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Abstract. Fingerphotos are fingerprint images acquired using a basic
smartphone camera. Although significant progress has been made in
matching fingerphotos, the security of these authentication mechanisms
is challenged by presentation attacks (PAs). A presentation attack can
subvert a biometric system by using simple tools such as a printout
or a photograph displayed on a device. The goal of this research is to
improve the performance of fingerphoto presentation attack detection
(PAD) algorithms by exploring the effectiveness of deep representations
derived from various color spaces. For each color space, different convo-
lutional neural networks (CNNs) are trained and the most accurate is
selected. The individual scores output by the selected CNNs are com-
bined to yield the final decision. Experiments were carried out on the
IIITD Smartphone Fingerphoto Database, and results demonstrate that
integrating various color spaces, including the commonly used RGB, out-
performs the existing fingerphoto PAD algorithms.
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1 Introduction

As government services become more dependent on mobile technology, these
devices become more subject to attacks that aim to gain unauthorized access to
sensitive information. To address this issue, fingerprint identification has been
deployed in mobile systems. The sensors embedded in mobile devices are small,
and the resulting images acquired with them are, therefore, of limited size. The
integration of common smartphones in the sensing and authentication process
would enable relevant applications such as device unlocking and mobile payments
[2]. However, while capacitive fingerprint sensors can be embedded in newer
smartphones, billions of existing smartphones are being excluded. Furthermore,
fingerprints are currently proprietary and inaccessible in smartphones.
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Fingerphoto-based technologies can enable the use of fingerprints in smart-
phones for authentication on a large-scale such as National ID programs where
accurate, usable, and low-cost systems are required. A fingerphoto is an image
of the frontal part of a finger captured by a smartphone camera. Fingerphotos
to fingerphotos matching has recently achieved a True Acceptance Rate (TAR)
of 99.66% at False Acceptance Rate (FAR) of 0.1% by fusing four fingers, and
a TAR of 85.62% at FAR = 0.1% by using individual fingers [2]. Accurate com-
parison of fingerphotos against slap fingerprints has also been achieved, with a
TAR of 95.79% at FAR of 0.1% when fusing four fingers, and a TAR of 76.63%
using individual fingers [2]. Despite relevant advances in matching, this tech-
nology is vulnerable to presentation attacks (PAs) [23]. PAs refer to techniques
that inhibit the intended operation of a biometric capture system and interfere
with the acquisition of the true identity [15]. PAs can either conceal an individ-
ual’s identity or impersonate someone else. Presentation attack detection (PAD)
modules classify biometric samples as being live (non-spoof) or fake (spoof). In
this paper, we focus on two types of replica: i) print attacks, realized using a
color paper-printout placed in front of the phone camera, and ii) photo attacks,
carried out by displaying the original image in front of the capturing device.

Existing fingerphoto PADs based on the extraction of textural descriptors
such as Dense Scale Invariant Feature Transform (DSIFT), Locally Uniform
Comparison Image Descriptor (LUCID), and Local Binary Patterns (LBP) from
RGB images did not reach high accuracy. Processing only RGB images may
limit the approach since a spoof can only be modeled in terms of percentages
of the three primaries composing its color in such a color model. Choosing an
appropriate color space can provide a more robust analysis. Differences between
live human fingers and display attacks can be detected better when they are
modeled using suitable color descriptors. RGB may be ideal for image color
generation but less suited for color description. In color models such as HSI
(hue, saturation, intensity), the intensity component is decoupled from the color-
carrying information (hue, saturation); thus, they are better aligned to how
humans perceive color attributes.

The contribution of this paper is to explore deep representations of differ-
ent color spaces and effectively integrate them for enhancing the performance of
fingerphoto PADs. The proposed analysis includes robustness to unconstrained
acquisition including background variations. The rest of the paper is structured
as follows: Sect. 2 reviews research conducted on fingerphoto PADs, Sect. 3 dis-
cusses the proposed approach, Sect. 4 presents the experimental results, while
Sect. 5 draws our conclusions and discusses future work.

2 Related Work

In fingerprint scanners, PAs have been detected by either gathering further evi-
dence of the vitality of the subject (e.g., sensing blood circulation, or fluids -
perspiration patterns - secreted when touching surfaces) or by passive methods
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detecting the presence of known materials (e.g., material structure, lack of high-
resolution detail) [15]. Several software-based methods, including Fourier Trans-
form (FT), Local Binary Patterns (LBP), Binarized Statistical Image Features
(BSIF), Local Phase Quantization (LPQ), Weber Local Image Descriptor or
Histograms of Invariant Gradients (HIG), have been investigated for PAD [5,6].
Existing efforts in biometric liveness detection have been expanded by consider-
ing the assessment of activities, motivations, intent, and capabilities of attack-
ers. However, these liveness detection approaches are not explicitly designed for
mobiles and generally unsuited for portable devices [1].

At the same time, the possibility of spoofing fingerphoto-based systems is
real, and despite the risk, only a few research efforts have been spent to mitigate
the issue. In 2013, Stein et al. [22] discussed a technique for fingerphoto PAD that
measures the light reflected from the finger exposed to the LED of the camera, as
well as the position, distance, and sharpness properties of the finger. An overall
Equal Error Rate (EER) of 3% was reported on video stream data collected
from 37 subjects. In 2016, Taneja et al. evaluated LBP, DSIFT, and LUCID
on a database of spoofs that they created by extending the previously published
IIITD Smartphone Fingerphoto Database [23]. The lowest EER reported is 3.7%
and was achieved by SVM trained with LBP features on the complete dataset.
DSIFT and LUCID reported EER of 5.37 and 22.22%, respectively. Although
the EER was not very high, the performance was poor when considering TAR at
FAR = 0.1%. In general, descriptors commonly used in spoofing literature yield
very poor results for fingerphotos.

In 2018, Wasnik et al. discussed an approach in which input images are pro-
cessed at multiple scales through a Frangi filter. From the generated maximum
filter response (MFR) images, LBP, HOG, and BSIF features are extracted [24].
Bona Fide Presentation Classification Error Rate (BPCER) was 1.8% for print
photo attacks, 0.0% for display attacks, and 0.66% for replay attacks at Attack
Presentation Classification Error Rate (APCER) = 10% by a SVM. Results per-
tain to data collected from 50 subjects using iPhone and iPad Pro devices.
Fujio et al. investigated fingerphoto spoof detection under noisy conditions (e.g.,
blurring). The original images were filtered to simulate distortions due to camera
defocus and hand movements effects. An AlexNet was trained using the database
created by Taneja et al., and a Half Total Error Rate (HTER) of 0.04% was
reported [4,23]. This model showed robustness to blurred images.

3 The Proposed System

To date, fingerphotos have been processed only in the form of RGB images
without modifying them for classification tasks including PAD. In this paper,
we discuss a framework in which fingerphoto RGB images are converted into
multiple color spaces before classification.

Color is a powerful descriptor that can simplify object identification. A color
space is a specific organization of colors helping to produce a digital representa-
tion of colors [7]. In a color space, each color is represented by a single point which
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provides a three-dimensional object containing all realizable color combinations.
Radiance, luminance, and brightness are the basic quantities used to describe
the quality of a chromatic light source. Based on experimental evidence, 65% of
the human cones are sensitive to human light, 33% to green light, and only 2%
to blue. Brightness embodies the chromatic notion of intensity; luminance indi-
cates the amount of energy from a light source perceived by an observer, while
radiance indicates the total amount of energy that flows from the light source.
In image processing, color models can be divided into three main categories: i)
device-oriented, where color is specified in a way that is compatible with the
hardware tools used; ii) user-oriented, utilized to link human operators to the
hardware used (human perception of color); and iii) device-independent, where
color signals do not depend on the characteristics of the given device which
allows the connection of different hardware platforms.

In the proposed system, various architectures of Convolutional Neural Net-
works (CNNs) are trained to classify images in different color spaces [7]. Each
network is fed with raw inputs (e.g., normalized images), which transform into
gradually higher levels of representation (e.g., edges, local shapes, object parts),
and the first few layers act as a feature extractor [13]. In convolutional networks,
three architectural ideas ensure shift and distortion invariance: local receptive
fields, shared or repeated weights and spatial (or temporal) sub-sampling [14].
The capacity of CNNs can be controlled by varying their depth and breadth;
furthermore, valid assumptions about the nature of the images can be made
(e.g., locality of pixel dependencies) [13]. Thus, CNNs have much fewer connec-
tions than the standard forward-feed neural networks with layers of similar size,
resulting in easier training. As illustrated in Fig. 1, for a given color space, we
first determine which CNN classifies it with the highest accuracy. Then, the indi-
vidual confidence scores yielded by the most accurate networks are integrated
at score-level to output the overall classification decision.

Fig. 1. The Proposed Architecture. The input RGB fingerphoto image is segmented
and then converted into various color spaces. Each individual network learns to classify
a single color model. For each color space, the most accurate deep net is selected. The
contributions from the individual color spaces are then combined to obtain the final
decision.
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Information fusion in biometrics has been proven to be able to enhance
recognition accuracy compared to a system that exploits only a single source.
An effective fusion scheme must be implemented to integrate the evidence pro-
vided by multiple sources [11]. Biometric information can be combined at sensor
or feature-level, or decision or score-level. While the amount of information to
integrate progressively decreases from the sensor-level to the decision-level, the
degree of noise also decreases [16]. Different integration schemes can be designed;
the most effective are explained as follows:

– Feature-level Fusion. Features extracted from different color spaces are con-
catenated to create a single feature vector that can feed a classifier.

– Score-level Fusion. The combination of different color spaces occurs after
obtaining a deep representation of each individual color space [18]. This
scheme combined the confidence scores output by the individual CNNs. A
threshold determined in training is then applied to the score produced by the
fusion scheme.

– Decision-level Fusion. Individual classification decisions are fused. This app-
roach is bandwidth efficient since only decisions requiring a single bit, are
transmitted to the fusion engine.

In this work, we implement score-level fusion in which the scores output by the
individual deep networks are fused via simple sum rule.

Before training the models, the images were segmented for background
removal. The segmentation algorithm uses an adaptive skin color threshold-
ing [20]. The procedure converts them into RGB image into the corresponding
CMYK scale in which the magenta component is thresholded using the Otsu
method to generate the binary mask representing the skin region of the finger-
photo [17]. A rectangular ROI is then determined and cropped. The segmented
images are then transformed into different color spaces. Before training, the seg-
mented images are resized by preserving the aspect ratio, see Table 1.

3.1 Architecture and Fine-Tuning of the DeepNets

Given the limited availability of fingerphoto spoof data, fine-tuning was applied
for implementing transfer learning [10]. To adapt the pre-trained models to the
PAD binary classification task, the last fully-connected layer was modified from
1000-way SoftMax to 2-way SoftMax. The parameters were estimated by using
the Adaptive Moment Estimation (Adam) Optimization algorithm. Adam opti-
mizer computes an adaptive learning rate for each parameter, while gradient
descent uses a constant learning rate. Optimizers update the model in response
to the output of the loss function, and thus they assist in minimizing it. Let
Y be the vector of labels (i.e., the ground truth) and Y’ be the vector of the
predictions. The Softmax layer is combined with the Cross-Entropy (CE) Loss.
The loss represents the distance between Y and Y’, see Eq. (1). It increases as
the predicted probability diverges from the actual label. The smaller the loss,
the better is the model.

CELoss : D(Y,Y’) = − 1
N

∑
Yilog(Y ′

i ) (1)
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where N is the number of training samples.

– AlexNet: The architecture is featured by five convolutional and three fully-
connected layers, with ReLU activation function. The architecture is featured
by Rectified Linear Units (ReLUs) with activation f = max(x, 0) for their
ability to be trained faster than tanh units, with a local response normal-
ization applied. The model was pre-trained on ImageNet, and the last fully-
connected layer was fed to a 1000-way Softmax [12].

– ResNet: The Deep Residual learning framework aims to address the problem
of performance degradation in deeper networks. A residual network (ResNet)
results from constructing a deeper counterpart of a shallower architecture in
which the added layers are identity mapping while the other layers are copied
from the learned shallower model. The stacked layers fit a residual mapping
F (x) = H(x)− x where H(x) is the desired underlying mapping that can be
recast into F (x) + x [8]. The residual mapping is assumed to be easier to be
optimized than the original one. Depending on the number of layers, there
exist different variants of ResNet such as ResNet 18, ResNet 34, ResNet 121,
and ResNet 201.

– MobileNet-V2: The architecture is based on an inverted residual structure
in which the input and output of the residual block are thin bottleneck lay-
ers. The convolution is split into two separate layers: depthwise convolution
that performs lightweight filtering by applying a single convolutional filter per
input channel, and pointwise convolution that builds new features through
computing linear combinations of the input channels [19]. Depthwise convo-
lution reduces computation compared to traditional layers.

– DenseNet: In a DenseNet, each layer is connected to every other layer in a
feed-forward fashion. This network utilizes dense connections between layers,
through Dense Blocks, where we connect all layers (with matching feature-
map sizes) directly with each other [9]. The deep layers can access all the
feature-maps created by preceding levels, thus encouraging features reused.
DenseNet variants include DenseNet 121, DenseNet 161, Dense 201.

3.2 Implementation of Mobile Deep Learning

Despite the relative efficiency of the CNNs local architecture, the training of large
CNNs needs to be facilitated by powerful GPUs and highly-optimized implemen-
tation of 2D convolution applied in large-scale to high-resolution images.

Low-power consumption is one of the main factors driving the development
of mobile processors. Snapdragon is a family of mobile systems on a chip (SoC)
processor architecture provided by Qualcomm [21]. Qualcomm Snapdragon SoC
is built around the Krait processor architecture. Adreno GPU in this architec-
ture delivers improved advanced graphics performance. Specifically, Snapdragon
800 processor consists of the 28nm HPm quad-core Krait 400 CPU for high per-
formance, Adreno 330 GPU for improved graphics performance, Hexagon DSP
for low power operation, and Gobi True 4G LTE modem for connectivity. To
support the next-generation data-centric mobile devices, processor architectures
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must be designed considering these approaches [3]. In Table 1, we report the
memory and computational power required to execute the algorithms used in
this work. The CNNs were trained using NVIDIA k80 GPU (12 GB RAM per
GPU). The notation FLOPs indicates floating point operations per second.

Table 1. Memory and computational power requirements

Input size Parameter memory Feature memory FLOPs

AlexNet 227 × 227 233 MB 3 MB 727 MFLOPs

ResNet18 224 × 224 45 MB 23 MB 2 GFLOPs

ResNet34 224 × 224 83 MB 35 MB 4 GFLOPs

DenseNet 121 224 × 224 31 MB 126 MB 3 GFLOPs

DenseNet 201 224 × 224 77 MB 196 MB 4 GFLOPs

MobileNet 224 × 224 17 MB 38 MB 579 MFLOPs

4 Experimental Results

4.1 Dataset

For this study, we used the IIITD smartphone fingerphoto database of live images
and the spoof fingerphotos created from it [20]. Samples pertain to 64 individuals
in two different backgrounds, in controlled and uncontrolled illumination. Two
subsets White-Indoor (WI) and White-Outdoor (WO), are created by capturing
fingerphotos with white background in both indoor (controlled illumination) and
outdoor (uncontrolled illuminations) conditions. Similarly, the capture with a
natural background in both indoor and outdoor conditions generated two subsets
Natural-Indoor (NI) and Natural-Outdoor (NO). Each subset NI, NO, WI, and
WO contains 8 samples of the right index and right middle fingers per individual,
therefore a total of 1024 images (64 subjects x 2 fingers x 8 instances).

The spoof fingerphotos were created from the IIITD smartphone fingerphoto
database by randomly selecting 2 instances out of 8 per subject [23]. Three
photo attacks using three different mobile devices (Apple iPad, Dell Inspiron
laptop, and Nexus) as well as one printout attack (HP Color-LaserJet CP2020
Series PCL6 printer at 600 ppi) were created. OnePlusOne and Nokia devices
were used during capture under spoof attacks. The display mechanisms were
realized using: (a) Apple iPad with Retina display with 2048 × 1536 resolution,
(b) Nexus 4 with 1280 × 760 resolution, and (c) Dell Inspiron N5110 Laptop
with 1280 × 720 resolution. Spoof data pertains to 64 subjects and featured
by 2 illumination types, 2 background variations, 2 finger instances, 2 capture
mechanisms and 4 display mechanisms (1 printout + 3 photos) for a total of 8192
spoofs. The complete database used in this study consists of 12,288 fingerphoto
images (4096 live and 8192 spoof).
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4.2 Evaluation Procedure

To assess the proposed framework, we refer to the performance metrics defined in
the ISO/IEC 30107-3 standard on biometric presentation attack detection part
related to testing and reporting performance metrics for evaluating biometric
presentation attacks. The assessment scheme is reported below:

– Attack Presentation Classification Error Rate (APCER): Proportion of attack
presentations incorrectly classified as normal presentations, i.e., false accep-
tance of spoof samples.

– Normal Presentation Classification Error Rate (NPCER): Proportion of nor-
mal presentations incorrectly classified as attack presentations, i.e., false rejec-
tion of live samples.

– Equal Error Rate (EER): The intersection point of the percentage of normal
presentation classification error rate and attack presentation classification
error rate.

– Receiver Operating Characteristic (ROC) curves to assess the accuracy.

In this paper, we establish a baseline in the two scenarios white vs. white and
natural vs. natural background; then, we study the effects of background changes
without the influence of variations in lighting conditions (indoor vs. outdoor).
We also analyze robustness versus both illumination and background changes
by training the system on the complete database. In all the experiments, data
was split into 50% training, and 50% testing and the subjects were mutually
exclusive between training and testing.

4.3 Results

In this section, we discuss the performance of the proposed approach and com-
pare it to existing algorithms used for fingerphoto spoof detection to date. From
the histograms shown in Fig. 2, we can observe how good is the separation
between live and spoof in the HSV model. In this color space, the character-
istics hue (H), saturation (S), and brightness (B or V) are generally used to
distinguish one color from another. The H attribute represents the dominant
color, S is the level of purity or amount of white light mixed with a hue, and V
indicates intensity. In the H channel, live distributions are concentrated below
50, which may be typical of actual live skin color. In the S channel, live samples
can reach noticeable peaks in the ranges 100–130 and 50, which differs from
spoof samples. In V, only live images are distributed above 150, which indicates
high brightness.

Table 2 reports the results of AlexNet fine-tuned on individual color spaces
under background variations. The experiments were conducted using different
display and capture mechanisms. XYZ reached the lowest EER in the white
vs. natural setting, which shows promising performance whether the training is
carried out on images with white background and the authentication in more
unconstrained conditions. XYZ is efficient on low-resolution capture mechanisms
with natural background. When the complete dataset is used, HSV achieved
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Fig. 2. Histograms of the RGB and HSV color spaces. The y-axis refers to the number
of pixels for each component H, S, V, and R, G, B.

Table 2. EER % for robustness to background variations

White vs. White Natural vs. Natural

Display Capture RGB YCbCr HSV LAB XYZ RGB YCbCr HSV LAB XYZ

Print Nokia 5.712 5.314 1.953 6.250 4.687 3.154 5.078 1.954 5.859 2.734

OPO 2.734 7.421 3.320 5.957 3.320 4.351 6.641 3.515 4.687 3.955

iPad Nokia 2.978 3.050 1.562 4.687 4.296 4.296 5.517 2.343 5.078 3.906

OPO 3.467 5.851 2.734 4.882 3.906 5.371 6.641 3.515 4.785 4.248

Smart Phone Nokia 4.541 3.185 2.246 4.394 2.343 3.955 4.687 2.734 4.687 3.166

OPO 0.051 7.212 3.906 5.761 3.222 3.515 4.638 1.953 4.980 3.515

Laptop Nokia 2.099 4.003 1.562 4.296 3.150 1.953 5.469 2.050 5.419 3.102

OPO 0.035 4.296 1.367 4.199 3.906 3.417 3.516 1.953 5.859 4.736

Complete Dataset 3.112 4.980 1.953 4.199 4.492 3.710 3.516 3.417 5.273 4.002

White vs. Natural Natural vs. White

Display Capture RGB YCbCr HSV LAB XYZ RGB YCbCr HSV LAB XYZ

Print Nokia 37.540 22.656 14.063 33.594 24.805 17.188 17.188 9.766 16.016 14.063

OPO 35.938 16.058 19.141 37.109 28.418 10.938 12.012 5.859 11.523 12.500

vsiPad Nokia 6.641 12.891 6.738 34.765 4.004 3.516 7.813 1.953 6.543 4.590

OPO 8.789 14.844 14.746 14.746 9.082 5.859 8.789 4.297 11.328 10.547

Smart Phone Nokia 10.156 4.541 8.398 14.063 12.109 3.187 7.031 4.688 7.227 6.641

OPO 7.910 10.938 8.984 13.574 9.473 5.762 10.938 3.906 9.668 5.859

Laptop Nokia 7.813 4.102 10.547 17.188 9.668 5.469 8.594 3.129 8.594 6.641

OPO 12.891 9.375 4.688 15.430 8.203 5.762 8.984 5.176 8.887 5.957

Complete Dataset 34.668 20.215 17.871 36.645 27.246 10.156 13.184 5.176 7.813 9.473

the lowest EER. In this scenario, multiple PAs types are mixed and variations
pertain to both illumination (outdoor/indoor) and background (white/natural).
The model trained on RGB images performed well on attacks realized with
laptop-opo and smartphone-opo. High-resolution capture mechanisms seem to
have a positive impact on the RGB color model when the background is white.
ROC curves pertaining to the analysis of the robustness of each color model to



360 E. Marasco et al.

background variations are illustrated in Fig. 3. This specific case study refers to
the use of AlexNet. In cross-background, while the performance of most color
models including RGB significantly deteriorates, HSV exhibits robustness. This
represents a promising performance when dealing with unconstrained acquisi-
tion.

For each color space, we selected the most accurate deep network. From
Table 3, we can observe that on the complete dataset the lowest EER is pro-
vided by ResNet-34 for the color spaces RGB and XYZ, MobileNet for HSV
and YCbCr; while ResNet-18 represents the best architecture for the LAB color
space. Table 4 reports the fusion results of the proposed framework and com-
pares it to existing fingerphoto PADs. Color spaces were combined by averaging
the scores output by the individual best networks. The EER obtained by the
fusion of the best three color scores is the lowest: 2.12%. RHY indicates the
model fusing RGB, HSV, and YCbCr; RHYL fuses RGB, HSV, YCbCr and
LAB; RHYLX fuses the five color spaces used in this work. RHY provides the
best performance.

(a) White vs. Natural (b) Natural vs. White

Fig. 3. ROC curves for the experiments on the robustness to background variations.

Table 3. Selection of the best networks on the complete dataset (EER%)

Complete dataset

RGB HSV Ycbcr LAB XYZ

MobileNet- V2 3.541 2.707 3.445 4.21 4.871

DenseNet-201 14.258 15.36 15.258 15.266 17.587

ResNet-34 3.174 2.714 4.207 4.612 4.772

ResNet-18 3.242 3.112 4.052 4.124 4.854

DenseNet 121 9.981 8.127 12.211 11.948 14.571

AlexNet 3.361 2.811 4.505 5.571 4.829
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Table 4. Comparison of the proposed system to the state-of-the-art (EER%)

RHY RHYL RHYLX LBP +SVM DSIFT +SVM LUCID+SVM

Complete 2.12% 2.71% 3.291% 3.71% 5.37% 2.22%

5 Conclusions

Fingerphotos acquired with common smartphone cameras could enable an effec-
tive approach for authentication. Since this technology is vulnerable to spoof
attacks, the proposed efforts focus on enhancing its security. We discuss the
first investigation that integrates multiple color models for accurate fingerphoto
PADs. Our methodology transforms fingerphoto RGB images into various color
spaces and trains a different deep network for each of them. For each color space,
the best deep representation is determined and the corresponding individual out-
puts are combined at the score-level. Experiments were carried out using different
display mechanisms on a publicly available database. Results demonstrate the
superiority of the proposed framework compared to existing approaches that
mainly operate and process only RGB images. We will extend the experiments
by exploring additional integration strategies including deep fusion.
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