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Abstract

This paper concerns the nonparametric estimation problem of the distribution-state dependent drift
vector field in an interacting [NV -particle system. Observing single-trajectory data for each particle,
we derive the mean-field rate of convergence for the maximum likelihood estimator (MLE), which
depends on both Gaussian complexity and Rademacher complexity of the function class. In partic-
ular, when the function class contains d-variate a-Holder smooth functions, our rate of convergence
is minimax optimal on the order of N ~ T Combining with a Fourier analytical deconvolution
argument, we derive the consistency of MLE for the external force and interaction kernel in the
McKean-Vlasov equation.

Keywords: interacting particle system, maximum likelihood estimation, Mckean-Vlasov equation,
mean-field regime, learning interaction kernel.

1. Introduction

Recent years have seen increasing research interest and progress in learning dynamical pattern of
a large interacting particle system (IPS). Motivating applications on modeling collective behav-
iors come from statistical physics (D’Orsogna et al., 2006), mathematical biology (Mogilner and
Edelstein-Keshet, 1999; Topaz et al., 2006), social science (Motsch and Tadmor, 2014), stochas-
tic control (Buckdahn et al., 2017), mean-field games (Carmona and Delarue, 2018), and more
recently computational statistics on high-dimensional sampling (Liu, 2017; Lu et al., 2019b) and
machine learning for neural networks (Mei et al., 2018, 2019; Chizat and Bach, 2018; Sirignano
and Spiliopoulos, 2020a,b). Due to the large number of particles with interactions, such dynamical
systems are high-dimensional and often non-linear. In this paper, we consider a general interacting
N-particle system described by the stochastic differential equations (SDEs)

AX} = b*(t, pl¥, X)) dt + o (t, X})dW}, 1<i<N, )
where (W0, . . ., (W/N)¢>0 are independent Brownian motions on the d-dimensional Euclidean
space R, py = N1 Zfi 10 X is the empirical law of the interacting particles, and the initial-
ization X&, cey X (])V are i.i.d. R%valued random variables with a common law g, independent of

(W})i>0. Here in the non-linear diffusion process (1), letting P(R?) be the space of all probability
measures on R?, the vector field b* : R, x P(R%) x RY — R? is a distribution-state dependent
drift vector field to be estimated and ¢* is a known diffusion function (or volatility coefficient)
quantifying the magnitude of the self-energy of the particle. For simplicity, we focus on systems
with time-homogeneous and space-(one-)periodic drift vector field b*(¢, v, ) =: b*(v, ) satisfying
b*(v,z + m) = b*(v,z) for every m € Z<, and constant diffusion function o*(¢,2) = 1. The
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periodic model effectively confines the SDEs to a compact state space as the d-dimensional torus
T¢, and is commonly adopted in the SDE analysis to avoid boundary issues (van Waaij and van
Zanten, 2016; Pokern et al., 2013; Nickl and Ray, 2020). Suppose that we observe continuous-time
single-trajectory data for each particle X7 = {(X},..., X}¥) : 0 <t < T} in a finite time horizon
T > 0. Our goal is to derive a statistically valid procedure to estimate the vector field b* in a large
IPS based on the data X7

1.1. System governed by external-interaction force

In the periodic setting, the values of the process (X;) modulo Z? contain all relevant statistical
information, so we can identify the law of (X}) with a uniquely defined probability measure on
T¢ (cf. Section 2.2 in Nickl and Ray (2020) for further details). Under such identification, one
important class of IPS with a time-homogeneous drift vector field can be represented as

b*(v,z) = /W 5*(x,y) dv(y), with 5*(x,y) =G*(x) + F*(x — y), 2)

for v € P(T?) and continuous F*, G* : T¢ — R?, In this case, one can interpret G* as an external
force to the global system characterizing the drift tendency of particles and F'* as an interaction
kernel between particles. Then the IPS in (1) can be reformulated as

N
dX? = G*(X})dt + % > FH(X] - X{)dt + dW.

j=1
In statistical mechanics, microscopic behaviors of N random particles are usually related to explain
some observed macroscopic physical quantities (e.g., temperature distributions) in the sense that
the evolution of the empirical law ;) of the particles converges to a non-random mean-field limit
ur as N — oo and the probability measure flow u.(z) := wu(x,t) solves the McKean-Viasov
equation (McKean, 1966)

Oip = Ap + div <u [G* + /Td F( = y)ut(dy)] > 3

which is a non-linear parabolic partial differential equation (PDE). For this special class of IPS, a
further goal is to study the identifiability of (F™*, G*) and consistency of the derived estimators.

1.2. Related work

It is a classical result that N-particle interacting system (1) admits a unique strong solution, when
both b* and ¢* are Lipschitz continuous and the solution converges to its mean-field limit McKean-
Vlasov stochastic differential equation (MVSDE) both in pathwise and weakly under the same Lip-
schitz condition (Carmona, 2016; Carmona and Delarue, 2018). The latter is usually known as
propagation of chaos (Sznitman, 1991). Another inspiring work from Lacker (2018) showed that
the convergence can be proved in a much stronger topology (7-topology), when volatility coefficient
o™ involves no interaction term.

Several works about learning the interaction kernel of interacting particle system have be done
lately. Bongini et al. (2017) proposed an estimator by minimizing the discrete error functional,
whose convergence rate is usually no faster than N~/ This reflects the phenomenon of curse-
of-dimension. Lu et al. (2019a) constructed the least square estimator for interaction kernel, which
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enjoys an optimal rate of convergence under mild conditions. These two works were done un-
der a noiseless setting, i.e., the system evolves according to an ordinary differential equation and
initial conditions of agents are i.i.d. As for the stochastic system, Li et al. (2021) studied the learn-
ability (identifiability) of interaction kernel by maximum likelihood estimator (MLE) under the
coercivity condition, and Lang and Lu (2021) provided a complete characterization of learnability.
Della Maestra and Hoffmann (2021) investigated a nonparametric estimation of the drift coeffi-
cient, and the interaction kernel can be separated by applying Fourier transform for deconvolution.
The convergence result is provided under a fixed time horizon, meaning that time 7" is fixed in their
asymptotic result. Another nonparametric estimation algorithm based on least squares was proposed
by Lang and Lu (2020).

Estimating parameters of interacting systems by maximum likelihood can date back to 1990.
Kasonga (1990) proved the consistency and asymptotic normality of MLE for linear parametrized
interacting systems. As for MVSDE, Wen et al. (2016) discussed the consistency of MLE in a broad
class of MVSDE, based on a single trajectory (x;)o<t<7. Liu and Qiao (2020) extended it to path-
dependent case with non-Lipschitz coefficients. Both of these works focused on the asymptotic
behaviour when T — oo. Sharrock et al. (2021) studied the case with N realizations of MVSDE,
and the case of NV interacting particle systems, under which consistency of MLE was proved when
N — oo and an online parameter estimation method was also discussed. Chen (2021) showed that
MLE has optimal rate of convergence in mean-field limit and long-time dynamics, when assuming
linear interactions and no external force.

1.3. Our contributions

We provide a rigorous non-asymptotic analysis of MLE of drift coefficient restricted on a general
class of functions with certain smoothness condition. Della Maestra and Hoffmann (2021) proposed
a kernel based estimation procedure for the same estimation problem. However, unlike our method,
the behaviour of estimation based on kernel method rely heavily on tuning the bandwidth and their
analysis does not involve uniform laws of dependent variables. Moreover, the MLE framework
provides a unified and principled strategy that naturally incorporates finer structures such as (2) in
modelling the drift vector field b*. In comparison, the kernel method requires further specialized
steps for separating interaction force F™* from the external force G* after the estimation of b*. As a
consequence, we do not need to explicitly specify the deconvolution operator (£ in Assumption 2)
and only need to assume its existence in our consistency analysis, making the MLE approach more
robust to changes in problem characteristics and less sensitive to parameter tuning.

In our study, there are several obstacles while analyzing the MLE, some of which make our
analysis technically more involved than that for the kernel method. Firstly, observations in X7 are
not i.i.d. because of interaction among particles from the drift b* (", -). To decouple the depen-
dence, we follow Della Maestra and Hoffmann (2021) by using Girsanov’s theorem to construct
a new measure, under which the trajectory of particles becomes i.i.d. However, this change of
measure will introduce some additional decoupling errors in our analysis of the MLE that is not
present in the analysis of the kernel method (Della Maestra and Hoffmann, 2021). Dealing with
these decoupling errors requires substantial efforts and is technically highly non-trivial. Secondly,
we derive a new and specialized maximal inequality (cf. Lemma 6) for handling the supreme of
an unbounded process involving the It integral that appears in our analysis. The derived maximal
inequality is general and interesting in its own right, and can be applied to other problems involving
diffusion processes beyond our current setting. Thirdly, a standard union bound argument cannot
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be applied to deal with the decoupling error (see the discussion after equation (15) for a precise
meaning) in terms of the supreme of a random process expressed as the average of correlated It
integrals that naturally appears when analyzing the MLE. To address this issue, we develop a con-
centration inequality for U-statistics involving It6 integrals (cf. Lemma 17), which is then combined
with chaining and leads to a new maximal inequality for U-processes (cf. Lemma 10). This refined
maximal inequality helps us derive a better rate in our problem than using existing general versions
of the inequality.

1.4. Notation

Let Z (N) denote the set of all (non-negative) integers. For any arbitrary functions f : T4 — R,
the Fourier series (f) of f is defined as

(fi)w = / filz)e ™k T de 1<i<d keZ
Td

where we let f = (f1,---, fo)T and (f)r = ((f1)r, -, (fa)x)T are d-dimensional column vec-
tors. Properties of Fourier analysis on torus can be found in Chapter 3 of Grafakos (2008).

For k = (ki,--- ,kq)T € Z4 let |k| = ki + --- + kg be the sum of all elements of &, and
D¥ = O,...k, is a |k|-th order partial derivative. We use ||| for lz-norm of a vector, and |||, for
L2(T%)-norm of a (vector-valued) function, i.e., | f|> = Ja llf (2)||* dz. For a Lipschitz function
f, we denote || f||Lip is the smallest constant C' > 0 such that || f(z) — f(y)|| < ||z — yl for

all 2,y € T% Let ||| be the Sobolev norm defined as ||f|%: = |f]3 + S0, [V /i3 In

addition, for a function b(v, x), we define seminorms [|b[% := fOTde Hb ,ut, )HZdut( )dt and
||b|\X = N1 Zz 1 fo Hb ey XP) H dt, and let the norm || i, of any b(v de (v)
be |blLip-

5

For 0 < 8 < oo, let ¥3 be the function on [0, c0) defined by ¢g(z) = e — 1, and for a
real-valued random variable &, define ||{||y, = inf{C > 0 : E[t)5(|{|/C)] < 1}. For 8 € [1, 00),
| - [l is an Orlicz norm, while for 3 € (0,1), || - ||y, is not a norm but a quasi-norm, i.e., there
exists a constant Cz depending only on 3 such that |1 + &aly, < Cp([|€1][ys + [[€2]ly,)- Indeed,
there is a norm equivalent to || - ||, obtained by linearizing v in a neighborhood of the origin; cf.
Lemma C.2 in Chen and Kato (2019).

For a function class H, define the shifted class H* := H — h* for some h* € H. The function
class H* is star-shaped (or equivalently H is star-shaped around ~*) if for any h € H and « € [0, 1],
the function ah € H*; cf. Chapter 13 of Wainwright (2019). We use N (e, H, || - ||) to denote the
e-covering number for the function class  under the metric induced by the norm || - ||.

2. Constrained Maximum Likelihood Estimation

Let C = C([0, T, (T4)™) be the set of all continuous functions on (T4)", and {F; : 0 <t < T} be
the filtration generated by our observation X7. According to Girsanov’s theorem (Theorem 1.12 in
Kutoyants and Kutojanc (2004)), the log-likelihood ratio function for the continuous time trajectory
data Xp takes the form as

dPy
dp?v Z/(b pl X7),dX;]) Z/ 1B, x7)||” at, @)

Ly (b) :=log
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dpy
dpfY
Xr from model d X} = b(t, ul¥, X}) dt +dW}, 1 < i < N, relative to the base measure P}’

When the drift vector field b* is driven by the external-interaction force in (2), it is natural to
consider the maximum likelihood estimator (MLE) for b* in the function class

where denotes the Radon-Nikodym derivative of the probability measure JP’{)V associated with

H:{b:P(Td)de%Rd 3F,Ge72,b(u,:c):0(x)+/ F(x—y)du(y)},
Td

where H is a uniformly bounded function class whose elements map from T¢ to R? with certain
smoothness (cf. assumptions in Theorem 1 below). Note that for b € H, we can equivalently
compute the MLE by := argmax ;4 L7(b) by first obtaining the MLE of F* and G* as in (2)

(Fy,Gy) = argmax Ly(F,G), subject to / F(z)dz =0, (5)
F.GeH Td

- 1T , 1 N , 2
where LT(F,G):—2Z/O HG(XZ)+NZF(XZ_Xt])H dt
i=1 j=1

N T 1 & A . .
=30 [ {60 + 5 S P - X)), ax),
i=1 Jj=1

and then setting

~ ~

by(v,x) = Gn(z) + » Fy(z —y)dv(y), YveP(TY.

Note that for any solution (ﬁN, CAJN) of (5) and a constant C' # 0, (ﬁN + C, (A?N — C)isalso a
solution. Therefore, we impose an additional restriction [, F™*(x) dz = 0 for the sake of identifia-
bility of the interaction kernel. This also explains the extra constraint f,ﬂ.d F(x)dx = 0 imposed in
the estimation procedure (5).

3. Convergence Rate of Constrained MLE

In this section, we first derive a general rate of convergence for the constrained MLE by based
on the entropy method which will lead to a computable and simple bound when specialized to a-
smooth Holder function class. In the latter case, we will show that the constrained MLE achieves
the minimax optimal rate in Section 3.1. As a consequence, we derive the consistency G ~ and F N
in Section 3.2 for the external-interaction force model (2).

Assumption 1 The class H is pointwise measurable, i.e., it contains a countable subset G such
that for every h € H there exists a sequence g, € G such that g,, — h pointwise.

Assumption 1 is made to avoid measurability issues (van der Vaart and Wellner, 2013) since it
guarantees that the supremum of a suitable empirical process indexed by H is a measurable map.
Define the localized function class

Hy={f e :|lfllz <u}.
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If B =supsey: [|flloo < oo, let H(e, Hy,) be the cardinality of the smallest set S C H;; such that
Vg € H; there exists f € S satisfying || f — g[|; < v and ||f — g, < eB. We shall notice that
H (e, H*) requires covering w.r.t. both ||-|| _ and ||-|| ;, while N (e, H*, ||-||) only requires covering
w.r.t. a certain norm |-||. We further define several entropy integrals that control the complexity of
our nonparametric estimation problem:

Ji(u) == \/TB/OQIOg (1+ H(e, M) d6+u/02 \/log (1+ H(e, Hy)) de

SISl

Jo(L) := / log (1+ N(e, 7", |[l;p)) de,  J3(B) := /2 \/log (14 N(u, 1", |-]..) du

0

vty

Ji(B) = /0 [log(1 + N(u, 1, [ )] du,  Js(r / Viog N(s/VT, 1, |]..) ds

We assume that Jy (u), Jo(L), J3(B), J4(B), J5(r) are finite for some function class parameters
on H* and some localization parameter w.

Theorem 1 (Rate of convergence of constrained MLE) Suppose the function class H satisfies
Assumption 1 such that |[F||,, < B and |F|;, < L for all F' € H. Assume there exist positive
constants 6y and r satisfying
VN3
XY, dW — N
Z/ (g(pe, XP), dW) 6CBVT

IE N Ssup
EH*

<20% and Js(ry) <

where (Wi)tzo is the (transformed) Brownian motion defined in (12) and FN is the associated
probability measure. If b* € H, then

logN) ©)

o = b7y < 48 (0w + 1 4+ 1/ =5

with probability at least

R2N5]2V HQN5]2V K2 log N
1— - 3 T Cloe N4 f| 2 CATK b2,
{m exp { 5 [ TP T Clog NUL(1) PP T arK 17

9k 6 ko log N 9k 6 ko N (log N)?
_ wpd — _f2loglN | <pd — e og V)T
VP 7 CLEK (D) LeXP CJ2(B)

— 2K1 €ex —( iz log NV )3 — K1 €x —7}{2]\”‘]2\[
LEXP CJu(B)loglog N VP 7 36c2B2T [

Here k1, ko, K1, C are some positive constants.

(N

There are some interesting remarks for Theorem 1 in order.

1. Theorem 1 remains true for drift vector field b* with anisotropic interaction force, namely
b* (v, x) de (z,y) dv(y) with b* = G*(z) + F*(z,y). In this case, we need to consider
functions in A map from T2? to R?.
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2. 0y corresponds to the Gaussian complexity of function class H* in a discrete setting, while
rn is an upper bound of Rademacher complexity of #*. Intuitively, the estimation problem
will be harder if the function class is more complex, and thus d and 7 should affect the
rate of convergence in certain extent. It is quite common that the rate of convergence of
nonparametric estimation depends on both v and r, see e.g. Corollary 14.15 in Wainwright
(2019) as an example.

3. Usually we use chaining method (Wainwright, 2019; Geer et al., 2000) to bound the ex-
pectation term in order to derive an explicit form of dn. Since we can show the sum of
i.i.d. It6 integral is sub-exponential, one direct method is to use ¢/1-norm to bound the expec-
tation (see Lemma 19). Another possible way to apply chaining is based on Bernstein-Orlicz
norm (van de Geer and Lederer, 2013). In this case, bracketing number rather than covering
number will be needed.

4. In practice, we can only observe discretely sampled trajectory data. Thus it is important to
understand the impact of discretization. Note that the drift coefficient of an SDE is related to
the mean function of the corresponding stochastic process. It is known that, in functional data
analysis, convergence rate of estimation of mean function will not be affected if sampling
frequency is large enough (Cai and Yuan, 2011). This is called phase transition phenomenon.
We conjecture that a similar phase transition phenomenon may occur in our setting. In para-
metric setting, if parameters have linear effects on the interaction function, the problem is
studied by Bishwal et al. (2011) and the convergence rate remains optimal as O(n_l/ DA
rigorous analysis in nonparametric setting is open and we leave it as the future work.

5. As is common in the nonparametric regression literature, the constrained MLE is usually
adopted due to its technical simplicity; while the penalized MLE (e.g. by adding a squared
RKHS norm penalty) is used for practical computation since they are dual to each other:
with proper choice of the regularization parameter, they lead to the same solution. With
discretely sampled trajectory data, the penalized MLE can be equivalently formulated as a
finite dimensional optimization problem due to representer’s theorem (kernel trick).

Our proof of Theorem 1 is quite involved. The proof builds on a number of recently developed tech-
nical tools such as change of measure via Girsanov’s theorem for decoupling the IPS, concentration
inequalities for unbounded empirical processes and degenerate U-processes, localization technique
for sum of i.i.d. It6 integrals. We shall sketch the main structure of the argument in Section 4 and
defer the complete proof details to Appendix.

3.1. Application to Holder smooth function class

Consider the case where H = Cy ([0, 1]d) with fixed smooth parameter o and bounded «-Holder
norm. Here, the a-smooth Holder function class is the set of all functions f such that

[D*f(x) = DEf()| _ v

a—|al

flly = max sup‘Dkf x )—l— max sup
I71 [kl<la] = (@) kl=la) 2y |z —y|

with some fixed M > 0. In this case, assumptions of boundedness in Theorem 1 hold for B = L =
M.
From Theorem 2.7.1 in van der Vaart and Wellner (2013) we know

Qla

IOgN(E,?:[, H”oo) S €
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By Theorem 1 we obtain the following rate of convergence in Corollary 2. The detailed proof is
deferred to Appendix. Our theory works for Sobolev (Besov) space with bounded norm as well, and
an analogy of the following corollary can be derived by a similar argument.

Corollary 2 (Holder smooth drift estimation error) Suppose the a-Holder smooth function class
H satisfies o > 3d/2, then there are positive constants C and C' such that

Jon = ||, S N- )

with probability at least 1 — C exp { — C’(log)lgo]ng)Z/?’}.

Note that rate of convergence for the MLE derived in (8) attains the minimax rate of estimating the
drift term in IPS (Della Maestra and Hoffmann, 2021). When o < 3d/2, the term J4(B) in our
general result Theorem 1 (also cf. Lemma 10 for definition) is not finite. However, we still can
derive a rate of convergence for by by refining the definition of Jy as the one in van de Geer (2014)
to avoid the integrability issue. The price we pay is that the tail probability converges to zero more
slowly, which would translate to a sub-optimal rate of convergence of EN.

3.2. Estimating interaction kernel in Vlasov model

In this section, we specialize our theory to the external-interaction force system, and study the con-
vergence behaviour of interaction kernel £*. This is an inverse problem and can be done in a similar
argument as in Della Maestra and Hoffmann (2021) by Fourier transform. Della Maestra and Hoff-
mann (2021) explicitly use Fourier transform to construct an estimator based on deconvolving a
kernel density estimator for y; from an estimator for F™* * 1, where * denotes the function convo-
lution operator. In comparison, we implicitly use Fourier transform to derive a stability estimate for
translating an error bound on by to that on ﬁN in the analysis. More specifically, recall that

by (e, 2) = (e, 2) = Gvla) = G () + [ (Bl =) = Fa =) dmly). O

T
Let L2([0, T]) denote the space of all square-integrable functions on [0, 7] and view y(x, ) = p ()
as a function of (x,t). For any linear operator £ : L?([0,T]) = R, f — Lf := fOTf(t)w(t) dt,

where w is a bounded measurable function on [0, 7] such that fOT w(t) dt = 0, we obtain by apply-
ing L to both sides of (9),

L[y — ) (. 0)] = L[(Fx — F*) » p(2)] = (Fy — F*) « Lp) (=), (10)

where we have used the property that Lg = 0 for any t-independent function g. Since the goal
is to relate [|[Fy — F*||2 to [[by — b*|| g, we may apply Fourier transform to both sides of (10) to
deconvolute Fy — b* and Ly, leading to

(£[Gy =)(1,)]), = By = F- (Lo, Yk e 22 (11)

Note that by the definition of £, we have (Lu)o = L [74 du(z) = L1 = 0, so equation (11) only
determines the Fourier coefficient of (Fy — F*)j, for k # 0. However, (Fx — F*)o can be uniquely
determined by our additional identifiability constraint [, Fy(x) dz = [, F*(z)dz = 0.

To ensure that ﬁN — F* remains small when BN is close to b*, we need the following assumption
motivated by identity (11).
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Assumption 2 There exists a bounded measurable function w(t) on [0, T] such that fOT w(t)dt =
0and (Lp), = fOT(ut)k w(t)dt # 0 for all nonzero k € 7.2

Assumption 2 guarantees the identifiability of interaction force F™* (and therefore external force
G*) from the drift vector field b*, and requires the system to be away from stationarity. To see this,
consider the ideal setting where we exactly know the true b* and {u; : 0 < ¢t < T'}, and want to
uniquely recover F* from (2). Suppose system (1) already attains stationarity, i.e. y; = p* for all
t € [0, T] with u* denoting the stationary distribution of the system which solves equation (3) with
O:pt = 0. Then it is impossible to separate out the time-homogeneous interaction term £ x y* from
the drift vector field

i) = 6 @)+ [ P dn ),

since for any function g : T¢ — R, the new pair (G', F') = (G* — g * pu*, F* + g) induces
the same drift b*. However, this setting violates Assumption 2 since (Lu), = 0 for all k& € Z¢.
In other words, the interaction force F™* can only be recovered from the transient behaviour of the
system, and Assumption 2 is one mathematical description implying the system to be away from
stationarity.

The linearly dependence structure (11) in the frequency domain suggests that the estimation
error of F° v depends on the accuracy of b ~ and the behaviour of (L£u). It is common that an inverse
problem related to a convolution equation, such as equation (10), tends to be numerically unstable,
since it will be ill-posed when the Fourier coefficients {(Lp);}72, of Lu decay too fast (Isakov,
2006). By quantifying the stability of solution to (10) around the true interaction F'*, we arrive at
the following corollary.

Corollary 3 (Interaction kernel estimation error) Let 1y be the smallest integer satisfying n N(ON+
N + IO%VN) < Crinfocpijany [(Lp)ill- If F* and G* belong to H and both have finite Hy-norms,
then

|y = F*]l, < Camy!
holds with at least probability given by (7). Here constants (C1,,C3) are independent of N.
Remark 4 In the proof of Corollary 3, we only used the condition that the Sobolev norm || F*|| g1

is finite. If we further use the condition that F* is a-Holder continuous with o« > 1, then the error
bound can be improved to ny"~ where n% Sy + 1y + 2N) < infocp|<ny |(L1)k|- In particular,

if Assumption 2 holds, then Corollary 3 implies F N fo be a consistent estimator of F* as N — oc.

4. Proof of Theorem 1

By decomposing the sample space into & = {Hﬁ NH g <0 ~} and £, Theorem 1 is true on the

event £. So, we only need the proof on the event £¢ = {HKN HE > 0N}
Step 1: decoupling. The first technical difficulty is to decouple the interaction effect between par-

ticles that would cause the dependence of particle trajectories. Let PV be the probability measure
on (C,{F:}L,) induced by solution of the true data generating mechanism (1). Motivated by the
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change of measure argument in Lacker (2018) and Della Maestra and Hoffmann (2021), we con-
struct a new measure P’ on (C,{F}L_,), under which (X/)”_, and (X7)T_, are independent for
all 1 <4 # 7 < N. This is possible thanks to Girsanov’s Theorem. Specifically, define a process
{Zi} o as

N

e i * i T i * i
Ze=exp { 30| [0 X0 = 00 D0 aW3) 5 [0 D) - 0 D) P}

i=1

and let d@N = ZpdPV, By Girsanov’s Theorem,
W =wi— / [b*(us,X;) - b*(ugV,X;)] ds, 0<t<T (12)
0

are i.i.d. Brownian motions on T¢ under @N. With the transformation (12), the original IPS (1) turns
into a system of independent SDEs given by

AX? = b (g, X7 dt + AW, (13)

with i.i.d. initialization £(X§, ey X (])V ) = ®i]\;1 to- Our subsequent strategy for analyzing the log-
likelihood ratio is to control the probability of some “bad events” under @N, and then to use the
following Lemma 5 to convert it back to the probability under PY. The proof of Lemma 5 can be

found in Theorem 18 in Della Maestra and Hoffmann (2021).

Lemma 5 (Change of measure equivalence) There are positive constants k1 and ks such that for
any Frp-measurable event B,

PN (B) < kP (B)*2.

Step 2: basic inequality. By definition of by, we have Ly (by) > Ly (b*) and thus

N T .
S [ (o =570 X0 B Xt 0T
=1

N .7
1 ~ . y .
— >0 [ e XDIP — 1, XD at > 0.
2 i=170
Denote A N = ZN — b*, we can derive the basic inequality

1 N T . 1 N T
N N % TA7t N N i * i\ (12
NZ/O <AN<ut,Xt>,th>>2N§/o o ¥, X{) = " (e, XD lt
= = (14)
1 al 4 N i i\ |12
w2 I8 X~ XD ar
=1
Furthermore, by noticing that
b (g, XP) = 0 (e, X7)
= | B X1 = By (s X0)| 4+ |07l X) = 0%ty X1)| + [Bov s XE) = 6 (e, X5)]

10
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we can obtain by using the Cauchy-Schwartz inequality and basic inequality (14) that

N

1 T o 1 N Ty 2
) / (Bulp XD V) 2 50 3 | Bt e
1o [T
_Nz/o
i=1
1 ™M Ty N o ~ .2
p) | Bt ) = B )

N .7
1 —~ ) =R ' ;
- NZ/O (A (¥, X3) = Rn (s, X3), AT,
2

x7 N % * 7 2
b (e Xi) — b (:utaXt)H dt

15)

We will call the last three terms on the right hand side of the above display as decoupling errors
since they characterize the degree of dependence among the particle trajectories due to the presence
of empirical law ;L{V in the drift term b* of SDE (1). To bound the left-hand side of (15), we need
the following Lemma 6.

Lemma 6 (Localization) For the star-shaped set H*, define

1 NooT —,
N;/o <9(Mt7Xt)ath>

and critical radius dn as the smallest number u > 0 such that

Z/ (g(pe, X7), dW})

Recall H(e,H}) is the cardinality of the smallest set S C M}, such thatV g € H}, there exists
f € Ssatisfying | f — gllp < ewand ||f — gl < eB. Then, for every u > dn we have

IPN(A(u))gexp{ 52 }+3exp{—6%}.

Thus, on the event .A(0 )¢ where 0y is the critical radius of our nonparametric estimation problem,
we have

Alu) = {age%*,ugHE >

> 4u|rgHE},

IEN sup < 2u?.

geEH?,

N T
1 A 2 .
S [ Bwton x|t < a6l Ax o+ T3+ 0572+ 75 (16)
0

6N P

where the three error terms

1L /T
Tl:NZ/

x( N yiy _ p N
b"(py , X{) — b (’ut’Xt)H de

.12
T = sup Z/ HQ (14 7Xt (/Jt,XtZ)H dt
gEH*
1 N T N ) . ) .
o= 52 [ B D - Bl X, AT,
i=1

11
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are expected to decay to zero as N — oo since u}" is expected to be close to ji;. However, a rigorous
analysis of these three error terms requires substantial efforts due to their complicated structures and
the need of a uniform control over H*, which will be sketched below.

Step 3: bound 7. To bound 77, we use the following lemma. Recall that | f|Li, denotes the Lips-
chitz constant of f.

Lemma 7 (Decoupling error bound) Foranyu >0, N > 2 and g € ‘H*, we have

Nu?

( Z/ g (e, X3) — g(ud, XD|P at > u > < ¢ ATKIlIE,

Applying Lemma 7 with ¢ = b* and u? 1: log(N)/N, we can conclude that T} < # holds
__logn
ATKA||0*]I2,,
sub-Gaussian with parameter of order O(N~!), although the summands are not independent. In
fact, we can decompose

with probability at least 1 — 2 exp ( — ) Lemma 7 tells us that the decoupling error is

gy’ X7) = g, Xj) = % [Q(XLXZ') - /Tdé(XZ}y) dﬂt(?J)]
1 X o A
sy 3 oo - [ ot du].
J=137#i
Notice that the second term above is a summation of (N — 1) i.i.d. centered random variables

under B conditioning on X}. This is where the sub-Gaussianity comes from. Intuitively, the
second decoupling error 75 (or third line of (15)) should have the same order O(N~!) by some
discretization or chaining arguments. This will be done in Lemma 8.

Step 4: bound 75. To bound 75, we use the following lemma.

Lemma 8 (Uniform laws of dependent variables) We have
< sup Z/ Hg pt, X g(pt ,XZ H dt > u) <2 CTR I3(E)
e N
for some constant C' > 0.

Remark 9 In order for J5(L) to be finite, we need functions in H* to have higher-order smoothness
than just being Lipschitz continuous, so that the covering number with respect to ||| Lip 1S finite.

Step 5: bound 73. The last decoupling error 75 in (16) (or last line of (15)) is much more involved
to control. This is because the Ito integral is expected to only have the order of the square root of its
quadratic variation. Notice that for each g(v, z) = [r4 §(z,y) dv(y), we have

N Z/ <g :ut 7 (Mh Z)v dWIZS>

- N2 Z/ gfz th> / <f th> 1 Vn(g) + Un(g),

1<z7é]<N

a7

12



NONPARAMETRIC ESTIMATION OF INTERACTING PARTICLE SYSTEMS

where we used the shorthand ¢ ;(t) = g(X{, X))~ [ra (X7, y) dpe(y) for notation simplicity. The
first term Viy(g) in (17) is a sum of i.i.d. random variable, which is expected to have order O(N -3 ).
The second term U N( ) can be Viewed as a U-statistics (after proper symmetrization), with kernel
function gT(W W] = fo <£ th> It is easy to verify that Egn [gT(W,WJ) ]Wl] =
E@N [gT(W ,Wj) ] Wj] = 0. So gT is degenerate (Definition 3.5.1 in de la Pena and Giné (1999)),
indicating that the U-statistics should have order around O(N~!) asymptotically (see Chapter 3 of
Lee (1990)). Above discussions can be rigorously stated as Lemma 16 and Lemma 17 under a non-
asymptotic setting. Then the last term 73 in (16) can be bounded by the following lemma, which
gives an optimal upper bound O(N 1) of the decoupling error up to some log factor.

Lemma 10 (Uniform laws of dependent It6 integrals) We have

2log N

sup Z/ g, X7) — g(ue, X), dW) <

geH*

with probability at least

N(log N)? log N 2
! 2exp{ W 2 exp (C’J4(B)loglogN> '

Step 6: conclude. To finish the bound for the estimation error under the || - ||z norm, we need the
following norm equivalence between || - | g and its empirical version || - || x

Lemma 11 (Equivalence of norms) There is a constant C > 0 such that

2 2
=N 2 2 1 2 u N'LL
P gl = llgls| > 5 e s
<gseu7§* lglx = llglz] > SlallE + 5 ) < eXP{ 36CQB2T}

_ . VNr,
forall uw > ry. Here rn > 0 is a constant satisfying Js(ry) < 6CBYT"

Return to the proof. Since Hﬁ N H g > On, we can obtain by combining all pieces with (16) that

log N logN  2log N (11) 1 H H @ _ Tlog N
N 2N N T 12IPNE T N

o] B, = SIBN I -

with at least probability given in (7). Here, (i) is by Lemma 6 (taking u = d5), Lemma 7 (taking
u? = logN ), Lemma 8 (taking u = logN ), and Lemma 10, and (ii) is by Lemma 11 (taking v = ).
This 1mphes the desired bound (6).
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Appendix

Appendix A. Proof of Main Results

Proof [Proof of Lemma 6] Let

N .
1 - ;
Zn(u) = sup Z/ <g(,ut,XZ), de
gEHY i—1 70
First, we shall show that
C {Zn(u) > C3u?}. (18)

In fact, assume there is g € H*, such that ||g||; > w and

> Caulg| - 19)

'Zbé/; (g(pe, X7), AW,)

Let h = mg. Since ||g|| ; > w and H* is star-shaped, we know h € H* and | k|, = u. Then (19)

can be reformulated as

> Cau?.

Now we have finished (18). By a deviation inequality (Theorem 4 in Adamczak (2008)),

B (ZN(u) > 1.5 Zx(u) + t)

12 t
§exp{—}+3exp{ P— }»
302 C’H max; SUPgegys fo g, }f),dWi)

with

1 T 4 O\ 2 1 u?
2 _ i 2
0~ = sup N2 g E@N (/0 <9(NtaXZ)’ dw t>> < gselg); NHQHE < N
Then take ¢ = udn in the above deviation inequality, and we have

@N (ZN(U) > 1.5}EﬁNZN(U) + U(5N>

N&3 N
gexp{ N}+3exp{ uoN

} (20)
3 CHmaXZsupgew fo g, é),dWDH%
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Notice that we have

T Np—
max Sup/ <9(Mt7XZ)7 th>

1<Z<NQEH* ,¢
1
@ T o
S log N max sup/ (9, X7), dW3)
Z

geEH: JO s

T .
<log N sup/ (g(ps, X7), dW,)

geEH?,

1

(it

<logN{\/ B/ 10g(1+H(€,H*))d€+/2 \/log(l—i—H(z-:,H;‘;))de
0
=log N - Ji(1).

Here (i) is by Lemma 8.2 in Kosorok (2008), and (ii) is by taking N = 1 in Lemma 19. Since
u > 0y, by Lemma 13 we know

EﬁNZN(U) < EﬁNZN(é-N)
U - ON

< 20y,
ie. Egv Zn(u) < 2udy. Therefore,

PV (A(w) < BV (Zw(w) > 40%) < BV (Zw(u) > 4udy)
<ow{ - 2t} rsem { - i}

We finish the proof. |

Proof [Proof of Lemma 7] Note that

N T
1 7 7
EﬁN eXp{]V/\Q E / Hg(ﬂt7Xt) _g(/%]fvat)

2

dt}
) A2 dt
§En>”/0 exp{ /\QZngt, 9t X7) }T

aiy [T 2] di
2 EPNexp{AQHgmt,XiW—g(uéV,XmH &

T 2
< sup E@N exp{ng(Mt,XfV)g(,uiV,XtN)H }
0<t<T

Here (i) is by Jensen’s inequality, and (ii) is by Holder’s inequality for multivariables, which im-
plies EgnYy -+ Yy < EﬁNYJ\]y, since Y; = exp {NL/\QHQ(M,X@ — g(pd¥, X})||} are identically
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distributed (no need to be independent) under P fori = 1,2,---

exp{ﬂ;ugwm—gwwﬁ\f}

<1+Z l)\2p B Hg s X¢')

Q) p! KT
§1+Z ‘)\2], N ) H HLlp
p>1
_ 1
T TKill,
T (N=1))2

gy, XN

, N. By Taylor’s expansion,

I

for all \2 > TK; ||§||fip/(N — 1). Here (i) is by Lemma 14. Therefore, we get

2 d 1
tr < ——mM .
} = TKilE,

E NeXp{N/\2 Z/ Hg e X4) — gy, XY)

1
2 2
@

This implies

M Z/WWW g(p', X7)

Therefore,

< Z/ lgCue, X7) = g(ud, XD dt>u>§2e4TK1§"Eip

Proof [Proof of Lemma 8] For simplicity, let

g-NZ/HWM oy

Notice that
|Zy — Z,]

P2

9

< 2[|gllLip

T (N=DA2

TK;
N

Nu?

X7)|)? dt.

2D

—‘NZ/ <f 9) (e, Xi) = (f = g)(ﬂta 2)’(f+9)(ﬂtaxf)—(f—i—g)(,ut,Xg')>dt

S V29 VZf+g

Then, we have

@)
1Zy — Z9“1/11 < H \% Zf—gHw ) Hv Zf+gH

(i) K |l -
< — 0 -
SIi-al,vw -l
<% _QH .
~ N Lip
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Here, (i) is by Lemma 15 and (ii) is by (21) in the proof of Lemma 7. Then, by the standard chaining
argument, we know

L
LK, 2 - LK,
sup Zg|l S N/ log (1+ N(e,H a||'HLip)) de = TJQ(L).
geH 0
P1
Therefore, we have
—N _ Nu
P ( sup Z, > u) < 2e CLK1J3(L)
gEH*
for some constant C' > 0. [ |

Proof [Proof of Lemma 10] Recall that

N T
1 N o o
Sup — XD — g, X1), AW
96117-11)* N ZZ;/O <9(Nt t) — g, X3) t>
1§3T@H>aﬁ> DY ey awl
< sup —; / 2ilt), + sup — / St
genr V2 =170 ’ Y gene N7 1<i#j<N 0 ! t

= sup Vi (g) + sup Un(g).
geEH* geEH*

We will start from sup,cq- Vi (g9). By Lemma 16 and standard chaining argument,

1 3 — )
N S N\/N/O \/10g (14 N(u, 1%, || o) du = v

sup Vy(g)
geEH*

This implies that
N _ N342
P ( sup Vn(g) > u) < 2e @3B (22)
geEH*
for some constant C'. Next, we will bound sup e« Un(g). By Lemma 17,

Bloglog N
< ZDPee T
UM @y, S o
Notice that we cannot directly use chaining method with respect to )2 -norm, since 13 is not convex
3

when 0 < 8 < 1. Luckily, by Lemma C.2 in Chen and Kato (2019), there is a convex function Ve,
3
such that ||-|| Yo/ and |-|| Gy AT equivalent. In fact, a possible construction is

~ %/3(“)1, r<u
w<@={%@) v

wln

where w is the unique solution to 3(1 — e~ ") = 2u. Thus

Bloglog N

Uy, & —
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We can then verify that ¢, /13 Sy /13 = [log(1 + )]%/2. Again, by a chaining argument,

< || sup Un(g)
gEH*

sup Un(g)
gEH*

a3 Va3

B
loglog N [2 ~_ N
S / (N (A o) du
0 3

W

B
loglog N [=2 X
< jﬁ Nog(1 + N(u, #*, |-]..)] ? du

N
loglog N
= —=——Ju(B).
v B

It implies that

Y Nu 2 }
P Vi > <2 — 23
(gseu?g)* ~(g) u) P { <C'J4(B) log log N) (23)

for some constant C' > 0. Taking u = 105]ng in (22) and (23), we have

2log N
sup Viv(g) + sup Un(g) < —
geEH* geEH*

with probability at least

N(log N)? log N g
1‘2“p{‘cqa3> 200 (@ gy |

Proof [Proof of Lemma 11] Recall that

N .
1 .
oty =52 [ ot XDIPat, gl = Epnlali
=1

First, we will show that
vl * 2 2 oo u? N 2 2 u?
PY(3g e mt s gk — lalh| > sholy+ %5 ) <PV ( sup [lol ~ o3| > 5 ). @4
2 2 gEHE 2
In fact, let g € ‘H* such that

1 u?
2 2 2
g% =gl > Slols + 5

If |g|| g < w, then it is natural to have }||g||§( — HgH%’ > u?/2. Otherwise, if ||g||z < u, consider
h = m - g. We know h € H* since H* is star-shaped and ||h||; = u, and

2

2 2 U
[lgl% = llgl] > %

u

1B = | =
Il
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Thus (24) is true, and we only need to bound the right-hand side. Since

1/T 9 16B2T
L[ ot < 12T
I [ ot xpPae| <22
and
T 1 [T 2 2
V- , dt) < E- CXH|” de
s 25 (3 e 00 0) < 3o 5 )
= sup N7 g%
gEH
4BQTU
< —_
= N

By Talagrand’s inequality (Massart, 2000),

=V 2 2 2 2
P ((sup [lolf ~ ot | > 22 sup Jlol ol
geEHY, geEH, (25)

2
N 4Buv2Tx N 5608 Ta:> <o,
VN N

Now, let us bound the expectation term in the probability. By a standard symmetrization argument,
it can be bounded by the Rademacher complexity of (H} )2, i.e

N T
1 NI
Egx sup [lgl% — lgll%| < 2B sup ' i [ gt XD e,
P geH: X E P geH: N; v 0 H i H

where ¢; are i.i.d. Rademacher random variables. Let

Wy = 1%@ /THg(ut X7 at
g \/N = 0 ) t 9

and

R? .= sup NZ/ g (e, X7) | dt = sup lgll%-

gEH,

First, we will show that

Egn sup [W,| < 32fBJ5(\/E@N]§%>. (26)

geEH,
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Here, v indicates that we only consider the covering number of #;, rather than H*. Notice that for
every fand g € H,

P T . .
E%N@A(Wf*Wg) = IE%N exp {\/N;a(/o Hf(NmXZ)HZ _ HQ(W’XZ)HZ dt)}

<en {3 i ([ 150 XD ~ ot X017 t)
sexp{;N;/OTH(f—g)(ut,xzwzdt-/OTH<f+g><ut,Xz>H2dt}

< oxp {8717 - o350},

So Wy — W, is sub-Gaussian with parameter 16T B?| f — g|%- By a standard chaining argument,
we have

w/2
EEN sup |[Wy| < 32fB/ \/logN(s,Hjj,H-HX)ds
geEH,

u/2
< 32VTB / Vog N(s/VT, 13, 1.0 ds
0
= 32VTBJs(R,).

Thus, we have

E_v sup |W,| < 32VTBE_~ J5(R,) < 32\/TBJ5(1/H%N§%).

geEHT,

The last inequality is because z — J5(+/z) is a concave function.
Next, We will estimate J5 (1 [ B ﬁ%) Recall that we have shown

~ 2
EvR2 —u?< 7E—N sup |[W,|
P VN P e 7

< 64\\/5;3 5 (\fBa ).

1.€.

EvR2 <u®+ 64\/\/23 J5(, /IE@NR%).

Applying Lemma 2.1 in Van Der Vaart and Wellner (2011) to J5(-), we get
= 64vTB
J5(, /E@NR%) < Js(w) (1 + J5(u)m>.
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Taking it back to (26) leads to

64vTB
E_~ sup |W,| < VTBJ u<1+J u)
PNge?-]i:);| il 5(u) 5(u) iy
B2T J2(u)
< BVTJ5(u) + — ==
~ 5( ) \/NUQ

Combining with (25), we get

N 9 5 [J5(u) + uy/z| BVT  [zu?® + J2(u)| B*T Y

PV (0t sup [lgl — lol3| = ﬁ ¥ 2 <o
gEH, N Nu

for some constant C' > 0. Take = Nu?/36C? BT, and notice that

J5(u) < JT(T’N;T’N) < \/NT’N
u T rN T 6CBVT

Then, we get

=N 2 9 ury +u?  u?+ 7"]2\[ Nu?
P \ - \ > < v L
(gsetgr% lglx = lolz] =2 —F—+— S eXP |~ geapaTs

Again, since 7y < u we have

2 N 2

—N 2 2| U -

P ‘ - ’ 5=  36C2BT
(gsg% lglx = llglz| > 2) —eXp{ 3602B2T}

Remark 12 Usually, there are several ways to bound the Rademacher complexity of (H:)%. A
direct way is using Ledoux—Talagrand contraction inequality, see e.g. the proof of Lemma 14.9 in
Wainwright (2019). The method we use here is similar to the one in van de Geer (2014).

Appendix B. Proof of Technical Lemmas

Lemma 13 Forany 0 < u; < ug, we have

E@NZN('LLQ) < EﬁNZN(Ul)

u9g (51

Proof Recall that

Zn(u) = sup
gEHS,

1L T —
NZ-Z:;/O <g(/1't7Xt)7th
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and ., is star-shaped for any . Then for any g € . ,let g = Z—;g € Hy,, since 0 < Z—; <1.So

u?

Z/ 9(pe X7), dW;>

u
iEﬁNZN(UQ) E N Sup

U2 gEHT,
1 _ —
< IE N Sup Z/ <Q(Mt7XZ)7 dW:,>
eH;l 21 /0
= EﬁN Zn(uq).
|
Lemma 14 (Lemma 22 in Della Maestra and Hoffmann (2021)) For any g € H* we have
2p p!K?
B ot X0Y) = g, x| < =
Here K1 < 1+ d? is a constant.
Lemma 15 (v,,-norm of product) For any o > 0 and random variables X and Y, we have
IXY g, < 01Xy, - 1Y 1y, -
Proof By Cauchy-Schwartz’s inequality,
[ XYT\* LOXN LY
E <E —| — —| —
eXp{<)\x/\y sEe iz ) Talg,
X 2« Y 2c

eon (B eor () e

if we take A\, = [|X||,,, and Ay = [[Y[|,,, . Therefore, by definition
XYy, < Axdy = X, - 1Y 1, -
|

Lemma 16 For every g € H*, let

1 LT =i
Vle) =3z 3 | (€uto), amy).
i=170

Then Vi,(g) is sub-Gaussian with parameter C B2N =3 for some positive constant C' (may depends
onT), ie.,

N N3u2
(VN(g) > u> < e 20B7, Y u > 0.
This implies that
2BvVC
Vi < .
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Proof For any integer p > 1, by Burkholder-Davis—Gundy’s inequality,

By [Vilg)” < & N4p B <Z/

The last inequality is by (p/e)P < pl. Also, we know Vi (g) is mean-zero. The high probability
bound just follows from Appendix in Della Maestra and Hoffmann (2021). The bound of ¥2-norm
can be derived by the argument in Lemma 17. |

P CPRB2ypp CPrB?r
9 (
é-zz H dt) < N3p <pl N3p

Lemma 17 (Concentration of degenerate U-statistics) For every g € H*, let g be the degener-
ate kernel defined in Step 5 in the proof of Theorem 6 and define the U-statistics

1 S
Un(9) =5z D, o'W, W)
1<iAI<N

Then, there is a constant C > 0 (may depends on T') such that

N uN 2 CB(log N)?
P (Ju J<en{ - (craron) | ezt
Un@)] > ) <ex2y ~ ( GBTogloa ¥ v

This implies that
3C'Bloglog N
U (0)l,, < 2D oE B

Proof Let {Wd : 1 <i < N,l=1,2} be independent copies of standard Brownian motions under
@N. By Theorem 3.1.1 in de la Pena and Giné (1999),

1 il ——
v @), e, S 0RO, o3, = |z o077
1<iAj<N

For simplicity, let

2 I —il
oy = NIV = o [, amyh,

where &/ ’jD is the decoupling version of & ; defined as
D AR D) ~ iyl
P =X X4 = [ a0 dut)
Here X %! is the solution of (13) corresponding to the Brownian motion Wi’l. For p > 2, follow the
proof of Theorem 3.2 in Giné et al. (2000), we can get
)

P N
5 comn ([ Ten( 3 a)] e y] 3
(27)

E@N

1<i#j<N j=Lj#i =1 j=1j#i
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by conditioning on {Wﬂ

1 < j < N} first. Applying Proposition 3.1 in Giné et al. (2000), the
first term can be bounded by

(= m) = Z =

1<i#j<N

erofa) < ()

N
7, 2 —1
! ) (EL Y (W) < 1}
j=1 i=1,i#£j i=1

N N '

<sup {523 (BLe 3 (6)°) (Eb o027 s b S0 <1
i#] i#] i=1

<E2 ZEl Z gw

J=1 i#]
< N72B2%
Lastly,
N N P N N ) P
T 2 2 1 i 2
v, (B o (0)") < 3 (B 1))
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Rather than bound the second term of (27) as Giné et al. (2000) did, we directly bound it by
Burkholder—DaVis—Gundy’s inequality, see e.g., Barlow and Yor (1982),

PP N T N . P
eS| ol = B3 ma| [ 3 ap.amt)

i=1 j=1,j#i J=1,j#i

T, XN bI2 \?
< ey oniea([1] 3 arfa)

J=1g#i
s\ P
< <C?p : ) -
N »p

Combining all the pieces together, we have

3 3
coplP 2wt pY
NP NP N%P—1 Np—1

HUN(Q)HI;D :| < Cpop3p/2N1_p,

@) =
By Markov’s inequality, we have

_ CP BPy3p/2
P (jUwto) > u) < e <7

by tuning the parameter p > 2 such that CBp3/? < uN'~/P. By choosing

2

uN 3 when 1 > C Be(log N)?
= —_—m u —_—mm
P eCBloglogN ) '’ -

we get

wn

@N<|UN(Q)‘ > u) < exp{ - <—CB lzgogN> }, Yo > 7CB(logN)2

for some constant C.
Lastly, we will prove the statement about the Orlicz norm of Uy (g). Take

3C'Bloglog N

A= N ,

and we have

2
U 3 o _
EHDNGXP{O N)\(g)‘> }2/ ]P’N<‘UN(9)}>)\(logu)g> du
0
2
o AMlogu)32N '\ 3
< (2= 7 -

_1+/1 exp{ <C’BloglogN du

2

o AN 3

[ AN\
_[ _<C’Bloglog]\7> ]

< 2.
We finish the proof. [ |
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Lemma 18 (sub-exponential increments) Let

N T
1 . .
Y= — g / g(pe, Xi), AW,
AN 2 < t t>
Then for any f, and g € H*, Yy — Y, is sub-exponential with parameters satisfying

2 2
E@Ne,\(yffyg) < exp{ NN f = glle/2 }

1= /T/2NA|f = gl

Moreover, the Bernstein’s bound holds as well, i.e.,

2
@N VeV 2ex {_ . }
(1Yy — Y| > u) < 2exp 2(If = gl + VT/2N| f — gl u)

Proof Note that
E@N Y =Yg)

_ (EIP’N exp {\/AN/OTW — 9) (e, X1), th>}>N

() ox [T ey 2 T 2
2 (e {22 [0 =0 a2 = 20 7107 = ) X0 e}

(mwen {2 [ ||(f—g)(ut,Xt)||2dt}>g

. 2 T ¥
9 (e {20 [ 10 -9 X0P ar} )

Here, (i) is by Cauchy—Schwartz’s inequality, and (ii) is by the fact that

2\ 8 _ 1722 \2 [$
eXp{\/ﬁ (= 9) e Xo), th>—§(ﬁ) /0 ||(f_9)(ﬂtaXt)|2dt}, 0<s<T

N4

is an exponential martingale under B Now, by Taylor’s formula
2/\2 T 9
B { 2 [ 107 = 9. Xl

oo

2 T
=14 2 () B () 15 - oo Xt )

INZ\ K -
1Y (57) @l = alZ) s - gl

k=1
22| f — g|3/N
1— 2722 f — g[%
Sexp{ 227 — gllp/N }
1 - 27X f — gl /N

< oo 2| — gl}/N }
— U= VRTUNANS gl

k

IN
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for N large enough. So

2 2
EﬁNe,\(Yf—Yg) < exp{ MIf = glE/2 }

1= /T/2NA|f = gl

Then the Bernstein’s bound holds by Proposition 2.10 in Wainwright (2019). |

Lemma 19 (estimation of ¢/ -norm)

2 3 2
< \/ﬁ/ log (1+H(5,H;;))de+u/2 \/log (14 H(e, 1)) de.
¥ 2N 0 0

Proof We only need to consider the case where #;, is a finite set, and the whole proof can be
extended to a separable H;, (H* is separable indeed) by a standard argument. Let S, C H such
that | Si| = H(27%, ;) for all integer k > 0. We specify Sy = {0} and Sk = H}. Such K exists
since H;; is finite. Let 75 (g) be an element in Sk, such that

geENS,

lg = mr(9) 5 < 27u, lg — m(9)]., <27%B.

Forany g € H; and 1 < k < K, let g% = gand gF ! = wk_l(gk). Then, we can decompose
Supgeyx Yg by

Y,| = Y, - Y| < A N Y, —
gseup*\ fl gsup\ ol ZS;%" k= Y| ;;gsli\ Yoo 1o

By Lemma 8.3 in Kosorok (2008), Lemma 18, and triangular inequality of v);-norm, we can get

<Z

sup [y = Yo, (o)

gESk

geEH, 1

T —k g« - ks
[ L "B-log (1+H(2 % H,)) +2 ku-\/log (14 H(2 %, H))

N
L TM- T

B2

; )
QN/O 1og(1—|—H(€,Hu))d5+u/0 Vo (1+ H(e, Hy)) de.

A

Appendix C. Proof of Applications

Proof [proof of Corollary 2] First, let us calculate the order of r . Notice that if f g€ M st H f —
gl < e wehave |f—g|,, < e. This implies log N (e, H*, ||[|,.) < 2log N(g/2,H*, |||l o.)-

Therefore
™~
2 _d 1—4d
J5(rN)§/O Ve ade Sy 2.
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. -4 __a
By letting ry 2 < V/N7r%, we get ry < N @+2a. Next, we shall calculate the order of dy. In
fact,

1 M7 ' .
Egv sup Z/ (9(pe, X7), dW,)
gEHY ;
LX), AW,
< gselif* Z/ {g(pe X L) }

g /7 g

The last inequality is by Lemma 19. Note that

ol = [ [ 10~ 9o auarar < 717 312,
and
If =gl < |7 =3l
Therefore log H (e, Hy) < 21og N((2VT + 2)"teu, H*, ||{|.) < (eu)~%?. So we know

1 1
1 2 d U 2 d
ENsup / ,ut,X’ dw / eu _ade—i—/ eu)” 2« de
geH: Z t> ~ N ( ) \/N 0 ( )
¢t
< U e U .
N VN
By Letting
5‘% 51_%
N VN ~
we get Oy < N~ @5, By Theorem 1, we know HEN — b*HE < N~ 7% with probability 1 —
Cexp{—C’ (lolgoﬁ)ngN)W 31 for some positive constant C' and C’ that may depends on 7. |

Lemma 20 Under Assumption 2 for all C > 0,

Hﬁ (B = )1 Ny = P
2~ 1nf0<||k||<CH< )kH 2nC

Proof [Proof of Lemma 20] By Plancherel’s identity (Proposition 3.1.16 in Grafakos (2008))

= 3 B |
S D (o3 M/ i [0V oM

0<|k|<C IklI=C

HﬁN _F*

oo
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The last equality is by the restriction [, ﬁN )dz = [r4 F*(x) dz = 0, which implies that (FN —
F*)o = 0. By (11) and Assumption 2 that (E,u)k # 0 for all k: 75 0,

2

(E(/b\N - b*)(v M))k

> -l - ¥

0<||k]<C 0<||k|<C (L)
~ 2
inf -2 (.
S RCII o] [COS RN

: -2 T * 2
= (G~ e =0

For the second term, recall that for any function f : T — R% and k € Z¢

St = 5 |(62),f - & oot

lj=1 l,j=1

d
:47r22\(fl)k\22k§
=1

j=1
= 42|k I* ()l

Take f = Fy — F*, and we get

> @ < (2;0)2- > ([ (Fx — Fo)|

IxI>C

e IP Y (LGN |

Hkl\ >C =1

< arep s X -

=1 kezd

- (zwlc)2 ; HV(EV - F*)Z‘E

< (27r0)*2HﬁN _F* ;

Combining these pieces together yields the result. |

Proof [Proof of Corollary 3] We can assume po(x) > 0 for all z. Otherwise, we can choose w(t)
and p(t) satisfying f ) dp(t) = 0 for some time s > 0, and apply the operator £ with new w
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and p.

2
dx

T ~
|2y = 5,5 = w(t)(by = b°) (e, ) dt

Td 0
T
g//ﬁwmwbm,%Mm
TdJ0

T A~
S [ 16 =)o)
0 JTd

T N )
S [ 1 =5 o) .
0 JTd

The last inequality is by the fact that y1; () is bounded away from zero, since [0, 7] x T% is compact.
Then by Lemma 20, with high probability we have

5N+T’N+IOgN/N 1

Fy — F* + — sup |F
H H2 1nf0<\|k||<C H(‘CN)kH 7C i H HHl

By taking C' = ny, we finish the proof. |
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