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Abstract

Throughout the last decade, random forests have established themselves as among the
most accurate and popular supervised learning methods. While their black-box nature has
made their mathematical analysis difficult, recent work has established important statistical
properties like consistency and asymptotic normality by considering subsampling in lieu of
bootstrapping. Though such results open the door to traditional inference procedures,
all formal methods suggested thus far place severe restrictions on the testing framework
and their computational overhead often precludes their practical scientific use. Here we
propose a hypothesis test to formally assess feature significance, which uses permutation
tests to circumvent computationally infeasible estimates of nuisance parameters. This test is
intended to be analogous to the F-test for linear regression. We establish asymptotic validity
of the test via exchangeability arguments and show that the test maintains high power
with orders of magnitude fewer computations. Importantly, the procedure scales easily
to big data settings where large training and testing sets may be employed, conducting
statistically valid inference without the need to construct additional models. Simulations
and applications to ecological data, where random forests have recently shown promise, are
provided.

Keywords: Ensemble Methods, Permutation Tests, Variable Importance, Exchangeabil-
ity

1. Introduction

Advances in computing power and big data collection have produced numerous situations in
which complex supervised learning methods can drastically outperform more rigid classical
statistical models in terms of predictive accuracy. Despite these advances, many such mod-
els and algorithms are largely impenetrable to traditional statistical analysis. The random
forests algorithm (Breiman, 2001) is among the relatively few supervised procedures for
which formal statistical properties have recently been developed, paving the way for infer-
ence procedures. As detailed below, however, methods proposed to this point for assessing
variable importance have either been ad hoc and susceptible to producing misleading and
inconsistent results even in simple settings or have come with severe restrictions on the test-
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ing framework while incurring extreme computational overhead. The primary goal of this
paper is to formally develop a statistically valid permutation test approach that maintains
high power with orders of magnitude fewer required computations that scales naturally and
efficiently to large data settings.

Permutation tests have their roots in the work of Fisher (1937) using contingency tables.
The canonical permutation test framework relies on an assumption of exchangeability of
observations, at least asymptotically. Given iid samples X = X1, ..., Xn and Y = Y1, ..., Ym,
consider the joined sample, Z = X ] Y , where ] indicates concatenation of datasets
and let G be the group of all permutations of the indices 1, ..., N , for N = m + n. Let
T = r(Z1, ...ZN ) be a statistic of interest and let T0 denote the statistic calculated on the

original data. A p-value for the hypothesis the null hypothesis H0 : X
d
= Y is given by

p =
1

|G|
∑
g∈G

I(|T0| > |T (gZ)|) := 1− ĴN (T0;Z) + ĴN (−T0;Z)

where ĴN (·;Z) is the permutation distribution function, often referred to as the conditional
distribution. To achieve a test with type I error rate α, we reject H0 if p < α. Pesarin and
Salmaso (2010) note that this p-value is conditionally unbiased, i.e. P (p < α|Z, H0) ≤ α
and P (p < α|Z, H1) ≥ α. However, this procedure is not typically unbiased for more general

hypotheses, such as Hf
0 : E(f(X1)) = E(f(Y1)) for some integrable function f(·). As such,

many permutation procedures are heuristics for hypotheses like Hf
0 that may provide some

practical use and intuition, but without verified statistical validity.

1.1 Permutation Tests

Classical work on permutation tests from Hoeffding (1952) and Lehmann et al. (1949)
demonstrates the convergence of the permutation distribution to the sampling distribution
for a wide variety of test statistics. Much of the modern work has focused on extending
permutation tests to situations where the data may not be iid or even exchangeable (e.g.
Romano (1990)). Studentization is typically proposed as a means of forcing the sampling
distribution of a statistic to converge to a normal distribution to which it is then shown that
the permutation distribution also converges. This idea has underpinned results in Neuhaus
(1993) and Janssen (2005), who provide various sufficient conditions for the convergence to
the unconditional distribution.

Permutation tests are exact tests for hypotheses of equal distribution under the assumption
of iid sequences, but as noted above, are not necessarily valid for more general hypotheses.
Convergence to the unconditional distribution ensures that the permutation distribution can
be used for a finite sample exact test of equality of distribution and an asymptotically valid
test for more general hypotheses. In this work, we prove results regarding the asymptotic
validity of our procedure for more general hypotheses. The individual models (base learners)
in supervised ensembles, such as decision trees in a random forest, naturally lend themselves
to the permutation framework by being exchangeable in many practical cases.

2



F-tests for Random Forests

1.2 Related Work on Random Forests

Decision trees recursively partition the covariate space and generate predictions by fitting
some simple model – often an average or majority vote – within each resulting region. Of
particular interest are the classical Classification And Regression Trees (Breiman et al.,
1984). CART procedures often have low bias, but can overfit the data without careful
pruning. Bagging stabilizes the variance by training many individual learners on bootstrap
samples. Random forests (Breiman, 2001) augment the bagging procedure by introducing
auxiliary randomness in the construction of each individual learner, leading to trees with
a lower degree of dependence but higher individual variances. Since their introduction,
random forests have sustained a long track-record of empirical success in terms of predictive
accuracy; see Fernández-Delgado et al. (2014) for a recent large-scale comparison in which
random forests outperform nearly all competitors.

Recent years have seen something of a surge in the development of formal statistical anal-
yses of random forests. Wager et al. (2014) applied the infinitesimal jackknife variance
estimate developed in Efron (2014) to produce closed form variance estimates for random
forest predictions. Scornet et al. (2015) provided the first consistency results for Breiman’s
original random forest procedure for additive regression functions. Mentch and Hooker
(2016) derived the closed form asymptotic distribution for random forest predictions un-
der restrictions on subsample size. Wager and Athey (2018) proved both consistency and
asymptotic normality for subsampled random forests whenever trees are restricted to being
built according to honesty and regularity conditions and large numbers of trees are con-
structed. The original random forest formulation has also been extended to various setups
including quantile regression (Meinshausen, 2006), survival analysis (Ishwaran and Lu, 2008;
Cui et al., 2017), reinforcement learning (Zhu et al., 2015), and a generalized framework
allowing random forests weights to be used for general local parameter estimation (Athey
et al., 2016).

In addition to their robust history of empirical success and these newly-developed statistical
properties, the availability of ad hoc tools for evaluating variable importance has also been a
major contributing factor to their continued widespread practical use. Among these, thanks
in large part to their computational feasibility, the out-of-bag (oob) measures proposed by
Breiman (2001) remain the most popular by a substantial margin, with versions of this
measure available in nearly every major statistical software. Unfortunately, in the decades
since their introduction, a substantial amount of literature has repeatedly demonstrated
their inadequacy and inconsistency; see Strobl et al. (2007) and Toloşi and Lengauer (2011)
as popular, representative examples. Among the issues with oob measures are is a tency to
inflate the relative importance of categorical covariates with many levels as well as those with
high correlation to others. The latter issue is particularly problematic as variables deemed
most important may have relatively little impact on the response but be highly dependent
only on each other. Recent work by Hooker and Mentch (2019) gives an explanation for
this behavior based on extrapolation.

In light of these issues, recent work has sought to cast the issue of variable importance more
formally in a classical hypothesis testing framework. Notably, Mentch and Hooker (2016)
showed an equivalence between subsampled random forests and infinite-order U-statistics,
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allowing for asymptotic normality to be established from which a formal hypothesis testing
procedure for evaluating variable importance can be derived. This test, though valid, is
quite computationally prohibitive. The hypotheses are presumed to be evaluated at pre-
defined test locations in some test set T and whenever |T | = Nt > 1, calculating the test
statistic involves estimating an Nt×Nt covariance matrix. Accurate estimation of the covari-
ance necessitates constructing a very large number of trees and becomes computationally
infeasible for more than 20-30 test points, even when the original dataset is relatively small.
Mentch and Hooker (2017) extend the procedure to tests for additivity and provide an al-
ternative approximate test involving random projections that allows the procedure to scale
up slightly but with additional computational overhead. Even employing the potentially
more efficient infinitesimal jackknife variance estimate utilized in Wager et al. (2014) and
Wager and Athey (2018) requires the number of trees constructed be at least on the order
of n to be valid. Thus, while these kinds of procedures can be shown to successfully allevi-
ate the troublesome issues with the classical oob measures, their computational complexity
precludes their use in the vast majority of practical settings where flexible procedures like
random forests may hold the most promise.

In contrast with these previous approaches, this work develops a formal testing framework
for variable importance that is both computationally efficient and statistically valid. In
particular, our procedure is almost entirely computationally agnostic to the number of
test points utilized. The permutation scheme we employ avoids the need for an explicit
covariance estimation and thus does not require a larger number of trees for larger datasets.
Instead, our hypothesis tests provide valid p-values for the predictive importance of any
given subset of covariates while maintaining the same order of computational complexity as
the original random forest procedure. Put simply, if the size and structure of the available
data allows for a random forest model to be constructed, our testing procedure can be
readily employed. We note also that while our focus here is on random forests, only a small
portion of the theory we provide is tree-specific and thus ensembles consisting of other kinds
of base learners could easily fit within this testing framework as well.

The remainder of this paper is laid out as follows. In Section 2, we give an overview of the
testing procedure, and further highlight its benefits over existing methods. In Section 3,
we present results regarding the statistical properties of the proposed test, namely that it
attains validity for the desired hypotheses. In Section 4, we present simulation studies of the
testing procedure for a variety of underlying regression functions, as well as a comparison
with two different knockoff statistics. In Section 5, we apply our procedure to multiple
ecological datasets where random forests have been successfully employed in recent applied
work. In addition to the main text, all technical proofs are provided in Appendix A,
and additional simulations demonstrating the robustness of the proposed procedure are
presented in Appendix B.

2. Overview of the Testing Procedure

Consider a sample Dn = {Z1, Z2, ..., Zn}, with Zi = (Xi, Yi) consisting of observations on
covariates X = (X1, ..., Xp) ∈ X and a response Y ∈ Y. In this work, it is assumed that
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Zk
iid∼ F where F is some distribution with support on X × Y. In the regression context,

we assume that Y = m(x) + ε where m(x) = E(Y |X = x) and ε is an independent noise
process, typically with E(ε) = 0 and Var(ε) <∞. The goal of the random forest procedure
is to accurately estimate m(x). Each tree in a random forest is constructed by drawing
subsamples of size kn < n, from Dn, drawing a randomization parameter ξ from some
distribution Ξ, and constructing a randomized decision tree. This process is repeated B
times and the random forest prediction at some point x ∈ X is given by

RFB,kn(x) =
1

B

B∑
j=1

Tj,kn(x; ξj ;Dn). (1)

We can similarly evaluate the RF prediction accuracy at a single fixed test location x and
with true response value y via its mean squared error

MSERF (x; y,Dn) =

(
1

B

B∑
j=1

Tj,kn(x)− y
)2

.

Similarly, we can write the MSE of a forest at a collection of test points T = [(x1, y1), ..., (xNt , yNt)]
as MSERF (T ) = 1

Nt

∑Nt
`=1MSERF (x`;Y`,Dn). Let RF π be defined similarly to Eq. (1),

but with Dn replaced by Dπn, where Dπn replaces some subset of features with an alternate
copy drawn independent of Y given the rest of the covariates. To make this concrete, sup-
pose that this subset consists of just a single feature Xj . We can then evaluate whether Xj

is important by conducting a test of the following hypotheses

Hj
0 : E(MSERF (T )) = E(MSERFπ(T ))

Hj
1 : E(MSERF (T )) < E(MSERFπ(T ))

(2)

where the expectation is taken over the training data and auxiliary randomness. Though
conditional on T , we stress that the computational complexity of the testing procedure
we employ is almost entirely immune to the size of this test set, thus effectively allowing
practitioners to evaluate the hypothesis at as many locations as are desired. We call Xj

important if we are able to reject Hj
0 , and correspondingly measure its importance as the

difference in MSEs, MSERFπ(T ) −MSERF (T ). This definition of importance is model
based and therefore different than alternative definitions such as that utilized in the recent
knockoff literature (Barber et al., 2015; Candes et al., 2016), where a variable Xj is deemed
unimportant if

(Y |= Xj) | X−j .

The standard knockoff procedure controls the False Discovery Rate (FDR) for hypotheses
about each of the covariates for arbitrary distributions over (X,Y ). It should be noted that
conditional independence of Xj and Y is neither necessary nor sufficient for Hj

0 . However,
in practice, the test statistic utilized in the knockoff procedure is generally taken as the
difference in importance measures between original and knockoff variables and thus the
outcome of the procedure itself remains highly model dependent. We also note that our
procedure, while it could use knockoffs, does not require knowledge of the distribution
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of the covariates. We also want to highlight another popular means of non-parametric
hypothesis testing, conformal inference introduced in Vovk et al. (2005), and applied to
similar problems to the one considered here in Lei et al. (2018). Conformal inference analyzes
the quantity (Xn+1, Yn+1), which is an observation drawn from the joint distribution of the
covariates and response, rather than the conditional quantity presented in Eq. (2), which is
the focus of our work.

2.1 Testing Procedure

Intuitively, if two randomized ensemble methods produce predictions that are similarly
accurate, then the permutation distribution of discrepancies in accuracy should be centered
around 0. In our particular setting for testing feature significance, we compare the accuracy
of two ensembles built on different data. For a given (original) dataset Dn, we first construct
Dπn in such a way so as to remove any dependence of response on these features. However,
rather than permuting the data and retraining entire random forests, we first train trees on
both Dn and Dπn separately, record predictions at the test locations, and then permute the
predictions between the forests. The new forests formed at each iteration thus consist of
some trees built on the original data and some built with the permuted counterpart so that
on average. In this light, the testing procedure can be seen as directly analogous to a classic
permutation test to evaluate equality in distribution across two groups. Importantly, this
procedure requires only 2B trees, regardless of the size of the test set.

Pseudo-code for the permutation test is provided in Algorithm 1. We use ⊕ to denote
concatenation of data matrices by column, ] to denote concatenation by row, and 	 to
denote the removal of columns from a dataset. In order to prevent p-values exactly equal
to 0, we add 1 to the numerator and denominator, ensuring that under H0 the p-values
are stochastically larger than uniform random variables. This suffices to make the testing
procedure slightly more conservative, but more amenable to potential p-value transforming
procedure, like an FDR filter; see, for example, Phipson and Smyth (2010) for a more thor-
ough discussion. Crucially, note that this procedure requires no explicit variance estimation
of the Nt predictions made by individual forests, thereby providing a dramatic computa-
tional speed-up over existing parametric approaches (Mentch and Hooker, 2016, 2017) that
require the estimation of a Nt ×Nt covariance matrix.

3. Establishing Statistical Validity

We now develop the theoretical backing for the hypothesis testing procedure outlined above.
In Section 3.1, we make explicit the connection between bagged-models and exchangable
random variables. Then, in Section 3.2, we use these results establish asymptotic normality
for subsampled random forest predictions, under mild conditions. Next, in Section 3.3,
we extend these results to the fixed-test set MSE, establishing a CLT for this quantity.
To use these distributions directly is unwieldy - there is no obvious consistent estimator
of the variance parameters available. Thus, in Section 3.4, we prove that the proposed
permutation test is asymptotically equivalent to the computationally infeasible parametric
alternative, building on recent arguments from Chung and Romano (2013). For readability,
most proofs are reserved for Appendix A.
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Algorithm 1: Permutation test pseudocode for variable importance
Data: Training data Dn test sample (T = [(x1, y1), ..., (xNt , yNt)]), specified feature(s) of interest,

XS , nperm number of permutations to evaluate
Result: p-value, p̃ for importance of XS at points in Tn
set number of permutations nperm, subsample size kn, and ntree = B ;
define Xπ

S by permuting the rows of Dn and selecting the columns corresponding to XS ;
define Dπn = Dn 	XS ⊕Xπ

S ;
for i in {1, ..., B} do

sample kn rows from Dn: D∗i = {Z∗i,1, ..., Z∗i,kn};
sample kn rows from Dπn: D∗πi = {Z∗πi,1 , ..., Z∗πi,kn};
train trees Ti(·) on D∗i,kn and Tπi (·) on D∗πi,kn ;
predict at Tn using Ti, T

π
i , generating Ti = [Ti(x1), ..., Ti(xNt)] and T π

i = [Tπi (x1), ..., Tπi (xNt)]
end

calculate MSE0 = 1
Nt

∣∣∣∣ 1
B

∑B
i=1 Ti − y

∣∣∣∣2
2

and MSEπ
0 = 1

Nt

∣∣∣∣ 1
B

∑B
i=1 T

π
i − y

∣∣∣∣2
2
;

for j in {1, ..., nperm} do
sample T ∗j,1, ...,T

∗
j,B from {T1, ...TB ,T

π
1 , ...,T π

B} without replacement, call the B remaining trees
T ∗πj,1 , ...,T

∗π
j,B ;

calculate MSE∗j = 1
Nt

∣∣∣∣ 1
B

∑B
l=1 T

∗
j,l − y

∣∣∣∣2
2

and MSE∗πj = 1
Nt

∣∣∣∣ 1
B

∑B
l=1 T

∗π
j,l − y

∣∣∣∣2
2

end

calculate p̃ = 1
N0+1

[
1 +

∑N0
j=1 I

(
(MSEπ

0 −MSE0) ≤ (MSE∗πj −MSE∗j )
)]

3.1 Exchangeable Random Variables & Permutation Tests

Recall that a sequence of random variables X1, X2, ... is exchangeable if (Xi1 , Xi2 , ...., Xik)
d
=

(Xπ(1), Xπ(2), ..., Xπ(k)) for every finite sub-collection indexed by i1, ..., ik and every permu-
tation of the indices π(·), see Aldous (1985) for a thorough review.

Permutation tests naturally lend themselves to exchangeable data by providing a means of
evaluating the hypothesis that the joint distribution of a collection of random variables is
invariant under permutations. They maintain exactness for the null hypothesis whenever

Xi
iid∼ P and independently Yj

iid∼ Q because the joint measure of the data factorizes as

µ(X1, ..., Xn, Y1, ..., Ym) =
n∏
i=1

P (Xi)
m∏
j=1

Q(Yj)

which is invariant to permutations of observations if and only if P = Q.

Modern work for permutation tests has focused largely on modifications needed to account
for violations of the exchangeability assumption. Chung and Romano (2013) propose a stu-
dentization of the permutation test statistic when conducting inference a functional of two

distributions. Consider, for example a two sample problem, with X1, ..., Xn
iid∼ PX = N (0, 5)

and independently let Y1, ..., Ym
iid∼ PY = N (0, 1). Clearly, median(PX) = median(PY ),

but the data are no longer exchangeable and so an unstudentized permutation test of
H0 : median(PX) = median(PY ) is no longer valid at a pre-specified level (see Chung
and Romano (2013) for details). However, note that exchangeability is violated only be-
cause the data are no longer identically distributed; permutation tests can remain valid for
data that are correlated but identically distributed so long as the pairwise dependence is
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constant. The upshot of this is that random forest ensembles possess this property, and so
can be shown to be exchangeable, as formalized in Theorem 1.

Theorem 1 Denote a sequence of (potentially randomized) subsampled trees as {Tk(·)}∞1 .
Under the conditions outlined above, the residuals at Z∗ = (X∗, Y ∗) ∼ F given by

rk = Tk(X
∗)− Y ∗

form an infinitely exchangeable sequence of random variables.

In the case of a single random forest, exchangeability is readily apparent as the order in
which trees are trained has no bearing on their structure. Indeed, Theorem 1 can be
extended to any bagged learning method.

Given a dataset Dn with n× p design matrix X, let S ⊂ {1, ..., p} and define XS = {Xj :
j ∈ S} and X−S = {Xj : j /∈ S}; we take XS to be the covariates of interest. We then
create a randomized version of XS independent of Y , denoted by Xπ

S . Note in particular
that when the entire joint density P (X) of the covariates is known, Algorithm 1 of Candes
et al. (2016) can be used to generate the knockoffs that make up Xπ

S which then ensures

that [X−S ,XS ]
d
= [X−S ,X

π
S ]. By construction, Xπ

S ind Y |X−S and consequently, if we
now replace XS with Xπ

S in the design matrix to form a new training dataset Dπn, then
the trees trained on Dπn inherit the conditional independence so that T (x;Dπn) ind Y | X−S ,
allowing for the testing of a null hypothesis of conditional independence.

3.2 Asymptotic Behavior of Trees

Within-forest exchangeability is not sufficient to justify the proposed testing procedure at
the nominal level. Instead, we need to establish sufficient conditions to justify exchanging
trees between forests. An important step in this direction is to establish the existence of a
limiting sequence of subsampled trees that behave like an iid sequence.

Condition 1 There exists a random function T∞ such that limn→∞ Tkn
d
= T∞

In Section 3.3.1 we provide sufficient conditions for this to hold. We note that this con-
dition is similar in spirit to Assumption 15.7.1 in Lehmann and Romano (2006), which is
fundamental to the validity of subsampling based intervals for model parameters.

In practice, we would like to establish results for random forests trained on growing subsam-
ples. If we insist that the subsample size kn grow slower than

√
n, we obtain the following

intuitive result.

Lemma 2 Consider a collection of Bn trees built from a training dataset of size n on
subsamples of size kn, say {Tj,kn}

Bn
j=1, satisfying Condition 1. Then, as long as kn/

√
n→ 0

and (
Bn
2

)
log

[(n−kn
kn

)(
n
kn

) ]→ 0

the infinite sample sequence of trees, {T1,∞,k∞ , ..., TB,∞,k∞ , ...}, is an infinite sequence of
pairwise independent random functions.
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The condition on the number of trees Bn is likely not of much practical importance. For

finite Bn, the probability sequence has the form of aBn , where an =
(n−knkn

)
( nkn)

, so because

an → 1, aBn also converges to 1. However, if we let Bn grow with n, the number of trees
may overwhelm the independence induced by subsampling. Thus, we must let the log
probability of an individual pair being independent go to 0 faster than

(
Bn
2

)
≈ B2

n/2 goes
to infinity.

Lemma 1 establishes asymptotic pairwise independence, but not that the limiting sequence
is iid. For this, we turn to a result from Aldous (1985).

Lemma 3 (Aldous, 1985) Let Z1, Z2, ... be an infinitely exchangeable sequence. If Zi |= Zj , i 6=
j, then Z1, Z2, ... is a sequence of iid random variables.

An immediate consequence of the preceding lemmas is the following corollary.

Corollary 4 Let {Tj,kn}
Bn
j=1 be a collection of Bn trees trained on subsamples from Dn,

satisfying the conditions of Lemma 1. Then, {Tj,∞}∞j=1 := limn→∞{Tj,kn}
Bn
j=1 is an iid

sequence of functions.

The infinite sequence of subsampled trees enjoys many properties that the finite sequence
does not. In particular, we can obtain the following pointwise central limit theorem.

Corollary 5 Let {Tj,kn}
Bn
j=1 be a sequence of trees on subsamples from Dn, satisfying the

conditions of Lemma 1 and Condition 1. Further, assume x ∈ X is such that 0 <
Var(T∞(x)) = σ2(x) <∞. Then as n→∞

√
Bn

[
1

Bn

Bn∑
i=1

Ti,kn(x)− E
(

1

Bn

Bn∑
i=1

Ti,kn(x)

)]
d→ N (0, σ2(x)). (3)

Corollary 2 follows directly from applying the Central Limit Theorem to the sequence of
univariate random variables {Tj,∞(x)}∞j=1, which are iid by Corollary 1.

Remark 6 For a collection of test points, x1, ...,xNt, we can also consider the sequence of
vectors Ti,kn = [Ti,kn(x1), ..., Ti,kn(xNt)]

T , which are iid by Corollary 1. If we assume that
Σ = E

[
(Ti,kn −E(Ti,kn))(Ti,kn −E(Ti,kn))T

]
has finite entries, the multivariate central limit

theorem gives that as n→∞

√
Bn

[
1

Bn

Bn∑
i=1

Ti,kn − E
(

1

Bn

Bn∑
i=1

Ti,kn

)]
d→ N (0,Σ).

Remark 7 We can generalize the independence results to a collection of two sets of trees.
In particular, suppose that we now train Bn/2 trees on Dn = {Zi}ni=1 and Dπn = {Zπi }ni=1,
where Zπi = ([XS ,X

π
−S ]i, Yi). Note that Zπi |= Zj ,∀ i 6= j, so there is the same independence

structure between the datasets as within. Thus, the probability that a pair of trees trained
on subsamples of size kn, one from Dn and one from Dπn, are independent is the same as

9



Coleman, Peng, and Mentch

the probability that a pair of trees within forest are independent. As such, {Ti,kn(x)}Bni=1 and
{T πi,kn(x)}Bni=1, where Bn, kn satisfy the conditions of Lemma 1, behave like two independently
iid samples.

We intentionally leave σ(x) as an abstraction since estimation of σ(x) is not straightfor-
ward. Instead, this result will be used as the basis for asymptotic validity of our permutation
test which, uncharacteristically, is far more computationally efficient. Going forward, we
consider the asymptotic case, so that the sequence of tree predictions behaves like an iid
sequence. Further, in the infinite sample case, the number of trees can be made arbitrar-
ily large, and so we allow B to go to infinity with the understanding that it does so in
such a way that respects the requirements of Lemma 1. This is largely a matter of nota-
tional convenience; we could explicitly include the dependence on n in each of the following
statements and stress that the limiting distributions only hold as n→∞.

3.3 Asymptotic Distribution of MSEs

Unfortunately, the MSE is not a linear function of exchangeable random variables and thus
requires more careful attention before being used as a test statistic in a permutation test. In
this subsection we establish the asymptotic normality of the MSE which we then utilize to
show that the difference in MSEs between two forests is asymptotically normal. To begin,
consider a single test point (x, y). We can write the MSE as

MSERF (x; y) = g

(
1

B

B∑
i=1

Ti(x), y

)
(4)

where g(a, b) = (a − b)2. In what follows, we suppress the dependence on y, writing just
MSERF (x; y) = g (RFB(x)). We derive the asymptotic distribution of the MSE via the
delta method, which we belabor here for its intuitive value. We can then appeal to the
mean value theorem to say

g(RFB(x)) = g(ERFB(x)) + g′(R̃B(x))[RFB(x)− ERFB(x)]

where R̃B(x) is a random quantity bounded between RFB(x),ERFB(x). The law of large

numbers gives that RFB(x) = ERFB(x) + oP (1) and further R̃B(x)
p→ ERFB(x). Next,

continuity of g′ gives that g′(R̃B(x))
p→ g(ERFB). Thus,

√
B [g(RFB(x))− g(ERFB(x))] = g′(R̃B(x))

√
B [RFB(x)− ERFB(x)]

d→ N
(
0, g′(ERFB(x))2σ2

)
d
= N

(
0, 4(ERFB(x)− y)2σ2

)
for g(z) = (z − y)2.

The calculation above is more informative - we see that the MSE is asymptotically a linear
function of the random forest prediction. An issue is that the above quantity is centered
around g(ERFB(x)) rather than Eg(RFB(x)), which we now address. In particular, suppose
we begin by centering around Eg(RFB(x)) rather than g(ERFB(x)). Then,

√
B [g (RFB(x))− Eg (RFB(x))] =

√
B [g (RFB(x))− g(ERFB(x))] +

√
B [g (ERFB(x))− Eg (RFB(x))] (5)

10
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so that if
√
B [g (ERFB(x))− Eg (RFB(x))] = o(1), then the same distributional result

holds. This is shown in Lemma 3.

Lemma 8 Assume the conditions needed from Corollary 2. Additionally, assume that g
has at least k derivatives for some k ≥ 3 , and that g(k)(x) <∞ for all x. Further, assume
that E|Ti(x)|k <∞. Then,

√
B [Eg(RFB(x))− g(ERFB(x))] =

g′′(ERFB(x))σ2

2
√
B

+ o(B−3/2) = o(1).

Since the MSE function defined as g(RFB(x)) = (RFB(x)− y)2 satisfies the conditions
posited by Lemma 3, we can conclude that

√
B [g (RFB(x))− Eg (RFB(x))]

d→ N
(
0, g′(ERFB(x))2σ2

)
.

Application of the mean value theorem requires that g′(ERFB(x)) 6= 0 if and only if ERFB 6=
y. The expected prediction can be written as ERFB(x) = m(x) + δ(x), where δ(x) is the
pointwise bias of the random forest. Recalling that the response is given by Y = m(x)+ε, if
it holds for all x that P (ε 6= δ(x)) = 1, then the result holds for the squared error calculated
with respect to almost all Y and thus is trivially satisfied for continuous errors. A similar
result could be applied to any continuously differentiable loss function g(·, ·), again under
the condition that g′ is almost surely non zero.

Remark 9 Corollary 2 is not a necessary condition for the asymptotic normality of MSE’s
to hold. In fact, a similar argument could be used to justify the asymptotic normality of the
MSE for any random forest who satisfies a central limit theorem and a law of large numbers
(with respect to its own expectation), such as the results in Mentch and Hooker (2016) and
Wager and Athey (2018).

We can extend this result to the two forest case, where we compare the MSE of RFB(x)
against that of RF πB(x). In particular, if EMSERF (x; y) = EMSERFπ(x; y), we see that

√
B [MSERF (x; y)−MSERFπ(x; y)]

d→ N
(
0, g′(ERFB(x))2σ2 + g′(ERF πB(x))2σ2

π

)
(6)

where σ2
π = Var(T π(x)). This extension uses a similar argument as before to justify cen-

tering around the expected MSE instead of the MSE of the expected forest.

Now consider a test set with many points, denoted T = [(x1, y1), ..., (xNt , yNt)]
T . Given

the vector of random forest predictions, RFB(T ), we can calculate the pointwise squared

errors as MSERF (T ) =
[
(RFB(xi)− yi)2

]Nt
i=1

.

Finally, to connect back to the testing procedure proposed earlier, we now derive the asymp-
totic distribution of the differences in MSE between two forests. Let MSERF (T ) be the
MSE of a random forest at a set of test points T and let MSERFπ(T ) denote the MSE of a
forest trained on the partially randomized data. By the results above, under the hypothesis
that EMSERF (T ) = EMSERFπ(T ), we have that as B →∞,

√
B1/NT

t (MSERF (T )−MSERFπ(T ))
d→ N (0, τ2)

11
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for some τ2 > 0 that does not necessarily have a form that is amenable to analysis. To
calculate τ2, for the MSE at each point in T , let gj(RFB(Xj)) = (RFB(Xj) − Yj)2, by
continuity, g′j(R̃B(Xj)) = g′j(ERFB(Xj)) + oP (1). Thus, we see that

MSERF (T )− EMSERF (T ) =
1

Nt

Nt∑
j=1

MSERF (Xj , Yj)

=
1

Nt

Nt∑
j=1

g′j(ERFB(Xj)) [RFB(Xj)− ERFB(Xj)] + oP (1)

=
1

Nt

Nt∑
j=1

g′j(ERFB(Xj))

[
1

B

B∑
i=1

[Ti(Xj)− ERFB(Xj)]

]
+ oP (1)

=
1

B

B∑
i=1

1

Nt

Nt∑
j=1

g′j(ERFB(Xj)) [Ti(Xj)− ERFB(Xj)]︸ ︷︷ ︸
T̄i

+oP (1)

where gj(·) is used to suggest that the squared difference is calculated with respect to Yj .
T̄i is an iid sequence, so that

√
B[MSERF (T )−EMSERF (T )] is asymptotically an iid sum

with mean 0 and variance σ2
T̄

given by

σ2
T̄ =

1

Nt

Nt∑
j=1

σ2
j

(
g′j(ERFB(Xj))

)2
+

2

Nt

∑
i<j

g′j(ERFB(Xj))g
′
i(ERFB(Xi))ρij (7)

where ρij = Cov(T (Xi), T (Xj)) and σ2
j = Var(T (Xj)). We can obtain a similar variance

(σ2
T̄π

) for MSERFπ(T ), so that under the hypothesis that EMSERF (T ) = EMSERFπ(T ),
τ2 can be seen to be

τ2 = σ2
T̄ + σ2

T̄π .

That the T̄i and T̄ πi are two indenpendently iid sequences follows from Lemma 2. Indepen-
dence of the two samples follows from a similar argument to the second remark after Corol-
lary 2. Crucially, there are many complicated quantities in this Eq. (7), i.e. σ2

j , σ
2
π,j , ρij , ρ

π
ij ,

for which there are not obvious estimators available and thus this result alone is not clearly
practical. In the following sections, we verify the validity of our proposed permutation
procedure, which avoids the necessary explicit estimation of these quantities.

3.3.1 Tree-specific results

Until now, our discussion has remained largely agnostic to the type of base-learners em-
ployed, subject to the regularity conditions needed for asymptotic normality. We now argue
that the trees typically grown in a random forest satisfy such conditions. The following re-
sult follows a similar strategy as Lemma 2 in Meinshausen (2006) with regularity conditions
similar to those imposed in Wager and Athey (2018).

Proposition 10 Assume that Y = m(X) + ε, where m(·) is continuous on the unit cube.

Let X = [0, 1]p, and assume that Xi,j
iid∼ Unif(0, 1) for i = 1, ..., n and j = 1, ..., p. Then,

12
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let Tn(x) be a tree trained on iid pairs (X1, Y1), ..., (Xn, Yn) such that each leaf of the tree
contains a single observation. Further, assume the trees satisfy the following two conditions:

(i) ∃ γ > 0 such that P (variable j is split on) > γ for j ∈ {1, ..., p}

(ii) Each split leaves at least a constant proportion of observations in the original node.

Then, for each x ∈ X
Tn(x)

d→ Y |X = x as n→∞.

The tree predictions thus asymptotically behave like the conditional samples of Y and as a
result, should have finite non zero variance. Note that Breiman (2001) recommends building
trees to full depth in which case Condition 1 is automatically satisfied.

3.4 Extension to Permutation Tests

In Section 3.3 we established that the sampling distribution of MSE differences between
forests was asymptotically Gaussian, but with a computationally intractable variance. Here
we show that the permutation distribution converges to that sampling distribution. We
begin by restating a classical theorem from Hoeffding.

Theorem 11 (Hoeffding, 1952) For a sequence of data {Xi}Ni=1 and a statistic S : RN → R,
define the permutation distribution function as

ĴN (t) =
1

|GN |
∑
π∈GN

I
{
S(Xπ(1), ..., Xπ(N)) ≤ t

}
where GN is the group of all permutations of {1, ..., N}. Let π, π′ be two permutations drawn
independently and uniformly over GN , and suppose that as N →∞(

S(Xπ(1), ..., Xπ(N)), S(Xπ′(1), ..., Xπ′(N))
) d→ (S, S′) (8)

where S, S′ are iid with cdf R(·). Then for all t at which R(·) is continuous, ĴN (t)
p→ R(t).

Direct application of Theorem 2 is often challenging. Suppose {Xi}ni=1
iid∼ PX and indepen-

dently {Yi}mi=1
iid∼ PY , and we calculate the statistic

√
n+m [S(X1, ..., Xn)− S(Y1, ..., Ym)],

and further define p = limn→∞
n

n+m . Theorem 2.1 of Chung and Romano (2013) states that
if there exists a function ψPZ (which may depend on the distribution of the data, PZ) such
that

√
N [S(Z1, ..., ZN )− ES(Z1, ..., ZN )] =

1√
N

N∑
i=1

ψPZ (Zi) + oPZ (1) (9)

(i.e. the statistic is asymptotically linear), then the permutation distribution of the afore-
mentioned statistic is asymptotically normal with mean 0 and variance given by

τ2 =
1

p(1− p)
Var(ψ(Z)) =

1

p(1− p)
[pVar(ψ(X)) + (1− p)Var(ψ(Y ))] (10)

where Z ∼ pPX + (1 − p)PY . A key challenge is that τ2 is often not equal to the vari-
ance of the unconditional distribution without additional assumptions on PX and PY .

13
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A canonical example of this phenomenon is the permutation distribution of the differ-
ence in sample means. Given two independent iid samples X1, ..., Xn and Y1, ..., Ym, with
Var(X) = σ2

X <∞, Var(Y ) = σ2
Y <∞, and EX = EY , the central limit theorem gives that

√
n+m

(
X̄n − Ȳm

) d→ N
(

0, 1
pσ

2
X + 1

1−pσ
2
Y

)
where p = limn→∞

n
n+m . The conclusion of

Eq. (10), however, is that the permutation distribution of the statistic
√
n+m

(
X̄n − Ȳm

)
approaches a normal disribution with mean 0 and variance 1

1−pσ
2
X + 1

pσ
2
Y (Lehmann and

Romano, 2006). Thus, unless σ2
X = σ2

Y or p = 1
2 , the permutation distribution fails to

match the unconditional distribution.

The goal here is thus to provide a general result combining the delta method with the results
of Chung and Romano (2013). First, we note that the finite forest centered MSE is equal
to the original difference rescaled by g′(R̃B(x)) = g′(ERFB(x)) + oP (1), so that

√
B [MSERF (x; y)− EMSERF (x; y)] =

√
Bg′(ERFB(x)) [RFB(x)− ERFB(x)] + oP (1)

and therefore the MSE at a single point satisfies Eq. (9) for

ψ(T (x)) = g′(ERFB(x)) [T (x)− ERFB(x)]

ψπ(T π(x)) = g′(ERF πB(x)) [T π(x)− ERF πB(x)] .

Thus, the single point MSE satisfies the conditions needed to apply Theorem 2.1 of Chung
and Romano (2013). The calculation of the permutation distribution variance follows im-
mediately from Eq. (10); the permutation distribution of the statistic

√
2B[MSERF (x; y)−

MSERFπ(x; y)] converges to a normal distribution with mean 0 and variance

τ2 =
1

1/4

[
1

2
Var(g′(ERFB(x))T (x)) +

1

2
Var(g′(ERF πB(x))T π(x))

]
.

This is double the variance of Eq. (6), because the previous calculations were done for a
√
B

rescaling, and so the conditional and unconditional variances agree. Because the ensemble
sizes used in Algorithm 1 are assumed to be the same, p = 1

2 , so that the permutation
test for equivalence of forest predictions is automatically valid in the sense of matching the
permutation and unconditional distributions. This argument is formalized in the following
result.

Theorem 12 Let T1,kn , ..., TB,kn and T π1,kn , ..., T
π
B,kn

be two collections of trees satisfying
the conditions of Lemma 1 and Lemma 3, and fix a test point with location X and response
Y . Consider a test of the null hypothesis

H0 : E
[
MSERF (X;Y )

∣∣ X, Y
]

= E
[
MSERFπ(X;Y )

∣∣ X, Y
]

using the statistic ∆̂ = MSERF (X;Y )−MSERFπ(X;Y ). Then under H0, the permutation
distribution of

√
B∆̂ converges to a normal distribution with mean 0 and variance

τ2 = g′(ERFB(x))2σ2 + g′(ERF πB(x))2σ2
π

which is also the variance of the unconditional distribution of
√
B∆̂, as n→∞. Thus, the

permutation test attains the asymptotic Type I error rate.
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Proof The only claim that remains to be verified is that the permutation test attains the
Type I error rate. Let Φ(·) be the standard normal cdf, and let ĴB(t) be the (random)
cdf of the permutation distribution, with corresponding quantile function Ĵ−1

B (q). By the

argument preceding the theorem statement, we have that supt |ĴB(t)−Φ(t/τ)| p→ 0. Then,

by Lemma 11.2.1 of Lehmann and Romano (2006), for any number q ∈ (0, 1), Ĵ−1
B (q)

p→
τΦ−1(q). In particular, for a given significance level α, the 1-sided permutation test of H0

at the level α has a critical value Ĵ−1
B (1−α) which converges in probability to τΦ−1(1−α).

Thus, as B →∞,

P (
√
B∆̂ ≥ Ĵ−1

B (1− α)|H0)→ P (
√
B∆̂ ≥ τΦ−1(1− α)|H0)→ α.

We now must extend this result to multipoint test sets. However, Theorem 2.1 of Chung
and Romano (2013) deals only with the scalar case. As such, recall that the multipoint
MSE can be broken down into a sum of iid components. In particular, letting T be a test
set consisting of Nt points, it was shown in Section 3.3 that

√
B [MSERF (T )− EMSERF (T )] =

1√
B

B∑
i=1

T̄i + oP (1)

where T̄i is an iid sequence of random variables, each with mean 0 and variance presented
in Eq. (7). Thus, the scaled and centered MSE satisfies the linearity condition presented

in Eq. (9). In particular, T̄1, ..., T̄B
iid∼ P and T̄ π1 , ..., T̄

π
B

iid∼ P π, and we are testing H0 :
ET̄i = ET̄ πi . Thus, because each is calculated with B trees, the same results hold and the
test is asymptotically valid at multiple test points. This leads naturally to the following
culminating theorem, the proof of which follows an identical argument to that of Theorem 3.

Theorem 13 Let T1,kn , ..., TB,kn and T π1,kn , ..., T
π
B,kn

be two collections of trees satisfying
the conditions of Lemma 1 and Lemma 3, and fix a collection of test points T . Consider a
test of the null hypothesis

H0 : E
[
MSERF (T )

∣∣ T ] = E
[
MSERFπ(T )

∣∣ T ]
using the statistic ∆̂ = MSERF (T )−MSERFπ(T ). Then, assuming H0, the permutation
distribution of

√
B∆̂ converges to a normal distribution with mean 0 and variance given by

Eq. (7) which is also the variance of the unconditional distribution of
√
B∆̂, as n → ∞.

Thus, the permutation test attains the asymptotic Type I error rate.

3.4.1 Beyond the iid Approximation

We note that the conditions of Lemma 1 are likely far stronger than needed to attain the
result in Theorem 4. The proofs of validity for the permutation tests rely on projecting
the random forest (which is a correlated sum 1

B

∑B
i=1 Ti(x)) onto a sum of iid random

variables,
∑n

i=1 ψn(Zi) for some function ψn, to which a central limit theorem can then
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apply. Indeed, this is exactly the approach of the Hájek projection and H-decomposition
used respectively by Mentch and Hooker (2016) and Wager and Athey (2018). In these
works, roughly speaking, it is shown that under constraints on the forest construction, the
random forest prediction at a point x satisfies

1√
B

B∑
i=1

[Ti(x)− ERFB(x)] =
n∑
i=1

ψn(Zi) + oP (1).

For example, if the Hájek projection is used, ψn(Zi) =
√
BE

[
RFB(x)

∣∣ Zi] − ERFB(x).
Moreover, as mentioned in the remark following Lemma 3, the fact that the MSE is asymp-
totically linear is independent of the iid approximation, and thus the MSE for these forests
is also asymptotically linear.

4. Simulations

We now apply our testing procedure in a number of settings with varying regression func-
tions and covariate structures. We simulate data from four models summarized in Table 1,
with covariate structures summarized in Table 2. For each of our simulations, we train
random forests using the randomForest package in R (Liaw and Wiener, 2002) using the
default mtry parameters.

4.1 Power and Error Control

Model # Data Generating Model Covariate Structure

1 Y = βX1 + βI(X6 = 2) + ε M1
2 Y = β sin(πI(X7 = 2)X1) + 2β(X3 − .05)2 + βX4 + βX2 + ε M1

3 P (Y = 1|X) = expit
[
β
∑5

j=2Xj

]
M2

4 Y = RFeBird(X) + ε eBird

Table 1: Distributions of Y |X for each model. expit(z) = 1
1+ez .

Model # Covariate Structure

M1 X1, ..., X5
iid∼ Unif(0, 1), X6, ..., X10

iid∼ Multinomial(1, [1
3 ,

1
3 ,

1
3 ]T )

M2 X1, ..., X500 ∼ AR1(0.15)
eBird Data from Coleman et al. (2017) - 12 variables + 2 proxy variables

Table 2: Distribution of X for various simulation studies.

Jordon et al. (2018) Romano et al. (2020) Model 1 is a standard ANCOVA model, which is
intended to include both an important discrete and continuous predictor, to demonstrate
the robustness of the proposed procedure to covariate type. Here we test the importance of
(X1, X6, X2, X7) where X1, X6 are important, X1, X2 are continuous, and X6, X7 are cate-
gorical. Model 2 resembles the MARS data generating model (Friedman, 1991) commonly
used in random forest studies, but with a modification to include an important discrete
covariate. In both settings, we draw n = 2000 points from the joint distribution of (X, Y ),
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subsample sizes of kn = n0.6 ≈ 95, and build B = 125 trees in each forest. Predictions were
made at Nt = 100 test points, each drawn from the same joint distribution as the training
data. Note that the null hypothesis, as defined in Eq. (2), is conditional on the test points
used. These simulations change the null hypothesis each time, because the validation set
changes. Thus, the simulations mimic the common practice of random splitting the data
into a training and validation fold.

For Models 1 and 2, we focus on a marginal signal to noise ratio, which is controlled by
the parameters β and σ. We fix β = 10 across all simulations let σ = 10/j where j takes 9
equally spaced values between 0.005 and 2.25 so that for small k, the signal to noise ratio
(SNR) is small. The results are shown in Fig. 1. We see that the test maintains the nominal
type I error rate and attains high power for marginal SNRs near 1 for all variables except
X7 in Model 2. Note also that the type I error rate appears insensitive to the covariate
structure. In the MARS model, we see that the test has more power against X3 than X7,
because X7 is only important insofar as it interacts with X1.

Model 3 is an adaptation of the model used in Candes et al. (2016) for high-dimensional
correlated data. Here we test for the significance of X2, which is important, and also X1 and
X500, which are unimportant, but X1 is highly correlated with X2 and X500 is much more
weakly correlated. Candes et al. (2016) demonstrated that the standard logistic regression
p-values in this situation are far from uniform under H0, so that standard parametric
inference may not be valid. Random forests, on the other hand, have been shown (Biau,
2012; Scornet et al., 2015) to be largely insensitive to the dimension of the ambient feature
space, and instead sensitive only to the “strong” feature space. This setting helps to explore
the utility of our method in the high dimensional sparse signal case.

We limit n = 600 so that p/n is not small, though the dimension of the strong features
is still small relative to n. We let kn = n0.6 ≈ 46, B = 125, Nt = 100, and vary the β
coefficient according to 8 equally spaced values between 0.01 and 2.5 and also for 7 equally
spaced values between 5 and 20. The results are shown in the bottom panel of Fig. 1. Note
that the test resolves the biased p-value issue associated with the standard glm procedure
and is still able to attain reasonable power for the effect of X2. The power is likely limited
by the fact that for large β, the change in the marginal effect of each covariate only changes
P (Y = 1|X) slightly due to the rapidly decaying first derivative of the expit(z) function.

Finally, we turn to Model 4 where the true data generating model is a random forest. We
utilize a dataset from Coleman et al. (2017) describing the occurrence of tree swallows and
to construct RFeBird, we draw 5000 points from the data, and train RFeBird, a random
forest with mtry = 9 and 1000 total trees. To simulate from this model, we draw (without
replacement) samples of size n from the remaining 20727 points, predict at them using
RFeBird, and add Gaussian noise. We test for the effect of two variables: eff.hours, which
corresponds to the number of hours a user expended upon a hike, and dfs, which is a
fractional measurement of day of year. We further include two proxy variables (not used
to train RFeBird), defined as eff.hours.proxy = eff.hours+Z0.5√

Var(eff.hours)+0.5
and dfs.proxy =

dfs+Z0.025√
Var(dfs)+0.025

where Zσ is a standard normal random variable with variance σ2. The
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purpose of this construction is that the proxy variables’ relationship with Y is solely dictated
by their dependence on their original copy.
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1Figure 1: Simulation results for each of the models from Table 1. Black line corresponds to
α = 0.05, the nominal level
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In Model 4, we let n = 2000, kn = n0.6, B = 125, Nt = 100, and let σ = e−j for 10 values of
j equally spaced between 1 and 5. The results of this simulation are show in Fig. 1. We see
that again the test maintains the nominal type I error rate with modest power for signal
variables. Moreover, the procedure correctly identifies the true variables as important over
their highly correlated proxies.

4.2 Formal Comparison with Knock-offs

In this section, we formally compare the proposed procedure with several implementations of
the knockoff framework (Barber et al., 2015; Candes et al., 2016), an exciting new method
for statistically valid variable selection in a model-free way. As noted in Section 2, the
null hypothesis tested by knockoffs is slightly different from that in our procedure. To a
practitioner, however, the procedures would likely be used in a similar way, and as such
we leave this subtlety out of our subsequent discussion. In general, we conclude that our
method is largely complementary to knockoffs.

A key assumption of the knockoff framework is that the distribution of the covariates X
is known (also referred to as the model-X assumption) , which, crucially, our method does
not require. Candes et al. (2016) proposes a second order method for generating knockoffs
via a Gaussian analogue for X (i.e. a Gaussian random vector with the same covariance
and mean as X). As of now, it is unclear how well knockoffs perform, both in terms of
power and Type I Error control, when an approximation is employed. Finally, our method
is designed to be powerful in situations where the response has a complex relationship with
the data. To tackle these diverse scenarios, we use the following simulation set-up, with 4
different pairings:

� We fix p = 25, and generate covariates according to the following data distributions,
one where the model-X assumption is satisfied, and one where it is not:

Gaussian X ∼ N (0,Σ) where Σij = ρ|i−j| and we choose ρ = 0.25.

Fish Toxicity We simulate X from the UCI fish toxicity data set provided by Cas-
sotti et al. (2015), which comes with n = 908 observations on 6 covariates with
information regarding chemicals that are believed to be toxic to a species of
minnow. These covariates are quite non-Gaussian. To fill in the remaining 19
covariates, we randomly sample 19 columns (with replacement) from the original
6, and then sample rows of those 19 columns from the original data, so that there
is no replication between the original 6 columns and the synthetic 19. X is also
scaled and centered, to account for differing units.

� Our responses are generated according to the following two regression functions. In
both cases, ε ∼ N (0, 1/SNR).

Linear Y =
∑s

j=1Xj + ε

Flattened Sine Y = 1√∑s
j=1X

2
j

sin
(
π
√∑s

j=1X
2
j

)
+ε. Note that in this set up, each

variable has little linear effect but quite a strong nonlinear joint effect.
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� For the responses, we vary the parameters s and SNR, to respectively control the
density of the model (in terms of the number of important features) and the strength
of the signal present in the data.

Each set up is evaluated at 6 different values of s, spaced evenly between 2 and 25, for a
very sparse to a dense model, and 10 different signal to noise ratios, spaced evenly from 0.5
to 5, for a total of 60 simulation pairs. We apply the knockoff filter with the both standard
lasso coefficient difference statistic and random forest out-of-bag importance statistic, to
use both a linear and nonlinear statistic. We apply our procedure and the two knockoff
approaches to 100 repetitions of n = 908 observations from the 4 different model set ups
listed above. For our procedure, we build 125 trees, holdout 90 observations at random for
testing, and take subsamples of size k =

√
908 ≈ 30. All tests here are conducted with

respect to evaluating the marginal importance of X1, which is important (in the sense of
conditional independence) in each scenario. We define the power of the knockoff procedure
to be 1

100

∑100
l=1 I(X1 ∈ Sl), where Sl is the selection of variables produced by the knockoff

filter.

The results are plotted in Fig. 2. Several patterns are shared across the plots. First, the
proportion of important variables appears to be more important for attaining good power
than the SNR in both our method and the knockoff procedure. However, the directionality
is inverted - our procedure performs much better in sparse models, while knockoffs seem to
require a dense model to select any variables. Next, the Gaussian flattened sine presents a
challenge for both procedures, but our procedure is able to attain good power in all other
scenarios, while knockoffs really only succeed (with either statistic) in the linear Gaussian
case. While throughout these simulations the FDR is controlled at the nominal level, a
steep price is paid in terms of power for losing the knowledge of the distribution of X. Both
knockoff statistics exhibit almost identical performance, which suggests further that the oob
importance measures are unlikely to be useful as a nonlinear test statistics.

We conclude that knockoffs are a powerful method when there are many covariates suspected
to be important to the response. In these cases, the knockoff procedure can efficiently
identify a dense model. However, the overwhelming dependence on s and the model-X
assumption being satisfied suggests the need for more direct alternatives like that proposed
here. Our procedure exhibits qualitatively similar behavior in 3/4 of the set ups, attaining
good power even for signal to noise ratios below 1 in the sparse model. Knockoffs maintain
a computational edge over our method, needing only a single model fit to provide FDR
controlled variable selection, while a naive implementation of our method would require
2p model fits, followed by a FDR filter such as Benjamini-Hochberg that accepts p-values
(Benjamini and Hochberg, 1995).

5. Applications to Ecological Data

We now apply our testing procedure on two ecological datasets where random forests have
been shown to perform well in recent work.

eBird: We first consider the eBird data described in the previous section to construct a
simulated random forest model. Here we utilize the original data as considered in Coleman
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Figure 2: Simulation results for the knockoff comparison, showing the associated power
curves, calculated with respect to a nominal Type I error rate of α = 0.10. The knockoff
procedure is run with the FDR threshold set to α. Light shades of blue indicate more
powerful signal. fs refers to the flattened sine model. Bottom: our procedure. Top left:
Knockoffs with the lasso statistic. Top right: Knockoffs with the random forest out-of-bag
importance statistic.

et al. (2017). The standard task is to predict tree swallow occurrence during the fall
migration season in a particular geographic area referred to as Bird Conservation Region
(BCR) 30. eBird is a Citizen Science project where observers submit reports detailing
when and where they recorded observations. The response in each row of the data is either
0 or 1 corresponding to whether a tree swallow was observed during that particular outing.
Features include information about latitude, longitude, time of year, as well as observer,
environmental, temperature, and land cover characteristics. The data consists of n = 25727
observations on 23 features, gathered between 2008 and 2013. Coleman et al. (2017) carry
out a testing procedure based on the parametric approach in Mentch and Hooker (2016)
but due to the limitations described in previous sections, are limited to a test sample of
only 25 points.

We first apply Algorithm 1 to test the importance of any variables in predicting occurrence,
analogous to an overall F-test in multiple linear regression. Here we select 15% of the
available observations (≈ 3800 points) uniformly at random to serve as the test set where
the hypotheses will be evaluated. The random forests were trained with the ranger package
using the default mtry = 4, subsamples of size kn = n0.6, and consisting of B = 250 trees
in each. The results are shown on the left hand side of Fig. 3. There is clear evidence
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Figure 3: Results on the eBird data from (Sullivan et al., 2009, 2014). Red line indicates
observed value, and histograms of differences in MSE after permutation are overlayed by
an estimated normal density.

for signal in the data, with an overall p-value of p < 0.0001. Next, to produce an output
similar to the out-of-bag importance scores traditionally computed, we repeat the testing
procedure for each covariate individually, recording the marginal importance for each as the
number of standard deviations away that the original MSE difference is from the center of
the permutation distribution. The results are shown in the right hand side of Fig. 3. We see
that dfs, which corresponds to the day of the year, eff.hours, which corresponds to a users’
effort (in time), and aster.elev, which corresponds to elevation, are the most important
features. Time of year (dfs) and elevation (aster.elev) have an intuitive relationship
with occurrence, serving as proxies for climate conditions. Larger eff.hours suggest that
a user spent more time out in the field on a particular day, meaning they were more likely
to observe a tree swallow because of increased birding time.

Forest Fires: Cortez and Morais (2007) sought to predict log(1 +area) burned by several
fires in northern Portugal using covariate information on location, time of year, and local
weather characteristics. The data contains n = 537 observations on 13 features. Cortez and
Morais (2007) found that a naive mean predictor attained the lowest RMSE - suggesting
that there is weak signal in the data. We carry out our testing procedure in exactly the
same fashion as the eBird data, using mtry = 12 and kn = n0.6 ≈ 43, B = 250 trees for
the importance test and B = 500 trees for the overall test; results are shown in Fig. 4. The
overall test suggests that there is signal in the data (p = 0.0040), albeit a weaker effect than
in the preceding eBird case study. The importance procedure suggests that only wind – the
wind speed at the location of the fire – is significant at the 0.05 level.

6. Discussion

The work here presents a formal hypothesis testing framework for evaluating the predic-
tive significance of covariates in a random forests model which, unlike existing approaches,
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Figure 4: Results on the forest fire data from Cortez and Morais (2007). Red line indicates
observed value, and histograms of differences in MSE after permutation are overlayed by
an estimated normal density.

is both computationally efficient and statistically valid, placing hypothesis tests with ran-
dom forests firmly within the grasp of applied researchers. Previously suggested parametric
approaches are computationally prohibitive and place severe restrictions on where the hy-
potheses can be evaluated while the popular heuristic out-of-bag (oob) approaches are easily
computed but also easily fooled by correlated and/or categorical covariates. We note further
that while the ensemble nature of random forests presents a natural context for such tests,
much of the theoretical backing for this procedure is largely agnostic to the particular class
of base-learner models being constructed.

Besides its feasibility, this permutation approach also offers some flexibility in the kinds of
problems open to investigation by practitioners. Consider, for example, the mediator de-
tection problem arising frequently in medical studies wherein a covariate X1 is a mediator
for another covariate X2 whenever the effect of X2 on the response is nullified (or substan-
tially lessened) by including X1 in the model. The same two-step process often employed
with linear models can be carried out with random forests using the tests developed here:
first determine whether X2 is significant without X1 in the model, then test whether the
significance of X2 disappears whenever X1 is included. Moreover, our procedure attains
good power in a wide variety of model set ups, and as such is likely usable off-the-shelf by
practitioners interested in the nonlinear regression inference problem.

The primary goal of this work is to identify covariates that produce statistically significant
improvements in model accuracy. To assess this, we considered building two forests, one
on the original dataset Dn and another on a second dataset Dπn wherein the covariate(s) of
interest XS are rendered independent of Y , conditional on the rest of the features. This
muting of XS can be achieved in various ways:

� Outright exclusion: XS is simply removed from the second training dataset.
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� Random permutation: Each covariate in XS is randomly shuffled so that XS is re-
placed by some permuted alternative Xπ

S in the second training dataset.

� Knockoffs: Each covariate in Xi in XS is replaced by some knockoff alternative Xπ
i

sampled from the distribution of Xi|X−i so that XS is replaced by a randomized
alternative Xπ

S in the second training dataset. See Candes et al. (2016) for details.

The manner in which covariates are randomized or muted will subtly alter the underlying
null hypotheses in Eq. (2), but crucially, the Type I error control of our procedure holds
for each of these null hypotheses. Indeed, it is possible to reject Eq. (2) because of artifacts
in the covariate distribution, rather than a notion of conditional independence. Assuming
XS ind Y |X−S , we would expect predictions from trees trained on Dn to have the same
distribution as those generated from trees trained on Dπn. In this case, a rejection of the null
hypothesis of equal MSE’s suggests that XS and Y are not conditionally independent. This
is the case if the distribution of X is known (or can be estimated easily), so that a knock-off
version of XS can be employed. However, practically speaking, our method provides valid
model based inference even without any knowledge of the covariate distribution. In such
cases, formally investigating whether particular covariates significantly improve predictive
accuracy beyond permuted analogues, for example, can still provide valuable insight into
their relative value and utility.

As mentioned earlier, a potential criticism of the approach presented here may be that it
becomes more computationally burdensome whenever one wishes to evaluate the significance
of all available covariates one at a time. Note however that by construction, we need only
build relatively few trees to conduct each test and thus in small or even moderate dimensions,
simply repeating our permutation approach p times is still often far more computationally
efficient than carrying out even a single parametric test. Indeed, while knockoffs maintain
a computational edge in these cases, they still require the unwieldy model-X assumption,
and require a large number of important features to be present in the data.
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A. Proofs of Technical Results

We now provide the technical details and proofs for theoretical discussion in Section 3. For
completeness, theorems and lemmas are restated.

Theorem 1. Under the exchangeability conditions outlined in Section 3.1, denote a se-
quence of (potentially randomized) trees trained on subsamples from Dn as {Tk(·)}∞1 . More-
over, consider an independently drawn test point, Z∗ = (X∗, Y ∗) ∼ F . Then, the residuals

rk = Tk(X
∗)− Y ∗

form an infinitely exchangeable sequence of random variables.

Proof Let Ξ be the distribution of randomization parameters, and let Skn(Dn) be the
distribution of subsamples of size kn drawn uniformly from the original data. Then, to
construct a tree, we have the following procedure:

1. Draw D∗kn ∼ Skn(Dn)

2. Draw ξ ∼ Ξ

3. Draw Z∗ ∼ F

4. Construct a tree according to some combining function, say φ , of ξ,D∗kn , i.e. T =
φ(ξ,D∗kn).

Each draw is done independent of the other draws. Repeating (1) and (2) independently
gives iid sequences {D∗l,kn)}∞l=1 and {ξj}∞j=1. Then, the sequence

T1 = φ(ξ1,D∗1,kn), T2 = φ(ξ2,D∗2,kn), ...

is a mixture of iid sequences, where the mixture is directed (in the sense of Aldous (1985))
by Dn. So, {Tl | Dn} is exactly an iid sequence of functions. Further, {rl | Dn,Z∗} is
an iid sequence of random variables, and thus the conclusion follows from the converse of
DeFinetti’s Theorem.

See Aldous (1985) page 29 for more details on this construction.

We turn now to Lemma 1 from Section 3.2, which establishes asymptotic pairwise indepen-
dence.

Lemma 1. Consider a collection of Bn trees built from a training dataset of size n on
subsamples of size kn, say {Tj,kn}

Bn
j=1, satisfying Condition 1. Then, as long as kn/

√
n→ 0

and (
Bn
2

)
log

[(n−kn
kn

)(
n
kn

) ]→ 0

the infinite sample sequence of trees, {T1,∞,k∞ , ..., TB,∞,k∞ , ...} is an infinite sequence of
pairwise independent random functions.

Proof Condition 1 guarantees the existence of a limiting random variable.
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It is sufficient to show that asymptotically, the trees are trained using independent training
samples, because we have assumed that our original data are iid. Define the indices of a
subsample in the following way:

ind(D∗kn) := {j ∈ {1, ..., n} : Zj ∈ D∗kn}.

Then, by the assumption that the Zk are independent,

D∗kn,j |= D∗kn,l ⇐⇒ |ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0

so, it is sufficient to show that

lim
n→∞

P (|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0) = 1, ∀ j 6= l.

Note that if kn ≥ n/2, this event has probability 0, so choose n so that n > 2kn. Then

P (|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0) =

(
n−kn
kn

)(
n
kn

)
=

((n− kn)!)2

n!(n− 2kn)!

=
(n− kn)!

n!
× (n− kn)!

(n− 2kn)!

=
(n− kn)(n− kn − 1)...(n− 2kn + 1)

n(n− 1)...(n− kn + 1)
.

There are kn terms in both the numerator and denominator here, so we can separate the
product in the term above as

P (|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0) =
n− kn
n

× n− kn − 1

n− 1
× ...× n− 2kn + 1

n− kn + 1
.

≥
(
n− 2kn + 1

n

)kn
=

(
1− 2kn + 1

n

)kn
= exp

[
kn log

(
1− 2kn + 1

n

)]
≈ exp

[
kn

(
−2kn + 1

n

)
− kn

2

(
2kn + 1

n

)2
]

≈ exp

[
−2k2

n + kn
n

]
≈ 1

where an ≈ bn means that limn→∞ an/bn = 1, and we have used the Taylor expansion of
log(1− x) in the above.
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This means that two pre-specified subsamples will be independent in the limit. Next, we
need to ensure that this holds for all subsamples, i.e.

P

(⋂
j 6=l
{|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0}

)
→ 1.

For Bn trees, there are
(
Bn
2

)
subsample pairings, each drawn independently. Thus

P

(⋂
j 6=l
{|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0}

)
=
∏
j 6=l

P (|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0)

=

((n−kn
kn

)(
n
kn

) )(Bn2 )
.

Next, by assumption,

logP

(⋂
j 6=l
{|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0}

)
=

(
Bn
2

)
log

[(n−kn
kn

)(
n
kn

) ]→ 0

so that the probability of this event goes to 1.

After Lemma 1, we next need to prove Lemma 3, whose purpose is to show that the observed
MSE is asymptotically centered around its own expectation.

Lemma 3 Assume the conditions needed from Corollary 2. Additionally, assume that g has
at least k derivatives for some k ≥ 3 , and that g(k)(x) <∞ for all x. Further, assume that
E|Ti(x)|k <∞. Then,

√
B [Eg(RFB(x)− g(ERFB(x))] =

g′′(ERFB(x))σ2

2
√
B

+ o(B−3/2).

Proof We rely on a result presented in Oehlert (1992), which states that under the condi-
tions presented in the lemma statement,

Eg(RFB(x)) = g(ERFB(x)) +
g′′(ERFB(x))σ2

2B
+ o(B−2). (11)

Thus, the result follows from multiplying both sides of Eq. (11) by
√
B and rearranging

terms.

Next, we move on to the proof of Proposition 1 from Section 3.3.1, which gives that the trees
typically utilized in a random forest obey the necessary regularity conditions for Corollary 2.

Proposition 1 Assume that Y = m(X) + ε, where m(·) is continuous on the unit cube.

Let X = [0, 1]p, and assume that Xi,j
iid∼ Unif(0, 1) for i = 1, ..., n and j = 1, ..., p. Then,

let Tn(x) be a tree trained on iid pairs (X1, Y1), ..., (Xn, Yn) such that each leaf of the tree
contains a single observation. Further, assume the trees satisfy the following two conditions:
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(i) ∃γ > 0 such that P (variable j is split on) > γ for j ∈ {1, ..., p}

(ii) Each split leaves at least a constant proportion of observations in the original node.

Then, for each x ∈ X
Tn(x)

d→ Y |X = x as n→∞

Proof Each tree divides X into a partition of rectangular subspaces, corresponding to leaves
of the tree. Following Meinshausen (2006), for each point x (with coordinates [x1, ..., xp]),
let `(x) denote the unique leaf of the tree containing x. Let R`(x) be the rectangular
subspace of [0, 1]p corresponding to a particular leaf `(x). The rectangular nature of the
subspaces means that for each input feature, R` can be expressed as

R`(x) =

p⊗
i=1

[a(x, i), b(x, i)]

where 0 ≤ a(x, i) ≤ xi ≤ b(x, i) ≤ 1 are scalars inducing an interval in dimension i.
Then, the tree (by the existence of the requisite γ) satisfies the conditions of Lemma 2 in

Meinshausen (2006), so that maxi |a(x, i) − b(x, i)| p→ 0. Let a(x) = [a(x, 1), ..., a(x, p)]

and similarly define b(x), so that the previous sentence implies: a(x)
p→ b(x). We therefore

also see that a(x, i), b(x, i)
p→ xi for all i.

The trees are fully grown, so the tree prediction at the point x is given by

Tn(x) =

n∑
k=1

I(Xk ∈ R`(x))Yk

i.e. the response for the observation whose leaf contains x. As such, let k∗ be the index
corresponding to the observation who shares a leaf with x, so that Tn(x) = Yk∗ . We can
deconstruct the event Xk∗ ∈ R`(x) as

{Xk∗ ∈ R`(x)} =

p⋂
i=1

{a(x, i) ≤ Xi,k∗ ≤ b(x, i)}.

Thus, in the limit, a(x, i), b(x, i)
p→ Xi,k∗ , and so Xi,k∗

p→ xi for all i. Further, continuity

of m yields that m(Xk∗)
p→ m(x). Thus, we see that, in the limit

Yk∗ = m(x) + εk∗
d
= m(x) + ε

d
= Y |X = x

because εk∗ is independent of the location of X.

B. Additional Simulations

We include some additional simulations here to demonstrate the following points.
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1. The accuracy of the permutation distribution approximation of the Gaussian. The
theory outlined in Section 3 establishes that the difference in MSEs between forests is
asymptotically Gaussian but the difficulty in estimating the resulting variance largely
restricts its direct usage in practical settings. We go on to demonstrate that the
permutation distribution approaches this distribution, thereby circumventing the need
for a direct variance estimate. The simulations below present empirical evidence that
this approximation is reasonable in practical settings.

2. The instability of the variance estimation procedures laid out in Wager et al. (2014)
and Mentch and Hooker (2016). Clearly variance estimation is useful for developing
confidence intervals about random forest predictions, which in the case of pointwise
consistency (as in the honest trees proposed by Wager and Athey (2018)), are also
valid for the underlying regression function. However, in the hypothesis testing frame-
work, these estimates are useful only insofar as they allow for calculation of a test
statistic. These variance estimates, such as the infinitesmal jackknife of Wager et al.
(2014), recommend building B = O(nβ) trees where β ≥ 1. We demonstrate that this
recommendation cannot be violated.

3. The robustness (and potential weaknesses) of the proposed procedure to different
random forest implementations. In particular, we want to study the effect of larger
subsamples/more trees. The theoretical results presented in Section 3 rely on treating
the tree predictions as iid. Clearly, this is never true in practice, and some theoretical
justification for the effects of this being small were presented in Section 6.

B.1 Normality of Permutation Distributions

Here we provide a concise simulation demonstrating the accuracy of the permutation dis-
tribution approximation of the Gaussian in a practical setting. We simulate n = 2000
training observations from Model 2 with covariate structure M1 as described in Section 4.
Specifically, we consider the model Y = β sin(πI(X7 = 2)X1) + 2β(X3 − .05)2 + βX4 +

βX2 +ε where we sample covariates according to X1, ..., X5
iid∼ Unif(0, 1) and X6, ..., X10

iid∼
Multionimial(1, [1

3 ,
1
3 ,

1
3 ]T ). Here we use β = 10, σ = 10, along with Nt = 100 test ob-

servations and apply our procedure to test for the significance of X3 (important) and X5

(unimportant). The random forests each consist of B = 200 trees trained on subsamples of
size kn = n0.6, with mtry = 3. The resulting permutation distributions are shown in Fig. 5.

These plots demonstrate that the permutation distributions do approximate a Gaussian
distribution. Moreover, in the null case, the observed ∆B lies squarely in the center of the
distribution, while in the alternative case, ∆B lies far away from the center. Next, we more
formally investigate the power/validity of the testing procedure.

B.2 Variance Estimation Instability

Here, we use the infinitesmal jackknife (IJ), as implemented in the ranger package (Wright
and Ziegler, 2015), to estimate the variance of a random forest prediction at a given point. In
particular, we simulate data from Model 2 from Table 1, train a subsampled random forest,
and record the IJ variance estimate of random forest prediction at X1 = ... = X5 = 0.5 and
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Figure 5: Permutation distributions of ∆B. Red line indicates observed value, and his-
tograms are overlayed by an estimated normal density.

X6 = ... = X10 = 2. We use n = 2000, kn = n0.5 ≈ 44, and vary the number of trees. Often
times, the IJ variance estimate is negative, leading to a NaN output from the IJ software.
These instances represent a case when the IJ estimate is useless to a practitioner, and as
such, we report the percentage of times that a NaN output is returned for each number of
trees. For each number of trees, we repeat the simulation 100 times, and results are shown
in Fig. 6.
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Figure 6: ranger IJ variance estimate. Blue ribbon plot indicates central 90% of variance
estimates (corresponds to left axis), and red line (corresponds to right axis) represents
percentage of runs that return NaN.

The IJ estimate provides overwhelmingly large variance estimates for small numbers of
trees, leading to overly conservative confidence intervals and tests with exceptionally low
power. Moreover, the ribbon remains quite wide until around B = 2000 trees, suggesting
that at least O(n) trees are necessary to attain a stable variance estimate. A similar
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number of trees is necessary to ensure that a NaN is never returned. We should note that
this is the simplest possible case of variance estimation, i.e. the estimation is only at
a single point. The problem grows exponentially more complex as more test points are
considered and covariance estimates are needed. Mentch and Hooker (2016) note that
the procedure is infeasible for more than 20-30 test points. The authors demonstrate in
follow-up work (Mentch and Hooker, 2017) that an approximate test can be produced
by utilizing random projections which allows for slightly larger test sets but at the cost
added computational strain. In contrast, besides the minimal overhead required to form the
additional predictions, the testing procedure proposed here is almost entirely immune to the
number of points in the test set. Once the initial predictions are formed, the only remaining
work is to shuffle predictions (trees) and re-compute the difference in MSE between forests.

B.3 Test Robustness

We now present more figures similar to the power curves presented in Section 4. The goal
here is to present the proposed procedure’s robustness to the number of trees B and the
subsample size kn. To do so, we modify the simulation study plotted in the second panel of
Fig. 1. Here, we fix the error variance at σ2(ε) = 16, and again simulate n = 2000 training
observations and Nt = 100 test observations. First, we vary the number of trees built,
according to

B ∈
{

20, 50, 75, 125, 250, 375, 500, 750, 1000
}

and let kn = n0.6. The resulting simulations are plotted in Fig. 7.
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Figure 7: Model 2 power curves for 500 simulations, by number of trees. The Y-axis
represents P (p̃ ≤ α) where α = 0.05 and is shown as the horizontal line across the bottom
of the plots.
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Two clear patterns are clear in the figure - the power and type I error rate of the test both
increase as the number of trees grows. However, the rate of growth for each of them is
markedly different - the test attains high power around B ≈ 250 trees, but deviations from
the nominal level are only noticeable around B ≈ 500 trees. Even when B = 1000, the
observed level is still within nearly 5% of the baseline. Thus, while the level of the test may
be slightly inflated for large numbers of trees, the procedure remains valid for limited, but
realistic tree sizes.

Recall that the subsample size is a key limiting factor of Lemma 1 - it is required that
kn = o(

√
n) - to establish asymptotic normality. Other work (Wager and Athey, 2018)

weakens these conditions, but places explicit restrictions on the types of trees allowed in
the ensemble. We now examine the behavior of our procedure under larger sample sizes.
We use the same simulation parameters as in Fig. 7, but now fix B = 125 and let kn = np,
and we vary p at 10 equally spaced values between 0.1 and 0.99.

The resulting simulation is shown in Fig. 8. We see that for p ≤ 0.75, the Type I error
rate is maintained, but for larger subsamples, we begin to see a severe deviation. Though
severe, this is not necessarily surprising as such large subsampling rates correspond directly
to a more severe violation of the iid approximation.
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represents P (p̃ ≤ α) where α = 0.05 and is shown as the horizontal line across the bottom
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Caren B Cooper, Theo Damoulas, André A Dhondt, Tom Dietterich, Andrew Farnsworth,
et al. The ebird enterprise: an integrated approach to development and application of
citizen science. Biological Conservation, 169:31–40, 2014.
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