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Abstract

As the size, complexity, and availability of data continues to grow, scientists are increasingly
relying upon black-box learning algorithms that can often provide accurate predictions with
minimal a priori model specifications. Tools like random forests have an established track
record of off-the-shelf success and even offer various strategies for analyzing the underlying
relationships among variables. Here, motivated by recent insights into random forest be-
havior, we introduce the simple idea of augmented bagging (AugBagg), a procedure that
operates in an identical fashion to classical bagging and random forests, but which oper-
ates on a larger, augmented space containing additional randomly generated noise features.
Surprisingly, we demonstrate that this simple act of including extra noise variables in the
model can lead to dramatic improvements in out-of-sample predictive accuracy, sometimes
outperforming even an optimally tuned traditional random forest. As a result, intuitive
notions of variable importance based on improved model accuracy may be deeply flawed,
as even purely random noise can routinely register as statistically significant. Numerous
demonstrations on both real and synthetic data are provided along with a proposed solution.
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1. Introduction

As data continues to become larger and more complex, scientists and analysts are increas-
ingly relying upon adaptive learning methods in lieu of the more traditional parametric
statistical models that require a priori model specification. Among these flexible alterna-
tives, bagging (Breiman, 1996) and random forests (Breiman, 2001) have proven among the
most popular and robust tools available with successful application in nearly every scientific
field; for just a few select examples, see Diaz-Uriarte and De Andres (2006); Cutler et al.
(2007); Bernard et al. (2007); Mehrmohamadi et al. (2016); Coleman et al. (2020). In a
recent study, Ferndndez-Delgado et al. (2014) compared the performance of 179 classifica-
tion methods across all datasets then available in the UCI Machine Learning Repository
(Dua and Graff, 2017) and found random forests to be the top overall performer. In the
previous two decades since their inception, numerous studies have sought to establish their
important statistical properties including consistency (Biau and Devroye, 2010; Scornet
et al., 2015; Klusowski, 2021), asymptotic normality (Mentch and Hooker, 2016; Wager
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and Athey, 2018), and rates of convergence (Peng et al., 2019) as well as means by which
standard errors (Sexton and Laake, 2009), confidence intervals (Wager et al., 2014; Mentch
and Hooker, 2016), and hypothesis testing procedures (Mentch and Hooker, 2016, 2017;
Coleman et al., 2022) can be obtained.

Bagging, first introduced in a tree-based setting by Breiman (1996), involves drawing B
bootstrap samples from the original training data, refitting the base model (tree) on each,
and averaging the individual outputs to obtain the final predictions. When base models are
traditional classification or regression trees (Breiman et al., 1984), at each internal node,
the optimal empirical split point is chosen by searching over all features and potential splits.
Random forests can thus be seen as a less-greedy alternative, whereby eligible features for
splitting are randomly selected at each internal node.

Despite the abundance of forest-related work in recent years, substantially less effort has
been devoted to principled studies of the inner workings of random forests that might more
fully explain their robust record of success. Recently however, Mentch and Zhou (2020)
suggested that the additional randomness utilized in random forests was simply an implicit
form of regularization. The mtry parameter in random forests that dictates the number of
available features at each split could therefore be seen as akin to the A\ shrinkage penalty in
explicit regularization methods like ridge regression (Hoerl and Kennard, 1970) and lasso
(Tibshirani, 1996). Mentch and Zhou (2020) suggested that the random subsampling of
features helped the trees to avoid overfitting and that this was particularly beneficial in
low signal-to-noise ratio settings. LeJeune et al. (2020) demonstrated a similar effect for
ensembles consisting of linear model base learners fit via ordinary least squares (OLS).

The idea that the randomness in random forests serves as a means of regularization
not only eliminates some of the mystery of their sustained success but also suggests that
alternative modifications to the standard bagging procedure that also induce some means of
regularization may produce similar gains in accuracy. In this work, we introduce one such
alternative idea we refer to as augmented bagging (AugBagg) wherein the original feature
space is augmented with additional noise features generated conditionally independent of
the response, after which the standard bagging procedure is carried out. Very recent work
by Kobak et al. (2020) showed that under certain conditions, including particular forms
of additional random noise features in the regression can also improve the performance
of linear models. As a result, performing minimum-norm least squares on an augmented
design with increasingly many features each with increasingly small variance can be seen as
equivalent to ridge regression on the original design.

Our work here in the context of bagging and random forests uncovers findings that are
arguably even more surprising and troubling. First, unlike the somewhat strict require-
ments in Kobak et al. (2020), the presence of additional noise features seems to often help
regularize the model regardless of their individual variance or dependence on each other.
Most alarmingly, in many instances, we show that this simple act of adding extra ran-
dom noise features to the model can greatly improve its out-of-sample predictive accuracy
over even the most optimally tuned model on the original design. Rather than making a
bad model worse as many would naturally presume, the addition of otherwise predictively
useless random noise features can have precisely the opposite effect.

This finding has crucial implications for the ways in which we measure and test fea-
ture importance. In black-box contexts where traditional measures like p-values may be
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unavailable or difficult to obtain, numerous recent studies have formally proposed methods
to evaluate feature importance by measuring the change in accuracy when the features of
interest are dropped from the model (Mentch and Hooker, 2016, 2017; Lei et al., 2018;
Coleman et al., 2022; Williamson et al., 2021). The implicit logic in such procedures feels
intuitive and obvious: if the response can be more accurately predicted when a supplemen-
tal collection of features are included in the model, then those additional features must hold
some information about the response beyond whatever is offered by the original collection
of features. This work, however, demonstrates that this need not be the case. Rather, in
some instances, particularly when the data itself are quite noisy, independent random noise
features can improve predictions when added to a model. This can thus lead to situations
that feel almost paradoxical in which, depending on the assumptions made and the type
of test deployed, noise features that are completely independent of the response may rou-
tinely register as statistically significant. Much further discussion on the implications of
this finding is included in the latter sections of this work along with a proposed solution.

The remainder of this paper is laid out as follows. In Section 2 we formally introduce
the AugBagg procedure and in Section 3 we provide numerous simulations and real-data
experiments to demonstrate its surprisingly competitive predictive performance. In Section
4 we provide theoretical motivation for the AugBagg procedure, building upon very recent
results established for other learning procedures. Implications for measuring and testing
variable importance are discussed in Section 5, where we also suggest a more robust alter-
native testing framework in which tests for feature importance maintain the nominal level
for noise features, even when such features are capable of producing non-trivial gains in
accuracy.

2. Augmented Bagging

Throughout the remainder of this paper, we assume data of the form D, = {Z1,..., Z,}
where each ordered pair Z; = (X;,Y;) consists of a feature vector X; = (X1,,...,X,;) and
response Y; € R. Given B bootstrap samples of the data, the bagging procedure (Breiman,
1996) generates a prediction at x of the form

B

. 1

YBagg = E § T(il), WbaDn) (1)
b=1

where the randomness wy, serves only to select the bootstrap sample on which the b** model
T is trained. The augmented bagging (AugBagg) procedure we introduce here represents
a straightforward extension of classical bagging. Beginning with the original dataset D,,,
we create an augmented dataset D}, consisting of additional noise features generated condi-
tionally independent of Y. This augmented dataset thus takes the form D} = {Z7,..., Z*}
where each Z now denotes an ordered triplet (X;, IN;, Y;) consisting of the original features
X, and response Y;, but also an additional set of noise features N; = (Ny4, ..., Nqﬂ-). The
original bagging procedure is then performed on this augmented feature space so that the
AugBagg output produces predictions of the form

B

X 1 *
YAugBagg = E Z T((x9 n); Wh, Dn) (2)
b=1
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where n can be filled in with random draws from the additional noise features. Note here
that the additional noise features are sampled first so that the same draw n is used across
each of the B base models rather than being drawn again for each tree.

Importantly, we insist only that IN be generated conditionally independent of Y given X.
This thus allows for additional noise features to be correlated with the original features. The
noise features, however, are still sampled at random so that even if duplicate observations
x; = x; appear in the original data, it need not be the case that (x;,n;) = (x;,n;). As
demonstrated in the following sections, the manner in which noise features are generated
can greatly impact performance.

Many of the simulations and experiments carried out below follow the classical definitions
and settings of bagging and random forests in which base learners are assumed to be full-
depth CART-style trees, as these are the kinds of models most frequently employed in
practice and available by default in software. Note that whenever the randomness w is
assumed to select both the bootstrap sample as well as the mtry < p eligible features at each
internal node as in the case of random forests, the resulting prediction yrp can be written
in the same general form as (1). The invariance of CART-style trees to feature scaling
presents an additional benefit here, as somewhat less precision is needed in generating the
additional noise features for the augmented bagging procedure. We stress, however, that
our findings to come are not tree-based and in particular, that the regularization effect
offered via augmenting with noise features should be seen ultimately as a by-product of
model averaging rather than the specific kinds of base learners that are utilized.

3. Simulations and Real Data Examples

We now present a number of simulation studies to demonstrate the effectiveness of the
AugBagg procedure in practice. To begin, we consider a standard linear model of the
form Y = X 5+ e with n X p design matrix, the rows of which are i.i.d. multivariate normal
Np(0,%) where ¥ € R™ P has entry (i, j) = pl"=7! with p = 0.35. The form of this covariance
corresponds to that utilized frequently in the recent work by Mentch and Zhou (2020) and
to the ‘beta-type 2’ setup utilized in Hastie et al. (2020). The original data includes n = 100
observations, p = 5 original signal features with 5y = --- = 5 = 1, and ¢ additional i.i.d.
noise features sampled from A (0, 1) independent of X are then added with ¢ ranging from 1
to 250. As in Mentch and Zhou (2020) and Hastie et al. (2020), the noise term e is sampled
from N(0,02) with o2 chosen to satisfy a particular signal-to-noise ratio (SNR), given in
this context by 37¥3/a2.

Figure 1 shows the performance of the AugBagg procedure where bagging is performed
with unpruned trees utilizing both the original p signal features as well as the ¢ additional
noise features. Horizontal lines in the background of each plot correspond to random forests
at different levels of mtry built using only the original p = 5 features. Each plot corresponds
to a different SNR (0.01, 0.05, 0.09, or 0.14) and shows the relative test error, defined as the
test MSE calculated on an independent, randomly generated test set of 1000 observations,
scaled by 2. Each point in each plot corresponds to the error averaged over 500 iterations
with error bars showing +1 standard deviation. Note that in each case, the random forest
error grows as mtry increases and so in particular, bagging on only the original 5 features
(i.e. a random forest with mtry = 5) is the worst-performing model. At the lowest SNR of
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Figure 1: Performance of Augmented Bagging as ¢ additional independent noise features
are added to the model as compared with random forests and traditional bagging
(mtry = 5) built on the original data. Each point in each plot corresponds to the
average error after repeating the experiment 500 times with error bars showing

+1 standard deviation.

0.01, however, augmented bagging appears to continually improve with g, easily surpassing
even the best random forest once approximately ¢ = 25 additional noise features are added
into the model. Thus, the act of simply adding additional noise features into the model
transforms the least accurate model (bagging, or, a random forest with mtry = 5) into one
better than the best model built on the original data (a random forest with mtry = 1). The
results are similar, though less dramatic, when the SNR is increased to 0.05. When the
SNR is increased to 0.09, the performance of AugBagg appears to level-off around g = 50,
never achieving that of the optimal random forest with mtry = 1. Finally, when the SNR
is 0.14, the additional noise features appear to help until approximately ¢ = 50, after which
point the performance begins to deteriorate.
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Figure 2: Performance of AugBagg compared against random forests as additional noise

variables are added to the model. Different colored lines in each plot correspond to
different correlation strengths between the original and noisy additional features.
Each black horizontal dashed line in each plot corresponds to the performance of
a random forest model built on the original data (without extra noise features)

at a fixed value of mtry.
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The results in Figure 2 expand these simulations. The data and model setup remain the
same but the results are explored over a wider range of 8 SNRs, starting at 0.01 and then
ranging from 0.05 to 2.07, equally spaced on the log scale. With the exception of the lowest
SNR of 0.01, the remaining sequence of SNRs is the same as was recently employed by
Hastie et al. (2020) and correspond to a proportion of variance explained (PVE), defined as
SNR/(1+SNR), of 0.01 on the low end (SNR=0.01) and 0.67 on the high end (SNR=2.07).
In addition to the additional noise features sampled independently of X, here we consider
the addition of noisy features that are correlated with one of the first 5 signal features. In
a similar fashion to knockoffs (Barber et al., 2015; Candes et al., 2018), such noise features
are thus independent of the response Y given X. To generate such features, we first select
an original feature X at random and generate a standard normal Z ~ N(0,1). For a given
level of correlation r, each of the additional g features then take the form

N=rX++V1-1r2Z. (3)

In each of the plots in Figure 2 we consider correlations of » = 0,0.2,0.7, and 0.99 for
batches of additional features ranging in size from 1 to 250. Performance is measured in the
same fashion and estimates are averaged over 500 replications for each point in each plot. In
the following discussion, we will use the shorthand AB(q,r) to denote an AugBagg model
with ¢ additional noise features, each of which has correlation r with one of the features in
the original dataset.

Figure 2 presents a very interesting and telling story in terms of how the additional
noise features are influencing performance and how that influence changes across different
SNR levels. Looking only at Figure 1 where the noise features are independent of both the
response and the original features, one might suspect that this phenomenon occurs only
at very low SNRs. Looking at Figure 2 however, we see that when the noise features are
correlated with the original features, improvements in model accuracy are seen even at
relatively high SNRs.

At the lowest SNRs of 0.01 and 0.05, we see that in every case, the AugBagg models
are improving with the number of extra noise features q. Once ¢ > 50, all AugBagg models
begin to outperform even the best random forest, with the exception of AB(q,0.99) where
very highly correlated noise features are added. At SNR = 0.09, much the same story is
present but now only AB(q,0.7) outperforms the optimal random forest and again this
transition happens around ¢ = 50. At SNR = 0.14 we begin to see an interesting shift
where the performance of the independent noise model AB(q,0) begins to deteriorate with
q. When the SNR grows to 0.42 and 0.71, this effect is much more pronounced with AB(q,0)
and AB(q,0.2) both deteriorating with g. At the largest SNRs of 1.22 and 2.07, AB(q,0.99)
is now the only model not deteriorating substantially with q.

3.1 Experiments on Real World Data

The previous simulations demonstrate that the AugBagg procedure can lead to substantial
gains in accuracy over the baseline bagging procedure on synthetic datasets. Following a
very similar setup to Mentch and Zhou (2020), we now investigate its performance on a
variety of real-world datasets. Data summaries are provided in Table 1; a total of nine
low-dimensional (p < n) and five high-dimensional (p > n) datasets are included.
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Figure 3: Relative test error (RTE) on real datasets with additional noise added onto the
response. Left: low-dimensional datasets. Right: high-dimensional datasets.

In implementing the AugBagg procedure, we consider tuning both the number of ad-
ditional noise features ¢ as well as the level of correlation r. Since different datasets have
different numbers of original features, ¢ is tuned over p/2, p, 3p/2 and 2p. The correlation
strength r is tuned over 0, 0.1, 0.4, 0.7 and 0.9. In datasets with mixed feature types, each
additional noise feature is chosen to be correlated with one randomly selected continuous
feature from the original data. As in Mentch and Zhou (2020), because the true SNR of
real-world data is unknown, we inject further noise of the form ¢ ~ N(0,02) into the re-
sponse in order to observe trends in changes in model performance when the amount of noise
grows larger relative to that in the original data. The variance of the noise o2 is chosen as
some proportion of 65, the estimated variance of the original response Y. Performance is
measured in terms of relative test error (RTE), defined as

Er\r(bagging) - E?“\T‘(AugBag)

)
Ty

RTE = x 100% (4)

with positive values indicating superior performance by AugBagg. Here Err is obtained
via 10-fold cross validation.

Results are shown in Figure 3. In every case, the performance of the tuned AugBagg
procedure increases as more noise is added to the response, as demonstrated by the positive
slope displayed for each dataset. In 12 of the 14 datasets, AugBagg quickly begins to
outperform bagging on the original data with substantial improvements occurring as more
noise is injected. Furthermore, it is interesting to note that in the two cases where traditional
bagging remains superior, both datasets (AquaticTox and mtp2) are high-dimensional and,
in fact, contain the largest number of original features out of all datasets considered (p = 468
and 1142, respectively). In these cases, it is quite possible that many of the original features
are themselves noisy and thus the additions we make are of no further benefit. Indeed,
an optimally tuned lasso model built on the AquaticTox and mtp2 datasets selects only
(approximately) 17% and 4% of the features, respectively.
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Dataset P n

Abalone Age [abalone] Waugh (1995) 8 4177
Bike Sharing [bike| Fanaee-T and Gama (2014) 11 731
Bioston Housing [boston] Harrison Jr and Rubinfeld (1978) 13 506
Concrete Compressive Strength [concrete] Yeh (1998) 8 1030
CPU Performance [cpu] Ein-Dor and Feldmesser (1987) 7 209
Conventional and Social Movie [csm] Ahmed et al. (2015) 10 187
Facebook Metrics [£b] Moro et al. (2016) 7 499
Servo System [servo] Quinlan (1993) 4 167
Solar Flare [solar] Li et al. (2000) 10 1066
Aquatic Toxicity [AquaticTox] He and Jurs (2005) 468 322

Molecular Descriptor Influencing Melting Point [mtp2] Bergstrom et al. (2003) 1142 274
Weighted Holistic Invariant Molecular Descriptor [pah] Todeschini et al. (1995) 112 80
Adrenergic Blocking Potencies [phen] Cammarata (1972) 110 22
PDGFR Inhibitor [pdgfr] Guha and Jurs (2004) 320 79

Table 1: Summary of datasets utilized.

4. Theoretical Motivation and Analogous Results

In the following three subsections, we draw upon recent results on interpolation and implicit
regularization in order to provide some theoretical motivation for the practical success of
the AugBagg procedure.

4.1 Randomization as Regularization

In very recent work, Mentch and Zhou (2020) argue that the success of random forests is due
in large part to a kind of implicit regularization offered by the mtry parameter governing
the number of features available for splitting at each node. The authors demonstrate that
the lower the signal-to-noise ratio (SNR) of the data, the smaller the optimal value of
mtry. Moreover, the authors demonstrate that this behavior is not tree-specific, but holds
for any ensemble consisting of forward-selection-style base learners in which the available
features are randomly restricted at each step. Specifically, the authors consider a type of
randomized forward selection (RandFS) that proceeds in the same fashion as a standard
linear model forward selection process, but where only a randomly selected subset of the
remaining features are eligible to be added to the model at each step.

Given data of the form described above, consider a generic regression relationship of the
form Y = f(X) + € and consider an estimate frrs formed by averaging over B individual
RandF'S models fRFS’l, . fRFS’ B. BEach of the individual RandFS models can be written
as

B = B0+ XA+ X3
where X ((jb)) is the feature selected at the j* step in the b** model and B@ is the corre-
sponding coeflicient estimate. Given an orthogonal design matrix, the authors note that for
any given feature X, the corresponding coefficient estimate in each model is either 0 if X;
is not included in the model or it equals the ordinary least squares estimate Bj,o Ls if Xj is
selected. Averaging across B models of this form thus yields a term in the final model of
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the form ~; - ij s where 7; corresponds to the proportion of individual RandFS models
in which X; was included.

In this sense, the ensemblized RandF'S procedure can be seen as producing shrinkage
and the amount of shrinkage 7, on each feature depends on both the probability that the
feature is made eligible and the probability that the feature is actually selected if made
available. While the latter probability depends on the particular modeling technique and
loss function employed, the probability of being made eligible is a direct function of only
mtry.

But the previous statement is only valid under the typical “fixed p” setup where the
dimensionality of the feature space is assumed fixed. Suppose instead that mtry is held
fixed and that the procedure is repeated on an augmented feature space where more noise
variables are added. Then under the same setup as above, it’s clear that 7; decreases as a
function of the number of extra noise features ¢ since each original feature will thus have a
lower probability of being made eligible. However, even for large values of mtry, we argue
further that the probability of being selected once eligible also decreases as ¢ increases and
that such a decrease can be particularly dramatic for features only weakly related to the
response. Indeed, given an original feature X, not perfectly correlated with the response Y’
in this linear model setting, if we generate additional independent random noise features,
eventually some will appear more correlated with Y just by random chance and the weaker
the correlation between X; and Y, the fewer the number of noise features we would expect
to need to generate in order to see this. Put simply, as more noise features are added to the
model, the probability that some of those new features will appear at least as important
as X; grows with ¢. Thus, even for large values of mtry where the procedure begins to
resemble that of bagging, the augmented version of the procedure may produce a similar
kind of regularization and shrinkage to that offered by traditional random forests.

4.2 AugBagg and OLS Ensembles

While the recent work of Mentch and Zhou (2020) utilized linear model forward selection
settings in order to better illustrate the regularization effect of random forests, in work ap-
pearing around the same time, LeJeune et al. (2020) provided an in-depth analysis focused
on ensembles where each base learner is simply a linear model constructed on a subsample
of features and observations with coefficients estimated via ordinary least squares. As in
Mentch and Zhou (2020), the authors observe that feature subsampling at the base-learner
stage produces a regularization effect, concluding that for optimally-tuned subsampling
rates, the asymptotic risk of the OLS ensemble is equal to the asymptotic risk of ridge re-
gression, an explicit regularization procedure. Here we review the setup utilized in LeJeune
et al. (2020) and demonstrate that the same procedure applied to an augmented design is
equivalent to one in which more shrinkage is applied to the original data.
Assume now that we have data of the form Z, ..., Z,, where each Z; = (X;,Y;) and

Vi=XB+¢

where Y; € R denotes the response, the features X; € RP are drawn i.i.d. from N,(0px1, ),
and the ¢; are i.i.d. with mean 0 and variance o2 and are independent of X

To build OLS ensembles, we draw B submatrices by applying row subsampling to the
observations and column subsampling on X = [X,...,X,]". Let Sy and T, denote the

10
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sets of column and row indices, respectively, selected in the b model, while S; and Tj,
denote the subsampling matrices obtained by selecting the the columns from I, and I,
corresponding to the indices in S, and Tj. Let S and T denote the entire collections of all
possible S, and Ty, respectively. For each base learner, the OLS minimum-norm estimator
is given by

B = 8, (TyX Sy) " Y

where (-) denotes the Moore-Penrose pseudoinverse, so that the estimated coefficients of
the ensemble are thus given by

Sy}

1

pens = 5 > 8, (T;XS,) " LY.

b=1
The risk of Bens

R(B™) = Eq [(m, 8- Bemﬂ = (8- B, 3(8 - )

is defined as the expected squared error at an independent point @, where the (-, -) notation
denotes the Frobenius inner product. LeJeune et al. (2020) then employ the following
assumptions to allow for a more precise evaluation of the risk.

Assumption 1 (Finite Subsampling) The subsets in the collections S and T are selected
at random such that |Sy| < |Tp| — 1 and that the following hold:

1. Pr(jGSb):%for all j € p] ={1,2,...,p}

2. PrimeTy) = E—“ for all m € [n]

3. The subsets S1,S52,...,58,11,...,Ts are conditionally independent given the row sub-
sample sizes (|Ty|)B_,.

Assumption 2 (Asymptotic Subsampling) For some a,n € [0,1], the subsets in the col-
lections S and T are selected randomly such |Sy|/p 2% a as p — oo and |Ty| /n 2% 0 as
n — oo for all b € [B].

Furthermore, it is assumed that ¥ = I, that ||3]|2 = 1, and that p/n — v with n > oy
as n,p — oo.

Under these assumptions, conditional on the subset sizes, the expected risk of the bias
and variance over X, S and T converge almost surely as follows:

Ex.s1 [biaS(Bens)} pren, B 21 <(1 - 0‘)2> - 5 (n(l_a)>

a.s. B 1— a2y B\ n—ay
1— 2
Booo, Bias(a,7y) := (d-a)
1—a?y
- B—1 /[ c%a®y 1 [ c?ay
E |: ens i| pn—o0 =
X,S,T Va‘r(/B ) a.s. B 1 _042,_}/ + B n_af)/
2 2
B—oo g oy
—V =
ar(OéJ’Y) 1 _ 0[2,}/

11
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Thus, for an OLS ensemble built with subsamples drawn such that |Sy| = |ap]| and |T}| =
|mn| with p/n — ~ and ensemble size B — oo, Ex 57 [bias(ﬁe’”)} and Ex s 1 [var(Be"S)
will converge almost surely to Bias(a,~) and Var(a,~y) respectively. Notice that for fixed
v, Bias(a,7y) is decreasing in « while Var(a,y) is increasing in .

Now suppose that the same kind of subsampled OLS ensemble is constructed on an
augmented feature space where X is augmented with N = [Ny,...,N,]" € R"*? and
where the IN; are drawn i.i.d. from Ng(0Oyx1,1q). Let Sy and T denote the subsampling
indices on the ' model constructed on this augmented design [X N] and suppose that the
subsampling sizes remain the same as in the OLS ensemble constructed on the original data
so that |S}| = |Sp| and |T;| = |Tp|. Furthermore, suppose that the number of additional
features ¢ — oo as p — oo such that 1% — 0 for some constant § > 0. Under these
assumptions,

|Sb| a
p+q 1+46
+

andso Ex s 7 [bias(ﬁens)} and Ex s 7 [var(ﬁens)} converge to Bias(a*,~v*) and Var(a*,v*),
respectively. More specifically,

Var(a* 7*) B 0'2&*2’7* B 02042’)/

Cl—a*?yr 1460 -—aZy

is decreasing with 6 > 0, so Var(a*,v*) < Var(a,~). Similarly, under the assumption that
n> ay,
(1—a*)? (14+6—a)?

B. * * — —
tas(a®,y") = 7 a2y (14 60)2 — (1+0)ay

is increasing with 6 > 0, so Bias(a*,v*) > Bias(a,~). Thus, constructing an OLS ensemble
on an augmented design leads to a more regularized estimator with increased bias and
decreased variance — the same effect as would be found by constructing the ensemble on the
original design with the same 1 but a smaller subsampling rate.

4.3 Implicit Regularization and Ridge Regression

In addition to the work described above, an intriguing collection of work has emerged in
recent years on the so-called “double-descent” phenomenon coined by Belkin et al. (2019),
whereby the generalizability error of models may sometimes continue to improve beyond
the point of interpolation where training error vanishes. Hastie et al. (2019) followed up
this work with an impressive and thorough analysis on the behavior of minimum norm
interpolation for high-dimensional least squares estimators. While this work focused on the
“ridgeless” setting, interesting related results have also been established for ridge and kernel
ridge regression. Kobak et al. (2020) showed that for a standard ridge estimator of the form

Br=(X'X + )XY
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the optimal penalty A can be 0 or negative even when p > n. In particular, this may
happen when the majority of signal comes from a small subset of high-variance features due
to an implicit regularization effect offered by a larger collection of relatively low-variance
noise features. In very recent work, Jacot et al. (2020) consider ridge estimators acting
on a (possibly larger) transformed feature space consisting of Gaussian random features
and show that such an estimator with ridge penalty A is close to a kernel ridge regression
estimator with effective penalty A\ where A > A. d’Ascoli et al. (2020) consider a similar
random feature setup in investigating the double descent behavior of neural networks and
provide a thorough review of much of the recent work on interpolation where we would refer
interested readers.

In motivating the AugBagg procedure proposed above, we turn to a key result from
Kobak et al. (2020). As above, assume we have (original) training data of the form (X,Y)
where y = '3 + € and let BA denote the ridge estimator of 8 € RP. Now consider a new
estimator Bq formed by performing minimum norm least squares and taking only the first
p elements after augmenting X with ¢ additional i.i.d. noise features, each with mean 0
and variance A/q. The theorem below shows that augmenting the original design with
low-variance noise features produces an equivalent regularization effect to ridge regression.

Theorem 1 [Kobak et al. (2020)] Under the setup described above,
Bq i ” /B)\-
q—o0

Furthermore, for any x, let g\ = .’E’B,\ denote the ridge prediction and let §aug be the
prediction generated by the augmented model that includes the additional ¢ parameters using
x extended with q random elements generated in the same fashion. Then

~ a.s.
YAug > Yx-
q—o0

Kobak et al. (2020) go on to note that a direct but surprising consequence of this result
is that “adding random predictors with some fired small variance could in principle be used
as an arguably bizarre but viable reqularization strategy similar to ridge regression.” Further-
more, the final statement in Theorem 1 implies that the expected MSE of the augmented
model (i.e. the non-truncated model that includes the ¢ additional noise features) converges
to the MSE of the ridge estimator as ¢ — co. In particular, note that when the optimal A
is non-zero, the augmented model with noise features generated according to the procedure
outlined above will outperform the model that utilizes only the original data.

Figure 4 gives a demonstration of this surprising result. Here we utilize the same linear
model setup described in previous sections with n = 100 observations, p = 75 features, the
first s = 5 of which are signal with a coeflicient equal to 1. For each SNR, we begin by
generating 100 independent datasets and perform cross-validation on each to obtain 100
estimates of the optimal value of A; the final estimate j\opt is taken as the median across
these. Then, for each combination of SNR and ¢, we generate an independent training set
where the ¢ additional noise features are sampled i.i.d. from N (0, Agpt/g). The minimum-
norm OLS estimator is then calculated via the singular value decomposition and the relative
test error is recorded on an independent test set with 100 observations. The entire process
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Augmented Linear Model
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Figure 4: Performance of augmented linear model across different SNRs as increasingly
many noise features are added to the model.

is repeated 100 times and the average relative test error is shown in Figure 4. In each case,
we see clearly that the model error decreases as more noise features are added into the
model.

Suppose now that we build ensembles of estimators of the kind in Theorem 1 by drawing
B subsamples, constructing the estimators on each subsample, and averaging. Similar to
the setup used above in LeJeune et al. (2020), let T; C [n] be the set of indices of selected
observations in the b*" subsample and let T}, be the n x |Tj| matrix obtained by selecting
columns from I, corresponding to the indices in 7. Construct Béb) as above based on T, X
and T}Y, which denote the design matrix and response, respectively, corresponding to the
observations selected in b*"* subsample. The final ensemble coefficient estimate formed by
averaging the augmented minimum norm estimators is given by

B

~ 1 ~
/Bens — E Z IB(gb)

where, by Theorem 1,

with
A = (X'TT{X + ML) ' X' Ty TLY.

Now consider an orthogonal setting where X X’ = I,, and let 7 denote the subsampling
rate so that |T,|/n — n € (0,1]. Let C be a n x n diagonal matrix where Cj; is the number
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of times that the i*" observation appears in the B subsamples and let Ag = LA=n > )
Using the Woodbury matrix identity, a ridge estimator with penalty A can be rewritten as

N 1
=—X'Y,
=X
and
1&g 1 ZB
5ens q:io E E /Bg\b) p— E (X/TbT(:X + )\Ip)il_X/Tle:Y
b=1 b=1
B
1 —1 —1 / ! / /
=3 Y (AT, - A+ )T X T X)X T TY

Thus, in this simple case, an ensemble of minimum-norm least squares estimators con-
structed on an augmented design produces an estimate equivalent to one produced via ridge
regression on the original design. Furthermore, the shrinkage produced by the ensemble is
stronger than that of each individual base model.

On a final note, we stress that the purpose of producing this result is not to advocate
for this kind of augmented bagging over ridge regression. Indeed, given the equivalence just
described paired with the fact that ridge regression is both well-established and naturally
motivated, it’s difficult to imagine practical settings in which augmented bagging would
offer any distinct advantage. Rather, we offer the above results primarily to make explicit
the shrinkage that is produced by augmented bagging — a fact that has crucial implications
for measuring and testing variable importance.

5. Implications for Variable Importance

Within any kind of black-box supervised learning framework, establishing a valid means
of measuring the importance of features is of utmost importance. Indeed, in such non-
parametric regimes where model fit and behavior remain largely hidden from view, under-
standing how features contribute information to the prediction is paramount for scientists
and practitioners. In the context of bagging and random forests specifically, Breiman’s
original out-of-bagg (oob) (Breiman, 2001) importance scores are one such popular mea-
sure, though many issues such as a preference for correlated features and those with many
categories have been noted in the years following their introduction (Strobl et al., 2007;
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Algorithm 1 Random Forest Permutation Test (Coleman et al., 2022)
Require: Original training set D,,, test set Diest, number of permutations P
Create alternative data D},
Build ensemble RF' with D,, and predict at Diegt
Build ensemble RF™* with D} and predict at Dyest
Compute difference in errors dy = MSE(RF*) — MSE(RF)
for :in1: P do
Randomly shuffle base models between ensembles to form RF; and RF}
Compute permuted difference in errors d; = MSE(RF}) — MSE(RF;)

Calculate p-value p = %H 1+ Zil I(dy > d;)

Nicodemus et al., 2010; Tolosi and Lengauer, 2011). As a result, various formal hypothesis
testing procedures have recently been developed to more accurately assess the importance
of features in such ensembles. Unfortunately, as demonstrated in the following subsection,
even these more rigorous tests are sometimes vulnerable to highly misleading results due to
the potentially beneficial effects of noisy features described in the previous sections.

5.1 Hypothesis Tests for Importance

Recently, Mentch and Hooker (2016) proposed a formal hypothesis testing procedure for
measuring feature importance in random forests. Given a generic relationship of the form
y = f(x) + €, the authors consider partitioning the original set of features X into two
groups, X and Xiest, where the latter group contains the features of interest so that a null
hypothesis of the form

Hy : g(Xo, Xtest) = go(Xo) (5)

may be rejected whenever the features in Xiest make a significant contribution to predicting
the response. Under strict assumptions and conditions, the functions g and gy may be
replaced by the (true) regression functions f and fy, though in general they are taken to
represent the true mean predictions generated by the respective forests. The particular form
of these hypotheses relates to the idea of intrinsic vs extrinsic testing discussed at length
in Section 5.2. The authors propose to evaluate the hypothesis in (5) by constructing two
separate random forest models: one constructed on the original data and one constructed
on an altered dataset where the features in Xt are either substituted for randomized
replacements independent of the response or dropped from the model entirely. Predictions
from each forest are then computed at a number of test points and the differences are
combined to form an appropriate test statistic. Coleman et al. (2022) recently proposed a
permutation-based alternative to this test. Here again, two forests are constructed in the
same fashion as just described, but trees are then randomly permuted across forests and the
new difference in accuracy between forests is recorded. That process is then repeated many
times to form the null distribution of accuracy differences to which the original difference
in accuracy can be compared. An outline of this test is given in Algorithm 1. Note that
this nonparametric test avoids the need for explicit variance calculation and as a result is
far more computationally efficient and scalable. Also note that these tests are carried out
below in the context of subsampled bagging (i.e. with non-random trees), though this can
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be seen as merely a special case of random forests with the mtry value set equal to the total
number of features available.

Crucially, these tests ultimately rely on measuring the difference between either raw
predictions or predictive accuracy between two tree-based ensembles constructed on different
training sets. Both papers advocate for replacing the features under investigation with
randomized alternatives, noting that the tests can potentially produce spurious results when
features are instead dropped from the second model, though neither provides a detailed
explanation as to why this occurs. Elsewhere in the literature, alternative tests specifically
propose to evaluate feature importance by measuring the drop in performance when the
features in question are removed from the model. Such is the case, for example, with the
Leave-Out-Covariates (LOCO) measure proposed by Lei et al. (2018) in the context of
conformal inference and most recently in the tests proposed by Williamson et al. (2021).
Furthermore, though often done informally, it remains common throughout the broader
scientific literature for authors to argue for the importance of particular variables based on
decreases in model performance when such variables are excluded.

The results presented in the sections above present a substantial concern with such
measures. In particular, if model performance can be improved simply by adding randomly
generated features that are (at least conditionally) independent of the response, then ob-
serving a significant improvement in accuracy when a particular set of features is included
does not imply that any relationship to the response or even the other covariates need exist.

To emphasize this point, we implement the test for variable importance recently devel-
oped in Coleman et al. (2022) and investigate its behavior under simulated settings. We
utilize the same linear model setup as in previous sections with p = 5 original signal features
sampled from N,(0, X) with X;; = pl=il and p = 0.35 and consider adding ¢ additional noise
features to test for importance. These noise features are either independent of the origi-
nal five features or are correlated with a randomly selected signal feature with correlation
strength 7. Thus, relative to the sort of generic null hypothesis specified in (5), our default
set of features consist of the original signals so that Xo = (Xj,..., X5) and the features
under investigation are those additional noise features being added, Xiest = (IV1, ..., Ng).
As done previously, the error in the model is adjusted to produce a pre-specified SNR.

To carry out the procedure in Coleman et al. (2022), for each test, we create a training
set D,, with n = 500 observations and a test set Dp.s with 1000 observations. Let X
denote the original n x (p 4 ¢) design matrix and X* denote the design matrix where the
g noise features of interest are either dropped or replaced with a random substitute. Thus,
for “drop tests”, X* will be of dimension n x p whereas for “replacement tests”, X™* will
be of dimension n X (p+ ¢). We construct two decision tree ensembles, each with 100 trees.
Each tree in the first ensemble is built on a subsample of size 100 from the original training
data (Y, X); each tree in the second ensemble is built on a subsample of size 100 from the
modified data (Y, X*). Each ensemble here is thus constructed via subbagging, though trees
are still non-random built to full depth. After recording the original error difference between
the two ensembles, trees are randomly shuffled between ensembles a total of 1000 times and
each time this new permuted error difference is recorded to form the null distribution.
The null hypothesis that the ¢ noise features are not important is rejected whenever the
original error difference lies in the upper quantile of the null distribution of permuted error
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Figure 5: Probability of rejecting the null hypothesis and concluding an additional indepen-
dent set of noise features are important when dropping the features in question
(left column) vs replacing the features in question (right column) when those
features are independent (top row) vs correlated (bottom row).

differences. This entire procedure is then repeated 500 times to form empirical rejection
probabilities.

Figure 5 shows the probability of rejecting Hp and concluding the additional noise
features are important across various SNRs and numbers of additional features when those
features are either dropped or replaced by null substitutes. For these as well as each of
the tests deployed below, we set the nominal level to the standard o = 0.05 so that if the
tests are performing as intuitively expected, we should only see the null hypothesis to be
rejected (indicating that the noise features are significant) about 5% of the time. However,
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Figure 6: Probability of rejecting the null hypothesis using replacement tests where corre-
lated features are replaced with independent features (left) and where independent
features are replaced with correlated features (right).

it is readily apparent that for the drop tests (Figure 5 Left Column), rejections routinely
happen well over 5% of the time. This is particularly evident at low SNRs when many
additional noise features correlated with the original five features are added where we see
(Figure 5 Bottom Left) rejection rates surpassing even 50%.

In previous work both in Mentch and Hooker (2016) and Coleman et al. (2022), the
authors claim that the testing procedures developed within are more robust whenever the
features under investigation are replaced by randomly generated substitutes rather than
being dropped from the model entirely. And indeed, from the right column of Figure 5
it is readily observed that regardless of the SNR or the dependence structure of the noise
features on the original features, these replacement tests appear to be far better behaved.
Note that these rejection rates do lie very slightly above the nominal rate of 5%, however.
This is because the tests developed in Coleman et al. (2022) are valid only asymptotically
and in particular, rely on a notion of asymptotic independence between the base models (in
this case, trees), which can be achieved asymptotically by subsampling at sufficiently slow
rates.

Unfortunately, carrying out accurate replacement-style tests in practice is easier said
than done. In the plots shown in the right-hand column of Figure 5, the replacement noise
features are sampled from exactly the same distribution as the original noise features being
tested for importance. In practice, of course, the distribution of the features in question is
unknown. Figure 6 compares the performance of these replacement tests whenever noise
features of one kind are replaced by noise features of another kind. On the left, the original
noise features are randomly correlated with an original signal feature at » = 0.7 and these
features are replaced with independent noise features. Here we again notice quite a troubling
trend: the test has a very high probability of rejecting across all but the lowest SNRs
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and this probability appears to increase with q. Perhaps even worse is the fact that the
rejection probabilities appear to be increasing at a faster rate at higher SNRs. Thus, even
in “good data” settings, it appears that such tests are very likely to cause correlated noise
features to appear important whenever testing against the performance of a model using only
independent noise (or, for example, permutations of the original features) as a substitute.
While this setting is likely most representative of what might often happen in practice,
for completeness, we also consider the opposite setting in the plot on the right of Figure 6
where independent noise features are replaced with ones correlated with a randomly selected
feature in Xy. Here again we see the same kind of troubling results. These results highlight
the potential issues with replacing features by randomized replacements from a different
distribution and thus might suggest some promise for procedures involving knockoff variables
(Barber et al., 2015; Candes et al., 2018) that explicitly attempt to generate randomized
replacements from the same distribution as the original copies. Indeed, recent work by
Hooker et al. (2021) suggests such approaches can sometimes offer a drastic improvement,
even in low SNR settings.

5.2 Intrinsic vs Extrinsic Testing

Though troubling, these results above should not be at all surprising given the empirical
results in Section 3 that showed strong evidence of improved performance when additional
noise features are added to the model. These tests simply make clear that such improve-
ments are routinely large enough to register statistical significance. We caution readers
from drawing too much from the particular rejection probabilities shown in the left column
of Figure 5. These empirical results should in no way be seen as guidelines for how often
or under what settings such tests will produce inflated rejection proportions. Rather, the
amount by which these kinds of tests inflate the anticipated rejection proportion will de-
pend entirely on the relationships within the data as well as the power of the particular
testing procedure employed. Indeed, similar testing procedures with higher power could
potentially reject even more often than shown in Figure 5 for the same datasets. By the
same reasoning, ensembles consisting of base learners other than trees may also reject more
or less often.

The tests carried out above from Coleman et al. (2022) are what a recent work by
Williamson et al. (2021) referred to as extrinsic tests in that the results are model-specific.
Formally, when MSE is the measure of error employed, the hypotheses in Coleman et al.
(2022) can be written as

Hy : B(MSERp(Diest)) = E(MSERp+ (Diest)) (6)

Hl : E(MSERF(Dtest)) < E(MSERF* (Dtest))
where the test set Diest is assumed fixed and the expectation is taken across the training
data and any additional randomness involved with the construction of the base learners. By
contrast, Williamson et al. (2021) recently put worth a framework for testing intrinsic or
population-level (model-agnostic) notions of variable importance. In particular, the authors
consider defining the importance of a collection of features S as the amount of oracle
predictiveness lost when those features are excluded. While the framework is flexible enough
so as to allow for various forms of importance measures, in our context here, the most natural
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corresponding hypotheses for this kind of intrinsic test can be written as
Ho: E(Y — E(Y|X))* = B(Y - E(Y|X_s))

H :E(YY -EY|X))?<EY - E(Y|X_s))* (7)

Comparing the hypotheses in (6) to those in (7), one may wonder why we applied the
extrinsic tests in Coleman et al. (2022) rather than the intrinsic tests in Williamson et al.
(2021). Indeed, given that the extrinsic tests reject so often, the intrinsic alternative may
appear to be the natural solution and even the more direct way of addressing the question
really of interest in most practical settings. Unfortunately, while this may be true in theory,
valid application of such intrinsic testing procedures requires several strong assumptions,
including, for example, that the estimators converge to the true conditional expectations at
a rate of n~1/4. This is, of course, difficult to guarantee for flexible learning procedures like
the bagging and random forest procedures that we employ here consisting of CART-style
trees as base learners.

Appendix A contains more detail on the mechanics of how the intrinsic tests in Williamson
et al. (2021) can be carried out. We also demonstrate that in this case, nearly identical
steps can be taken to produce an analogous extrinsic test. Note from the plots in Appendix
A that this extrinsic analogue of the test in Williamson et al. (2021) produces results very
qualitatively similar to those in Section 5.1 that utilize the extrinsic test in Coleman et al.
(2022).

The fact that extrinsic tests exist that can be carried out in nearly identical fashion to
those of analogous intrinsic tests highlights the slipperiness of this issue. Indeed, put simply,
it would seem that the primary difference between intrinsic and extrinsic tests largely boils
down to the assumptions one is willing to make. Practitioners should thus take extreme
care in considering the necessary assumptions before claiming to have conducted a valid
intrinsic test. Likewise, readers should always regard claims that a valid intrinsic test was
carried out with guarded skepticism and an eye toward whether the necessary assumptions
are truly met in the context at hand. Suppose, for example, that one carries out a particular
test and finds a significant result; that is, the test rejects the null hypothesis and therefore
suggests that a particular collection of features is important. If the test was a valid intrinsic
test where all necessary assumptions are met, then one can conclude that there is evidence
that those features really do hold unique predictive power for the response not contained
in the other features. On the other hand, if those assumptions are not met, the test should
therefore be seen as only an extrinsic test and thus, just as we have seen throughout this
paper, it is possible that those features may be improving the predictive accuracy of the
model and yet may be totally or at least conditionally independent of the response.

Finally, we close this section with a brief discussion on the role of model selection and
tuning. In developing their framework for intrinsic testing, Williamson et al. (2021) note the
importance of considering a sufficiently rich class of predictive models and carefully tuning
across that model class in order to find the optimal predictive model before one should
consider moving forward with formal inference. On this point we certainly agree. Indeed,
our overarching point in this paper was to show that the predictive accuracy of some su-
pervised learning models could be improved by merely including additional irrelevant noise
features. While we focused primarily on bagging to demonstrate this point, it is likely that
these troubling effects would have been less severe had we, for example, considered an entire
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class of random forests and tuned across the mtry parameter and depth of trees. Indeed,
as noted in the sections above, the additional noise features here are simply serving as a
means of implicit regularization. If sufficient regularization can be accomplished via other
means (limiting tree depth or decreasing the mtry parameter), the additional noise features
may no longer be of additional benefit and may in fact start to degrade performance as
one would expect. (See recent work in Zhou and Mentch (2021) for a more detailed dis-
cussion on tuning random forests with respect to depth and mtry.) This highlights the
crucial importance of carefully tuning a random forest via some form of external or cross
validation before undertaking any kind of inference. On the other hand, we also want to
stress that tuning across a large class is not necessarily sufficient to guarantee the kind of
fast convergence needed for intrinsic testing. In recent work by Hastie et al. (2020), for
example, the authors repeatedly demonstrate that at low SNRs, best subset selection (in
which every possible linear model is constructed) performs quite poorly even when tuned
on a large external validation set.

5.3 Bad Tests or Bad Interpretations?

Given the results in Section 5.1, one may be tempted to conclude that procedures of this
style that assign relevance to features based on the improvement in predictive accuracy
seen when they are included are simply “bad” because the outcomes are “wrong” far too
often. Indeed, if rejecting the null hypothesis in a test of this sort is taken to mean that the
features in question are “important” and “important” is taken to mean that those features
possess some unique explanatory power for the response not captured by the other features
available, then certainly such tests would appear to be highly problematic as the rejection
rates in the above settings very often lie far above the nominal level of o = 0.05.

In our view, however, such an understanding is too naive. The demonstrations above
do not necessarily imply that anything is wrong with the tests themselves. Rejecting the
null hypotheses in such tests means only that there is evidence that the features in question
improve model performance when included. The simulations in Section 3, however, suggest
that even the inclusion of additional noise features can improve model performance, some-
times to a dramatic degree. As discussed in the previous subsection, while intrinsic tests
can theoretically overcome these model-specific defects, it’s difficult to say in general when
the necessary assumptions would be met in practical settings when flexible learning models
are being employed.

This situation highlights the crucial need for precise language in discussions of feature
importance. While “predictive improvement” intuitively feels like a natural proxy, it seems
quite unlikely that features independent of the response (at least conditionally) ought to
ever be considered “important” for most practical purposes. Certainly this is the case
whenever scientists argue that particular features must be collected in order to construct
the optimal predictive model or when arguing that features generated by a new piece of
technology can lead to further improved model performance over those that were previously
available.

In situations such as these, it seems that what is really being sought is not a measure of
how “important” certain features may be, but rather how “essential” they are. Even when
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additional variables improve model performance, we really seek to determine whether they
do so meaningfully or significantly more than randomized alternatives. Interested readers
are also invited to see a similar discussion on model class reliance appearing recently in
Fisher et al. (2019). Finally, as alluded to also in Williamson et al. (2021), practitioners
should always have in mind a notion of relevant effect size when conducting tests for impor-
tance such as these. While small upticks in predictive accuracy may sometimes be sufficient
to achieve statistical significance for certain features, in practice those improvements may
still not justify the cost of their collection and inclusion in the model.

6. Discussion

The work in the preceding sections introduced the idea of augmented bagging (AugBagg),
a simple procedure identical to traditional bagging except that additional noise features,
conditionally independent of the response, are first added to the feature space. Surpris-
ingly, we showed that this simple modification to bagging can lead to drastic improvements
in model performance, sometimes even outperforming well-established alternatives like an
optimally-tuned random forest. Performance gains appear most dramatic at low SNRs,
though the introduction of correlated noise features can continue to improve performance
even at higher SNRs. The fact that performance can sometimes be dramatically improved
by simply adding conditionally-independent features into the model has important implica-
tions for variable importance measures and especially in interpreting the results from tests
of variable importance.

On one hand, this work fits well within the rapidly expanding collection of work that
explores the potential benefits of excess noisy features. While some earlier papers experi-
mented with the presence of additional noise either added to or multiplied across the original
features prior to training (Bishop, 1995; Srivastava et al., 2014), a more popular recent trend
has been to analyze models built with random features generated from transforms of the
original predictors obtained, for example, via Gaussian Processes or the Random Fourier
Features model (see, e.g., Rahimi et al. (2007); Rudi and Rosasco (2017); Belkin et al.
(2019); Mei and Montanari (2019); Hastie et al. (2019); Jacot et al. (2020)). Much of this
recent work has focused on the idea of the “double descent”, demonstrating both empirically
and mathematically that purposeful over-parameterization — building models that contain
more (random) features than observations — can sometimes be beneficial.

On the other hand, we are not aware of other work specifically defining a procedure
by simply augmenting the original data with additional pure noise features to potentially
achieve superior predictive accuracy. The fact that models constructed on larger and noisier
feature collections are sometimes preferable would seem to run counter to much of traditional
statistical thinking. Countless procedures have been proposed in recent decades that assume
X = (XSignal, XNoise) and attempt to uncover the subset of signal features Xgjgna with a
minimal ‘false positive’ rate. Indeed, many may intuitively believe that the setting where
all available features are signal is something of a ‘gold standard’ for regression. While there
may be good inferential reasons why separating signal and noise is important, this work
suggests that such a task is unnecessary and perhaps even detrimental (at least for some
models) whenever predictive accuracy is the primary objective.
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Along those lines, though AugBagg may sometimes produce predictions substantially
more accurate than an alternative baseline like random forests, we stress that the proce-
dure should not be seen as replacing or superseding more efficient procedures like random
forests. As detailed in the introduction, random forests have a long documented history
of off-the-shelf success and depending on the size of the data at hand, may be much more
computationally feasible to implement in practice. Indeed, while random forests reduce the
number of features considered at each node, AugBagg, by construction, explicitly increases
this computational burden. Furthermore, while recent work by Mentch and Zhou (2020)
and Zhou and Mentch (2021) suggests tuning a random forests can sometimes improve per-
formance, at least moderate success can often be found at default values. In contrast, a
generic implementation of AugBagg involves tuning both the number of additional features
and their correlation with the original features and we are not able to offer default values
of these likely to be successful across a broad range of data settings.

Finally, we end by noting that all of the work above was considered within the context
of regression. In tree-based contexts, this simply means that predictions at both the tree
and ensemble level are formed by averaging. If one were to consider, for example, a classical
0-1 binary response setting in which these kinds of regression trees were still employed (so
as to produce estimates generally interpreted as probabilities), we expect the same kinds of
potential benefits of random noise features to be present. If, however, those probabilities are
then used to perform classification or one employs a majority vote rather than an average, it
is unclear to what extent those noise features may remain beneficial. We suspect that such
benefits may depend heavily upon the class imbalance in the original data as well as the
decision threshold(s) employed. We leave an in-depth study of these issues in classification
settings as an open area for potential future work.

24



AUGMENTED BAGGING

Acknowledgments

This research was supported in part by the University of Pittsburgh Center for Research
Computing through the resources provided. LM was partially supported by NSEF DMS-
2015400. We are also grateful to one anonymous reviewer for encouraging the extended
discussion on intrinsic vs extrinsic testing.

Appendix A. Intrinsic Testing and Extrinsic Analogues

In this appendix, we review the testing procedure developed in Williamson et al. (2021).
For readability, we begin by looking at the extrinsic analogue to the authors’ intrinsic test
and show that it produces test results similar to those seen in Section 5.1. We then go on
to discuss the updates necessary in order to consider that test intrinsic.

To begin, following the sample-splitting scheme introduced in Sec 3.4 of Williamson et al.
(2021), suppose that we have 3 independent datasets: a training set D,, of size n, a test set
Drest,1 of size n1 and another test set Dreg 2 of size ng, containing i.i.d. observations as
a generic random vector Z = (Y, X)) where X = (X1,..., Xp44) and the response ¥ € R.
For simplicity, we further assume that n; = no = n/. Let X* denote the modified random
vector where the last ¢ features (Xp41,...,Xp4q) in X are either dropped or replaced with
a random substitutes. Thus, as in the main text, for “drop tests”, X™* will be of length p
whereas for “replacement tests”, X™* will be of length p + q.

Let f and f* be the ensemble (bagged) estimates on the original data (Y, X) and on the
modified data (Y, X*), respectively. Let f = E(f) and f* = E(f*) where the expectation
is over the training set D,,. Define

MSE(f) = 3 (i f(X)

ieDTast,l

MSE(f*) = % > Y- (X))
1€Drest,2

T = MSE(f) — MSE(f*)

where MSE( f ) and MSE( f*) are independent since Dregss 1 and Drest 2 are independent.
By the central limit theorem,

V! (MSE(f) _E [(Y - f(X))QD Sy N (O,Var <<Y - f(X)>2>) :
oY (MSE(f*) _E [(Y - f*(X*))QD Sa N <O,Var ((Y - f*(X*))2>>
where the expectations are with respect to the corresponding test set. Let
A=E[(Y - f(X)?| -E|(v - f1(x))?, (8)
o2 — Var ((Y _ f(X)>2> + Var ((Y _ f*(X*))Q) . )
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Figure 7: Probability of rejecting the null hypothesis and concluding an additional indepen-
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A~ A~

Then by independence of MSE(f) and MSE(f*),
Vil (T — A) =4 N (0,07)
and o2 can be estimated with
6% = s + 53 (10)

where s2 and s3 are the empirical variances of (Y1 — f(X;))2, i € Drest,1 and (Yq — fH(X))?,
© € Drest,2, respectively. Here we want to classify the features of interest as important when-
ever the test MSE is larger in the second ensemble where those features are either dropped
or replaced, and thus the null and alternative hypotheses of interest are Hy : A = 0 and
Hy : A <0, respectively.

Figure 7 shows the results of applying this extrinsic tests under identical setups to those
described in Section 5.1. Note that the top two rows in Figure 7 correspond to the plots
in Figure 5 and the two plots in the bottom row of Figure 7 correspond to those in Figure
6. As noted above, the patterns here are qualitatively quite similar. In Figure 7, we see
that these rejection rates are not quite as large in the correlated case with the drop test
(middle row, left) compared with those in Figure 5 (bottom left). On the other hand, the
rates here are larger across a wider range of SNRs in the independent feature setting (top
row, left) as compared with those in Figure 5 (top left). Rejection rates in the replacement
tests do not appear to be inflated above the nominal level of 0.05 (Figure 7 top and middle
row, right), and as before, rejection rates are far above the nominal level when features are
replaced with those from a different distribution (Figure 7 bottom row).

We stress again that the test applied here is extrinsic, and thus it should come as no
surprise that these results are much in keeping with those seen in Section 5.1. To turn
this into an intrinsic test, we need to find the influence function to estimate the asymptotic
variance.

Let Py denote the population distribution of Z = (Y, X) and for simplicity, denote
Ep, = Eo. Suppose our measure of predictiveness is negative MSE so that we can define
V(f,Py) = —Eo(Y — f(X))? and we have population maximizers fo(X) = Eo(Y|X) :=
po(X) and fos(X) = Eo(Y[X_s) 1= po,s(X—s). ‘

Let . denote the degenerate distribution on {z}. Denote by V(f, Py; h) the Gateaux
derivative of P +— V(f, P) at P in the direction of h. By definition,

V{7, Posh) = lim ~[V(f, Po-+ 7h) ~ V(. Fo)]

The influence function corresponding to fy is defined to be ¢¢ : z — V(fo,Po;éz —
Py) and ¢ 4(z) can be defined similarly for fy,. Following the discussion in page 6 in
Williamson et al. (2021), with equal-size splitting, the asymptotic variance will be of the
form of n + 778,3 where 73 := Eo(¢0(Z))? and 77375 := Eo(¢0,5(Z))? and these terms can be
estimated separately on the two test sets Drest,1 and Dregt 2. Let Pr(z) := Po+7(0,— ) =
70z + (1 — 7)FPy. Then we have

V(fo, Pr(2)) = —Ep. ()Y = fo(X))? = = [TEs, (Y — fo(X))* + (1 — 1) Eo(Y — fo(X))?]
=—[rly— fo(®))* + (1 = 1) Eo(Y — fo(X))?]
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and so

d0(2) = lim L [V(fo, P(2)) — V(fo, Fo)]

T—=0 T

—lim = [ [7(y — fo(@)? + (1 - 7) Eo(Y — fo(X))?] + Eo(Y — fo(X))?

=0T

=Eo(Y — fo(X))* = (y — fo(x))*.

Thus, n¢ = Eo(¢o(Z))? = Var((Y — fo(X))?) can be estimated by the empirical vari-
ance s7 on the test set Drest,1- Similarly, ¢os(z) = Eg (Y — fo,S(X))2 —(y — foys(a:))2,
and 77(2),5 = Eo(¢0,s(Z))? = Var((Y — fo.s(X))?) can be estimated by the empirical vari-
ance s% on the test set Drest 2. Thus, estimated variance of the difference in test MSE
based on the influence function is the same as equation (10) in the extrinsic version, thus

showing the direct correspondence between the intrinsic and extrinsic versions of these tests.
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