

Reinforcement Learning for Maneuver Control of a Bio-Inspired Vessel with Undulating Fin Propulsion

Gonzalo Garcia, Mohammad Uddin, Siddhartha Verma, and Oscar Curet
Department of Ocean and Mechanical Engineering, Florida Atlantic University

Dania Beach, Florida, United States

ABSTRACT

Undulating fins provide biological swimmers with a remarkable
propulsion system. Replication with autonomous underwater robots is
not simple, both on the technical side and due to the complexity of the
control system. Reinforcement learning is applied to a bio-inspired
vessel for maneuver control by manipulating the kinematics of its
undulating membrane. The controller is initially trained with a numerical
model recreating the distributed forces and moments on the fin, and then
applied to an underwater vehicle. It was found that using Reinforcement
Learning the vehicle was able to perform key maneuvers including
control for speed, heading, and turning. The results demonstrate that
reinforcement learning has the potential to overcome high levels of
system complexity while delivering an optimal solution.

KEY WORDS: Reinforcement learning; DDPG; undulating fin
propulsion.

INTRODUCTION

Biological swimmers have achieved remarkable propulsion capabilities
through undulatory fins. Nature has evolved to a point where the use of
a single fin in combination with pectoral fins are able to control
swimming in multiple directions with high levels of accuracy. The bio-
inspired application of these traits to underwater vessel locomotion
presents a non-trivial task. Normally, the fish has an elongated fin along
its body, driven by hundreds of bones in an undulatory manner,
producing the necessary forces and moments to move freely in all
directions. It has been observed that these kinds of fish have developed
several fin kinematics for different kinds of motion, ranging from
sinusoidal traveling wave-like kinematics for longitudinal motion, to
combination of more than one wave for vertical displacement among
others, all combined with body bending for lateral-directional
movement. The potential artificial mimicking by underwater robotic
devices imposes a level of complexity in the design of control systems
that quickly rules out traditional linear model-based controllers. The
operation of a robotic undulatory fin composed of several rotatory rays
in place of the fish fin bones, entails a multivariable process that requires
a different approach. Our current research involves an autonomous
device equipped with an undulatory fin actuated by 16 rays, with the

capability of controlling each ray asynchronously, regulating its position
and speed for arbitrary path following. The degree of intricacy of the
system, while trying to keep a close resemblance to the natural swimmer,
strongly suggests the need for a machine learning approach, especially
technique such as reinforcement learning that is capable of learning
during operation. We have developed a two-input two-output 3 DOF
path-following control system for a bio-inspired robot based on a
specific pattern of ray motion. The controller modulates the amplitude of
a traveling wave for speed control, and coordinates the offsetting of a
subset of rays for the lateral-directional dynamics, while using the closest
distance to the trajectory and its current speed as inputs. The
reinforcement learning controller was tested in various conditions
experimentally, including an indoor flume, and indoor and outdoor open
tanks to perform different maneuvers, with different levels of external
disturbances.

REINFORCEMENT LEARNING

The level of complexity in current autonomous vehicles makes classical
control approaches ineffective, or harder to design, due to an increasing
number of sensors, actuators, control loops, and involved dynamics.
Reinforcement learning (RL) addresses these limitations in an integrated
way, providing an optimal solution independently of the complexity of
the system under control.
The RL agent learns by interacting with the environment, which
normally not only includes the system’s dynamics, but environmental
perturbations as well. The agent learns actively while operating in real
time. This is in contrast to other optimal methods that base their learning
on simplified mathematical models and are best designed to be tuned
backward-in-time (Sutton and Barton, 2018; Busoniu, Babuska, De
Schutter, and Ernst, 2017).
The specific RL version chosen for this work is known as Deep
Deterministic Policy Gradient (DDPG), which is an actor-critic RL agent
with a model-free, online, off-policy algorithm that maximizes the
expected cumulative long-term reward. This method allows for an
optimal learning process carried out during operation, based on the
robot’s actual dynamics, and continuous-time signals. In the limit, the
critic section captures the optimal action-state combination in terms of
the highest long-term reward, and the actor section implements the
optimal control policy.
This RL method, among others, is based on the numerical solution of the

Bellman equation, and the Bellman’s principle of optimality, which
states that an optimal policy has the property that for any current state
and action, the decisions that follow must be themselves optimal, starting
from the resulting state. This allows for recursive solutions like dynamic
optimization, which splits the problem into a sequence of simpler
subproblems.
Given a system described by the dynamics 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) and a
reward function 𝜎(𝑥𝑘, 𝑢𝑘), where 𝑥𝑘 is the state of the system, and 𝑢𝑘 =
𝜋(𝑥𝑘) the control policy, a long-term reward can be defined by:

∑ 𝛾𝑘𝜎(𝑥𝑘, 𝑢𝑘)∞

𝑘=0 = ∑ 𝛾𝑘𝜎(𝑥𝑘, 𝜋(𝑥𝑘))∞
𝑘=0 (1)

where 0 < 𝛾 < 1 is a discount factor required to penalize future rewards
and to ensure convergence of the summation. This expression represents
the discounted accumulated rewards starting from the current state 𝑥0
and the application of the policy 𝜋.
To apply Bellman’s optimality principle, the previous long-term reward
expression Eq. (1) is redefined in terms of the function 𝑄(𝑥𝑘, 𝑢𝑘), called
action-value, which allows for the splitting of the reward assignment into
two consecutive steps. This action-value function conveys the long-term
reward, by the contribution of the immediate reward due to applying an
arbitrary action 𝑢𝑘 while in the state 𝑥𝑘, and by the discounted
accumulated reward continuing with the control policy 𝜋. This is,
starting from 𝑥0:

𝑄𝜋(𝑥0, 𝑢0) = 𝜎(𝑥0, 𝑢0) + ∑ 𝛾𝑘𝜎(𝑥𝑘, 𝜋(𝑥𝑘))∞

𝑘=1 = 𝜎(𝑥0, 𝑢0) +
𝛾 ∑ 𝛾𝑘𝜎(𝑥𝑘+1, 𝜋(𝑥𝑘+1))∞

𝑘=0 (2)

The optimal value is obtained by maximizing the future rewards by using
the optimal policy defined by 𝜋∗(𝑥𝑘) = 𝛾 max

𝜇
𝑄(𝑥𝑘+1, 𝜇). From Eq. (2)

and the optimal policy 𝜋∗, a recursive equation is obtained:

𝑄∗(𝑥𝑘, 𝑢𝑘) = 𝜎(𝑥𝑘, 𝑢𝑘) + 𝛾max

𝜇
𝑄∗(𝑥𝑘+1, 𝜇) (3)

This equation encapsulates the optimally principle by stating that future
optimal control actions are not specified by past optimal values, but only
by the current state. And the major advance in these calculations is the
viability of forward-in-time learning, as opposed to standard optimal
search done backward-in-time. This method also receives the name of
Q-learning.
From Eq. (3), the following recursive equation can be devised that
asymptotically converges to the fixed manifold 𝑄∗ (Watkins, 1989;
Watkins and Dayan, 1992):

𝑄𝑖+1(𝑥𝑘, 𝑢𝑘) = 𝑄𝑖(𝑥𝑘, 𝑢𝑘) + 𝛼 (𝜎(𝑥𝑘, 𝑢𝑘) + 𝛾 max
𝜇

𝑄𝑖(𝑥𝑘+1, 𝜇) −

𝑄𝑖(𝑥𝑘, 𝑢𝑘)) (4)

The term 𝜎(𝑥𝑘, 𝑢𝑘) + 𝛾 max

𝜇
𝑄𝑖(𝑥𝑘+1, 𝜇) − 𝑄𝑖(𝑥𝑘, 𝑢𝑘) is typically

labeled temporal difference 𝑇𝐷𝑖(𝑥𝑘, 𝑢𝑘), or error between the target
value 𝜎(𝑥𝑘, 𝑢𝑘) + 𝛾 max

𝜇
𝑄𝑖(𝑥𝑘+1, 𝜇) and the current value 𝑄𝑖(𝑥𝑘, 𝑢𝑘),

with 0 < 𝛼 < 1 a learning rate. The expression in Eq. (4) resembles a
gradient descend numerical search. Another interpretation of (4) is the
structure of a low pass filter, by rearranging it as 𝑄𝑖+1(𝑥𝑘, 𝑢𝑘) =
𝛼𝑇𝐷𝑖(𝑥𝑘, 𝑢𝑘) + (1 − 𝛼)𝑄𝑖(𝑥𝑘, 𝑢𝑘).
The learning rate, or numerical search step size, establishes the effect of
new information overriding previous information. A small value will
reduce the rate of learning, while a larger value will rely more heavily
on new data despite what was previously learned. This factor does not

need to be kept constant and can be modified during the learning process.
Q-learning can be directly applied as a look-up table, where states and
actions are discretized as indices. But this approach becomes intractable
for large numbers of states and actions and requires some sort of
discretization. An alternative method is to use function approximators to
parametrize both the action-value function and the control policy (see
Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, and Wiestra, 2015).
The approach used here, known as DDPG actor-critic, is based on
feedforward artificial neural networks (ANN), given their capacity as
effective universal approximators, allowing the application of the Q-
learning concept to continuous-time system with many signals.
In the limit, a feedforward ANN with a single hidden layer with a finite
number of neuron cells, with sigmoid-type activation functions, and a
linear-type activation function at the output cells, inherently materializes
the universal approximation theorem. It has the ability of approximating
any multivariable continuous function on a compact subset of ℝ𝑞 to any
given degree of accuracy (Hornik K, Stinchcombe M, White H, (1989).
This states that for any given continuous function 𝑓𝑗(𝒚) ∈ [0,1] ∈ ℝ,
with 𝒚 = [𝑦1, 𝑦2,⋯ , 𝑦𝑞]

𝑇 ∈ [0,1]𝑞 ∈ ℝ𝑞, and for 𝜀 > 0, there exists an
integer 𝑀 and a set of parameters 𝒘𝑖 = [𝑤1𝑖, 𝑤2𝑖, ⋯ ,𝑤𝑞𝑖] ∈ ℝ𝑞, 𝑎𝑗𝑖 ∈ ℝ
(weights) and 𝑏𝑖, 𝑐𝑗 (biases), with 𝑖 = 1⋯𝑀, and 𝑗 = 1⋯𝑝, such that

𝐹𝑗(𝒚) = ∑ 𝑎𝑗𝑖𝜙([𝑤1𝑖, 𝑤2𝑖,⋯ ,𝑤𝑞𝑖]𝒚 + 𝑏𝑖) + 𝑐𝑗𝑀

𝑖=1 (5)

is an approximation of the function 𝑓𝑗(𝒙), with |𝐹𝑗(𝒚) − 𝑓𝑗(𝒚)| < 𝜀,
with 𝜙 a bounded and monotonically increasing activation function.
This ability makes an artificial neural network an extremely useful
means for mapping signals. With a proper mechanism for adjusting its
parameters, for example, back propagation and gradient descent
numerical search, the ANN is capable of approximating any static
relation between inputs and outputs. If the training is kept active during
operation, then an ANN can also track slow changing causal relations.
Two ANNs are used here, one for the action-value function
𝑄(𝑥𝑘, 𝑢𝑘|𝜃𝑄) and one for the control policy 𝜋(𝑥𝑘|𝜃𝜋), with 𝜃𝑄 and 𝜃𝜋,
the respective parameters to be tuned during the learning process.
The update of 𝜃𝑄, based on a gradient descent method, is based on the
minimization of:

𝐿 = 1

𝑁
∑ 𝑇𝐷𝑖(𝑥𝑖−𝑗, 𝑢𝑖−𝑗)

2𝑁
𝑗=1 (6)

this is the square of the temporal difference over a moving window of
data of length 𝑁.
Instability during the training stage may arise due to the stochastic
dependency between the target and the current value. Another solution
presented by Lillicrap, 2015 was the application of a low pass filter to
the target values, effectively reducing the variability of the estimated
parameters 𝜃𝑄.
On the other hand, the update of 𝜃𝜋 is done by calculating the direction
of the maximum variation of the critic with respect to the actions, i.e.,
computing the gradient, what constitutes a continuous-time version of
the maximization in the Q-learning discrete logic.
For this work, MATLAB toolbox Reinforcement Learning was used.

BIO-INSPIRED VESSEL

Inspired from the black ghost knifefish, the robot uses a lengthwise fin
that produces net forces and torques effecting the longitudinal and
vertical motions. This membrane is driven by parallel rays extended from
the body, producing a field of distributed forces and moments. The body
is an elongated ellipsoidal cylinder carrying all the electronics and
motors inside, from which each ray is subtended and independently

actuated. A photo and the internal configuration are shown in Fig. 1.
More details of the original design and performances can be found in
(Liu, 2017; Liu and Curet, 2018).

Fig.1. A. Bio-inspired vessel. B. Interior configuration, electronics, and
undulating fin in the lower part.

One of the basic motions of the rays is their joint actuation with a given
phase difference and maximum amplitude to generate travelling
waveforms to interact with the surrounding environment and produce net
forces for longitudinal and vertical motion. The physics involved in these
maneuvers have been studied and described in the related literature
(Shirgaonkar, Curet, Patankar, Lauder, and MacIver, 2008; Curet,
Patankar, Lauder, and MacIver; Neveln, Bale, Bhalla, Curet, Patankar,
MacIver, 2014).In the present work, the propulsion is obtained by a
backward travelling sinusoidal, whose amplitude is modulated to control
the speed. The robot is operated in the surface, so its dynamics are
confined to lateral-directional. To produce directional forces and torques
for yaw maneuvering during the forward motion, this harmonic pattern
is modified based on the principle tested in (Uddin and Curet, 2018;
Uddin, Garcia, and Curet, 2019), by the superposition of a gradual
offsetting of a subset of the rays, located at the end.

Robot Dynamics

The propulsive fin, as depicted in Fig. 2, consists of a flexible fabric
attached to rotating rays. To obtain a dynamic model for initial RL
training, this arrangement is mathematically modeled.
The membrane between consecutive rays is linearly discretized, and
subsequently each quadrilateral (a skewed rectangle), is subdivided into
two triangles from where the forces and moments are ultimately
computed. This characterization was inspired in the works done in
(Nguyen Phan, Pham, Kim, Nguyen, 2018; Sfakiotakis, Fasoulas, and
Gliva, 2015).

Although each ray within the fin can be independently actuated, they are
moved harmonically, propagating backward a single sinusoidal wave
producing a net thrust. One of the constraints in an arbitrary rotation
pattern of the rays is the maximum stretch of the membrane between
consecutive rays. This limitation is not important for the case of a
travelling sinusoidal wave, as the phase difference between consecutive
rays is small, independently of the chosen amplitude, frequency, and
wavelength. The location of the rays is considered an input to the model
and is prescribed by a dedicated close loop controller connected to each

ray motor.

Fig. 2. Geometrical and dynamical modeling of the undulating fin
during backward sinusoidal wave progression.

For both triangles within all quadrilaterals, two forces are computed, one
based on the normal velocity, 𝑣𝑛 associated to drag phenomena
𝑓𝑑⃗⃗ ⃗(𝑟, 𝑖, 𝑗,𝑚, 𝑘) =
− 1

2
𝜌𝑆𝑚(𝑟, 𝑖, 𝑗, 𝑚, 𝑘)𝐶𝑑𝑣𝑛⃗⃗⃗⃗ (𝑟, 𝑖, 𝑗,𝑚, 𝑘)|𝑣𝑛⃗⃗⃗⃗ (𝑟, 𝑖, 𝑗,𝑚, 𝑘)| characterized by

the coefficient 𝐶𝑑, and another one using the normal acceleration, linked
to added mass effects 𝑓𝑖⃗⃗ (𝑟, 𝑖, 𝑗,𝑚, 𝑘) =
− 1

2
𝜌𝑆𝑚(𝑟, 𝑖, 𝑗, 𝑚, 𝑘)𝐶𝑖𝑎𝑛⃗⃗⃗⃗ (𝑟, 𝑖, 𝑗,𝑚, 𝑘)|𝑎𝑛⃗⃗⃗⃗ (𝑟, 𝑖, 𝑗, 𝑚, 𝑘)| proportional to

coefficient 𝐶𝑖 , shown in Fig. 2. These two forces together constitute the
thrust 𝑓𝑡⃗⃗⃗ model delivered by each element, with 𝜌 the density. This is
𝑓𝑡⃗⃗⃗ (𝑟, 𝑖, 𝑗,𝑚, 𝑘) = 𝑓𝑑⃗⃗ ⃗(𝑟, 𝑖, 𝑗,𝑚, 𝑘) + 𝑓𝑖⃗⃗ (𝑟, 𝑖, 𝑗,𝑚, 𝑘), shown in Fig. 2. The
total force and torque exerted by the fin is computed by the accumulation
of all individual forces and individual torques and given by 𝐹𝐹⃗⃗⃗⃗ (𝑘) =
∑ ∑ ∑ ∑ 𝑓𝑡⃗⃗⃗ (𝑟, 𝑖, 𝑗,𝑚, 𝑘)𝑚𝑗𝑖𝑟 and 𝑇𝐹⃗⃗⃗⃗ (𝑘) = ∑ ∑ ∑ ∑ 𝑝𝑐(𝑟, 𝑖, 𝑗,𝑚, 𝑘) ×𝑚𝑗𝑖𝑟

𝑓𝑡⃗⃗⃗ (𝑟, 𝑖, 𝑗,𝑚, 𝑘).
The description of the aquatic robot is based in the Euler’s laws of
motion for a rigid body, allowing the device to display a six degree of
freedom (6DOF) behavior observing six linear and angular accelerations.
For this purpose, two main coordinate systems are set in place, a body
frame {𝑥, 𝑦, 𝑧} fixed attached to the vehicle at the buoyancy center, and
an inertial local frame {𝑁, 𝐸, 𝐷}, shown in Fig. 2. The translational and
rotational dynamics, with linear velocity components 𝑈, 𝑉, and 𝑊, and

angular velocity components 𝑃, 𝑄, and 𝑅, are described by [
𝑑𝑈 𝑑𝑡⁄
𝑑𝑉 𝑑𝑡⁄
𝑑𝑊 𝑑𝑡⁄

] =

− [
0 −𝑅 𝑄
𝑅 0 −𝑃

−𝑄 𝑃 0
] [

𝑈
𝑉
𝑊

] + [
1 𝑀𝑥⁄ 0 0

0 1 𝑀𝑦⁄ 0
0 0 1 𝑀𝑧⁄

] [
𝐹𝑥 − 𝐷𝑥
𝐹𝑦 − 𝐷𝑦
𝐹𝑧 − 𝐷𝑧

] and

[
𝑑𝑃 𝑑𝑡⁄
𝑑𝑄 𝑑𝑡⁄
𝑑𝑅 𝑑𝑡⁄

] = − [
1 𝐼𝑥𝑥⁄ 0 0

0 1 𝐼𝑦𝑦⁄ 0
0 0 1 𝐼𝑧𝑧⁄

] [
0 −𝑅 𝑄
𝑅 0 −𝑃

−𝑄 𝑃 0
] [

𝑃𝐼𝑥𝑥
𝑄𝐼𝑦𝑦
𝑅𝐼𝑧𝑧

] +

[
1 𝐼𝑥𝑥⁄ 0 0

0 1 𝐼𝑦𝑦⁄ 0
0 0 1 𝐼𝑧𝑧⁄

] [
𝑇𝑥 − 𝐵𝑥
𝑇𝑦 − 𝐵𝑦
𝑇𝑧 − 𝐵𝑧

]

with and total mass array defined by [𝑀𝑥 𝑀𝑦 𝑀𝑧]𝑇 = 𝑀[1 + 𝑘11 1 +
𝑘22 1 + 𝑘33]𝑇, for hull mass 𝑀, and 𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧 the principal
moments of inertia of the hull, functions of coefficients 𝑘44, 𝑘5, and 𝑘55,
respectively, and the geometry of the hull approximating an ellipsoid,
assuming negligible cross moments. Hydrostatic forces 𝐹𝐻⃗⃗⃗⃗ and moments
𝑇𝐻⃗⃗⃗⃗ , including weight and buoyancy, together with the fin make up the
total force {𝐹𝑥, 𝐹𝑦, 𝐹𝑧} and torque {𝑇𝑥, 𝑇𝑦, 𝑇𝑧} driving the robot. The
hydrostatic force is described by 𝐹𝐻⃗⃗⃗⃗ = 𝑀(𝑔 −
𝑏)[− sin(𝜃) , cos(𝜃) sin(𝜙) , cos(𝜃) cos (𝜙)]𝑇 , while the torque
components are 𝑇𝐻⃗⃗⃗⃗ = [−𝑧𝑔𝑀𝑔 cos(𝜃) sin(𝜙) , −𝑧𝑔𝑀𝑔 sin(𝜃) −
𝑥𝑔𝑀𝑔 cos(𝜃) cos(𝜙) , 𝑥𝑔𝑀𝑔 cos(𝜃) sin(𝜙)]𝑇 with 𝑔 and 𝑏 accounting
for the gravity and buoyancy accelerations, and {𝜃, 𝜙, 𝜓} being the
Euler rotation angles whose dynamics are derived from the angular rates

by the equation [
𝑑𝜙 𝑑𝑡⁄
𝑑𝜃 𝑑𝑡⁄
𝑑𝜓 𝑑𝑡⁄

] = [
1 0 −sin (𝜃)
0 cos (ϕ) cos(𝜃) sin (𝜙)
0 −sin (𝜙) cos(𝜃) cos (𝜙)

]

−1

[
𝑃
𝑄
𝑅
].

Hull drag forces {𝐷𝑥, 𝐷𝑦, 𝐷𝑧} and moments {𝐵𝑥, 𝐵𝑦, 𝐵𝑧} are defined
as proportional to the square of body translational and rotational
velocities.

Robot Actuation

Two actuations are considered to control heading 𝜓 and forward speed
𝑈 for trajectory tracking. Both control variables are obtained from the
manipulation of the fin kinematics.
Although the motors of the fin can be actuated independently to produce
an arbitrary shape of the fin, the present work has chosen to drive them
conjointly. A backward traveling sinusoidal wave of a fixed frequency
𝑓, and wavelength 𝜆, is applied to the fin with a variable amplitude 𝐴 as
a way to modify the surge force and speed, and a variable offset 𝛼 from
the vertical position of the last motors, to regulate the yawing torque and
heading of the robot. This last actuation is implemented by the
incremental offset deflection added of the last four rays to generate a net
yawing torque different from zero.
This idea of the offset deflection in the last rays of the fin, and the change
in amplitude applied to all rays, is shown in Fig. 3. It shows a vertical
view of the rays and their maximum deflection. The first twelve have no
offset and their maximum deflection is vertically symmetric, while the
last four have an increasing offset from the vertical breaking the
symmetry and thus producing a net torque different from zero. from It
was shown in Uddin and Curet, 2018; Uddin, Garcia, and Curet, 2019,
that this strategy is a viable means to vary the heading of the vessel
during the undulation of the fin. The fin has a total of sixteen rays.

Both actuations are described by the following equation:

𝜃𝑟(𝑡) = 𝐴(𝑡) sin (2𝜋𝑓𝑡 − 2𝜋(𝑟−1)

𝜆) + 𝑘𝛼(𝑟)𝛼(𝑡) (7)

for 𝑟 = 1⋯16, and 𝜆 = (16 − 1) 2⁄ , and with 𝑘𝛼 defined as 𝑘𝛼(𝑟) = 0
for 𝑟 ≤ 12, and 𝑘𝛼(𝑟) = 𝑟 − 12 for 𝑟 > 12. In this way the offset
deflection only affects the rays 𝑟 = 13⋯16, with a linear increment, as
discuss previously. Before implementation, this equation is discretized.

Fig. 3. Fin actuations, including offset deflection for heading control,
and amplitude change for speed control.

Figs. 4 shows the relationship between amplitude 𝐴 of the fin and surge
forces 𝐹𝑥 and speed 𝑈. Fig. 5 on the other hand, illustrates the effect of
different offset values 𝛼 in yawing torque 𝜏𝜓 and heading rate 𝜓. These
results are obtained in simulation using the dynamic model.

Fig. 4. Surge force and speed as a function of fin amplitude (𝑓 = 2 𝐻𝑧
and 𝜆 = 2).

These two figures show the capability of the two actuators to
effectively control the vessel.

Fig. 5. Yawing torque and yawing angular speed as a function of alpha
(𝑓 = 2 𝐻𝑧 and 𝜆 = 2).

Robot Sensors

To perform trajectory tracking, position and yaw information is required.
For normal underwater operation acoustic positioning systems or in
some specific cases visual systems can give the required information. In
this application the robot is operated at the surface, and the yaw angle is
determined by two spatially separated markers whose positions are
obtained by an external digital camera, capable of covering the whole
trajectory. The trajectory is fully contained within the camera field of
view.
The digital camera delivers a sequence of frames to a computer from
where the positions are extracted. Each frame consists of the current
view field digitized into pixels with three colors associated to each one.
These matrices are then used to extract the position, by using thresholds
deciding what background is and what the robot is. To help the process
of visual tracking markers are installed on the upper part of the robot,
which after visual processing are used to provide relative position and
heading. The visual tracking is supported by a set of Kalman filters to
smooth out possible variability in the raw data.
The sensor information is sent to the robot in real time for its application
to the fin. The software code running on a computer sends every cycle a
message to the robot encoding the yaw information, consisting in the
mismatch between a desired yaw and the current yaw. This is done using
a radio link and requires the vehicle to stay on the surface. The message
is decoded upon reception, and then applied to an inner controller for the
final actuation of the fin.
Frames delivered to the computer consist of two-dimensional arrays 𝐼𝑚

with a three-valued RGB vector per entry, each one ranging from 0 to
255. Fig. 6 shows a sample frame depicting the robot in a small pool
with two markers, located over the upper part of the body, signaled by
the arrows and centered by rectangles. These rectangles also indicate the
area where the filtering algorithm will search for the markers. For each
video frame a three-valued RGB two-dimensional array is obtained (for
a predefined pixel resolution), then a grayscale array is calculated using
a weighted average of the level of the three colors, and finally a binary
array is obtained by comparing it to a threshold. Then an image
processing algorithm is used to extract the markers and discard clutter.

Fig. 6. Sample video frame. Position extraction of markers.

Before the digital filtering and tracking are carried out, visual processing
subroutine is used to produce useful numerical data from the frames.
Each of these arrays is first converted to a grayscale version with the
usual weighted average 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (coefficients must
add to one). Next step is to then compare it the to a predefined level 𝛾
(this parameter is different from the one used in the RL algorithm), a
design parameter, to obtain a binary matrix of ones and zeros. The value
of 𝛾 has to be obtained empirically as a function of the current conditions
of luminosity present on the place. The idea of the comparison is to leave
the markers as distinctive closed shapes able to be identified by a
common set of pixels from which a centroid can be obtained.
From the binary matrices, the exterior boundary of connected sets of
non-zero values are extracted and labeled as distinctive objects, and
finally the centroid of each of these objects is computed. The result is a
list of 2D points each one representing the center of the existing objects.
It is important to notice that due to the unpredictability of the binary
matrix, the number of objects can vary from frame to frame. This
information is then fed into the digital filtering stage for a final
calculation of the position of the robot, using Kalman filters. The whole
process is detailed in pseudocode detailed in Algorithms I, II, and III in
the Appendix.
Given the stochastic nature of the visual processing stage, the time
elapsed between each cycle ∆𝑘 becomes variable, should not be assumed
fixed, and must be measured. The accuracy of the elapsed time for each
of the algorithm cycle is vital in the precision of the Kalman filters. In
the algorithms 𝑖 and 𝑗 are the indices of the number of markers and the

number of centroids, which are not necessarily the same value. The
distance units used in the algorithms are pixels, so can be converted to
meters, although for yaw computation, is not absolutely necessary. The
usual nomenclature for the Kalman filters is used where 𝑣𝑥 represents an
estimated value of the 𝑥 − 𝑎𝑥𝑖𝑠 velocity, and for example 𝑘 𝑘 − 1⁄ refers
to an estimated quantity at time 𝑘 given information used up to time 𝑘 −
1. The parameters 𝛼 and 𝛽 are in general adjusted experimentally, they
are related to the figure of noise of the system. Larger values produce
faster responses amplifying with more abrupt transient changes.
The markers are placed at known longitudinal distances from the
geometrical center of the robot. This allows the calculation of the
position of the vehicle, from the filtered positions of markers. A simple
logic computes the robot position independently of the number of
markers and the current reliability and accuracy of the estimated position
of each one of them. Although more available position estimates from
more markers at any given time implies a better estimation of the robot’s
position, in the worst case just a single marker’s estimated position
should be enough to compute the position of the robot. The setting up of
the experiment defined the relation between pixels and distance in
meters. From at least two reliable marker positions, the heading of the
vessel is directly obtained from the relation 𝑡𝑎𝑛 𝜓𝑘 =
(𝑝̂𝑥𝑘 𝑘⁄

𝑖 − 𝑝̂𝑥𝑘 𝑘⁄
𝑖+1) (𝑝̂𝑦𝑘 𝑘⁄

𝑖 − 𝑝̂𝑦𝑘 𝑘⁄
𝑖+1)⁄ .

The yaw information calculated outside the vehicle, is then transferred
via RF link. This is not the preferred method for communicating the
sensor information as it requires the vessel to be on the surface, severely
limiting its operation, where in normal conditions the final sensing
should rely on acoustic devices. As the purpose of the present stage of
this research is the proof of concept that the undulating fin is able to
autonomously control the heading, this temporary solution has been
adopted.
The remote sensing algorithm running on the external computer
establishes a serial communication with the Master board onboard the
robot, by modulating a RF link. Strings of characters are sent serially
encoding the yaw information, which in this particular application has
been chosen to be the yaw error, this is the difference between the desired
yaw and the current one. This election is arbitrary, and this part of the
guidance logic could have been written in the robot’s embedded code,
but by keeping the desired heading coded on the exterior computer, its
modification for different heading maneuvers for testing purposes, is
greatly simplified.
Each yaw error value is encoded into an ASCII message including its
integer part and two decimals. This digital word modulates a 2.4 Giga
Hertz carrier and is transmitted. The RF receiver, part of the Master
board, demodulates the signal and it is delivered to the microcontroller
via an interruption subroutine. After an immediate verification for
inconsistency within the message, it is communicated to the Slave boards
via an internal common channel, where it is converted into actual offset
deflection. These two communications are independent of each other, so
their operation is asynchronous. By design, the rate at which the rays are
actuated by each slave boards, depends on the chosen operation
frequency, but are in this case is 16 time per second. On the other hand,
the resultant rate at which the messages are sent to from the laptop to the
robot oscillates around 20. The main restriction here is that this last rate
should not be lower than the actuation rate, to avoid losing data.

RL RESULTS

The RL was learned using the mathematical model described before, and
then exported to the robot’s control system for initial tests. These tests
were carried out indoor in a small testing pool of 12 feet diameter.

Fig. 7. ANN RL Control Policy 𝜋(𝑥𝑘|𝜃𝜋). Inputs and outputs are
normalized appropriately (not shown).

The ANN control policy 𝜋(𝑥𝑘|𝜃𝜋), shown in Fig. 7, was designed with
a single hidden layer of 𝑀 = 32 neurons, 2 inputs (𝑞 = 2) and 2 outputs
(𝑝 = 2), a rectified linear unit as the activation function 𝜙(𝑧) =
𝑚𝑎𝑥{0, 𝑧}. This function has become the most popular activation
function, allowing a better training in deeper networks compared to the
sigmoid-based functions. It was also argued in (Hahnloser, H.,
Sarpeshkar, R., Mahowald, M., Douglas, R., and Seung, H., 2000) that it
has a strong mathematical and biological motivation. The ANN’s
parameters to be tuned during training process, are then 𝜃𝜋 =
{𝒘1,𝒘2, 𝑎11, 𝑎12,⋯ , 𝑎1𝑀, 𝑎2𝑀, 𝑏1, ⋯ , 𝑏𝑀, 𝑐1, 𝑐2}. The reward function
was designed as a negative quadratic cost of trajectory tracking errors,
so the smaller the errors, the less negative, the reward. This choice of
reward function is common in control design and serves the purpose of
reward equally well as standard positive reward functions.
For path-following, the closest distance from the vessel to the trajectory
is obtained every control cycle, from where the two inputs to RL are
determined. The closest distance including its sign is converted into a
desired yaw angle, 𝜓𝑐𝑚𝑑 , and the closest point in the trajectory is
associated to a speed 𝑈𝑐𝑚𝑑. These quantities are compared to actual
vehicle states of yaw 𝜓 and speed 𝑈, to get the error quantities 𝑦1 =
𝑒𝑈 = 𝑈𝑐𝑚𝑑 − 𝑈, and 𝑦2 = 𝑒𝜓 = 𝜓𝑐𝑚𝑑 − 𝜓. These values are the two
inputs to the RL agent. The RL algorithm works to reduce these two
errors by outputting the two actuations 𝐹1 = 𝐴 and 𝐹2 = 𝛼. These inputs
are normalized before going into the ANN, as well as the outputs, after
leaving the ANN (refer to Eq. 5).
The first test consisted of a circular trajectory and a fixed speed. Figure
8 shows the result.

Fig. 8. Trajectory tracking using RL. First test results.

This test was designed to impose a lesser complexity to the controller,
consisting of a circular trajectory and a constant speed command. Three
complete loops were carried out. The amplitude actuation 𝐴(𝑡) is seen to
be fairly constant between 0.8 and 1, which translates into a range of 24
and 30 degrees of maximum deflection, mainly responsible for the speed
regulation, in this case close to 9 [𝑐𝑚/𝑠]. On the other hand, it can be
seen that both the lateral trajectory tracking, and heading, the
intermediate control variable, are also well managed. In this case, and
due to the inherent dynamics of the vessel, the deflection of the last rays,
𝛼(𝑡), have an abrupt behavior, switching between the extreme values.
This remains an important challenge for future designs to reduce this
oscillation and improve the overall tracking.
The second trajectory was designed as a lemniscate with varying speed.
Results are shown in Fig. 9.
This test was designed to impose a higher level of complexity, by varying
both commands together, i.e., the speed command’s magnitude, and the
lateral distance to the trajectory, in this case switching sign and
magnitude.
The overall behavior is considered acceptable, where the heading control
has the best response. The same effect in the second actuation is present,
where the values are changing abruptly between the saturating values.
Nonetheless, the control manages to keep the robot fairly close to the
trajectory, and desired speed.

CONCLUSIONS

A two-input, two-output RL has been successfully designed and tested
experimentally in a bio-inspired robot. The training was mainly done
virtually using a comprehensive mathematical model including a
numerically discretized propulsive fin intended to capture the
spatiotemporal and distributed behavior of the different forces and
moments. The tuned artificial neural network implementing the
optimized control policy was exported to the vessel’s control system and
tested in two different path following cases, with increasing levels of
complexity. RL shows its potential applicability to control maneuverable
robots in different scenarios, with increasing levels of difficulty and
larger number of sensors and actuations.

Fig. 9. Trajectory tracking using RL. Second test results.

ACKNOWLEDGEMENTS

This research is based upon work supported by the National Science
Foundation under Grant No. 1751548 awarded to O.C.

REFERENCES

Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D., (2017),

Reinforcement Learning and Dynamic Programming Using Function
Approximators, CRC-Press, Boca Raton, FL, USA.

Curet, O., Patankar, N., Lauder, G., MacIver, M., (2011), “Aquatic

maneuvering with counter-propagating waves: a novel locomotive
strategy”, Journal of The Royal Society, 8, 041-1050.

Hahnloser, H., Sarpeshkar, R., Mahowald, M., Douglas, R., and Seung, H.,

(2000), “Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit”, Nature, 405 (6789), 947–951.

Hornik K, Stinchcombe M, White H, (1989), “Multilayer Feedforward

Networks are Universal Approximators”, Neural Networks, 2, 359-366.

Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,

and Wierstra, D., (2015), “Continuous control with deep reinforcement
learning”, ICLR.

Liu, H., (2017), Propulsive Performance and Maneuver Control of

Undulatory Ribbon Fin Propulsion using Bio-Inspired Robotic Systems,
PhD Dissertation, FAU, USA.

Liu, H., and Curet, (2018), “Swimming Performance of a Bio-Inspired

Robotic Vessel with Undulating Fin Propulsion”, Bioinspir. Biomim.
13(5):056006.

Neveln, I., Bale, R., Bhalla, A., Curet, O., Patankar, N., and MacIver, M.,

(2014), “Undulating fins produce off-axis thrust and flow structures”,
The Journal of Experimental Biology, 217, 201-213.

Nguyen, V., Phan, D., Pham, C., Kim, D., and Nguyen, T., (2018), “Study

on Determining the Number of Fin-rays of a Gymnotiform Undulating
Fin Robot”, DOI: 10.1007/978-3-319-69814-4_72.

Sfakiotakis, M., Fasoulas, J., and Gliva, R., (2015), “Dynamic Modeling

and Experimental Analysis of a Two-Ray Undulatory Fin Robot”,
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) Congress, Hamburg, Germany.

Shirgaonkar, A., Curet, O., Patankar, N., and MacIver, M., (2008), “The

hydrodynamics of ribbon-fin propulsion during impulsive motion”, The
Journal of Experimental Biology, 211, 3490-3503.

Sutton, R. S., and Barto, A. G., (2018), Reinforcement Learning: An

Introduction, MIT Press, Cambridge, MA, USA.

Uddin, M., and Curet, O., (2018), “Modeling and Control of a Bio-Inspired

Underwater Vessel with Undulating-Fin Propulsion”, DOI:
10.1109/OCEANS.2018.860454.

Uddin, M., Garcia, G., and Curet, O., (2019), “Yaw Turning Experiments

of a Bio-Inspired Vessel with Undulating Fin Propulsion”, 72nd Annual
Meeting of the APS Division of Fluid Dynamics, Seattle, WA.

Watkins, C., (1989), Learning From Delayed Rewards, King’s College,

Cambridge, UK.

Watkins, C., and Dayan, P., (1992), “Q-learning”, Mach. Learn., 8(3-4),

279–292.

APPENDIXES

Algorithm I: Position extraction algorithm.
1: Program robot positioning:
2: Input the number of markers 𝑛𝑢𝑚𝑚𝑎𝑟𝑘𝑒𝑟𝑠 and number of
sample times 𝑛𝑢𝑚𝑠𝑎𝑚𝑝𝑙𝑒𝑠
3: Input Kalman filter parameters 𝛼 and 𝛽
4: Input visual processing threshold 𝛾 and mask length 𝛿
5: Get snapshot, generate matrix 𝐼𝑚0, determine
(𝑝̂𝑥0 0⁄

𝑖 , 𝑝̂𝑦0 0⁄
𝑖), set (𝑣𝑥0 0⁄

𝑖 , 𝑣𝑦0 0⁄
𝑖) = 0, set ∆1= 0

6: From 𝑘 1 to 𝑛𝑢𝑚𝑠𝑎𝑚𝑝𝑙𝑒𝑠:
7: Call program visual processing:
8: Pass 𝑛𝑢𝑚𝑚𝑎𝑟𝑘𝑒𝑟𝑠, 𝛾, 𝛿,
(𝑝̂𝑥𝑘−1 𝑘−1⁄

𝑖 , 𝑝̂𝑦𝑘−1 𝑘−1⁄
𝑖)

9: Receive markers measured
positions (𝑝𝑥𝑘

𝑖 , 𝑝𝑦𝑘
𝑖)

10: Call program Kalman filter:
11: Pass ∆𝑘, 𝛼, 𝛽,
(𝑝̂𝑥𝑘−1 𝑘−1⁄

𝑖 , 𝑝̂𝑦𝑘−1 𝑘−1⁄
𝑖), (𝑣𝑥𝑘−1 𝑘−1⁄

𝑖 , 𝑣𝑦𝑘−1 𝑘−1⁄
𝑖), (𝑝𝑥𝑘

𝑖 , 𝑝𝑦𝑘
𝑖)

12: Receive (𝑝̂𝑥𝑘 𝑘⁄
𝑖 , 𝑝̂𝑦𝑘 𝑘⁄

𝑖),

(𝑣𝑥𝑘 𝑘⁄
𝑖 , 𝑣𝑦𝑘 𝑘⁄

𝑖)
13: Calculate lapsed time ∆𝑘
14: end

Algorithm II: Visual data extraction algorithm.
1: Program visual processing
2: Receive 𝑛𝑢𝑚𝑚𝑎𝑟𝑘𝑒𝑟𝑠, 𝛾, 𝑚𝑎𝑠𝑘, (𝑝̂𝑥𝑘−1 𝑘−1⁄

𝑖 , 𝑝̂𝑦𝑘−1 𝑘−1⁄
𝑖)

3: Get snapshot, generate matrix 𝐼𝑚𝑘
4: Generate grayscale matrix 𝐺𝑟𝑘 = 0.299𝐼𝑚𝑘(𝑅) +
0.587𝐼𝑚𝑘(𝐺) + 0.114𝐼𝑚𝑘(𝐵)
5: Generate binary matrix 𝐵𝑤𝑘 = 𝐺𝑟𝑘 < 255 𝛾
6: Centered in (𝑝̂𝑥𝑘−1 𝑘−1⁄

𝑖 , 𝑝̂𝑦𝑘−1 𝑘−1⁄
𝑖) and delimited by 𝛿

mask outside values of 𝐵𝑤𝑘, generate 𝐵𝑤𝑘
𝛿

7: Detect connected sets of ones in 𝐵𝑤𝑘
𝛿, define their

centroids 𝐶𝑘
𝑗 = (𝑐𝑥𝑘

𝑗 , 𝑐𝑦𝑘
𝑗)

8: Determine (𝑝𝑥𝑘
𝑖 , 𝑝𝑦𝑘

𝑖) =

𝑚𝑖𝑛⏟
(𝑝𝑥𝑘

𝑖 ,𝑝𝑦𝑘
𝑖)

√(𝑝̂𝑥𝑘−1 𝑘−1⁄
𝑖 − 𝑐𝑥𝑘

𝑗)2 + (𝑝̂𝑦𝑘−1 𝑘−1⁄
𝑖 − 𝑐𝑦𝑘

𝑗)2

9: Return (𝑝𝑥𝑘
𝑖 , 𝑝𝑦𝑘

𝑖)

Algorithm III: Kalman filter algorithm.
1: Program: Kalman filtering:
2: Receive ∆𝑘, 𝛼, 𝛽, (𝑝̂𝑥𝑘−1 𝑘−1⁄

𝑖 , 𝑝̂𝑦𝑘−1 𝑘−1⁄
𝑖),

(𝑣𝑥𝑘−1 𝑘−1⁄
𝑖 , 𝑣𝑦𝑘−1 𝑘−1⁄

𝑖), (𝑝𝑥𝑘
𝑖 , 𝑝𝑦𝑘

𝑖)
3 Do:
4 (𝑝̂𝑥𝑘 𝑘−1⁄

𝑖 , 𝑝̂𝑦𝑘 𝑘−1⁄
𝑖) =

(𝑝̂𝑥𝑘−1 𝑘−1⁄
𝑖 , 𝑝̂𝑦𝑘−1 𝑘−1⁄

𝑖) + ∆𝑘(𝑣𝑥𝑘−1 𝑘−1⁄
𝑖 , 𝑣𝑦𝑘−1 𝑘−1⁄

𝑖)

5 (𝑣𝑥𝑘 𝑘−1⁄
𝑖 , 𝑣𝑦𝑘 𝑘−1⁄

𝑖) = (𝑣𝑥𝑘−1 𝑘−1⁄
𝑖 , 𝑣𝑦𝑘−1 𝑘−1⁄

𝑖)

6 (𝑝̂𝑥𝑘 𝑘⁄
𝑖 , 𝑝̂𝑦𝑘 𝑘⁄

𝑖) = (𝑝̂𝑥𝑘 𝑘−1⁄
𝑖 , 𝑝̂𝑦𝑘 𝑘−1⁄

𝑖) +

𝛼 {(𝑝𝑥𝑘
𝑖 , 𝑝𝑦𝑘

𝑖) − (𝑝̂𝑥𝑘 𝑘−1⁄
𝑖 , 𝑝̂𝑦𝑘 𝑘−1⁄

𝑖)}

7 (𝑣𝑥𝑘 𝑘⁄
𝑖 , 𝑣𝑦𝑘 𝑘⁄

𝑖) = (𝑣𝑥𝑘 𝑘−1⁄
𝑖 , 𝑣𝑦𝑘 𝑘−1⁄

𝑖) +

𝛽 {(𝑝𝑥𝑘
𝑖 , 𝑝𝑦𝑘

𝑖) − (𝑝̂𝑥𝑘 𝑘−1⁄
𝑖 , 𝑝̂𝑦𝑘 𝑘−1⁄

𝑖)}

8: Return (𝑝̂𝑥𝑘 𝑘⁄
𝑖 , 𝑝̂𝑦𝑘 𝑘⁄

𝑖), (𝑣𝑥𝑘 𝑘⁄
𝑖 , 𝑣𝑦𝑘 𝑘⁄

𝑖)

