeaturesInput  X0X1 × W0,0 = PSUM 0PSUM 1 FeaturesOutput  
 Q2 (P3, Q1, W1,0) 
 Input Candidates Inferred  X2 PSUM 2 
 Q3 from  (P1, Q0, W1,1

) 
X3 PSUM 3 

 Q4 symmetry 
Output  (P4, Q3, W1,1) X4 Apply MM PSUM 4 

Coords 

Figure 2: TorchSparse aims at accelerating Sparse Convolution, which consists of four stages: mapping, gather, matmul 
and scatter-accumulate. Our optimization follows two principles: 1 improve the regularity of sparse workload 2 reduce 

the memory footprint. To achieve that, TorchSparse exploits adaptively batched matmul (Principle 1 , Section 4.2); 
quantized, vectorized, locality-aware scatter/gather (Principle 2 , Section 4.3); and mapping kernel fusion (Principle 2 , 

Section 4.4). 
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After maps are generated, sparse convolution will 
multiply the input feature vector xinj with corresponding 
weight matrix Wδ and accumulate to the corresponding 
output feature vector xoutk , following the map 
{(pj,qk,Wδ)}. 

The utilization of matrix-vector multiplication is rather low 
on GPU. Therefore, most existing implementations follow 
the gather-matmul-scatter computation flow in Algorithm 
2. First, all input feature vectors associated with the same 
weight matrix are gathered and concatenated into a 
contiguous matrix. Then, matrix-matrix multiplication 
between feature matrix and weight matrix is conducted to 
obtain the partial sums. Finally, these partial sums are 
scattered and accumulated to the corresponding output 
feature vectors. 

2.3 Difference from Other Tasks 

vs. conventional convolution with sparsity. The sparsity in 
conventional convolution comes from the ReLU activation 
function or weight pruning. Since there is no hard 
constraint on the output sparsity pattern, each nonzero 
input is multiplied with every nonzero weight, so the 
nonzeros will Algorithm 1 Map Search 
Input: input coordinates P in, output coordinates P out 

kernel size K, stride s Output: maps M 
N ← ∆D(K).size 
M ← {∅} × N 
for k,qk in enumerate(P out) do # Traverse 

the neighbors of an output point. 
for n,δ in enumerate(∆D(K)) do 

# Calculate input coordinates. 
r ← s · qk + δ 
# Add new map if input exists. 
if P in.contain(r) then 

j ← P in.getIndex(r) 
M[Wδ] ← M[Wδ] ∪ {(pj,qk,Wδ)} 

end if 
end for 

end for 

Algorithm 2 Gather-MatMul-Scatter 

Input: input features Xin, weights W, maps M 
Output: output features Xout 

Xout ← 0 
# Separately perform gather-matmul-scatter for each weight. 
for δ in ∆D(K) do 

F ← ∅ 
# Gather features for wn. 
for m,(pj,qk,Wδ) in enumerate(M[Wδ]) do 

F[m] ← Xin[j] end 
for 
# Matrix-matrix multiplication. 
F ← F · Wδ 
# Scatter partial sums to Xout. 
for m,(pj,qk,Wδ) in enumerate(M[Wδ]) do 

Xout[qk] ← Xout[qk] + F[m] end 
for end for 

 

 
 (a) Segmentation (b) Detection 

Figure 4: Data movement and GEMM constitute a 
significant proportion of the runtime of sparse CNNs. 

dilate during the inference, i.e., P in ⊂ P out (see Figure 3a). 
The existing sparse computation libraries leverage such 
computation pattern by travelling all nonzero inputs with 
all nonzero weights to accelerate the conventional 
convolution. On the contrary, sparse convolution requires 
P in = P out, and thus the relationship among inputs, weights 
and outputs requires to be explicitly searched with 
mapping operations, which makes it a hassle for previous 
sparse libraries. 

vs. graph convolution. In graph convolution, the 
relationship between inputs and outputs are provided in 
the adjacency matrix which stays constant across layers. 
Contrarily, sparse convolution has to search maps for every 
downsampling block. Furthermore, graph convolution 
shares the same weight matrix for different neighbors, i.e. 
all Wδ are the same. Hence, graph convolution only needs 
either one gather or one scatter of features: 1) first gather 
input features associated with the same output vertex, and 
then multiply them with shared weights and reduce to the 
output feature vector; or 2) first multiply all input features 
with shared weights, and then scatter-accumulate the 
partial sums to the corresponding output feature vector. 
However, sparse convolution uses different weight 
matrices for different kernel offset δ and thus needs both 
gather and scatter during the computation. Consequently, 
existing SpMV/SpDMM systems for graph convolution 
accleration (Wang et al., 2019a; Hu et al., 2020) are not 
applicable to sparse convolution. 
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3 ANALYSIS 

We systematically profile the runtime of different 
components in two representative sparse CNNs: one for 
segmentation (Figure 4a) and one for detection (Figure 
4b). Based on observations in Figure 4, we summarize two 
principles for sparse convolution optimization which lays 
the foundation for our system design in Section 4. 

Principle I. Improve Regularity in Computation Matrix 
multiplication is the core computation in sparse 
convolution and takes up a large proportion of total 
execution time (20%-50%). Algorithm 2 decouples the 
matrix multiplication computation from data movement so 
that we can use well-optimized libraries (such as cuDNN) 
to calculate Xout ← Xin·Wδ. However, the computation 
workloads are very non-uniform due to the irregular 
nature of point clouds (detailed in Figure 12, where map 
sizes for different weights can differ by an order of 
magnitude, and most map sizes are small). As a result, the 
matrix multiplication in MinkUNet 
(0.5× width) runs at 8.1 TFLOP/s on RTX 2080 Ti with FP16 
quantization, achieving only 30% device utilization. 
Therefore, improving the regularity of matrix 
multiplication will potentially be helpful: we boost the 
utilization to 44.2% after optimization (detailed in Table 2). 

Principle II. Reduce Memory Footprint Data movement is 
the largest bottleneck in sparse CNNs, which takes up 40%-
50% of total runtime on average. This is because scatter-
gather operations are bottlenecked by GPU memory 
bandwidth (limited) rather than computation resources 
(abundant). Worse still, the dataflow in Algorithm 2 
completely separates scatter-gather operations for 
different kernel offsets. This further ruins the possibility of 
any reuse in the data movement, which will be detailed in 
Figure 9. It is also noteworthy that the large mapping 
latency in the CenterPoint detector (Figure 4b) also stems 
from memory overhead: hashmap construction and 
output coordinate calculation both require multiple DRAM 
accesses. Thus, reducing memory footprint is at the heart 
of data movement and mapping optimization. 

4 SYSTEM DESIGN AND OPTIMIZATION 

This section unfolds our TorchSparse as follows: Section 
4.1 provides an overview and API design for TorchSparse, 
Section 4.2 introduces improvements on matrix 
multiplication operations, Section 4.3 elaborates the 
optimizations for data movement operations 

(scatter/gather), and Section 4.4 analyzes the 
opportunities to speed up mapping operations. 

4.1 System Overview 

Figure 5 provides an overview of our TorchSparse. At the 
top level, users define their sparse CNNs using TorchSparse 
APIs, which have minimal differences with native PyTorch 
APIs. Also, TorchSparse does not require users to add 
additional fields such as indice key and spatial shape 
in SpConv (Yan et al., 2018), and coordinate manager in 
MinkowskiEngine (Choy et al., 2019) when defining 
modules and tensors. TorchSparse converts the high-level 
modules to primitive operations: e.g., Conv3d is 
decomposed to output construction, mapping operations 
and gather-matmulscatter. For each part, Python APIs 
interact with backend CUDA implementations via pybind. 
Note that TorchSparse also provides support for CPU 
inference and multi-GPU training, but this paper will focus 
on the GPU inference. 
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Figure 6: Different matrix multiplication grouping 
strategies: (a) dense computation suffers from large FLOPs 
overhead; (b) separate matrix multiplication suffers from 
low device utilization and excessive kernel calls; (c) fixed 
grouping trades FLOPs for regularity; (d) adaptive grouping 
searches for the best balance point. 

4.2 Matrix Multiplication Optimization 

Matrix multiplication is the core computation in sparse 
convolution. Due to the irregularity of point clouds, 
existing implementations rely on cuDNN to perform many 
small matrix multiplications on different weights (Figure 
6b), which usually do not saturate the utilization of GPUs. 
In order to increase the utilization, we propose to trade 
computation for regularity (Principle I) by grouping matrix 
multiplication for different weights together. We find it 
helpful to introduce redundant computation but group 
more computation in a single kernel. In Figure 12, we 
collect the real workload for MinkUNet (Choy et al., 2019) 
on SemanticKITTI (Behley 

 26 24 22 20 
18 16 14 12 10 0 

Number of Groups 

Figure 7: Trading FLOPs for computation regularity via 
batched matrix multiplication brings 1.5× speedup. 

et al., 2019) and analyze the efficiency of matrix 
multiplication in the first sparse convolution layer with 
respect to the group size. It turns out that batched matrix 
multiplication can be significantly faster than sequentially 
performing the computation along the batch dimension, 
thanks to the better regularity. This motivates us to 
explore the opportunity of grouping in the matrix 
multiplication computation. 

4.2.1 Symmetric Grouping 

With sparse workloads, the map sizes for different weights 
within one sparse convolution layer are usually different. 
Fortunately, for sparse convolutions with odd kernel size 
and stride of 1, the maps corresponding to kernel offset 
(a,b,c) will always have the same size as the maps 
corresponding to the symmetric kernel offset (−a,−b,−c). 
For a map entry 
(pj,qk,Wa,b,c), we have qk = pj + (a,b,c). Then, pj = 
qk+(−a,−b,−c), which implies that (qk,pj,W−a,−b,−c) is also a 
valid map entry. As such, we can establish an oneto-one 
correspondence between maps for weights ±(a,b,c). 
Therefore, we are able to group the workload for 
symmetric kernel offsets together and naturally have a 
batch size of 2. 
Note that the workload corresponding to the kernel offset 
(0,0,0) is processed separately since it does not require 
any explicit data movement. From Figure 7, the symmetric 
grouping (13 groups) can already be up to 1.2× faster than 
the separate matrix multiplication. 
4.2.2 Fixed Grouping 

Though symmetric grouping works well for sparse 
convolutions with the stride of 1, it falls short in 
generalizing to downsampling layers. Also, it cannot push 
the batch size to > 2, which means that we still have a large 
gap towards the best GPU utilization in Figure 7. 

import torchsparse.nn as spnn 
class 
SparseConvBlock(nn.Sequential):  
    def __init__(self,  
                 in_channels: int,                  
out_channels: int,  
                 kernel_size: Union[int, list, tuple],                  
stride: Union[int, list, tuple] = 1,                  
dilation: int = 1) -> None:         
super().__init__(  
            spnn.Conv3d(in_channels,                         
out_channels,                         kernel_size,                         
stride=stride,                         
dilation=dilation),             
spnn.BatchNorm(out_channels),             
spnn.ReLU(True)  
        ) 

 import torch.nn as nn class 
ConvBlock(nn.Sequential):     
def __init__(self,  
                 in_channels: int,                  
out_channels: int,  
                 kernel_size: Union[int, list, tuple],                  
stride: Union[int, list, tuple] = 1,                  
dilation: int = 1) -> None:         
super().__init__(             nn.Conv2d(in_channels,                         
out_channels,                         kernel_size,                         
stride=stride,                         dilation=dilation),             
nn.BatchNorm2d(out_channels),             
nn.ReLU(True)  
        ) 

SparseConvNets: MinkUNet, CenterPoint, … 

TorchSparse APIs:   
spnn.Conv3d, spF.conv3d…  

Output Coord.  
Map Search (4.4) 

Construction (4.4) 

 Fused Locality-Aware  Adaptively   
 Scatter/Gather (4.3) Grouped MatMul (4.2) 

PyTorch CUDA Extension 

TorchSparse APIs are very close to PyTorch native APIs.  

Figure 5: System overview for TorchSparse: our TorchSparse provides handy Python APIs similar to PyTorch and applies 
low-level optimizations to data movement, matrix multiplication and mapping operations in sparse convolution. 
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Nevertheless, we find that clear pattern exists in the map 
size statistics (Figure 12): for submanifold layers, the maps 
corresponding to W0 to W3 tend to have similar sizes and 
the rest of the weights other than the middle one have 
similar sizes; for downsampling layers, the maps for all 
offsets have similar sizes. Consequently, we can batch the 
computation into three groups accordingly. Within each 
group, we pad all features to the maximum size (Figure 6c). 
Fixed grouping generally works well when all features 
within the same group have similar sizes (Figure 6c left), 
and this usually happens in downsampling layers. For 
submanifold layers (Figure 6c right), the padding overhead 
can sometimes be large despite the better regularity, 
resulting in wasted computation. 

4.2.3 Adaptive Grouping 

The major drawback of fixed grouping is that it does not 
adapt to individual samples. This can be problematic since 
workload size distributions can vary greatly across 
different datasets (Figure 12). It is also very labor-intensive 
to design different grouping strategies for different layers, 
different networks on a diverse set of datasets and 
hardware. To this end, we design an adaptive grouping 
algorithm (Figure 6d) that automatically determines the 
input-adaptive grouping strategy for a given layer on 
arbitrary workload. 

The adaptive grouping algorithm builds upon two auto-
tuned parameters , where  indicates our tolerance 
of redundant computation, and S is the workload 
threshold. Given , we scan over sizes of all maps in the 
current workload 
for W0 to WK−1 (where K is the kernel volume) and 
dynamically maintain two pointers indicating the start and 
end of the current group. We initiate a new group 
whenever the redundant computation ratio 
( ) exceeds 
. Then, given S, we inspect the maximum workload size 
within each group. Each group performs bmm if the 
workload size is smaller than S and performs mm otherwise. 
This is because bmm can improve device utilization for small 
workloads but has little benefit for large workloads. We 
refer the readers to Appendix B for more details of this 
algorithm. Note that even if  and S are fixed, the generated 
strategy itself is still input-adaptive. Since different input 
point clouds have different map sizes, even the same  can 
potentially generate different group partition strategies for 
different samples. The  parameter space is simple but 
diverse enough to cover dense computation 
( ), sep- 

arate computation (S = 0) as well as symmetric grouping 
) as its special cases. 

c0 c1 … c30 c31 c32 c33 … c62 c63 … … c255 

 Warp #0   Warp #1   Warp #7 

(a) FP32, Scalar Scatter-Gather; 4B/channel (c0-c255), 128B/warp 
c0-1 c2 -3 … c60-

61 c62-
63 c64 -

65 c66 -
67 … c124 -

125 c126 -
127 … … c254 -

255 

 
Warp #0 Warp #1 

 
Warp #3 

(b) FP16, Vectorized Scatter-Gather; 2B/channel (c0-c255), 128B/warp 

Figure 8: TorchSparse applies vectorized and quantized 
scatter-gather to greatly reduce the data movement 
latency. 

(a) Weight-Stationary Memory Access 
 (P0, Q1) (P3, Q1) (P1, Q3) (P1, Q0) 
 (P3, Q4) (P4, Q8) (P8, Q4) (P4, Q3) 
 … … … … … … 
 (P95029, Q95133) (P95077, Q95180) (P95180, Q95077) (P95133, Q95029) 
 (P95077, Q95181) (P95133, Q95229) (P95229, Q95133) (P95181, Q95077) 
 W-1,-1,-1 W-1,-1,0 W1,1,0 W1,1,1 

Unique input / output indices for each weight 
 P0 W-1,-1,-1 W-1,1,0 W1,0,1 Q0 W-1,0,-1 W1,-1,0 W1,1,1 

 P1 W1,0,1 W1,1,1 Q…1 W-1,-1,-1 W1,1,1 100%  
 … hit  
 P95077 W-1,-1,-1 W-1,-1,0 Q95077 W1,1,0 W1,1,1 after  
 … … first  
 P…95133 W-1,-1,0 W1,1,1 

Q95133… W-1,-1,-1 W1,1,0 miss 

 P95229 W1,1,0 Q95229 W-1,-1,0 
Input-stationary gather Output-stationary scatter Cache Hit (b) 
Locality-Aware Memory Access Cache Miss 

Figure 9: TorchSparse proposes cache-friendly 
localityaware and memory access pattern. In contrary, 
baseline implementation (a) cannot exploit cache reuse 
due to uniqueness in input/output indices for each weight. 

For a given sparse CNN, we determine  for each layer 
on the target dataset and hardware platform via 
exhaustive grid search on a small subset (usually 100 
samples) of the training set. We formalize this process in 
Appendix B. The search is inference-only. It explores a 
space of around 1,000 configurations and requires less 
than 10 minutes of search time on a desktop GPU. The 
strategy derived on the small subset can be directly 
applied and does not require any parameter optimization 
during the inference time. 
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4.3 Data Movement Optimization 

From Section 3, data movement usually takes up 40-50% 
of the total runtime. Thus, optimizing data movement will 
be of high priority as well (Principle II). Intuitively, it is 
most effective to reduce data movement cost by reducing 
the total amount of DRAM access and exploiting the data 
reuse. 

4.3.1 Quantized and Vectorized Memory Access 

FP16 quantization brings 2× theoretical DRAM access 
saving compared with the FP32 baseline. However, as in 
Figure 8, this reduction cannot be translated into real 
speedup without vectorized scatter/gather. 

NVIDIA GPUs group memory access requests into 
transactions, whose largest size is 128 bytes. Considering 
the typical memory access pattern in scatter/gather, where 
a warp (32 threads) issues contiguous FP32 (4 bytes) 
memory access instructions simultaneously, the 128-byte 
transaction is fully utilized. However, when each thread in 
the warp issues an FP16 memory request, the memory 
transaction has only 64/128=50% utilization, and the total 
number of memory transactions are essentially unchanged. 
As a result, we observe far smaller speedup (1.3×) 
compared to the theoretical value (2×) on scatter/gather if 
scalar scatter/gather (Figure 8a) is performed. 

Contrarily, vectorized scatter-gather Figure 8b doubles the 
workload of each thread, making the total work of each 
warp still 128 bytes, equivalent to a full FP32 memory 
transaction. Meanwhile, the total number of memory 
transactions is halved while the work for each memory 
transaction is unchanged, and we observe 1.9× speedup 
over FP32 data movement on various GPU platforms. This 
closely aligns with the theoretical reduction in DRAM 
access. 

Further quantizing the features to INT8 offers diminishing 
return, as the multi-way reduction in the scatter 
operation requires more than 8-bit for the final result. In 
this case, all scatter operations are still in 16 bits since 
CUDA requires aligned memory access. Thus, scattering 
(which takes 60% of the data movement time) cannot not 
accelerated with the INT8 quantization, leading to limited 
overall speedup. 

4.3.2 Fused and Locality-Aware Memory Access 

Despite the limitation of aggressive feature quantization, it 
is still possible to achieve faster scatter/gather by 
exploiting locality. Intuitively, for a sparse convolution layer, 

the total amount of gather read and scatter write is N1 = 
|M|(Cin +Cout), where M is the map for this layer (defined in 
Section 2.1), and Cin and Cout correspond to input and 
output channel numbers. However, the total feature size 
of this layer is N2 = NinCin + NoutCout. Empirically, the feature 
of each point is repetitively accessed for at least 4 times 
(N1 ≥ 4N2). Based on this, we can ideally have 1.6× more 
DRAM access saving for scatter/gather (the amount of 
gather write and scatter read is also N1 and cannot be 
saved). 

As shown in Algorithm 2 and Figure 9a, the current 
implementation completely separates gather/scatter for 
different weights. When we perform gather operation for 
Wk+1, the GPU cache is filled with scatter buffer features 
for Wk as long as the GPU cache size is much smaller than 
N1 (typically > 40MB, much larger than the 5.5MB L2 cache 
of NVIDIA RTX 2080 Ti). Intuitively, for gather operation on 
Wk+1, we hope that the cache is filled with gather buffer 
features from Wk. This suggests us to first fuse all gather 
operations before matrix multiplication, and fuse all 
scatter 
D D D D D D 
R Candidate  R Modular   R Boundary  R nD→1D   R Unique  R 
A Calculation A Check A Check A Coord. Conversion A Filtering A 
M M M M M M 
D D D 
R Candidate  Reg. Modular  Reg. Boundary Reg. Coord.   R Unique  R 
A Calculation Check Check Conversion A Filtering A 
M Single Fused Kernel: No intermediate DRAM access M M 

Figure 10: TorchSparse reduces mapping DRAM access and 
improves mapping latency via kernel fusion. 

operations afterwards. As such, the GPU cache will always 
hold data from the same type of buffer. 

Moreover, the memory access order matters. In the 
weightstationary order (Figure 9a), all map entries for 
weight Wk are unique, so there is no chance of feature 
reuse, and each gather/scatter leads to a cache miss. As in 
Figure 9b, we instead take a locality-aware memory access 
order. We gather the input features in the input-stationary 
order and scatter the partial sums in the output-stationary 
order. 

Without loss of generality, we will focus on the 
implementation of input-stationary gather. We first 
maintain a neighbor set Nj for each input point pj: i.e., for 
the ith map entry (pj,qk,Wn), we insert (Wn,i) into Nj. Then, 
we iterate over every input point pj, fetch its feature vector 
Xjin into the register, and write it to the corresponding 

DRAM location  for each (Wn,i) ∈ Nj. 
Here, 
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M[Wk] is the map for weight Wk. Note that each Xjin is read 
from DRAM only once and held in the register. Hence, this 
algorithm achieves the optimal reuse for gather. Similar 
technique can be applied to scatter, where we read 
neighbors’ partial sums for each output point from DRAM, 
perform reduction in the register, and write the result back 
only once. This optimization alone leads to 1.3-1.4× 
speedup in data movement on real-world point cloud 
datasets. 

4.4 Mapping Optimization 

From Figure 4, mapping operations in our baseline 
implementation take up a significant amount of time (15%) 
in detectors on the Waymo (Sun et al., 2020) dataset. It is 
important to reduce the mapping overhead in sparse CNNs. 

We first choose the map search strategy for each layer 
from [grid, hashmap] in a similar manner to the adaptive 
grouping. Here, grid corresponds to a naive collision-free 
gridbased hashmap: it takes larger memory space, but 
hashmap construction/query requires exactly one DRAM 
access perentry, which is much smaller than conventional 
hashmaps. We then perform kernel fusion (Figure 10) on 
output coordinates computation for downsampling. The 
downsample operation applies a sliding window around 
each point. It 1 calculates candidate activated points with 
broadcast add, 2 performs modular check, 3 performs 
boundary check and generates a mask on whether each 

point is kept, 4 converts the remaining candidate point 
coordinates to 1D values, and 5 performs unique 
operation to keep final output coordinates (detailed in 
Appendix A). There are DRAM accesses between every two 
of the five stages, making downsampling kernels memory-
bounded. We therefore fuse stages 1 to 

4 into a single kernel and use registers to store 
intermediate results, which eliminates all intermediate 
DRAM write. For the fused kernel, we further perform 
control logic simplification, full loop unrolling and utilize 
the symmetry of submanifold maps. Overall, the mapping 
operations are accelerated by 4.6× on detection tasks with 
our optimizations. 

5 EVALUATION 

5.1 Setup 

TorchSparse is implemented in CUDA and provides easyto-
use PyTorch-like interfaces (described in Section 4.1). We 
build TorchSparse based on PyTorch 1.9.1 with CUDA 
10.2/11.1 and cuDNN 7.6.5. Our system is evaluated 
against a baseline FP32 design without optimizations in 
Section 4 and the latest versions of two state-of-the-art 
sparse convolution libraries MinkowskiEngine v0.5.4 (Choy 
et al., 2019) and SpConv v1.2.1 (Yan et al., 2018) on three 
generations of NVIDIA GPUs: GTX 1080Ti, RTX 2080Ti and 
RTX 3090. Necessary changes are made to 
MinkowskiEngine to correctly support downsample 
operations in detectors and to SpConv to avoid OOM in 
large-scale scenes. 

All systems are evaluated on seven top-performing sparse 
CNNs on large-scale datasets: MinkUNet (Choy et al., 2019) 

(0.5×/1× width) on SemanticKITTI (Behley et al., 2019), 
MinkUNet (1/3 frames) on nuScenes-LiDARSeg (Caesar et 
al., 2020), CenterPoint (Yin et al., 2021) (10 frames) on 
nuScenes detection and CenterPoint (1/3 frames) on 
Waymo Open Dataset (Sun et al., 2020). We report the 
normalized 

 

Figure 11: TorchSparse consistently outperforms state-of-the-art inference engines in both detection and segmentation 
benchmarks and achieves up to 1.5-1.6× geomean speedup, 2.3× single model speedup over MinkowskiEngine and 
SpConv. 
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Figure 12: Grouping strategy on different datasets. Maps 
on nuScenes are much smaller than on SemanticKITTI for 
MinkUNet. Thus, to fully utilize GPU, the grouping strategy 
is more aggressive on nuScenes (8 groups vs. 10 groups). 

FPS for all systems (with TorchSparse to be 1). 

5.2 Evaluation Results 

Our TorchSparse achieves the best performance compared 
with the baseline design, MinkowskiEngine and SpConv. 

From Figure 11, TorchSparse achieves up to 2.16× speedup 
on segmentation models and 1.6-2× speedup on detection 
models over MinkowskiEngine on RTX 3090. We achieve a 
smaller speedup for the 1-frame MinkUNet on 
nuScenesLiDARSeg because MinkowskiEngine applies 
specialized optimizations to small models by using the 
fetch-on-demand dataflow (Lin et al., 2021) instead of the 
gather-matmulscatter dataflow. 

TorchSparse also demonstrates a 1.2× faster inference 
speed compared with the FP16 version of SpConv for 
detectors on RTX3090 thanks to our fused and locality-
aware access pattern and almost perfect speedup from 
vectorized data movement. Note that we report end-to-
end speedup in Figure 11. However, 10% of total total 
runtime in CenterPoint (Yin et al., 2021) is not related to 
point cloud computation (image convolution and non-
maximum suppression, as in Figure 4). Therefore, our 
speedup ratio on sparse convolution is 10% more for 
CenterPoint. The performance gain over SpConv (FP16) is 
even larger on segmentation models on various hardware 
platforms thanks to the effectiveness of adaptively 
batched matrix multiplication, which will be discussed in 
Section 6.1. GPUs are usually more under-utilized for 
segmentation models as they usually have smaller 
workload compared with detectors, making it necessary to 
apply batching strategies to improve the device utilization. 

TorchSparse achieves consistent speedup over other 
systems on GTX 1080Ti, which has no FP16 tensor cores. 
Compared with the baseline design, our TorchSparse still 
achieves a 1.5× speedup, only 11% less than the speedup 

we achieved on RTX 2080Ti with tensor cores. This 
validates that the native tensor-core speedup only 
constitutes a very minor proportion of our performance 
gain. 

Our TorchSparse runs MinkUNet (1.0× on SemanticKITTI) 
at 36, 26 and 13 FPS on RTX 3090, RTX 2080Ti, GTX 
1080Ti, respectively, all satisfying the real-time 
requirement 
(≥ 10 FPS). For the 3-frame model on nuScenes-LiDARSeg, 
TorchSparse achieves 45, 40 and 25 FPS throughput on the 
three devices, at least 2× faster than the LiDAR frequency. 
Even for the heaviest 3-frame CenterPoint model on 
Waymo, our TorchSparse is still able to achieve the real-
time inference on GTX 1080Ti. As such, our system paves 
the way for real-time LiDAR perception on self-driving cars. 

6 ABLATION STUDY 

6.1 Matrix Multiplication Optimizations 

We first examine the performance of different grouping 
strategies on SemanticKITTI with MinkUNet (0.5×) and on 
nuScenes with MinkUNet (3 frames). From Figure 6, our 
adaptive grouping strategy outperforms all handcrafted, 
fixed strategy and achieves 1.4-1.5× over no grouping 
baseline. Table 2 also suggests that manually-designed 
strategy cannot generalize to all datasets: fixed 3-batch 
grouping achieves large speedup (1.5×) on nuScenes, but 
is 13% slower than the separate computation baseline on 
SemanticKITTI. Note that although this strategy has the 
best device utilization (largest TFLOP/s) on nuScenes, it 
does not bring greater latency reduction than adaptive 
grouping due to much more extra computation, indicating 
the importance of  in our adaptive grouping algorithm. We 
also show the effectiveness of grouping strategy 
specialization for different datasets, model and hardware 
in Table 1. In Table 1a, we found that the same model (1-
frame MinkUNet) on the same hardware platform benefits 
more from the datasetspecialized strategy. This is because 
map size distributions (which decides the workload of 
matrix multiplication) significantly differ between 
SemanticKITTI and nuScenes, as 

Specialization 
for Different 

Datasets 

Optimized for 

SemanticKITTI nuScenes 

Execute 
on 

SemanticKITTI 10.11 10.87 

nuScenes 5.30 4.67 

(a) Specialization for Datasets (MinkUNet, 2080Ti) 
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Specialization 
for Different 

Models 

Optimized for 

MinkUNet (1.0×) MinkUNet (0.5×) 

Execute 
on 

MinkUNet (1.0×) 10.11 10.70 

MinkUNet (0.5×) 5.37 4.72 

(b) Specialization for Model (SemanticKITTI, 2080Ti) 
Specialization 
for Different 

Hardware 

Optimized for 

RTX2080Ti GTX1080Ti 

Execute 
on 

RTX2080Ti 4.67 4.80 

GTX1080Ti 14.95 14.01 

(c) Specialization for Hardware (nuScenes, MinkUNet) 

Table 1: Specializing adaptive batching strategies for 
different datasets, models and hardware platforms helps 
improve efficiency (TFLOP/s) by up to 13.5%. 

 

Table 2: Ablation analysis on matrix multiplication: 
adaptive batching consistently outperforms all other 
strategies in latency and brings about 1.4×-1.5× speedup 
for matmul (SK=SemanticKITTI, NS=nuScenes). As we trade 
FLOPs for regularity, TFLOP/s and speedup are non-
proportional. 

shown in Figure 12. The maps on nuScenes are much 
smaller than those on SemanticKITTI. As a result, if we 
directly transfer SemanticKITTI strategy to nuScenes, the 
groups will not be large enough to fully utilize hardware 
resources. On the other hand, if the nuScenes strategy is 
transferred to SemanticKITTI, the efficiency will be 
bottlenecked by computation overhead. We notice similar 
effect for model and hardware specialization in Table 1b 
and Table 1c, where specialized strategies always 
outperform the transferred ones. 

6.2 Data Movement Optimizations 

We then perform ablation analysis on MinkUNet (Choy et 
al., 2019) (1.0×) on the SemanticKITTI dataset (Behley et 
al., 2019). As in Table 3, naively quantizing features to 

 

Table 3: Speedup breakdown of different optimizations to 
reduce data movement. Feature quantization, vectorized 
memory access, and fused and locality-aware access bring 
1.3×, 1.5× and 1.4× speedup, respectively. Here, G and S 
denote gather and scatter. 

 

Figure 13: Speedup breakdown of mapping optimizations. 
Grid-based hashmap, fused kernel, simplified control logic 
and symmetry bring 1.6×, 1.5×, 1.8× and 1.1× measured 

speedup, respectively. 

16-bit will not provide significant speedup for 
scatter/gather: especially for gather, the speedup ratio is 
only 1.17×, far less than the theoretical value (2×). Instead, 
quantized and vectorized scatter/gather improves the 
latency of scattergather by 1.93×, which closely matches 
the DRAM access reduction and verifies our analysis in 
Section 4.3 on memory transactions. We further observe 
that fusing gather/scatter itself will not provide substantial 
speedup, as the weight-stationary access pattern cannot 
provide good cache locality due to the uniqueness of maps 
for each weight. However, when combined with locality-
aware access, we achieve 2.86× speedup on gathering, 
2.61× speedup on scattering and 2.72× overall speedup 
against FP32. This demonstrates the fact that all 
techniques in Section 4.3 are crucial in improving the 
efficiency of data movement. 

6.3 Mapping Optimizations 

We finally present analysis on optimizing mapping 
operations in 3-frame CenterPoint (Yin et al., 2021) 
detector on Waymo (Sun et al., 2020). Grid-based map 
search is 2.7× faster than a general hashmap-based 
solution thanks to its no-collision property, resulting in a 
1.6× end-to-end speedup for mapping. Fusing four small 
kernels accelerates output construction by 2.1× and brings 

Grouping Method MatMul speedup (SK) MatMul Speedup (NS) 
Separate 8.1 TFLOP/s (1.00×) 10.4 TFLOP/s (1.00×) 

Symmetric 8.2 TFLOP/s (1.02×) 14.6 TFLOP/s (1.39×) 
Fixed 8.7 TFLOP/s (0.87×) 21.1 TFLOP/s (1.50×) 

Adaptive 11.9 TFLOP/s (1.39×) 16.9 TFLOP/s (1.54×) 

  
       
       
       
       
       

Baseline 
 Grid HM. + 

+  Fused Kernel 
 Simplify Ctl. + 

 Symmetry + 
Output Construction 
Map Search 

1.6  
1.5  

1.8  
1.1  
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1.5× further end-toend mapping speedup. Finally, 
simplifying the control logic, loop unrolling and utilizing 
the symmetry of maps substantially accelerates map 
search by another 4× and pushes the final end-to-end 
mapping speedup to 4.6×. 
7 RELATED WORK 

Deep Learning on Point Clouds. Early methods (Chang et 
al., 2015; Qi et al., 2016; Cicek et al., 2016) first convert 
point clouds to the dense volumetric representation and 
apply dense CNNs to extract features. Another line of 
research (Qi et al., 2017a;b; Li et al., 2018; Wu et al., 2019; 
Thomas et al., 2019; Wang et al., 2019b) directly performs 
convolution on the k-nearest neighbor or spherical nearest 
neighbor of each point. Both streams of methods struggle 
to scale up to large scenes due to large or irregular 
memory footprint (Liu et al., 2019; 2021). Recent state-of-
the-art deep learning methods on point cloud 
segmentation / detection (Graham et al., 2018; Choy et al., 
2019; Tang et al., 2020; Shi et al., 2020; 2021; Yin et al., 
2021) are usually based on sparse convolution, which is 
empirically proven to be able to scale up to large scenes 
and is the target for acceleration in this paper. 

Point Cloud Inference Engines. Researchers have 
extensively developed efficient inference engines for 
sparse convolution inference. SpConv (Yan et al., 2018) 
proposes gridbased map search and the gather-matmul-
scatter dataflow. SparseConvNet (Graham et al., 2018) 
proposes hashmapbased map search and is later 
significantly improved (in latency) by MinkowskiEngine, 
which also introduces a new fetch-on-demand dataflow 
that excels at small workloads and allows generalized 
sparse convolution on >3D point clouds and on arbitrary 
coordinates. 

8 CONCLUSION 

We present TorchSparse, an open-source inference engine 
for efficient point cloud neural networks. Guided by two 
general principles: trade computation for regularity and 
reduce memory footprint, we optimize matrix 
multiplication, data movement and mapping operations in 
sparse convolutions, achieving up to 1.5×, 2.7× and 4.6× 
speedup on these three components, and up to 1.5-1.6× 
end-to-end speedup over previous state-of-the-art point 
cloud inference engines on both segmentation and 
detection tasks. We hope that our in-depth analysis on the 
efficiency bottlenecks and optimization recipes for sparse 

convolution can inspire future research on point cloud 
inference engine design. 
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A OUTPUT COORDINATES CALCULATION 

Here, we illustrate the output coordinates calculation 
algorithm for s > 1 in sparse convolution. We apply a 
sliding window on each input point and check whether 
each candidate output point within the window passes 
modular and boundary check. If both checks are passed, 
we add the candidate output point to P out. We finally 
filter out duplicate coordinates in P out. 

Algorithm 3 Output Coordinates Calculation 

Input: kernel size K, stride s, input coordinates P in, output 
coordinates boundary b 

Output: output coordinates P out 

if s = 1 then 

P out ← P in else 
P out ← ∅ for p 

in P in do 
# Traverse the neighbors of an input point. 
for δ in ∆D(K) do 

# Calculate the candidate coordinates. 
u ← p − δ 

# Add output if it passes modular and boundary check. 
if u % s == 0 and u < s · b then 

P out ← P out ∪ {u/s} end if 
end for 

end for 
# Filter out duplicate coordinates. 
P out ← Unique(P out) end 

if 

 

B ADAPTIVE GROUPING ALGORITHM 

Here, we provide detailed illustration for the adaptive 
grouping algorithm. The algorithm is divided into two 
parts: grouped matrix multiplication (Algorithm 4) and 
adaptive group search (Algorithm 5). 

B.1 Group Matrix Multiplication 

We describe the process of applying the adaptive grouping 
strategies for each layer in Algorithm 4, which is 
performed via two steps. First, we maintain two pointers 
to track the start and the end of the current group. Once 
1−nmin/nmax updated by the end pointer exceeds the 

tolerance of redundant computation , we return the 
working group to the groups list and move pointers to start 
a new group. Second, for each group, we determine if 
batched matmul is performed on it based on the value of 
S. 

B.2 Adaptive Strategy Search 

For each layer, we search for a specific configuration to 
conduct adaptive grouping (i.e. auto-tune ). The 
tuning Algorithm 4 Grouped Matrix Multiplication 
Input: input features Xin, weights W, maps M, 

redundant computation tolerance , 
mm/bmm threshold S 

Output: output features Xout 

G ← ∅ i 
← 0 
# Traverse each weight index with unique number of inputs. 
while i < range(b∆D(K).size/2c) do nmin ← 

0; nmax ← len(M[Wi]) 
# Always push the first index to the current group. 
g ← {i}; i ← i + 1 
for j in range(i,b∆D(K).size/2c) do 

n ← len(M[Wj]) nmin ← min{n,nmin}, nmax ← 
max{n,nmax} 
# Push the index to the group if the ratio no larger 
than . if then g ← g ∪ {j} 
else 

# Otherwise return and start a new group. 
break 

end if 
end for 
# Push the returned group to the groups list. 
G ← G ∪ {g} 

end while for g in G do nmax ← max{len(M[Wi]) for i in g} 
# Pad inputs and apply bmm when workload smaller than 
S. if nmax < S then 

gather input feature matrices Fi with Xin and M[Wi] for i ∈ 
g; pad zeros to each Fi to become length nmax; perform 
batched matrix multiplication between Fi∈g and 
Wi∈g and then scatter results to corresponding Xout 

else 
# Otherwise apply mm. 
perform Algorithm 2 in main paper with Xiin for i ∈ g to 
get Xout 

end if 
end for 
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Figure 14: TorchSparse evaluation results in absolute values. 

algorithm is shown in Algorithm 5, where we enumerate ,S 
in a predefined search space (usually < 1000 
configurations), use Algorithm 4 to perform the matrix 
multiplication for the target layer, and select the ,S pair 
which leads to the smallest average latency. 

Algorithm 5 Adaptive Group Search 
Input: sampled inputs subset D, weights W, maps M, redundant 

computation tolerance search space Sa, mm/bmm 
threshold search space Sb 

Output: selected redundant computation tolerance ∗, mm/bmm 
threshold S∗ 

f ← cost function to compute elapsed time on hardware cmin 

← 0 

for  
for S in Sb do c 

← 0 
for Xin in D do 

c ← c+f(run Algorithm 4 with Xin,  
end for 
# Update selected config to for smaller latency. 

if  then 
end if 

end for 
end for 

 

C RESULTS DETAIL 

We show TorchSparse evaluation results in absolute FPS in 



TorchSparse: Efficient Point Cloud Inference Engine 

Figure 14. TorchSparse is able to run all models in real-time (> 
10 FPS) on all hardware platforms. 
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