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Abstract

We consider the fundamental problem of fairly and efficiently allocating T indi-
visible items among n agents with additive preferences. The items become avail-
able over a sequence of rounds, and every item must be allocated immediately
and irrevocably before the next one arrives. Previous work shows that when the
agents’ valuations for the items are drawn from known distributions, it is possible
(under mild technical assumptions) to find allocations that are envy-free with high
probability and Pareto efficient ex-post.

We study a partial-information setting, where it is possible to elicit ordinal but not
cardinal information. When a new item arrives, the algorithm can query each agent
for the relative rank of this item with respect to a subset of the past items. When
values are drawn from i.i.d. distributions, we give an algorithm that is envy-free
and (1−ε)-welfare-maximizing with high probability. We provide similar guaran-
tees (envy-freeness and a constant approximation to welfare with high probability)
even with minimally expressive queries that ask for a comparison to a single previ-
ous item. For independent but non-identical agents, we obtain envy-freeness and
a constant approximation to Pareto efficiency with high probability. We prove that
all our results are asymptotically tight.

1 Introduction

We consider the following fundamental problem in fair division. A set of T indivisible items, arriv-
ing one at a time, must be allocated among a set of n agents with additive preferences. The value vi,t
that agent i has for the item in round t is realized once the item arrives. Each item must be allocated
immediately and irrevocably upon arrival, and we ask that the overall allocation is fair and efficient.

Previous work on this problem shows that, despite the uncertainty about future valuations, one can
achieve simultaneous fairness and efficiency when agents’ values are stochastic. Specifically, when
each vi,t is drawn i.i.d. from a distribution D, the simple algorithm that maximizes welfare —
each item is allocated to the agent with the highest value — is envy-free with high probability and
(obviously) ex-post Pareto efficient [DGK+14, KPW16]. The same guarantee holds for independent
and non-identical agents (vi,t is drawn from an agent-specific distribution Di) for the algorithm
that maximizes weighted welfare [BG22]. Even when agents’ valuations for an item are correlated
(but items are independent), Pareto efficiency ex-post is compatible with strong fairness guarantees
(“envy-freeness with high probability or envy-freeness up-to-one item ex-post”) [ZP20].

Despite the computational simplicity of (most of) the aforementioned algorithms, an unappeal-
ing aspect, especially from a practical perspective, is the requirement that agents report an ex-
act numerical value for each item. Eliciting expressive additive valuations can be impractical,
e.g., due to agents’ cognitive limitations. Motivated by such considerations, a growing body of
work in AI studies what can be achieved by algorithms that only elicit ordinal information. This
idea originates from [PR06], who defined the notion of distortion to measure the worst-case de-
terioration of an aggregate cardinal objective (e.g., utilitarian social welfare) due to only hav-
ing access to preferences of limited expressiveness, particularly ordinal rankings. Recent works
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prove bounds on the distortion in the context of many problems in social choice, e.g., vot-
ing [CNPS17, GKM17, MSW20, MW19, Kem20a, Kem20b, GHS20], matching [FRFZ14], and
participatory budgeting [BNPS21]; see [AFRSV21] for a recent survey.

In this paper, we study the power and limits of eliciting ordinal information in dynamic fair division.
The value vi,t of agent i for item t is drawn from an unknown distribution upon arrival, and the
algorithm is provided, from each agent, partial ordinal information about this item, e.g., its rank
relative to the past items allocated to this agent, or even just a single past item allocated to this
agent. Under what distributional assumptions and elicitation constraints, can we simultaneously
achieve qualitative fairness and efficiency? We answer these questions.

1.1 Our Contribution

We start by establishing a separation between the cardinal setting and our ordinal one. Pareto effi-
ciency alone is trivial (allocate all goods to the same agent) and, in the cardinal setting, it is known
that Pareto efficiency ex-post is compatible with envy-freeness with high probability (as long as
agents are independent). We prove (Theorem 4) that in our setting, even for the case of two i.i.d.
agents and any known distribution, envy-freeness with high probability is incompatible with even a
very mild notion of (exact) Pareto efficiency, one-swap-Pareto efficiency, which requires that there
is no beneficial one-to-one trade of items between agents (but allows for improvements via many-
to-many trades of items).

We proceed to give an essentially matching positive result. For any number of i.i.d. agents and
an unknown distribution D, there exists an algorithm (Algorithm 1) that is envy-free with high
probability and guarantees a (1− ε)-approximation to the optimal utilitarian social welfare (the sum
of utilities), for all ε > 0, with high probability (Theorem 5). When an item arrives, the algorithm
learns for each agent i its relative rank compared to a subset of prior items allocated to agent i (but
otherwise knows nothing about the underlying numerical valuation). Our algorithm works in epochs.
Each epoch has an exploration/sampling phase, where each agent gets a pre-determined number of
items, followed by an exploitation/ranking phase, where each fresh item is given to an agent whose
empirical quantile is largest. The goal is to make a sublinear number of errors compared to the
“ideal” algorithm that allocates each item to the agent with the highest true quantile. The algorithm
has to balance the need for sampling, which leads to more accurate empirical quantiles, against the
number of inefficient allocations made while sampling. A significant technical barrier is that we
cannot fix a target accuracy because the underlying distribution is unknown. That is, for every fixed
accuracy for the empirical quantiles, there exists a distribution for which this accuracy is not good
enough for even a constant approximation to the optimal welfare. Instead, we need to make our
epochs progressively longer, thereby guaranteeing progressively better bounds.

Given this strong positive result, we explore the limits of what we can achieve when further re-
stricting the amount of information available. What if each agent can remember only a single item
previously allocated to them, and the fresh item is compared to just this one item?1 Surprisingly,
the aforementioned positive result can almost be recovered even in this very restrictive setting. We
prove that there exists an algorithm (Algorithm 2) that is envy-free with high probability and guar-
antees a (1 − 1/e)2 − ε approximation to the optimal welfare with high probability, for all ε > 0
(Theorem 9). Our algorithm again proceeds in epochs with gradually increasing exploration and
exploitation phases; this time the goal is a sublinear number of differences compared to allocating
each item to a uniformly random agent with quantile at least 1− 1/n, which we prove is envy-free
and approximately efficient (Lemmas 2 and 1). When exploring, the algorithm puts a new item in
memory, estimates its quantile, and rejects it if not sufficiently close to 1− 1/n. We need to sample
enough to ensure high confidence in the estimated quantile, but also account for the additional sam-
pling since an item’s quantile value might be far from 1−1/n to begin with; several technical details
need to be accounted for. We give a near-matching lower bound: no algorithm with a memory of
one item can achieve a 0.999−approximation to the social welfare with high probability; therefore
a constant approximation (which Algorithm 2 provides) is all we can hope for.

Finally, we relax the i.i.d. condition and study agents that are independent but not identical; each
agent i’s values are drawn from an unknown distribution Di. Even with unbounded memory, we

1So, the algorithm only learns if the new item is better or worse than the item in memory and may, at that
time, choose to replace the item in memory.
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Table 1: Main Results

Setting Possibility Impossibility

Unbounded Memory, i.i.d. EF + (1− ε)-welfare (Theorem 5) EF + PO (Theorem 4)
Limited Memory, i.i.d. EF + .399-welfare (Theorem 9) .999-welfare (Theorem 8)

Unbounded Memory, non-i.i.d. EF + .367-PO (Theorem 13) EF + .809-PO (Theorem 12)

show that it is impossible to get a 1+
√
5

4 ≈ .809 approximation to Pareto efficiency with probability
more than 2/3, even for two agents (Theorem 12). At the same time, we prove that Algorithms 1
and 2 are envy-free and 1/e approximately Pareto efficient with high probability! Note that, though
both algorithms give the same formal guarantees and Algorithm 2 elicits strictly less information,
one might still prefer to use Algorithm 1 since it has significantly shorter exploration phases. A
summary of our results can be found in Table 1

We leave the study of correlated agents as an interesting open problem. Finally, we note that beyond
stochastic valuations, [BKPP18] show that it is possible to achieve sublinear envy by randomly allo-
cating every item when agents’ valuations are adversarially generated (and this is optimal); however,
sublinear envy is incompatible with non-trivial efficiency even in the cardinal setting [ZP20].

1.2 Related Work

A number of works study fair division under ordinal preferences, e.g., [AGMW15, BEL10,
BBL+17, NNR17], but often these models do not assume an underlying cardinal model and work
directly on the ordinal preferences. [ABM16] assume underlying cardinal information and, among
other results, bound the approximation ratio of truthful mechanisms that elicit rankings. Closer to
our work, [HS21] study rules that have access to the ranking of the top-k items of each agent and
bound the ratio of the social welfare of the allocation returned by a rule in the worst case. They also
characterize the value of k needed to achieve prominent notions of fairness, namely envy-freeness
up to one item (EF1) and approximate maximin share guarantee (MMS), as well as bound the loss
in efficiency incurred due to fairness constraints in this setting.

Our work contributes to the growing literature in dynamic fair division [KPS14, AAGW15, FPV15,
FPV17, BKPP18, LLL18, HPPZ19, ZP20, GPT21, BKM22, GBI21, VPF21, BGGJ22, BMS22,
KS22] (and we note that the welfare-maximizing algorithms of [DGK+14, KPW16, BG22] work in
the dynamic setting, even though the their settings are not explicitly dynamic). To the best of our
knowledge, we are the first to study imperfect expressivity in a dynamic setting in fair division.

2 Preliminaries

A set of T indivisible items/goods, labeled by G = {1, 2, · · · , T}, needs to be allocated to a set of
n agents, labeled by N = {1, . . . , n}. Agent i ∈ N assigns a value vi,t ∈ [0, 1] to item t ∈ G. We
assume agents have additive valuation functions, so vi(S) =

∑

t∈S vi,t for S ⊆ G. An allocation
A is a partition of the items into bundles A1, . . . , An, where Ai is the set of items assigned to agent
i ∈ N . Each allocation has an associated utility profile v(A) = (v1(A1), . . . , vn(An)).

Items arrive online, one per round. The agents’ valuations for the item in round t (the t-th item) are
realized when the item arrives. Every item is allocated immediately and irrevocably before moving
on to the next round. We write Gt = {1, 2, · · · , t} for the set of items that arrived in the first t
rounds, and At

i for the allocation of agent i after the t-th item was allocated. We consider two
different models which specify how values are generated. In the i.i.d. model, the value of agent i
for item t is independently drawn from an unknown distribution D with CDF F , i.e., vi,t ∼ D for
all i ∈ N and t ∈ G. In the non-i.i.d. model, the value of item t for agent i is independently drawn
from an unknown, agent-dependent distribution Di with CDF Fi, i.e., vi,t ∼ Di for all i ∈ N and
t ∈ G. We write Xi for the random variable for i’s valuation, and Xi,t for the random variable
for i’s valuation for item t. It is often convenient to work directly with the quantile of an agent’s
value rather than the value itself; let Qi = Fi(Xi) and Qi,t = Fi(Xi,t) respectively be the random
variable denoting the quantile of agent i the associated item. Note that all Qi and Qi,t are i.i.d. and
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follow a Unif[0, 1] distribution. Unless explicitly stated otherwise, we assume all distributions are
continuous (i.e., do not have point masses).

Ordinal information. We assume the realizations vi,t are not available. Instead, our algorithms
have access to ordinal information. Specifically, given current item t, the algorithm can access
each agent’s ranking for S = {t} ∪ M , M ⊆ Gt−1. The size of M , which we will informally
refer to as the memory size, determines the complexity of eliciting information from each agent.
In one extreme, agent i compares a new item t to a single item they had previously received, i.e.,

M ⊆ At−1
i , |M | ≤ 1. In the other extreme, t is compared to all previous items she received, so

M = At−1
i . We write σi(S) for the ranking of agent i for a subset S of the items, and σ−1

i (S, t) for
the position of item t ∈ S with respect to a subset S according to agent i. The highest value item
is in position 1 and the lowest in position |S|. For example, if S = {1, 4}, vi,1 = 1 and vi,4 = 0.1,

σi(S) = (1 � 4), σ−1
i (S, 1) = 1 and σ−1

i (S, 4) = 2.

Algorithms. An algorithm A, in each step t, queries each agent for ordinal information with re-
spect to some subset M and then makes a (possibly randomized) allocation decision based on this
ordinal information and the history so far. An instance of our problem is parameterized by the num-
ber of agents n and the (unknown) value distributions D1, . . . , Dn. Let EP (t) be the event that some
algorithm satisfies property P (e.g., envy-freeness or PO or ε-welfare) at time t. We are interested
in the probability that an algorithm satisfies certain properties in the limit, as the number of rounds
tends to infinity, where the randomness is over the random choices of the algorithm as well as the
randomness in the valuations.

Definition 1. An algorithm satisfies P with high probability if limt→∞ Pr[EP (t)] = 1.

Note that this definition of high probability allows for dependency on n and the underlying distribu-
tions (i.e., they are treated as constants).

Efficiency notions. An allocation A Pareto dominates an allocation A′, denoted A � A′, when
vi(Ai) ≥ vi(A

′
i) for all i ∈ N and there exists j ∈ N with vj(Aj) > vj(A

′
j). An allocation

A is Pareto efficient or Pareto optimal (PO) if there is no feasible (integral) allocation that Pareto
dominates it. An allocation A′ is in the (one) swap-neighborhood of A when it can be created from
A with a single exchange of items between one pair of agents. Formally, there exist i, j ∈ N and
items zj ∈ Aj and zi ∈ Ai so that A′

i = (Ai \{zi})∪{zj}, A
′
j = (Aj \{zj})∪{zi}, and A′

k = Ak

for all other agents k 6= i, j. An allocation A is one-swap Pareto optimal (SPO) if it is undominated
by any allocation in its swap-neighborhood. We use a notion of approximate efficiency defined
by [RF90] according to which an allocation A is α-Pareto efficient when v(A)/α is undominated.

The social welfare of an allocation A is sw(A) =
∑

i∈N vi(Ai). Let allocation A∗ denote a (social)

welfare optimal allocation for which sw(A∗) ≥ sw(A) for all feasible allocations A. An allocation
provides an α-approximation to welfare if sw(A) ≥ α · sw(A∗).

Fairness notions. We focus on a prominent notion of fairness called envy-freeness. An allocation
AT = (AT

1 , . . . , A
T
n ) of T items is envy-free (EF) when vi(A

T
i ) ≥ vi(A

T
j ) for all i, j ∈ N , and

c-strongly-envy-free (c-strong-EF) when vi(Ai) ≥ vi(Aj) + cT .

3 Ideal Quantile-based Algorithms.

For our analysis, it will be useful to compare our algorithms with ideal algorithms that know exact
quantile values for every item (and, in fact, several of our lower bounds apply to these stronger
algorithms too). Two ideal algorithms of interest are (1) quantile maximization, which allocates
each item to the agent with the highest quantile value for it, and (2) “q−threshold,” which allocates
each item uniformly at random among agents whose quantile is at least q (and uniformly at random
over all agents, if all quantile values are less than q).

In the i.i.d. model, quantile maximization is the same as value maximization, and thus envy-free with
high probability and ex-post welfare optimal. The property we will use is c-strong envy-freeness, for
some distribution-dependent constant c, which we state as Lemma 1. This was essentially proved
by [DGK+14]; we provide an alternate proof that also works, essentially unchanged, for the n−1

n -
threshold algorithm; it can be found in Appendix A.1. The main idea is that an agent’s value for
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an item conditioned on them receiving it is strictly larger than their value for an item received by
another agent. Combined with the fact that the probability of receiving an item is equal for all
agents, standard concentration results ensure each agent strictly prefers their own bundle with high
probability.

Lemma 1. [Essentially [DGK+14].] In the i.i.d. and non-i.i.d. models, the quantile maximization
algorithm and the n−1

n -threshold algorithm are c-strongly-envy-free, with high probability, where
the constant c = mini∈N (E[Xi | Qi ≥ 1/2]− E[Xi])/(4n).

Note that c is strictly positive since our distributions are continuous. In the i.i.d. model, we show

that the n−1
n -threshold algorithm gives a

(

1− 1
e

)2
− ε approximation to welfare (Lemma 2) with

high probability.

Next, we prove that the n−1
n -threshold algorithm guarnatees a constant approximation to welfare.

The main idea for this proof is that, with constant probability, some agent has a quantile of at least
n−1
n for each item. Additionally, giving an item to an agent with quantile at least n−1

n generates
within a constant factor amount of welfare as giving it to the agent with the highest welfare.

Lemma 2. In the i.i.d. model, the n−1
n -threshold algorithm guarantees a

(

(

1− 1
e

)2
− ε
)

-

approximation to welfare, with high probability, for all ε > 0.

Proof. Let F be the CDF of an arbitrary continuous distribution. The expected contribution of an
item to the welfare of the threshold algorithm is at least

E
Q∼Unif[0,1]

[

F−1(Q) | Q ≥
n− 1

n

]

· Pr
~Q∼Unif[0,1]n

[

max
i∈N

Qi ≥
n− 1

n

]

.

For the first term we have

E
Q∼Unif[0,1]

[

F−1(Q) | Q ≥
n− 1

n

]

= E
Q∼Unif[n−1

n
,1]

[

F−1(Q)
]

=

(

∫ 1

n−1
n

F−1(q) · fUnif[n−1
n

,1](q) dq

)

=

(

∫ 1

n−1
n

F−1(q) · n dq

)

≥(fBeta[n,1](x)=nxn−1)

(

∫ 1

n−1
n

F−1(q) · fBeta[n,1](q) dq

)

= E
Q∼Beta[n,1]

[

F−1(Q) | Q ≥
n− 1

n

]

· Pr
Q∼Beta[n,1]

[

Q ≥
n− 1

n

]

≥ E
Q∼Beta[n,1]

[

F−1(Q)
]

· Pr
Q∼Beta[n,1]

[

Q ≥
n− 1

n

]

= E
~Q∼Unif[0,1]n

[

F−1(max
i∈N

Qi)

]

· Pr
~Q∼Unif[0,1]n

[

max
i∈N

Qi ≥
n− 1

n

]

,

where we used the fact that the maximum of n draws from U [0, 1] follows a Beta(n, 1). The expected
contribution to the welfare is thus at least

E
~Q∼Unif[0,1]n

[

F−1(max
i∈N

Qi)

](

1−

(

1−
1

n

)n)2

≥

(

1−
1

e

)2

E
~Q∼Unif[0,1]n

[

F−1(max
i∈N

Qi)

]

Finally, for any fixed ε > 0, standard Chernoff bounds tell us that with high probability, the optimal
welfare of T items is at most T · (1 + ε/2)E~Q∼Unif[0,1]n

[

F−1(maxi∈N Qi)
]

while the welfare of

the threshold algorithm is at least T ·(1−ε/2)
(

1− 1
e

)2
[E~Q∼Unif[0,1]n

[

F−1(maxi∈N Qi)
]

. Indeed,

the expected optimal welfare is equal to T · E~Q∼Unif[0,1]n

[

F−1(maxi∈N Qi)
]

, the sum of T i.i.d.

random variables with expectation E~Q∼Unif[0,1]n

[

F−1(maxi∈N Qi)
]

. The standard multiplicative
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Chernoff bound says that the sum of i.i.d. variables exceeds (1 + ε/2) times its expectation µ is at

most exp
(

−µε2/12
)

. Plugging in µ = T · E~Q∼Unif[0,1]n

[

F−1(maxi∈N Qi)
]

, we get the desired

statement. The statement about the welfare of the threshold algorithm follows similarly. Thus, the
algorithm is a

(

1−
1

e

)2

· (1− ε/2)/(1 + ε/2) ≥

(

1−
1

e

)2

(1− ε) ≥

(

1−
1

e

)2

− ε

approximation to welfare, with high probability.

Finally, we prove that both ideal algorithms are approximately efficient. Let P∗ be the following
property of an allocation: all items such that exactly one agent has quantile values at least 1 − 1/n
are in the bundle of this agent. Both ideal algorithms (quantile maximization and 1−1/n-threshold)
satisfy P∗. We prove that, in the non-i.i.d. model, P∗ implies an almost 1/e approximation to
efficiency. Our proof uses the fact that there is a (roughly) 1/e probability that exactly one agent
has the high quantile, so the value of an agent’s bundle in an algorithm that satisfies P∗ is, with
high probability, a 1/e approximation to their value for their T/n most valuable items. Therefore,
when considering an alternate allocation A′, the agent in A′ that gets at most T/n items cannot be
improved upon by more than a 1/e factor. The proof can be found in Appendix A.2.

Lemma 3. In the non-i.i.d. model, every algorithm whose allocations satisfy P∗ is (1/e−ε)-Pareto
optimal, with high probability, for all ε > 0.

4 Unbounded Memory in the I.I.D. Model

We explore some fundamental limits of our setting. Efficiency by itself is easy: allocate all items to
the same agent. However, in contrast to the cardinal setting, we find one-swap Pareto efficiency is
incompatible with envy-freeness with high probability, even for two i.i.d. agents, and even when the
underlying distribution is known.

Theorem 4. In the i.i.d. model, even for n = 2 agents, there does not exist an algorithm A which
is one-swap Pareto efficient and envy-free with high probability, even when values are sampled
according to D, for any continuous, bounded and known value distribution D.

The proof can be found in Appendix B.1. The main idea is the following. As the agents are a priori
identical, we can assume without loss of generality that A gives the first item to agent 1. The proof
shows that, with positive probability, this decision becomes an irrevocable “mistake,” in the sense
that agent 2 really liked the item and agent 1 did not. This mistake will make envy-freeness and
one-swap-Pareto efficiency incompatible.

Theorem 4 implies that when we have access to only ordinal information, we need to settle for
some approximation to envy-freeness and efficiency. Our main positive result for this section is an
algorithm that essentially matches the aforementioned lower bound.

Theorem 5. In the i.i.d. model, Algorithm 1 achieves envy-freeness and a (1− ε) approximation to
welfare, with high probability, for all ε > 0.

Algorithm 1 works in epochs: each epoch k has an exploration/sampling phase, where each agent i
receives a pre-determined set of items, denoted Gk

i , irrespective of their valuation. This is followed
by an exploitation/ranking phase, where each item is given to the agent with the highest empirical
quantile (with respect to items received in the preceding exploration phase, i.e. Gk

i ). The key idea
for the proof is that the exploration phases will ensure nearly all of the items will go to the agent
that truly has the highest quantile. Using this, the good properties of the ideal quantile maximization
algorithm will carry over to Algorithm 1.

We start with a technical lemma, which gives us a bound on the length of the exploration period we
need in each epoch. The following definition will be useful.

Definition 2. A sample of n ·m items (where each agent is allocated exactly m items) is ε-accurate
if, with probability at least 1 − ε, the relative rank of a fresh item (with respect to the sample) is
highest for the agent with highest quantile value.

Lemma 6. If ε, δ ∈ (0, 1), and m ∈ Z
+ are such that ε > 2n

√

ln(2n/δ)
2m , then giving m samples to

each agent is ε-accurate with probability at least 1− δ.
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Algorithm 1: EF + (1− ε)-Welfare

for epoch k = 1 . . . do
Sampling Phase: (n · k4 items)
Give the j-th item in this phase to agent j(mod n).
Ranking Phase: (k8 items)
for each item g in this phase do

Elicit σ−1
i (Gk

i ∪ {g}, g) for all i ∈ N .

Allocate g to an agent j ∈ argmini∈N σ−1
i (Gk

i ∪ {g}, g).

Proof. We will use the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [DKW56, Mas90] to show
the empirical CDF of sampled quantiles is reasonably close to a uniform distribution with probability

1 − δ. We then show this is sufficient to guarantee ε-accuracy for the chosen ε. Let F̂i be the

empirical CDF of the sampled quantiles for agent i, i.e., F̂i(q) for q ∈ [0, 1] is a random variable

that describes the proportion of sampled items with quantile at most q. Note that F̂i exactly captures
agent i’s ranking for a new item: if a fresh item has quantile qi for agent i and qj for agent j, then i

ranks it higher than j exactly when F̂i(qi) > F̂j(qj).

Noting that the CDF for the actual quantile distribution (i.e., the uniform distribution) is the identity

on [0, 1], the DKW inequality states that for all γ > 0, Pr
[

supq∈[0,1] |F̂i(q)− q| > γ
]

≤ 2e−2mγ2

.

We want this condition to hold for all n agents, simultaneously, with probability at least 1 − δ, so

we pick γ such that 2e−2mγ2

≤ δ/n and apply a union bound; it suffices to choose γ =
√

ln(2n/δ)
2m .

We now show that the DKW condition (supq∈[0,1] |F̂i(q) − q| ≤ γ) being satisfied for all agents

i is sufficient to guarantee ε-accuracy. Consider sampling quantiles Q1, . . . , Qn for a fresh item.
Let imax ∈ argmaxi∈N Qi be a quantile-maximizing agent (technically a random variable). Our
goal is to show that with probability at least 1 − ε (with respect to the samples of Q1, . . . , Qn)

F̂imax(Qimax) > F̂j(Qj) for all j 6= imax. This ensures that imax has the highest empirical rank,
and hence receives the item. Let Q(1), . . . , Q(n) be the respective order statistics. A key observation

is that Q(n) −Q(n−1) ∼ Beta[1, n] [Gen19]. The PDF of a Beta[1, n] distribution is f(x) = nxn−1

for x ∈ [0, 1]. Since f(x) ≤ n, Pr
[

Q(n) −Q(n−1) < ρ
]

< nρ for all ρ > 0. Plugging in ρ = 2γ,

we have Pr
[

Q(n) −Q(n−1) ≤ 2γ
]

< 2nγ. We will show that as long as ε > 2nγ, ε-accuracy holds.

First, we have Pr
[

Q(n) −Q(n−1) > 2γ
]

> 1− ε. Conditioned on Q(n)−Q(n−1) > 2γ, the item is
given to imax. To see why, observe Qimax = Q(n) and Qj ≤ Q(n−1) for all j 6= imax, by definition.

Using the DKW inequality condition, it follows that F̂imax(Qimax) ≥ Qimax−γ > Qj+γ ≥ F̂j(Qj).

We conclude that for ε > 2n
√

ln(2n/δ)
2m , ε-accuracy is satisfied with probability at least 1− δ.

Using Lemma 6, we can get, for each epoch, a bound on the number of decisions where Algorithm 1
differs from the quantile maximization algorithm.

Lemma 7. The allocation of Algorithm 1 differs from that of the quantile maximization algorithm
after T steps by at most f(T ) items with high probability, where f(T ) ∈ O(poly(n) · T 15/16).

Proof. We start by bounding the accuracy of Algorithm 1 in each epoch k. In epoch k, each agent
receives k4 items during the sampling phase. We claim that the sample in epoch k for k ≥ 3n is

εk-accurate for εk := 3n/k3/2 with probability at least 1− δk, for δk := 2n/e2k. Indeed, first note
that by the choice of k, we have that εk, δk ∈ (0, 1). Hence, we just need to show that these values
satisfy the inequality of Lemma 6. We have that

εk =
3n

k3/2
>

2n

k3/2
= 2n

√

1

k3
= 2n

√

ln(e2k)

2k4
= 2n

√

ln(2n/δk)

2k4
.

Next, fix a time T . Slightly abusing notation, let k(t) = min{K ∈ N|
∑K

k=1 nk
4 + k8 ≥ t} be the

function that given an item t returns the epoch item t is in. Notice that T ≥
∑k(T )−1

k=1 nk4 + k8 ≥

7



(k(T ) − 1)8, and therefore k(T ) ≤ 2T 1/8. In any run of the algorithm, we can classify every item
t ≤ T into one of four categories.

1. Item t was allocated in one of the first 3n− 1 epochs, that is, k(t) < 3n.

2. Item t was allocated in the sampling phase of epoch k(t) ≥ 3n.

3. Item t was allocated in the ranking phase of epoch k(t) ≥ 3n; the epoch was εk(t)-accurate.

4. Item t was allocated in the ranking phase of epoch k(t) ≥ 3n; the epoch was not εk(t)-accurate.

We say an item t was a mistake if it was given to an agent with a non-maximum quantile for it. We

show that the number of mistakes in each category are bounded by 310n9, 2nT 5/8, 9nT 15/16, and
158n ln(T ) respectively, with high probability. This implies that the total number of mistakes is at

most the sum of these quantities, which is O(poly(n) · T 15/16), with high probability, via a union
bound.

The number of items in the first category is at most

3n−1
∑

k=1

k4n+ k8 ≤
3n
∑

k=1

(3n)4n+ (3n)8 ≤ (3n)5n+ (3n)9 ≤ 310n9.

Hence, the number of mistakes in the first category is also at most 310n9.

For the second category, since k(T ) ≤ 2T 1/8, we have that the total number of items in the sampling
phase is (with probability 1) upper bounded by

k(T )
∑

k=1

nk4 ≤ nk(T )5 ≤ 2nT 5/8.

Each item t in the third category has probability εk(t) of being a mistake. The expected number

of mistakes is therefore at most
∑k(T )

k=3n εk(t)k
8 =

∑k(T )
k=3n 3nk

13/2 ≤ 3nk(T )15/2 ≤ 8nT 15/16.
Using Hoeffding’s inequality we get that with high probability the number of mistakes is at most

9nT 15/16, since a deviation of nT 15/16 occurs with probability at most exp
(

−2n2T 15/8/T
)

=

exp
(

−2n2T 7/8
)

.

For the fourth category, the expected number of items is at most
∑k(T )

k=3n δkk
8 = 2n

∑k(T )
k=3n

k8

e2k
≤

2n
∑∞

k=1
k8

e2k
≤ 158n. Using Markov’s inequality we have that the number of mistakes is at most

158n ln(T ) with probability at least 1− ln(T ), i.e., with high probability.

Finally, we can prove Theorem 5 as a relatively straightforward consequence of Lemma 7, since the
ideal quantile maximization algorithm satisfies nice properties (e.g., Lemma 1). The full proof can
be found in Appendix B.2.

5 Bounded Memory in the I.I.D. Model

In this section, we are interested in the more ambitious problem of designing dynamic algorithms
with even more limited partial information: each agent is allowed to “remember” only a single
item. We first show that, in this case, we need to settle for constant approximations of welfare. The
main idea of the proof is a difficult value distribution. Agents have essentially one of three values,
low, medium, high. The key idea is that no matter what quantile thresholds an algorithm has, it
will either be the case that with reasonable probability, the highest value agent has medium value
but is indistinguishable from all low value agents, or the highest value agent has high value, but is
indistinguishable from all medium or low value agents. In either case, the algorithm will make a
mistake with constant probability, and hence cannot guarantee close to optimal welfare. The full
proof can be found in Appendix C.1.

Theorem 8. In the i.i.d. model, given a memory of one item per agent, there is no algorithm A that
is .999-welfare maximizing with high probability for all continuous and bounded value distributions.

8



Algorithm 2: Bounded Memory

for Epoch k = 1 . . . do
Sampling Phase: (k9 items)
NOTWITHINERROR ← N
for trial = 1, . . . , k3 do

for i ∈ NOTWITHINERROR do
Allocate the next item to agent i, and update her memory

Test k6 − |NOTWITHINERROR| number of items (for each agent)
for i ∈ NOTWITHINERROR do

if Proportion of test items for agent i is within ±1/k2 of (n− 1)/n then
NOTWITHINERROR ← NOTWITHINERROR \ { i }

Ranking Phase: (k18 items)
for each item g in this phase do

if Some agent i has high signal then
Give g to a (uniformly) random such agent

else
Give g to an agent uniformly at random

Our positive result matches this lower bound up to a constant.

Theorem 9. In the i.i.d. model, given a memory of one item per agent, Algorithm 2 achieves envy-
freeness and a (1− 1/e)2 − ε approximation to welfare, with high probability, for all ε > 0.

Algorithm 2 works in epochs, similar to Algorithm 1. In each epoch’s exploration/sampling phase, it
tries to find an item whose quantile is close to the n−1

n -threshold algorithm. Epoch k makes k3 such

attempts, and each candidate item is tested against k6 fresh items to get an estimated quantile. If
everything is within the error we can tolerate, the algorithm remembers this item for this epoch; oth-
erwise, the agent has an arbitrary item in memory during this epoch. During the exploitation/ranking
phase, Algorithm 2 tries to mimic the n−1

n -threshold algorithm (instead of the quantile maximization
algorithm as Algorithm 1 did), and, in fact, inherits its approximation factor (Lemma 2) exactly.

Our first technical lemma, Lemma 10, gives necessary bounds on the various variables of Algo-
rithm 2 for a sample to be ε-accurate with respect to the ideal threshold algorithm; see Definition 3.
Its proof can be found in Appendix C.2.

Definition 3. A set of n items in memory, one for each agent, is ε-accurate with respect to q∗ if with
probability at least 1 − ε, when a fresh item is sampled, the agents with true quantile above q∗ are
exactly those that value the fresh item more than their item in memory.

Lemma 10. For all ε, δ ∈ (0, 1), if (1) at least τ trials are done with τ ≥ ln(2n/δ)
ε/(3n) , and (2) at least

` test items are used per trial for ` ≥ 18n2

ε2 ln
(

4τn
δ

)

, and (3) the tolerance for accepting an item

is ε/(3n), then the items in memory are ε-accurate (for all agents, simultaneously) with respect to
q∗ = n−1

n , with probability at least 1− δ.

Though Lemmas 6 and 10 resemble each other (and are used in analogous ways), the proofs require
different techniques, as the sampling processes are very different. Next, we prove an analogue to
Lemma 7: the number of disagreements between Algorithm 2 and the ideal threshold algorithm
is sublinear.2 The proofs of Lemmas 7 and 11 are similar, precisely because Lemma 6 matches
Lemma 10. Theorem 9 follows from Lemma 11 as in the i.i.d. case. The proofs of Lemma 11 and
Theorem 9 can be found in Appendices C.3 and C.4 respectively.

Lemma 11. The allocation of Algorithm 2 differs from that of the n−1
n -threshold algorithm after T

steps by at most f(T ) items with high probability, where f(T ) ∈ O(poly(n) · T 17/18).

2Note these are randomized algorithms, so by “differ on a item” here we mean that the distributions over
agents receiving the item differ.
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6 The Non-I.I.D. Model

In this section, we study the non-i.i.d. model. We first establish a strong lower bound for the non-i.i.d.
model. The following negative result holds even for algorithms that know the associated quantile
for every fresh item.

Theorem 12. Even for 2 non-identical agents, there is no algorithm that is EF and c-PO with prob-

ability p, for c > 1+
√
5

4 ≈ .809 and p > 2/3, for all continuous and bounded value distributions.

Here we provide a proof sketch of Theorem 12. The full proof can be found in Appendix D.1.

Proof Sketch. The main idea is that an algorithm, even if it can see the exact quantiles of all items,
cannot distinguish between agents having potentially different kinds of distributions. At one extreme
end, agents may have nearly identical values for all items. On the other extreme, agents may only
care (i.e., have high value) for, say, their top third of items.

Consider the case of two agents. Notice that if both agents have nearly identical values for all items,
to be EF, the bundle sizes of both agents must be approximately the same. We can then show that,
no matter how an algorithm does this, it must be the case that one agent, say agent 1, receives a
significant number of items with quantile outside of their top third does not receive a significant
number of items with quantile in their top third.

However, suppose instead the value distributions were such that agent 2 still has nearly identical
values for all items, but agent 1 only has high value for their top-third items. In the setting described
above, agent 1 would be willing to trade many of their bottom two-third quantile items for the items
agent 2 received in their top third. By setting up this trade correctly, both agents total utilities go up
by a significant amount. The existence of such a trade violates constant approximations to PO.

Algorithms 1 and 2 are envy-free with high probability, even in the non-i.i.d. model, since envy-
freeness is not an “inter-agent” property. Our last result shows that they also give a constant approx-
imation to Pareto efficiency, by combining Lemma 3 with Lemmas 7 and 11. Its proof can be found
in Appendix D.2.

Theorem 13. In the non-i.i.d. model, both Algorithm 1 (unbounded memory) and Algorithm 2 (one-
item memory) are EF and (1/e− ε)-PO, with high probability, for all ε > 0.

Interestingly, the guarantees for Algorithm 2 in the non-i.i.d. model are only marginally worse com-
pared to the i.i.d. model; the approximation ratio decreases from (1 − 1/e)2 ≈ 0.4 to 1/e ≈ 0.37.
Finally, we note that, even though the formal guarantees in Theorem 13 are the same for the two
algorithms, and even though Algorithm 2 uses memory size of one, Algorithm 1 has the benefit of
much shorter epoch lengths (in addition to better guarantees under the i.i.d. model).

7 Conclusion

To conclude, we have analyzed the online fair division problem when agents only reveal partial
information. In multiple settings, we have proved tight bounds on what properties are attainable. As
for future work, one direction would be to move past the assumption that agent values are drawn
independently, as we may not expect this to hold in practice. Additionally, there are many other
forms of partial information that could potentially achieve different properties. For example, if
agents can compare not just single items but small subsets of items, then it may be possible to
achieve stronger results such as arbitrarily good approximations to PO even in the non-i.i.d. setting.
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