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Abstract
We study the fundamental problem of learning a single neuron, i.e., a function of the form x 7→ σ(w ·
x) for monotone activations σ : R 7→ R, with respect to the L2

2-loss in the presence of adversarial
label noise. Specifically, we are given labeled examples from a distribution D on (x, y) ∈ Rd × R
such that there exists w∗ ∈ Rd achieving F (w∗) = opt, where F (w) = E(x,y)∼D[(σ(w ·x)−y)2].
The goal of the learner is to output a hypothesis vector w̃ such that F (w̃) = C opt + ϵ with high
probability, where C > 1 is a universal constant. As our main contribution, we give efficient constant-
factor approximate learners for a broad class of distributions (including log-concave distributions)
and activation functions (including ReLUs and sigmoids). Concretely, for the class of isotropic
log-concave distributions, we obtain the following important corollaries:

• For the logistic activation, i.e., σ(t) = 1/(1 + e−t), we obtain the first polynomial-time constant
factor approximation (even under the Gaussian distribution). Our algorithm has sample complexity
Õ(d/ϵ), which is tight within polylogarithmic factors.

• For the ReLU activation, i.e., σ(t) = max(0, t), we give an efficient algorithm with sample
complexity Õ(d polylog(1/ϵ)). Prior to our work, the best known constant-factor approximate
learner had sample complexity Ω̃(d/ϵ).

In both of these settings, our algorithms are simple, performing gradient-descent on the (regularized)
L2
2-loss. The correctness of our algorithms relies on novel structural results that we establish,

showing that (essentially all) stationary points of the underlying non-convex loss are approximately
optimal.
Keywords: List of keywords

1. Introduction

1.1. Background and Motivation

The recent success of deep learning has served as a practical motivation for the development of
provable efficient learning algorithms for various natural classes of neural networks. Despite extensive
investigation, our theoretical understanding of the assumptions under which neural networks are
provably efficiently learnable remains somewhat limited. Here we focus on arguably the simplest
possible setting of learning a single neuron, i.e., a real-valued function of the form x 7→ σ(w · x),
where w is the weight vector of parameters and σ : R → R is a fixed non-linear and monotone
activation function. Concretely, the learning problem is the following: Given i.i.d. samples from
a distribution D on (x, y), where x ∈ Rd is the feature vector and y ∈ R is the corresponding
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label, our goal is to learn the underlying function in L2
2-loss. That is, the learner’s objective is

to output a hypothesis h : Rd → R such that E(x,y)∼D[(h(x) − y)2] is as small as possible,
compared to the minimum possible loss opt := minw∈Rd E(x,y)∼D[(σ(w · x) − y)2]. Settings of
particular interest for the activation σ include the ReLU and sigmoid functions, corresponding to
σ(u) = ReLU(u) := max{0, u} and σ(u) := 1/(1 + exp(−u)) respectively. Recall that a learning
algorithm is called proper if the hypothesis h is restricted to be of the form hŵ(x) = σ(ŵ · x).
Throughout this paper, we focus on developing efficient proper learners.

In the realizable case, i.e., when the labels y are consistent with a function in the class, the above
learning problem is known to be solvable in polynomial time for a range of activation functions. A
line of work, see, e.g., Kalai and Sastry (2009); Soltanolkotabi (2017); Yehudai and Shamir (2020)
and references therein, has shown that simple algorithms like gradient-descent efficiently converge to
an optimal solution under additional assumptions on the marginal distribution Dx on examples.

In this work, we focus on the agnostic learning model, where no realizability assumptions are
made on the distribution D. Roughly speaking, the agnostic model corresponds to learning in the
presence of adversarial label noise.

Definition 1 (Learning Single Neurons with Adversarial Noise) Fix ϵ,W > 0, δ ∈ (0, 1), and
a class of distributions G on Rd. Let σ : R 7→ R be an activation function and D a distribution on
labeled examples (x, y) ∈ Rd × R such that its x-marginal belongs in G. We define the population
L2
2-loss as FD,σ(w) ≜ (1/2)E(x,y)∼D[(σ(w · x) − y)2]. We say that D is (ϵ,W )-corrupted if

inf∥w∥2≤W FD,σ(w) ≤ ϵ . For some C ≥ 1, a C-approximate learner is given ϵ, δ,W and i.i.d.
labeled examples from D and outputs a function h(x) : Rd 7→ R such that, with probability at least
1− δ, it holds (1/2)E(x,y)∼D[(h(x)− y)2] ≤ Cϵ .

Some comments are in order. First, we note that the parameter ϵ quantifies the degree of contamination
— in the sense that the closest function in the class has L2

2-loss ϵ. (Sometimes, this is denoted by opt
in the relevant literature.) The parameter W quantifies the radius of the ball that contains an optimal
vector w∗. For uniformly bounded activations (e.g., sigmoids), one can remove the restriction on the
norm of the weight vector w, i.e., take W = +∞. In this case, we call D ϵ-corrupted. When the
distribution and activation are clear from the context, we will write F (w) instead of FD,σ(w).

Related Prior Work In this paper, we focus on developing efficient constant-factor approximate
proper learners for a range of activation functions. For this to be possible in polynomial time, one
needs to make some qualitative assumptions on the underlying marginal distribution on examples.
Indeed, it is known (Diakonikolas et al., 2022) that in the distribution-free setting no constant-
factor approximation is possible (even for improper learning), under cryptographic assumptions,
for a range of activations including ReLUs and sigmoids. On the other hand, even under Gaussian
marginals, achieving error opt + ϵ (corresponding to C = 1 in Definition 1) requires time dF (1/ϵ),
for some function F with limu→∞ F (u) =∞ (Goel et al.; Diakonikolas et al., 2020c; Goel et al.,
2020; Diakonikolas et al., 2021b). These hardness results motivate the design of constant-factor
approximate learners under “well-behaved” distributions.

On the algorithmic side, Goel et al. (2017) gave an algorithm with error opt + ϵ and runtime
poly(d)2poly(1/ϵ) that succeeds as long as the distribution on examples is supported on the unit
sphere. Frei et al. (2020) study ReLU activations under structured distributions and show that
gradient-descent on the L2 loss converges to a weight vector with error O(d ϵ). The most relevant
prior work is by Diakonikolas et al. (2020a) who gave a poly(d/ϵ)-time constant-factor approximate
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proper learner for ReLU activations under isotropic log-concave distributions. Their algorithm makes
essential use of the ReLU activation. In fact, Diakonikolas et al. (2020a) asked whether efficient
constant-factor approximations exist for other activations, including sigmoids. In this work, we
answer this open question in the affirmative.

The aforementioned discussion motivates the following broad question:

Is there an efficient constant-factor approximate learner
for single neurons under well-behaved distributions?

In this work, we answer this question in the affirmative for a range of activations including ReLUs and
sigmoids and a variety of well-behaved distributions. In fact, we show that a simple gradient-based
method on the L2

2-loss suffices.

1.2. Our Results

Distributional Assumptions We develop algorithms that are able to learn single neurons under
a large class of structured distributions. We make mild distributional assumptions requiring only
concentration, anti-concentration, and anti-anti-concentration on the x-marginal of the examples. In
particular, we consider the following class of well-behaved distributions.

Definition 2 (Well-behaved Distributions) Let L,R > 0. An isotropic (i.e., zero mean and identity
covariance) distribution Dx on Rd is called (L,R)-well-behaved if for any projection (Dx)V of Dx

onto a subspace V of dimension at most two, the corresponding pdf γV on R2 satisfies the following:

• For all x ∈ V such that ∥x∥∞ ≤ R it holds γV (x) ≥ L (anti-anti-concentration).

• For all x ∈ V it holds that γV (x) ≤ (1/L)(e−L∥x∥2) (anti-concentration and concentration).

When the parameters L,R are bounded above by universal constants (independent of the dimension),
we will simply say that the distribution Dx is well-behaved.

The class of well-behaved distributions is fairly broad. Specifically, isotropic log-concave distri-
butions are well-behaved, i.e., they are (L,R)-well-behaved for some L,R = O(1), see, e.g., Lovász
and Vempala (2007); Klivans et al. (2009). Similar assumptions were introduced in Diakonikolas
et al. (2020d) and have been used in various classification and regression settings (Diakonikolas et al.,
2020f,e,b, 2021a; Frei et al., 2020, 2021; Zhang and Li, 2021; Zou et al., 2021).

Learning Sigmoidal Activations Our first main result holds for a natural class of activations that
roughly have “sigmoidal” shape.

Definition 3 (Sigmoidal Activations) Let σ : R 7→ R be a non-decreasing activation function and
τ, µ, ξ > 0. We say that σ is (τ, µ, ξ)-sigmoidal if it satisfies (a) σ′(t) ≥ τ , for all t ∈ [−1, 1], and
(b) σ′(t) ≤ ξe−µ|t|, for all t ∈ R. We will simply say that an activation is “sigmoidal” when τ, µ, ξ
are universal constants.

Arguably the most popular sigmoidal activation is the logistic activation or sigmoid, correspond-
ing to σ(t) = 1/(1 + e−t). Other well-studied sigmoidal activations include the hyperbolic tangent,
the Gaussian error function, and the ramp activation (see Figure 1). We note that all these activations
satisfy the requirement of Definition 3 for some universal constants τ, µ, ξ. In what follows, we will
simply refer to them as sigmoidal.
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The most commonly used method to solve our learning problem in practice is to directly attempt
to minimize the L2

2-loss via (stochastic) gradient descent. Due to the non-convexity of the objective,
this method is of a heuristic nature in general and comes with no theoretical guarantees, even in
noiseless settings. In our setting, the situation is even more challenging due to the adversarial noise in
the labels. Indeed, we show that the “vanilla” L2

2-objective may contain bad local optima, even under
Gaussian marginals. Specifically, even with an arbitrarily small amount of adversarial noise, the
vanilla L2

2 objective will have local-minima whose L2
2-error is larger than 1/2 (which is essentially

trivial, since sigmoidal activations take values in [−1, 1]); see Proposition 9 and Figure 2.
Our main structural result for sigmoidal activations is that we can “correct” the optimization

landscape of the L2
2-loss by introducing a standard ℓ2-regularization term. We prove the following

theorem showing that any stationary point of the regularized L2
2-loss is approximately optimal.

Theorem 4 (Informal: Landscape of Sigmoidals) For sigmoidal activations and ϵ-corrupted well-
behaved distributions, any (approximate) stationary point w̄ of the ℓ2 regularized objective Fρ(w) =
F (w) + (ρ/2)∥w∥22 with ρ = Θ(ϵ3), satisfies F (w̄) = O(ϵ).

Standard gradient methods (such as SGD) are known to efficiently converge to stationary points
of non-convex objectives under certain assumptions. By running any such method on our regularized
objective, we readily obtain an efficient algorithm that outputs a weight vector with L2

2-loss O(ϵ).
This is already a new result in this context. Yet, black-box application of optimization results for
finding stationary points of non-convex functions would resulting in a sample complexity with
suboptimal dependence on ϵ, up to polynomial factors.

Aiming towards an algorithmic result with near-optimal sample complexity, we perform a “white-
box” analysis of gradient descent, leveraging the optimization landscape of sigmoidals. Specifically,
we show that “vanilla” gradient descent, with a fixed step size, finds an approximately optimal
solution when run on the empirical (regularized) L2

2-loss with a near-optimal number of samples.

Theorem 5 (Informal: Learning Sigmoidals via Gradient Descent) For sigmoidal activations
and ϵ-corrupted well-behaved distributions, gradient descent on the empirical regularized loss F̂ρ(·)
with N = Θ̃(d/ϵ) samples, converges, in poly(1/ϵ) iterations, to a vector w̃ satisfying F (w̃) ≤ O(ϵ)
with high probability.

Theorem 5 gives the first efficient constant-factor approximate learner for sigmoid activations in
the presence of adversarial label noise, answering an open problem of Diakonikolas et al. (2020a). As
an additional bonus, our algorithm is simple and potentially practical (relying on gradient-descent),
has near-optimal sample complexity (see Lemma 66), and succeeds for a broad family of bounded
activation functions (i.e., the ones satisfying Definition 3).

For simplicity of the exposition, we have restricted our attention to sigmoidal activations (cor-
responding to τ, µ, ξ being universal constants in Definition 3) and well-behaved distributions
(corresponding to L,R = O(1) in Definition 2). In the general case, we note that the complexity of
our algorithm is polynomial in the parameters L,R, τ, µ, ξ, see Theorem 22.

Learning Unbounded Activations We next turn our attention to activation functions that are not
uniformly bounded. The most popular such activation is the ReLU function σ(t) = Relu(t) =
max(0, t). Our algorithmic results apply to the following class of unbounded activations.

4



LEARNING A SINGLE NEURON WITH ADVERSARIAL LABEL NOISE VIA GRADIENT DESCENT

Definition 6 (Unbounded Activations) Let σ : R 7→ R be a non-decreasing activation function
and α, λ > 0. We say that σ is (α, λ)-unbounded if it satisfies (a) σ is λ-Lipschitz and (b) σ′(t) ≥ α,
for all t ∈ [0,+∞). We will simply say that an activation is unbounded when the parameters α, λ
are universal constants.

We use the term “unbounded” for these activations, as they tend to∞ as t→ +∞. Most well-
known unbounded activation functions such as the ReLU, Leaky-ReLU, ELU are (α, λ)-unbounded
for some absolute constants α, λ > 0. For example, the ReLU activation is (1, 1)-unbounded.

Our main structural result for unbounded activations is that all stationary points w of the L2
2-loss

that lie in the halfspace w∗ · w ≥ 0, where w∗ is the optimal weight vector, are approximately
optimal. In more detail, we establish the following result.

Theorem 7 (Informal: Landscape of Unbounded Activations) For unbounded activations and
ϵ-corrupted well-behaved distributions, any stationary point w̄ of F (w) with w ·w∗ ≥ 0 satisfies
F (w̄) = O(ϵ), and any w with w ·w∗ ≥ 0 and F (w) = Ω(ϵ), satisfies ∇F (w) · (w −w∗) > 0.

We remark that the constant in the error guarantee of the above theorem only depends on the
(universal) constants of the distribution and the activation and not on the radius W of Definition 1.
Interestingly, Theorem 7 does not preclude the existence of suboptimal stationary points. On the other
hand, similarly to the case of sigmoidal activations, our structural result can be readily combined with
“black-box” optimization to efficiently find a constant-factor approximately optimal weight vector
w (see Section 3). To obtain near-optimal sample complexity, we again perform an “white-box”
analysis of (approximate) gradient descent, showing that simply by initializing at 0 we can avoid bad
stationary points.

Theorem 8 (Informal: Learning Unbounded Activations via Gradient Descent) For unbounded
activations and (ϵ,W )-corrupted well-behaved distributions, (approximate) gradient descent on the
L2
2-loss F (·) with sample size N = Θ̃(dW 2 max(polylog(W/ϵ), 1)) and polylog(1/ϵ) iterations,

converges to a vector w̃ ∈ Rd, satisfying F (w̃) ≤ O(ϵ) with high probability.

Theorem 8 is a broad generalization of the main result of Diakonikolas et al. (2020a), which gave
a constant-factor approximation (using a different approach) for the special case of ReLU activations
under isotropic log-concave distributions. While the result of Diakonikolas et al. (2020a) was tailored
to the ReLU activation, Theorem 8 works for a fairly broad class of unbounded activations (and a
more general class of distributions). A key conceptual difference between the two results lies in the
overall approach: The prior work Diakonikolas et al. (2020a) used a convex surrogate for optimization.
In contrast, we leverage our structural result and directly optimize the natural non-convex objective.

Additionally, Theorem 8 achieves significantly better (and near-optimal) sample complexity as a
function of both d and 1/ϵ. In more detail, the algorithm of Diakonikolas et al. (2020a) had sample
complexity Ω(d/ϵ) (their results are phrased for the special case that W = 1), while our algorithm
has sample complexity Õ(d)polylog(1/ϵ) — i.e., near-linear in d and polylogarithmic in 1/ϵ.

2. Preliminaries

Basic Notation For n ∈ Z+, let [n] := {1, . . . , n}. We use small boldface characters for vectors
and capital bold characters for matrices. For x ∈ Rd and i ∈ [d], xi denotes the i-th coordinate of
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Figure 1: The tanh(·) activation is (0.4, 1, 1.4)-sigmoidal. The ramp activation is (1, 1, 3)-sigmoidal.
The logistic activation is (0.19, 1, 1)-sigmoidal. In the right figure, we plot the derivative of the
ramp activation that is simply a rectangular function 1{|t| ≤ 1} (drawn in red) and the derivative of
tanh(t) (drawn in blue). Notice that both decay at least exponentially fast: the derivative of the ramp
activation is non-zero only in the interval [−1, 1] and the derivative of tanh(t) decays exponentially
fast, i.e., it is always smaller than (4/3)e−|x|.

x, and ∥x∥2 := (
∑d

i=1 x
2
i )

1/2 denotes the ℓ2-norm of x. We will use x · y for the inner product of
x,y ∈ Rd and θ(x,y) for the angle between x,y. We slightly abuse notation and denote ei the i-th
standard basis vector in Rd. We will use 1A to denote the characteristic function of the set A, i.e.,
1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. For vectors v,u ∈ Rd, we denote v⊥u the projection
of v into the subspace orthogonal to u, furthermore, we denote v∥u the projection of v into the
direction u, i.e., v∥u := ((v · u)u)/∥u∥22.

Asymptotic Notation We use the standard O(·),Θ(·),Ω(·) asymptotic notation. We also use Õ(·)
to omit poly-logarithmic factors. We write E ≳ F , two non-negative expressions E and F to denote
that there exists some positive universal constant c > 0 (independent of the variables or parameters
on which E and F depend) such that E ≥ c F . In other words, E = Ω(F ). For non-negative
expressions E,F we write E ≫ F to denote that E ≥ C F , where C > 0 is a sufficiently large
universal constant (again independent of the parameters of E and F ). The notations ≲,≪ are defined
similarly.

Probability Notation We use Ex∼D[x] for the expectation of the random variable x according to
the distribution D and Pr[E ] for the probability of event E . For simplicity of notation, we may omit
the distribution when it is clear from the context. For (x, y) distributed according to D, we denote
Dx to be the distribution of x and Dy to be the distribution of y. For unit vector v ∈ Rd, we denote
Dv the distribution of x on the direction v, i.e., the distribution of xv. For a set B and a distribution
D, we denote DB to be the distribution D conditional on B.

3. The Landscape of the L2
2 Loss

In this section, we present our results on the landscape of the L2
2 loss for the sigmoidal activation

functions of Definition 3 and the unbounded activation functions of Definition 6. Before we proceed,
we remark again that Definition 3 models a general class of bounded activation functions, including,
for example, the logistic activation, σ(t) = 1/(1 + e−t), the hyperbolic tangent, σ(t) = tanh(t), the
Gaussian error function, and the ramp activation, see Figure 1.
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Figure 2: The non-convex optimization landscape of the “vanilla” L2
2 loss. The activation is a ramp

function r(t), defined in Equation (2). The x-marginal is the uniform distribution on the square
[−2, 2]× [−2, 2]. The “true” underlying weight vector is w∗ = (1, 0). In the left figure, we plot the
noiseless population objective F (w) as a function of w ∈ [−2, 2]× [−2, 2], where y = r(w∗ · x).
We observe that even though the objective is non-convex, in this case, the only stationary point is
the true weight vector w∗. In the right figure, we introduce noise and observe that the objective has
another stationary point, which in fact is −w∗. Finally, we notice that the landscape becomes more
“flat” as we move away from the origin and the “bad” stationary point is a local-minimum that the
“noise” was able to create in a particularly flat region.

We first show that we can construct noisy instances that have “bad” stationary points, i.e., local-
minima whose L2

2 loss is ω(ϵ). Perhaps surprisingly, this is the case even when the underlying x-
marginal is the standard normal and the level of corruption ϵ of the corresponding labeled instance D
is arbitrarily small. Moreover, the sigmoidal activation used in the construction of the counterexample
is very simple (in particular, we use the ramp activation). We show that, even though the constructed
instance is only ϵ-corrupted, there exists a local minimum whose L2

2 loss is at least ω(ϵ) (and in fact
larger than some universal constant). The proof of the following result can be found in Appendix A;
an example of the noisy L2

2 landscape is shown in Figure 2.

Proposition 9 (Vanilla L2
2 has “Bad” Local-Minima) For any ϵ ∈ (0, 1], there exists a well-

behaved sigmoidal activation σ(·) and an ϵ-corrupted distribution D on Rd × {±1} with standard
Gaussian x-marginal such that FD,σ(·) has a local minimum u with FD,σ(u) ≥ 1/2.

Our positive result shows that by using a regularized version of the L2
2 loss, we can guarantee

that all stationary points have error within a constant multiple of ϵ. Before stating our formal result,
we first define the norm that we will use frequently together with its corresponding dual norm. In
fact, we show that this norm characterizes the landscape of the (regularized) L2

2 loss, in the sense that
minimizing the gradient with respect to its dual norm will give a point with small error.

Definition 10 (w-weighted Euclidean Norm) Given some vector u ∈ Rd, we define its weighted
Euclidean norm with respect to a non-zero vector w ∈ Rd to be ∥u∥w = ∥projwu∥2

∥w∥3/22

+
∥proj

w⊥u∥2
∥w∥1/22

. We

also define the dual norm of ∥·∥w as follows: ∥v∥∗,w = max(∥projwv∥2∥w∥
3/2
2 , ∥projw⊥v∥2∥w∥1/22 ) .
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The main intuition behind the norm of Definition 10 is the following: for well-behaved distri-
butions and sigmoidal activations, the “noiseless” L2

2 loss Ex∼D[(σ(w · x)− σ(w∗ · x))2] behaves
similarly to the non-convex function w 7→ ∥w −w∗∥2w. For more details and intuition on why this
norm naturally appears in our results, we refer to (the proofs of) Lemma 17 and Lemma 43.

Remark 11 (Distribution/Activation parameters) Before we present our main structural result,
we would like to revisit the parameters of Definition 2 and Definition 3. We observe that an (L,R)-
well-behaved distribution is also (L′, R′)-well-behaved for any L′ ≤ L,R′ ≤ R. Therefore, without
loss of generality (and to simplify the presentation), we shall assume that L,R ∈ (0, 1]. For the same
reason, for sigmoidal activations, we will assume that ξ ∈ [1,∞) and τ, µ ∈ (0, 1]. Similarly, for
unbounded activations we assume λ ∈ [1,∞), α ∈ (0, 1].

We now state our main structural result for sigmoidal activations, namely that all stationary points
of the ℓ2-regularized L2

2 objective are approximately optimal solutions. Its proof can be found in
Appendix A.

Theorem 12 (Stationary Points of Sigmoidal Activations) Let D be an ϵ-corrupted, (L,R)-well-
behaved distribution on Rd × R and σ be a (τ, µ, ξ)-sigmoidal activation. Set κ = L6R6µ3τ4/ξ2

and ρ = Cϵ3/κ5, where C > 0 is a universal constant, and define the ℓ2-regularized objective as
Fρ(w) = (1/2)E(x,y)∼D[(σ(w · x) − y)2] + (ρ/2)∥w∥22 . For some sufficiently small universal
constant c > 0, we have the following

• If ∥w∥2 ≤ 2/R and ∥∇Fρ(w)∥2 ≤ c
√
ϵ, then F (w) = ϵ · poly(1/κ).

• If ∥w∥2 ≥ 2/R and ∥∇Fρ(w)∥∗,w ≤ c
√
ϵ, then F (w) = ϵ · poly(1/κ).

Theorem 12 shows that the L2
2 objective behaves differently when w lies close vs far from the

origin. The landscape becomes more “flat” as we move further away from the origin, and in order to
achieve loss ϵ we have to make the dual of the weighted w-norm of the gradient small; for example,
the component orthogonal to w has to be smaller than

√
ϵ/∥w∥1/22 .

At a high level, we prove Theorem 12 in two main steps. First, we analyze the population L2
2 loss

without a regularizer, and show that all “bad” stationary points are in fact at distance Ω(1/ϵ) from
the origin. Since the non-regularized (vanilla) gradient field becomes very flat far from the origin,
adding a small amount of noise potentially creates bad local minima (see also Figure 2). We show
that by adding an appropriate ℓ2 regularizer, we essentially introduce radial gradients pulling towards
the origin whose contribution is large enough to remove bad stationary points, while ensuring that
the “good” stationary points do not change by a lot.

Before proceeding to the proof of Theorem 12, we first highlight an intricacy of the landscape of
the L2

2 loss for sigmoidal activations: the L2
2 loss may be “minimized” for some direction of infinite

length. Consider, for example, the case where the activation is the logistic loss σ(t) = 1/(1 + e−t),
the label y is equal to sign(w∗ ·x) for some unit vector w∗, and the x-marginal is the standard normal
distribution. Then, we have that for any fixed vector w it holds that E(x,y)∼D[(σ(w · x)− y)2] > 0
and

lim
t→+∞

E
(x,y)∼D

[(σ(t w∗ · x)− y)2] = 0 .

We prove the following lemma showing that even though the true “minimizer” may be a vector of
infinite length, there exist almost optimal solutions inside a ball of radius O(1/ϵ).
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Lemma 13 (Radius of Approximate Optimality of Sigmoidal Activations) Let D be an (L,R)-
well-behaved distribution in Rd and let σ(t) be a (τ, µ, ξ)-sigmoidal activation function. There exists
a vector v with ∥v∥2 ≤ 1/ϵ and F (v) ≤ (1 +O( ξ

µL))ϵ.

To prove Theorem 12 we will show that for most vectors w the gradients of vectors that have
large error, i.e., w with F (w) ≥ Ω(ϵ), will have large contribution towards some optimal vector
w∗, i.e., ∇Fρ(w) · (w − w∗) > 0. This is a more useful property than simply proving that the
norm of the gradient is large, and we will later use it to obtain an efficient algorithm. However, as
we already discussed, this is not always the case: we can only show that the gradient field “pulls”
towards some optimal solution only inside a ball of radius roughly 1/ϵ around the origin (see Cases
1,2 of Proposition 14). Outside of this ball, we show that the regularizer will take effect and pull us
back into the ball where the gradient field helps to improve the guess; this corresponds to Case 3
of Proposition 14. In particular, we show that the projection of the gradient of the L2

2 objective on
the direction w −w∗ is proportional to the standard ℓ2 distance of w −w∗, when w is close to the
origin, and proportional to the w-weighted Euclidean distance of Definition 10, when w is far from
the origin.

Proposition 14 (Gradient of the Regularized L2
2 Loss) Let D be an (L,R)-well-behaved distri-

bution and define Fρ(w) = (1/2)E(x,y)∼D[(σ(w · x)− y)2] + (1/2)ρ∥w∥22, where σ is a (τ, µ, ξ)-
sigmoidal activation and ρ > 0. Let ϵ ∈ (0, 1) and let w∗ ∈ Rd such that F (w∗) ≤ ϵ and
∥w∗∥2 ≤ U/ϵ, for some U ≥ 0. Furthermore, set κ = L6R6µ3τ4/ξ2 and ρ = Cϵ3/κ5, where
C ≥ 0 is a sufficiently large universal constant. There exists a universal constant c′ > 0, such that
for any w ∈ Rd, we have:

1. When ∥w∥2 ≤ 2/R and ∥w∗ −w∥2 ≥
√
ϵ/(c′κ5), then ∇Fρ(w) · (w −w∗) ≥ c′

√
ϵ∥w∗ −

w∥2 .

2. When 2/R ≤ ∥w∥2 ≤ c′κ/ϵ and either ∥w −w∗∥w ≥
√
ϵ(U/(c′κ5)) or ∥w∥2 ≥ 2∥w∗∥2,

then ∇Fρ(w) · (w −w∗) ≥ c′
√
ϵ∥w∗ −w∥w .

3. When ∥w∥2 ≥ c′κ/(2ϵ), then ∇Fρ(w) ·w ≥ c′
√
ϵ∥w∥w .

To keep the presentation simple, we shall sketch the proof of the following proposition showing that
the gradient field of the “vanilla” L2

2 loss points towards some optimal solution w∗, as long as the
guess ∥w∥2 is not very far from the origin. We refer to Appendix A for the proof of Proposition 14.

Proposition 15 (Gradient of the “Vanilla” L2
2 Loss (Inside a Ball)) Let D be an (L,R)-well-behaved

distribution and let σ be a (τ, µ, ξ)-sigmoidal activation. Let ϵ ∈ (0, 1) be smaller than a sufficiently
small multiple of L2R6τ4/ξ2 and let w∗ ∈ Rd with F (w∗) ≤ ϵ. Set κ = L6R6µ3τ4/ξ2. There
exists a universal constant c′ > 0, such that for any w ∈ Rd with ∥w∥2 ≤ c′κ/ϵ, we have:

1. When ∥w∥2 ≤ 2/R and ∥w∗ − w∥2 ≥
√
ϵξ/(c′LR4τ2), then ∇F (w) · (w − w∗) ≥

c′
√
ϵ∥w∗ −w∥2 .

2. When ∥w∥2 ≥ 2/R and either ∥w∗ − w∥w ≥
√
ϵ/κ or ∥w∥2 ≥ 2∥w∗∥2, then ∇F (w) ·

(w −w∗) ≥ c′
√
ϵ∥w∗ −w∥w .

9
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Proof Sketch of Proposition 15 Let w∗ ∈ Rd be a target weight vector with F (w∗) ≤ ϵ. As we
discussed, we want to show that when w is far from w∗ (in w-weighted Euclidean norm), then the
inner product∇F (w) · (w −w∗) is strictly positive. We can decompose this inner product in two
parts: I1 that depends on how “noisy” the labels are and I2 that corresponds to the contribution that
we would have if all labels were “clean”, i.e., y = σ(w∗ · x),

∇F (w) · (w −w∗) = E[(σ(w∗ · x)− y)σ′(w · x)(w · x−w∗ · x)]︸ ︷︷ ︸
I1

+E[(σ(w · x)− σ(w∗ · x))σ′(w · x)(w · x−w∗ · x)]︸ ︷︷ ︸
I2

. (1)

We crucially use the monotonicity of the activation σ(·): since σ(·) is non-decreasing, we have that
σ′(t) ≥ 0 and (σ(w · x) − σ(w∗ · x))(w · x −w∗ · x) ≥ 0. These facts immediately imply that
I2 ≥ 0. In what follows, we will show that I2 is strictly positive.

In the worst case, the noisy term I1 will be negative, i.e., the noise will try to make the gradient
point in the wrong direction (move w “away” from the target w∗). In the first part of the proof, we
show that |I1| cannot be too large: the positive contribution I2 is much larger than the contribution
of the noisy term |I1|. Apart from the monotonicity of the activation σ(·), we will also rely on
the fact that if we view its derivative as a distribution, it satisfies anti-concentration and anti-anti-
concentration properties, i.e., σ′(t) ≥ τ for all t ∈ [−1, 1] and σ′(t) ≤ ξe−µ|t| for all t ∈ R, see
Definition 3. A simple sigmoidal activation is the ramp activation, defined as follows:

r(t) ≜ (−1) 1{t < −1}+ t 1{|t| ≤ 1}+ (+1) 1{t > 1} . (2)

We observe that the ramp activation is (1, e, 1)-sigmoidal since its derivative is r′(t) = 1{|t| ≤ 1}
and vanishes exactly outside the interval [−1, 1]. In the formal proof, we show how to reduce the
analysis of general sigmoidal activations to the ramp activation. To keep this sketch simple, we will
focus on the ramp activation.

Estimating the Contribution of the Noise We start by showing that the noise cannot affect the
gradient by a lot, i.e., we bound the contribution of I1. We prove the following lemma.

Lemma 16 Let D be a well-behaved distribution. For any vector w ∈ Rd it holds that |I1| ≲√
ϵ min(∥w∗ −w∥w, ∥w∗ −w∥2) .

Proof. (Sketch) Using the Cauchy-Schwarz inequality, we obtain:

|I1| ≤ E[|(r(w∗ · x)− y)r′(w · x)(w · x−w∗ · x)|]
≤ (E[(r(w∗ · x)− y)2])1/2(E[(w · x−w∗ · x)2r′(w · x)2])1/2

=
√
F (w∗) (E[(w · x−w∗ · x)2r′(w · x)2])1/2

≤
√
ϵ (E[(w · x−w∗ · x)2r′(w · x)2])1/2 . (3)

We proceed to bound the term E[(w · x−w∗ · x)2r′(w · x)2]. Note that we can use the global upper
bound on the derivative of the activation function, i.e., that r′(t) ≤ e for all t ∈ R. However, this
would only result in the bound E[(w · x −w∗ · x)2r′(w · x)2] ≤ O(∥w −w∗∥22). For sigmoidal
activation functions, we need a tighter estimate that takes into account the fact that the functions

10
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have exponential tails outside of the interval [−1, 1]. In particular, for the ramp function, we have
that as ∥w∥2 becomes larger the derivative r′(w · x) = 1{|w · x| ≤ 1} becomes a very thin band
around the origin. Therefore, by the anti-concentration and anti-anti-concentration of well-behaved
distributions (see Definition 2), the aforementioned integral decays to 0 as ∥w∥2 →∞ at a rate of
1/∥w∥2. Lemma 16 follows from combining Equation (3) along with the following lemma.

Lemma 17 Let D be a well-behaved distribution. For any vectors w∗,w ∈ Rd, it holds that
Ex∼Dx [(w · x−w∗ · x)2(r′(w · x))2] ≲ min

(
∥w∗ −w∥2w, ∥w∗ −w∥22

)
.

We will provide a proof of the above lemma because it highlights why the weighted Euclidean norm
of Definition 10 captures the non-convex geometry of the optimization landscape.
Proof (Sketch) Here we assume that Dx is the standard d-dimensional Gaussian; see Lemma 35 for
the formal version. First note that Ex∼Dx [(w ·x−w∗ ·x)2r′(w ·x)2] ≤ Ex∼Dx [((w−w∗) ·x)2] =
∥w −w∗∥22, where we used the fact that since the distribution Dx is isotropic, i.e., for any vector
u ∈ Rd it holds that Ex∼Dx [(u ·x)2] = ∥u∥22. This bound is tight when ∥w∥2 is small (see Case 1 of
Proposition 15). When ∥w∥2 ≥ 1, we see that the upper bound decays with ∥w∥2. Let q = w∗ −w
and denote by G the one-dimensional standard Gaussian. We can decompose the difference q to
its component parallel to w: q∥w and its component orthogonal to w: qw⊥

. From the Pythagorean
theorem, we have that (q · x)2 = (q∥w · x)2 + (q⊥w · x)2. Using this we get:

E[(q · x)21{|w · x| ≤ 1}] = E[(q∥w · x)21{|w · x| ≤ 1}] +E[(q⊥w · x)2)1{|w · x| ≤ 1}]

= ∥q∥w∥22 E
z∼G

[z21{|z| ≤ ∥w∥−1
2 }] + ∥q

⊥w∥22 Pr
z∼G

[|z| ≤ ∥w∥−1
2 ] ≲

∥q∥w∥22
∥w∥32

+
∥q⊥w∥22
∥w∥2

≲ ∥q∥2w ,

where in the second equality we used that under the Gaussian distribution any two orthogonal
directions are independent, and in the last inequality we used that a2 + b2 ≤ (a+ b)2 for a, b ≥ 0.
Observe that the orthogonal direction is only scaled by roughly the probability of the slice, which is
1/∥w∥2, while the parallel component (which is restricted in the interval |z| ≤ 1/∥w∥2) is scaled by
1/∥w∥32 (similarly to the fact that

∫ a
−a t

2dt = O(a3)).

Estimating the Contribution of the “Noiseless” Gradient We now bound from below the
contribution of the “noiseless” gradient, i.e., the term I2 of Equation (1). To bound I2 from below, we
consider several different cases depending on how far the vector w is from the target vector w∗; the
full proof is rather technical. In this sketch, we shall only consider the case where the angle between
the weight vectors w and w∗ is in (0, π/2) and also assume that the norm of the guess w is larger
than 2/R, since this is the regime where the norm of the gradient behaves similarly to the weighted
Euclidean norm of Definition 10. Notice that when w is close to the target w∗, then its projection on
the orthogonal complement of w, i.e., ∥projw⊥w∗∥2, will be small and also its projection on the
direction of w, i.e., ∥projwv∥2, will be close to ∥w∥2. In this sketch, we will show how to handle
the case where θ(w,w∗) ∈ (0, π/2), ∥projw⊥w∗∥2 ≤ 2/R and ∥projww∗∥2 ≤ 2∥w∥2, i.e., the
case where w and w∗ are not extremely far apart.

Lemma 18 Let D be a well-behaved distribution. For any vector w ∈ Rd with ∥w∥2 > 2/R,
∥projw⊥w∗∥2 ≤ 2/R, ∥projww∗∥2 ≤ 2∥w∥2, θ(w,w∗) ∈ (0, π/2), it holds that I2 ≳ ∥w −
w∗∥2w .

11
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We can now finish the proof of (one case of) Proposition 15. From Lemma 16, if ∥w∥2 ≥ 2/R, it
holds that the noisy gradient term |I1| ≲

√
ϵ∥w∗ −w∥w. Using Lemma 18, there exists a universal

constant c > 0, such that I1 + I2 ≥ c∥w∗ − w∥w(∥w∗ − w∥w −
√
ϵ/c) ≳

√
ϵ∥w∗ − w∥w ,

where in the last inequality we used that ∥w∗ −w∥w ≫
√
ϵ. This completes the proof sketch of

Proposition 15. For the full proof, we refer to Appendix A.

4. The Landscape of the L2
2-Loss for Unbounded Activations

For unbounded activations we essentially characterize the optimization landscape of the L2
2-loss as a

function of the weight vector w. Specifically, our main structural theorem in this section establishes
(roughly) the following: even though the population L2

2-loss F (w) = E(x,y)∼D[(σ(w · x)− y)2] is
not convex, any approximate stationary point w of F (w) will have error close to that of the optimal
weight vector w∗, i.e., F (w) ≤ O(ϵ). In more detail, while there exist “bad” stationary points in
this case, they all lie in a cone around −w∗, i.e., in the opposite direction of the optimal weight
vector. As we will see in Section 5, gradient descent initialized at the origin will always avoid such
stationary points. Our main structural result for unbounded activations is as follows:

Theorem 19 (Stationary Points of (α, λ)-Unbounded Activations) Let D be an (ϵ,W )-corrupted,
(L,R)-well-behaved distribution in Rd. Let σ be an (α, λ)-unbounded activation and let F (w) =
E(x,y)∼D[(σ(w · x) − y)2]. Then, if for some w ∈ Rd, with w ·w∗ ≥ 0 and ∥w∥2 ≤ W it holds

∥∇F (w)∥2 ≤ 2λ
√
ϵ, then F (w) ≤ C

(
λ
α

)4 1
L2R8 ϵ, for some absolute constant C > 0.

The proof of the theorem above can be found in Appendix B.

Remark 20 An important feature of the above theorem statement is that the error guarantee of the
stationary points of the L2

2-loss F (w) does not depend on the size of the weight vector w∗. It only
depends on the ratio of the constants λ and α (that for all activation functions discussed above is
some small absolute constant). For the special case of ReLU activations, it holds that λ/α = 1.

For the proof of Theorem 19, we need the following structural result for the gradient field of
the L2

2 loss for unbounded activations. We show that as long as ∥w −w∗∥2 is larger than roughly√
ϵ and w ·w∗ ≥ 0, then the gradient at w has large projection in the direction of w −w∗, i.e., it

“points in the right direction”.

Proposition 21 Let D be an (ϵ,W )-corrupted, (L,R)-well-behaved distribution and σ be an
(α, λ)-unbounded activation. For any w ∈ Rd with w ·w∗ ≥ 0 and ∥w−w∗∥2 ≥ Cλ/(α2LR4)

√
ϵ,

it holds ∇F (w) · (w −w∗) ≳ α2LR4∥w −w∗∥22.

We remark that one can readily use the above proposition to obtain an efficient algorithm via
black-box optimization methods. To achieve this, we can simply start by finding a stationary point
w(0), and then repeat our search constraining on the set {w : w ·w(0) ≤ 0} to obtain some stationary
point w(1). Then we continue in the set {w(0) ·w ≤ 0,w(1) ·w ≤ 0}. Since for all the boundaries
we have (using Proposition 21) that the gradient has non-zero projection onto the direction w −w∗,
we obtain that by adding these linear constraints, we do not introduce new stationary points. It is
not hard to see that after O(d) such iterations, we obtain a stationary point that lies in the halfspace
w∗ ·w ≥ 0, and therefore is an approximately optimal solution.

12
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5. Optimizing the Empirical L2
2-Loss

In this section, we show that given sample access to a distribution over labeled examples D on
Rd×R, we can optimize the L2

2 loss via (approximate) gradient descent. This allows us to efficiently
find a weight vector that achieves error O(ϵ). Ideally, we would like to perform gradient descent with
the population gradients, i.e., w(t+1) ← w(t) − η(∇F (w(t))). We do not have direct access to these
gradients, but we show that it is not hard to estimate them using samples from D; see Algorithm 1.
We present our main algorithmic result for learning the sigmoidal activations discussed in Section 3.
The proof can be found in Appendix C.

Theorem 22 (Learning Sigmoidal Activations) Let D be an ϵ-corrupted, (L,R)-well-behaved
distribution on Rd × R and σ(·) be a (τ, µ, ξ)-sigmoidal activation. Set κ = L6R6µ3τ4/ξ2 and
let c > 0 be a sufficiently small absolute constant. Then gradient descent (Algorithm 1) with
step size η = cϵ2.5, regularization ρ = (1/c)ϵ3/k5, truncation threshold M = ξ/µ, N =
Θ̃(d/ϵ log(1/δ)) poly(1/κ) samples, and T = poly(1/(ϵκ)) iterations converges to a vector
w(T ) ∈ Rd that, with probability 1− δ, satisfies F (w(T )) ≤ poly(1/κ) ϵ .

Input: Iterations: T , N samples (x(i), y(i)) from D, step size: η, bound M , regularization ρ.
Output: A weight vector w(T ).

1. Let F̂ (w) = 1
N

∑N
i=1(σ(w · x(i))− ỹ(i))2, where ŷ(i) = sign(y(i))min(|y(i)|,M)

2. w(0) ← 0.

3. For t = 0, . . . , T do

(a) g(t) ← ∇F̂ (w(t)).

(b) w(t+1) ← w(t) − η(g(t) + ρw(t)).

Algorithm 1:Gradient Descent Algorithm for Optimizing the L2
2-Loss for Sigmoidal Activations

We now turn our attention to the case of unbounded activations. Perhaps surprisingly, we show
that essentially the same algorithm (the only difference is that in this case we set the regularization
parameter to 0) achieves sample complexity polylogarithmic in 1/ϵ. The proof of the following
theorem can be found in Appendix C.

Theorem 23 (Unbounded Activations) Let D be an (ϵ,W )-corrupted, (L,R)-well-behaved distri-
bution on Rd×R and σ(·) be an (α, λ)-unbounded activation. Set κ = poly(LRα/λ)/(W 2 log(W )).
The gradient descent Algorithm 2 with step size η = κϵ, truncation threshold M = Õ((W/L)
max(log(λ2W 2/ϵ), 1)), N = Θ̃((d/κ) log(1/δ)max(poly log(1/ϵ), 1)) samples, and T = poly(log(1/ϵ),
1/κ) iterations converges to a vector w(T ) ∈ Rd that, with probability 1− δ, satisfies F (w(T )) ≲
1

LR4

(
λ
α

)4
ϵ .
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Input: Iterations: T , sample access from D, step size: η, bound M .
Output: A weight vector w(T ).

1. w(0) ← 0.

2. For t = 0, . . . , T do

(a) Use fresh N samples from D truncated at M to obtain g(t), an approximation of the
population gradient ∇F (w(t)) (see Claim 55).

(b) w(t+1) ← w(t) − ηg(t).

Algorithm 2:Gradient Descent Algorithm for Optimizing the L2
2-Loss for Unbounded Activations
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Appendix A. Omitted Proofs of Section 3

A.1. Proof of Proposition 9

We restate and prove the following proposition.

Proposition 24 (Bounded Activations Have “Bad” Stationary Points) Fix ϵ ∈ (0, 1] and let r(t)
be the ramp activation. There exists a distribution D on Rd × {±1} with standard Gaussian x-
marginal such that there exists a vector v with F (v) = (1/2)E(x,y)∼D[(y− r(v ·x))2] ≤ O(ϵ) and
a vector u with ∇F (u) = 0, ∇2F (u) ⪯ 0, i.e., u is a local-minimum of F , and F (u) ≥ 1/2.

Proof We define the following deterministic noise function

r̂(t) =



−1 if t ≤ −2
+1 if − 2 ≤ t ≤ −1
−t if − 1 ≤ t ≤ 1

−1 if − 1 ≤ t ≤ 2

+1 if t ≥ 2

t

y

r̂(t)

In what follows, we denote by γ(t) = 1√
2π
e−t2/2 the density of the standard normal distribution.

It suffices to consider noise that only depends on a single direction, i.e., y(x) = r̂(x1/ϵ). We first
show that there exists a vector with small L2

2 loss. Take v = e1/ϵ, where e1 = (1, 0, . . . , 0) is the
first vector of the standard orthogonal basis of Rd. It holds that

F (v) = (1/2) E
x∼Dx

[(r(x1/ϵ)− y(x1))
2] = (1/2) E

x∼Dx

[(r(x1/ϵ)− r̂(x1/ϵ))
2]

= (1/2)

∫ ϵ

−ϵ
(t/ϵ+ t/ϵ)2γ(t)dt+

∫ −ϵ

−2ϵ
4γ(t)dt ≤

√
2√
πϵ2

∫ ϵ

−ϵ
t2dt+ 4ϵ = O(ϵ) .

We next show that there exists a “bad” stationary point u, i.e., a u with∇F (u) = 0 and F (u) ≥ 1/2.
We have

∇F (u) = E[(r(u · x)− y(x))r′(u · x)x] .

We shall take u = −e1/ϵ, i.e., the opposite direction of the almost optimal vector v that we used
above. Using the coordinate-wise independence of the Gaussian distribution, we have that for every
orthogonal direction ei, i ≥ 2, it holds that ∇F (u) · ei = 0. For the direction e1, we obtain

∇F (u) · e1 = E[(r(−x1/ϵ)− r̂(x1/ϵ)) 1{|x1| ≤ ϵ}x1]

= E[(r(−x1/ϵ)− r̂(−x1/ϵ)) 1{|x1| ≤ ϵ}x1] = 0 .

We next proceed to show that u is a local minimum of the population L2
2-loss F . We compute the

Hessian of F at u. In what follows, we denote by δ(t) the standard Dirac delta function. We have
that

∇2F (u) = E
x∼Dx

[(r′(u · x))2xxT ] + E
x∼Dx

[(r(u · x)− y(x))(δ(u · x+ 1)− δ(u · x− 1))xxT ] .
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For i ̸= j, using the fact that the Gaussian marginals are independent, we have that (∇2F (u))ij = 0.
We next observe that the second term of the Hessian vanishes. We have

E
x∼Dx

[(r(u · x)− y(x))(δ(u · x+ 1)− δ(u · x− 1))x2
i ]

= E
x∼Dx

[(r(−x1/ϵ)− r(x1/ϵ))(δ(x1/ϵ+ 1)− δ(x1/ϵ− 1))x2
i ] = 0 ,

where we used the fact that both r(−x1/ϵ), r̂(x1/ϵ) are continuous at x1 = ±ϵ, and it holds
r(±1) = r̂(±1).

To complete the proof, we need to show that the L2
2 loss of u is large. It holds that

F (u) =
1

2
E[(r(−x1/ϵ)− r′(x1/ϵ))

2]

≥ 1

2

(∫ −ϵ

−∞
(r(−t/ϵ)− r′(t/ϵ))2γ(t)dt+

∫ +∞

ϵ
(r(−t/ϵ)− r′(t/ϵ))2γ(t)dt

)
≥ 1

2

(∫ −ϵ

−∞
4γ(t)dt+

∫ +∞

ϵ
4γ(t)dt

)
≥ 4

∫ ∞

1
γ(t)dt ≥ 1/2 .

This completes the proof of Proposition 9.

Proof of Lemma 13

We restate and prove the following lemma.

Lemma 25 (Radius of Approximate Optimality of Sigmoidal Activations) Let D be an (L,R)-
well-behaved distribution in Rd and let σ(t) be a (τ, µ, ξ)-sigmoidal activation function. There exists
a vector v with ∥v∥2 ≤ 1/ϵ and F (v) ≤ (1 +O( ξ

µL))ϵ.

Proof We first observe that since F (w) is a continuous function of w, there exists a vector w∗

with ∥w∗∥2 < +∞ such that F (w∗) ≤ 2ϵ. If ϵ ≥ 1, then the zero vector achieves 4ϵ error since,
using the inequality (a+ b)2 ≤ 2a2 + 2b2, we have that F (0) = E[y2] ≤ 2E[(y − σ(w∗ · x))2] +
2E[σ(w∗ · x)2] ≤ 2ϵ+ 2ϵ ≤ 4ϵ. Denote 1/ϵ := ρ. If ∥w∗∥2 ≤ ρ, then we are done. If ∥w∗∥2 > ρ,
then we consider a scaled down version of w∗, namely, the vector v = ρ w∗/∥w∗∥2. Using again
the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

F (v) ≤ 2F (w∗) + 2 E
x∼Dx

[(σ(v · x)− σ(w∗ · x))2] .

Since v is parallel to w∗ and its norm is smaller than ∥w∗∥, we have that

E
x∼Dx

[(σ(v · x)− σ(w∗ · x))2] ≤ 1

L

∫ +∞

−∞
(σ(∥v∥2t)− σ(∥w∗∥2|t|)2dt

≤ 1

L

∫ +∞

−∞

(∫ +∞

∥v∥t
σ′(z)dz

)2
dt

≤ 1

L

∫ +∞

−∞
(ξe−µ∥v∥|t|)2dt

=
ξ

µL∥v∥
,
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where we used the fact that the density of 1-dimensional marginals of Dx is bounded from above
by 1/L, see Definition 2, and the fact that σ′(t) ≤ ξe−µ|t|. We see that by choosing ∥v∥2 = 1/ϵ it
holds that Ex∼Dx [(σ(v · x) − σ(w∗ · x))2] = O(ξ/(µL))ϵ. Thus, combining the above we have
that there always exists a v with ∥v∥2 = O(1/ϵ that achieves L2

2 loss F (v) ≤ (1 +O( ξ
µL))ϵ.

A.2. Proof of Proposition 14

We restate and prove the following proposition.

Proposition 26 (Gradient of the Regularized L2
2 Loss) Let D be an (L,R)-well-behaved distri-

bution and define Fρ(w) = (1/2)E(x,y)∼D[(σ(w · x)− y)2] + (1/2)ρ∥w∥22, where σ is a (τ, µ, ξ)-
sigmoidal activation and ρ > 0. Let ϵ ∈ (0, 1) and let w∗ ∈ Rd such that F (w∗) ≤ ϵ and
∥w∗∥2 ≤ U/ϵ, for some U ≥ 0. Furthermore, set κ = L6R6µ3τ4/ξ2 and ρ = Cϵ3/κ5, where
C ≥ 0 is a sufficiently large universal constant. There exists a universal constant c′ > 0, such that
for any w ∈ Rd, we have:

1. When ∥w∥2 ≤ 2/R and ∥w∗ −w∥2 ≥
√
ϵ/(c′κ5), then ∇Fρ(w) · (w −w∗) ≥ c′

√
ϵ∥w∗ −

w∥2 .

2. When 2/R ≤ ∥w∥2 ≤ c′κ/ϵ and either ∥w −w∗∥w ≥
√
ϵ(U/(c′κ5)) or ∥w∥2 ≥ 2∥w∗∥2,

then ∇Fρ(w) · (w −w∗) ≥ c′
√
ϵ∥w∗ −w∥w .

3. When ∥w∥2 ≥ c′κ/(2ϵ), then ∇Fρ(w) ·w ≥ c′
√
ϵ∥w∥w .

Similarly to the statement of Proposition 14, in our proof we shall consider several cases
depending on how large ∥w∥2 is. For the rest of the proof, let c′ be the absolute constant of
Proposition 15 and denote by κ = L3R6µ3τ4/ξ2, Λ1 = 16, Λ2 = 1/κ ≥ ξ6/5/(c′κL2µ6)1/5 and
K = Λ2.5

2 U/(
√
c′κLR).

First, we show Case 3 of Proposition 14 and bound from below the contribution of the gradient
on the direction of w, when the norm of w is large. In other words, we show that in this case the
gradient contribution of the regularizer is large enough so that the gradient field of the regularized
L2
2-objective “pulls” w towards the origin.

Claim 27 If ∥w∥2 ≥ c′κ/(ϵΛ1), then ∇Fρ(w) ·w ≥
√
ϵ∥w∥w .

Proof We have that

∇Fρ(w) ·w = E
(x,y)∼D

[(σ(w · x)− y)σ′(w · x)w · x] + ρ∥w∥22 .

First we bound from below the quantity E(x,y)∼D[(σ(w · x)− y)σ′(w · x)w · x]. We need to bound
the maximum value that σ can obtain.

Fact 28 Let σ be a (τ, µ, ξ)-sigmoidal activation, then |σ(t1)− σ(t2)| ≤ 2ξ/µ for any t1, t2 ∈ R.

Proof Using the fundamental theorem of calculus, for any t1, t2 ∈ R, it holds

|σ(t1)− σ(t2)| =
∣∣∣∣∫ t2

t1

σ′(t)dt

∣∣∣∣ ≤ ∫ ∞

−∞
σ′(t)dt ≤ 2

∫ ∞

0
ξe−tµdt ≤ 2ξ/µ ,

18
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where we used that σ is non-decreasing and that σ′(t) ≤ ξe−tµ.

Using Fact 28, we have that

E
(x,y)∼D

[(σ(w · x)− y)σ′(w · x)w · x] ≥ − E
(x,y)∼D

[|(σ(w · x)− y)||σ′(w · x)w · x|]

≥ −2 ξ
µ

E
x∼Dx

[σ′(w · x)2|w · x|]

≥ −2ξ
3

µ
E

x∼Dx

[exp(−2µ|w · x| ≤ 1)|w · x|]

≥ − ξ3

Lµ3∥w∥2
,

where in the second inequality we used that the maximal difference of (σ(w · x)− y) is less than
2ξ/µ, and in the third the upper bound in the derivative of σ. Therefore, we have that

∇Fρ(w) ·w ≥ (1/2)ρ∥w∥22 + (1/2)∥w∥22
(
ρ− 2ξ3

Lµ3∥w∥32

)
≥ (1/2)ρ∥w∥22 ,

where in the last inequality we used that ρ ≥ 2ϵ3Λ3
1ξ

3

c′3κ3µ3L
≥ 2ξ3

Lµ3∥w∥32
.

Therefore, we have that∇Fρ(w) ·w ≥ (1/2)ρ∥w∥2.52 ∥w∥w. By using that ∥w∥2 ≥ c′κ/(ϵΛ1)

and ρ ≥ 2ϵ3Λ3
1ξ

3

c′3κ3µ3L
, we get that

∇Fρ(w) ·w ≥
√
ϵΛ1

ξ3

µ3
√
c′κL

∥w∥w ≥
√
ϵ∥w∥w ,

where we used that ξ,Λ1 ≥ 1, µ, κ, L ≤ 1 (see Remark 11) and this completes the proof of Claim 27.

Next we bound from below the contribution of the gradient in the direction w − w∗ when w is
close to the origin, i.e., when ∥w∥2 ≤ 2/R (first case of Proposition 14). In this case, we show
that our choice of regularization ρ, ensures that when w is not very large, then the gradient behaves
qualitatively similarly to that of the vanilla L2

2 objective, i.e., as in Proposition 15.

Claim 29 If ∥w∥2 ≤ 2/R and ∥w∗ −w∥2 ≥
√
ϵξ/(c′LR4τ2), then

∇Fρ(w) · (w −w∗) ≥ (c′/2)ξ
√
ϵ∥w∗ −w∥2 .

Proof From Proposition 15, we have that if ∥w∥2 ≤ 2/R and ∥w∗ −w∥2 ≥
√
ϵξ/(c′LR4τ2), then

∇F (w) · (w −w∗) ≥ c′
√
ϵ∥w∗ −w∥2. Therefore, we have that

∇Fρ(w) · (w −w∗) ≥ c′
√
ϵ∥w∗ −w∥2 + ρ∥w∥2(∥w∥2 − ∥w∗∥2 cos θ)

≥ c′
√
ϵ∥w∗ −w∥2 − ρ∥w∥2∥w∗ −w∥2

≥ (c′/2)
√
ϵ∥w∗ −w∥2 ,

where in the third inequality we used that ∥w∥2 ≤ 2/R and that ρ = O(F 3(w∗)).
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Next we handle the case where 2/R ≤ ∥w∥2 ≤ c′κ/(ϵΛ2) (see Case 2 of Proposition 14). Again,
the fact that we choose a small regularization parameter allows us to show that the gradient field in
this case behaves similarly to that of the unregularized L2

2 objective (see Case 2 of Proposition 15).

Claim 30 If 2/R ≤ ∥w∥2 ≤ c′κ/(ϵΛ2), then

∇Fρ(w) · (w −w∗) ≥ (
√
c′/2)

√
ϵ∥w∗ −w∥w .

Proof We compute the contribution of the regularizer in the direction w − w∗. This is equal to
ρ∥w∥2(∥w∥2−∥w∗∥2 cos θ). Note that this is positive when ∥w∥2−∥w∗∥2 cos θ ≥ 0 and negative
otherwise. Hence, if θ ∈ (π/2, π) the contribution of the regularizer is positive, and therefore it is
bounded from below by the contribution of the gradient without the regularizer. We need to choose
the value of ρ so that the regularizer cancels out the contribution of the noise when ∥w∥2 is large
(i.e., when the regularizer has positive contribution).

From Proposition 15, we have that if ∥w∗ − w∥w ≥
√

ϵ/κ, then ∇F (w) · (w − w∗) ≥
c′
√
ϵ∥w −w∗∥w, hence, it holds

∇Fρ(w) · (w −w∗) ≥ c′
√
ϵ∥w −w∗∥w + ρ∥w∥2(∥w∥2 − ∥w∗∥2 cos θ)

≥ c′
√
ϵ∥w −w∗∥w − ρ∥w∥2|∥w∥2 − ∥w∗∥2 cos θ|

≥ ∥w∥2 − ∥w
∗∥2 cos θ|

∥w∥3/22

(c′
√
ϵ− ρ∥w∥2.52 ) + c′

√
ϵ
∥w∗∥2 sin θ
∥w∥2

≥ (c′/2)
√
ϵ∥w −w∗∥w ,

where for the last inequality we used that ∥w∥2 ≤ c′κ/(ϵΛ2) and that ρ ≤ Λ2.5
2 ϵ3

4c′1.5κ2.5 .

Finally, we consider the case where c′κ/(ϵΛ2) ≤ ∥w∥2 ≤ c′κ/ϵ and ∥projw⊥w∗∥2 ≥ 2K/R.
We show that the contribution in the direction w −w∗ of the unregularized gradient of L2

2 is greater
than the contribution of the gradiend corresponding to the regularizer. The proof of the following
claim can be found in Appendix A.

Claim 31 If c′κ/(ϵΛ2) ≤ ∥w∥2 ≤ c′κ/ϵ and ∥projw⊥w∗∥2 ≥ 2K/R then

∇Fρ(w) · (w −w∗) ≥ (c′/2)
√
ϵ∥w∗ −w∥w .

To prove the Proposition 14, it remains to show that ∥w−w∗∥w is small when ∥projw⊥w∗∥2 ≤
2K/R and c′κ/(ϵΛ2) ≤ ∥w∥2 ≤ c′κ/ϵ. Similarly to the proof of Claim 31, we need to consider
only the case where θ ∈ (0, π/2) and ∥w∥2 ≤ 2∥w∗∥2. In fact, we show that in this case the vector
w is close to the target vector w∗. We have:

∥w −w∗∥w ≤
2∥w∥2 + ∥w∗∥2
∥w∥3/22

+
∥projw⊥w∗∥2
∥w∥1/22

≤ K/R+ 1

∥w∥1/22

+
∥w∗∥2
∥w∥3/22

,

where in the first inequality we used the triangle inequality and in the second the fact that ∥projw⊥w∗∥2 ≤
2K/R. Moreover, recall that c′κ/(ϵΛ2) ≤ ∥w∥2, ∥w∗∥2 ≤ U/ϵ and K = Λ2.5

2 U/(
√
c′κRL).

Therefore, we have that ∥w−w∗∥w ≤ U
√
ϵΛ3

2/(c
′κ)3/2 ≤ (cU/κ5)

√
ϵ, for some absolute constant

c > 0.
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A.3. Proof of Theorem 12

We restate and prove the following theorem:

Theorem 32 (Stationary Points of Sigmoidal Activations) Let D be an ϵ-corrupted, (L,R)-well-
behaved distribution on Rd × R and σ be a (τ, µ, ξ)-sigmoidal activation. Set κ = L6R6µ3τ4/ξ2

and ρ = Cϵ3/κ5, where C > 0 is a universal constant, and define the ℓ2-regularized objective as
Fρ(w) = (1/2)E(x,y)∼D[(σ(w · x) − y)2] + (ρ/2)∥w∥22 . For some sufficiently small universal
constant c > 0, we have the following

• If ∥w∥2 ≤ 2/R and ∥∇Fρ(w)∥2 ≤ c
√
ϵ, then F (w) = ϵ · poly(1/κ).

• If ∥w∥2 ≥ 2/R and ∥∇Fρ(w)∥∗,w ≤ c
√
ϵ, then F (w) = ϵ · poly(1/κ).

Proof We note that from Lemma 13, there exists a w∗ ∈ Rd, such that F (w∗)∥w∗∥2 = 1 +
O(ξ/(µL)) = U and F (w∗) ≲ ϵ. We can assume that ϵ ≤ poly(ξ/(LRµ)), since otherwise any
vector w, gets error F (w) ≤ 2ϵ. First we consider the case where ∥w∥2 ≤ 2/R. From Proposition 14
for c′ > 0 a sufficiently small absolute constant, we have that if ∥w∗ −w∥2 ≥

√
ϵ/(c′κ5), then

∥∇F (w)∥2 ≥ ∇F (w) · w −w∗

∥w −w∗∥2
≥ c′
√
ϵ .

In order to reach a contradiction, assume that ∥∇F (w)∥2 < c′
√
ϵ and Ex∼Dx [(σ(w · x)− σ(w∗ ·

x))2] > ξ2ϵ/(c′2κ10). From Proposition 14, we have that ∥w∗ − w∥2 ≤
√
ϵ/(c′κ5). Therefore,

from Lemma 43 we have that

ξ2ϵ/(c′2κ10) < E
x∼Dx

[(σ(w · x)− σ(w∗ · x))2] ≤ ∥w −w∗∥22 ≤ ξ2ϵ/(c′2κ10) ,

which is a contradiction.
Next, we consider the case where ∥w∥2 ≥ c′κ/(2ϵ). From Proposition 14, we know that there is

no approximate stationary point in this region, i.e., there is no point w with ∥∇F (w)∥∗,w ≤ c′
√
ϵ.

For the last case we consider the case where 2/R ≤ ∥w∥2 ≤ c′κ/ϵ. From Proposition 14, we
have that if either ∥w −w∗∥w ≥ U

√
ϵ/(c′κ5) or ∥w∥2 ≥ 2∥w∗∥2, then

∥∇F (w)∥∗,w ≥ ∇F (w) · w −w∗

∥w −w∗∥w
≥ c′
√
ϵ ,

where we used that for any two vectors z1, z2 ∈ Rd, it holds z1 · z2 ≤ ∥z1∥∗,w∥z2∥w.
In order to reach a contradiction, assume that Ex∼Dx [(σ(w · x) − σ(w∗ · x))2] ≥ C ξ2U2

L4µ3κ10 ϵ

and that ∥∇F (w)∥∗,w ≤ c′
√
ϵ, where C > 0 is a sufficiently large absolute constant. It holds that

∥w∗ −w∥w ≤ U
√
ϵ/(c′κ5) and ∥w∥2 ≤ 2∥w∗∥2. Hence, we have that

∥w∗ −w∥w =
|∥w∥2 − cos θ∥w∗∥2|

∥w∥3/22

+
∥w∗∥2 sin θ√
∥w∥2

≲
U
√
ϵ

κ5
.

Therefore, it holds that

sin θ ≲

√
ϵ∥w∥2

∥w∗∥2κ5
≲

√
ϵ√

∥w∗∥2κ5
,
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where we used that ∥w∥2 ≤ 2∥w∗∥2, and using that
√
ϵ/∥w∗∥2 is smaller than a sufficiently small

absolute constant, we get that sin θ ≤ 1/2, and hence, θ ∈ (0, π/4). Using again Lemma 43, we
have that

E
x∼Dx

[(σ(w · x)− σ(w∗ · x))2] ≲ ξ2

L4µ3
∥w −w∗∥2w ≲

ξ2U2

L4µ3κ10
ϵ .

Therefore, we get again a contradiction. The proof then follows by noting that F (w) ≤ 2ϵ +
2Ex∼Dx [(σ(w · x)− σ(w∗ · x))2].

A.4. Proof of Proposition 15

We restate and prove the following proposition.

Proposition 33 (Gradient of the “Vanilla” L2
2 Loss (Inside a Ball)) Let D be an (L,R)-well-behaved

distribution and let σ be a (τ, µ, ξ)-sigmoidal activation. Let ϵ ∈ (0, 1) and let w∗ ∈ Rd

with F (w∗) ≤ ϵ and F (w∗) is less than a sufficiently small multiple of L2R6τ4/ξ2. Denote
κ = L6R6µ3τ4/ξ2. There exists a universal constant c′ > 0, such that for any w ∈ Rd with
∥w∥2 ≤ c′κ/ϵ, it holds that

1. When ∥w∥2 ≤ 2/R and ∥w∗ −w∥2 ≥
√
ϵξ/(c′LR4τ2), then

∇F (w) · (w −w∗) ≥ c′
√
ϵ∥w∗ −w∥2 .

2. When ∥w∥2 ≥ 2/R and either ∥w∗ −w∥w ≥
√

ϵ/κ or ∥w∥2 ≥ 2∥w∗∥2, then

∇F (w) · (w −w∗) ≥ c′
√
ϵ∥w∗ −w∥w .

Proof We decompose the gradient into a part that corresponds to the contribution of the “true” labels,
i.e., σ(w∗ · x) (see I2 below), and a part corresponding to the noise (see I1 below). We have that

∇F (w) · (w −w∗) = E[(σ(w∗ · x)− y)σ′(w · x)(w · x−w∗ · x)]︸ ︷︷ ︸
I1

+E[(σ(w · x)− σ(w∗ · x))σ′(w · x)(w · x−w∗ · x)]︸ ︷︷ ︸
I2

. (4)

In the following subsections, we bound I1 and I2 from below. We start by bounding from below the
effect of the noise, i.e., the contribution of I1.

Estimating the Effect of the Noise We start by showing that the noise cannot affect the gradient
by a lot, i.e., we bound the contribution of I1. We prove the following lemma:

Lemma 34 Let D be an (L,R)-well-behaved distribution and σ be a (τ, µ, ξ)-sigmoidal activation.
For any vector w ∈ Rd, it holds that

I1 ≥ −
√

8ξ2ϵmin(∥w∗ −w∥w/(µ3/2L2), ∥w∗ −w∥2) .

22



LEARNING A SINGLE NEURON WITH ADVERSARIAL LABEL NOISE VIA GRADIENT DESCENT

Proof Using the Cauchy-Schwarz inequality, we obtain:

I1 ≥ −E[|(σ(w∗ · x)− y)σ′(w · x)(w · x−w∗ · x)|]
≥ −(E[(σ(w∗ · x)− y)2])1/2(E[(w · x−w∗ · x)2σ′(w · x)2])1/2

= −
√
F (w∗) (E[(w · x−w∗ · x)2σ′(w · x)2])1/2

≥ −
√
ϵ (E[(w · x−w∗ · x)2σ′(w · x)2])1/2 , (5)

where we used that F (w∗) ≤ ϵ, from the assumptions of Proposition 15. We proceed to bound
the term E[(w · x −w∗ · x)2σ′(w · x)2]. Note that we can use the upper bound on the derivative
of the activation function, i.e., σ′(t) ≤ ξ for all t ∈ R. However, this would result in E[(w · x −
w∗ · x)2σ′(w · x)2] ≤ O(ξ2∥w − w∗∥22). While, this was sufficient for the case of unbounded
activations of the Definition 6, for bounded activation functions, we need a tighter estimate that takes
into account the fact that the functions have exponential tails outside the interval [−1/µ,+1/µ].
Recall that we denote by q∥w∗ the component of q ∈ Rd parallel to w∗ ∈ Rd, i.e., q∥w∗ = projw∗q.
Similarly, we denote q⊥w∗ = projw∗⊥q. We prove the following.

Lemma 35 Let D be an (L,R)-well-behaved distribution and σ be a (τ, µ, ξ)-sigmoidal activation.
For any vectors v,w ∈ Rd, it holds that

E
x∼Dx

[(w · x− v · x)2(σ′(w · x))2] ≤ 8ξ2min

(
1

L4µ3
∥v −w∥2w, ∥v −w∥22

)
.

Proof First note that Ex∼Dx [(w·x−v·x)2σ′(w·x)2] ≤ ξ2Ex∼Dx [(w·x−v·x)2 exp(−2|w·x|µ)],
from the assumption that |σ′(t)| ≤ ξ exp(−µ|t|). It holds that

E
x∼Dx

[(w · x− v · x)2 exp(−2|w · x|µ)] ≤ E
x∼Dx

[(w · x− v · x)2] = ∥w − v∥22 ,

where we used the fact that the distribution Dx is isotropic, i.e., for any vector u ∈ Rd, it holds that
Ex∼Dx [(u · x)2] = ∥u∥22.

Next show that by using the tails of the distribution Dx, we can prove a tighter upper bound for
some cases. We use that the distribution is (L,R)-well-behaved, and we prove the following claim
that bounds from above the expectation.

Claim 36 Let Dx be an (L,R)-well-behaved distribution. Let b > 0 and u,v be unit norm
orthogonal vectors. It holds that

E
x∼Dx

[(u · x)2 exp(−b|v · x|)] ≤ 8

L4b
E

x∼Dx

[(v · x)2 exp(−b|v · x|)] ≤ 8

L2b3
.

Proof Without loss of generality take u = e1 and v = e2. Using the fact that the distribution is
(L,R)-well-behaved, we have that the 2-dimensional projection on the subspace V spanned by v,u
is bounded from above by (1/L) exp(−L∥xV ∥2) everywhere. We have that

E
x∼Dx

[x2
1 exp(−bv · x)] ≤ (1/L)

∫
x2∈R

∫
x1∈R

x2
1 exp(−bv · x) exp(−L∥xV ∥2)dx1dx2

≤ (4/L)

∫ ∞

0
x2
1 exp(−L|x1|)

∫ ∞

0
exp(−b|x2|)dx1dx2

= 8/(L4b) .
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Putting the above estimates together, we proved the first part of Claim 36. For the other part, it holds
that

E
x∼Dx

[(v · x)2 exp(−bv · x)] ≤ (4/L)

∫ ∞

0

∫ ∞

0
x2
2 exp(−L|x1|) exp(−b|x2|)dx2dx1 = 8/(L2b3) .

This completes the proof of Claim 36.

Let q = v −w and note that (q · x)2 = (q∥w · x)2 + (q⊥w · x)2. Using Claim 36, it holds that

E
x∼Dx

[(q · x)2 exp(−2w · xµ)] = E
x∼Dx

[(q∥w · x)2 + (q⊥w · x)2) exp(−2w · xµ)]

≤ 8

L4
(∥q∥w∥22

1

µ3∥w∥32
+ ∥q⊥w∥22

1

µ∥w∥2
) ≤ 8∥q∥2w

L4µ3
,

where we used that a2 + b2 ≤ (a+ b)2 for a, b ≥ 0. This completes the proof of Lemma 35.

Lemma 34 follows from combining Equation (5) along with Lemma 35.

Estimating the Contribution of the “Noiseless” Gradient In order to compute the contribution
of the gradient when there is no noise to the instance, we show that in fact the contribution of I2 is
bounded from below by the contribution of a ramp function instead of σ. To show this, we use the
property that σ′(t) ≥ τ , for all t ∈ [−1, 1], see Definition 3.

Claim 37 It holds that I2 ≥ τ2Ex∼Dx [(r(w · x)− r(v · x))r′(w · x)(w − v) · x].

Proof We have that

I2 = E
x∼Dx

[(σ(w · x)− σ(v · x))σ′(w · x)(w − v) · x]

= E
x∼Dx

[|(σ(w · x)− σ(v · x))σ′(w · x)(w − v) · x|]

≥ τEx∼Dx [|(σ(w · x)− σ(v · x))(w − v) · x|1{|w · x| ≤ 1}] ,

where we used that σ is non-decreasing and that σ(t) ≥ τ for t ∈ [−1, 1] from the assumptions of
(τ, µ, ξ)-sigmoidal activations. Moreover, note that from the fundamental theorem of calculus, we
have that

σ(w · x)− σ(v · x) =
∫ w·x

v·x
σ′(t)dt ≥ τ

∫ w·x

v·x
1{|t| ≤ 1}dt = τ(r(w · x)− r(v · x)) ,

where we used again that σ(t) ≥ τ for t ∈ [−1, 1]. Therefore, we have that

I2 ≥ τ2 E
x∼Dx

[(r(w · x)− r(v · x))r′(w · x)(w − v) · x] .

This completes the proof of Claim 37.

To bound I2 from below, we consider three cases depending on how far the vector w is from
the target vector w∗. The first two cases correspond to θ(w,w∗) ∈ (0, π/2). In the first case,
we have that either ∥projw⊥w∗∥2 ≥ 2K/R, for any K ≥ 1, or ∥projww∗∥2 ≥ 2∥w∥2 and in
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the second case when both of the aforementioned conditions are false. The last case corresponds
to θ(w,w∗) ∈ (π/2, π). Notice that when w is close to the target w∗ then its projection onto
the orthogonal complement of w, i.e., ∥projw⊥w∗∥2, will be small and also its projection on the
direction of w, i.e., ∥projww∗∥2, will be close to ∥w∥2.

If either of the conditions of the first case are satisfied or when w · w∗ ≤ 0, then there is a
large enough region that we can substitute the r(w∗ · x) by the constant function r(w∗ · x) = 1
(left plot in Figure 3), these conditions corresponds to the case that the vectors w and w∗ are “far”
apart from each other. Whereas if both of these conditions are not satisfied then there exists a large
enough region that r(w∗ · x) = w∗ · x (right plot in Figure 3), in this case the vectors w and
w∗ are “close” to each other. Without loss of generality, we may assume that w/∥w∥2 = e2 and
w∗ = ∥w∗∥2(cos θe2 − sin θe1). For simplicity, we abuse notation and denote by Dx the marginal
distribution on the subspace spanned by the vectors w,w∗.

Case 1: w and w∗ are “close” We now handle the case where θ(w,w∗) ∈ (0, π/2), ∥projw⊥w∗∥2 ≤
2K/R and ∥projww∗∥2 ≤ 2∥w∥2, i.e., the case where w and w∗ are close to each other but still
not close enough to guarantee small L2 error, i.e., the L2

2 error of w, F (w) is much larger than ϵ.

Lemma 38 Let D be an (L,R)-well-behaved distribution. For any vector w ∈ Rd, let θ =
θ(w∗,w) ∈ (0, π/2). If ∥projw⊥w∗∥2 ≤ 2K/R, for K ≥ 1, and ∥projww∗∥2 ≤ 2∥w∥2, it holds:

• If ∥w∥2 ≥ 2/R, then I2 ≥ τ2LR3

4096K3 ∥w −w∗∥2w.

• Otherwise, I2 ≥ τ2LR4

2048K3 ∥w −w∗∥22.

Proof Using Claim 37, we have that

I2 ≥ τ2 E
x∼Dx

[(r(w · x)− r(w∗ · x))r′(w · x)(w −w∗) · x]

≥ τ2 E
x∼Dx

[(w · x− r(w∗ · x))(w −w∗) · x1{0 ≤ w · x ≤ 1}] .

Note that in the last inequality we used that because r(·) is a non-decreasing function, it holds that
(r(w · x) − r(w∗ · x))(w −w∗) · x ≥ 0 for any value of x ∈ Rd. Moreover, we assume without
loss of generality that w/∥w∥2 = e2, and therefore w∗ = ∥w∗∥2(cos θe2 − sin θe1). Note that in
this case the condition ∥projww∗∥2 ≤ 2∥w∥2 is equivalent to 2∥w∥2 ≥ | cos θ|∥w∗∥2.

Consider the region −R/(4K) ≤ x1 ≤ −R/(8K) and x2 ≤ 1/(4∥w∥2) which is chosen to
guarantee that 0 ≤ w∗ · x ≤ 1, which holds because

0 ≤ w∗ · x ≤ ∥w∗∥2 cos θx2 +R∥w∗∥2 sin θ/(4K) ≤ 1/2 + cos θ∥w∗∥2/(4∥w∥2) ≤ 1 .

We show the following claim which will be used to bound from below I2 for this case.

Claim 39 Let Dx be an (L,R)-well-behaved distribution. For any vectors w,v ∈ Rd and a, b ∈
[0, R], let q = w − v, it holds

E
x∼Dx

[
(q · x)21

{
w

∥w∥2
· x ∈ (0, a),

vprojw

∥vprojw∥2
· x ∈ (−b, 0)

}]
≥ Lab

8
(∥q∥w∥22a2+∥q⊥w∥22b2) .
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Proof We have that q = q∥w+q⊥w and using the Pythagorean theorem we have that ((w−v)·x)2 =
∥q∥w∥22(e1 · x)2 + ∥q⊥w∥22(e2 · x)2. Therefore, we have that

E
x∼Dx

[((w − v) · x)21{e1 · x ∈ (0, a), e2 · x ∈ (−b, 0)}]

≥ E
x∼Dx

[((w − v) · x)21{e1 · x ∈ (
a

2
, a), e2 · x ∈ (−b,− b

2
)}]

≥ E
x∼Dx

[(∥q∥w∥22(e1 · x)2 + ∥q⊥w∥22(e2 · x)2)1{e1 · x ∈ (
a

2
, a), e2 · x ∈ (−b,− b

2
)}]

≥ 1

4
(∥q∥w∥22a2 + ∥q⊥w∥22b2 E

x∼Dx

[1{e1 · x ∈ (
a

2
, a), e2 · x ∈ (−b,− b

2
}]

≥ Lab

8
(∥q∥w∥22a2 + ∥q⊥w∥22b2) ,

where in the last inequality we used that the distribution Dx is (L,R)-well-behaved.

For the case where ∥w∥2 ≥ 2/R. Using the Claim 39, we have that

E
x∼Dx

[((w − v) · x)21{0 ≤ x2 ≤ 1/(4∥w∥2),−R/(4K) ≤ x1 ≤ −R/(8K)}]

≥ LR

128K∥w∥2

(
∥q∥w∥22

1

16∥w∥22
+ ∥q⊥w∥22

R2

K216

)
≥ LR3

K32048

(
∥q∥w∥22
∥w∥32

+
∥q⊥w∥22
∥w∥2

)
≥ LR3

4096K3
∥q∥2w .

For the case where ∥w∥2 ≤ 2/R, using Claim 39, we have

E
x∼Dx

[((w − v) · x)21{0 ≤ x2 ≤ 1/(4∥w∥2),−R/(4K) ≤ x1 ≤ −R/(8K)}]

≥ E
x∼Dx

[((w − v) · x)21{R/8 ≤ x2 ≤ R/4,−R/(4K) ≤ x1 ≤ −R/(8K)}]

≥ LR2

K128

(
∥q∥w∥22

R2

16
+ ∥q⊥w∥22

R2

K216

)
≥ LR4

K32048
∥q∥22 .

This completes the proof of Lemma 38.

From Lemma 34, we have that I1 ≥ −
√
8ϵ/µ3(ξ/L2)∥w∗ −w∥w. Using Lemma 38, for K = 1,

we have that

I1 + I2 ≥
τ2LR3

4096
∥w∗ −w∥w

(
∥w∗ −w∥w −

√
ϵ

4096
√
8ξ

L3µ3/2R3τ2

)
≥ 2(ξ/µ3/2)

√
8ϵ∥w∗ −w∥w ≥

√
ϵ∥w∗ −w∥w ,

where in the second inequality we used that ∥w∗ − w∥w ≥
√
ϵ 8192

√
8ξ

L3µ3/2R3τ2
and that ξ ≥ 1, µ ≤

1. Moreover, note that in the special case that ∥w∥2 ≥ 2∥w∗∥2, we have that ∥w∗ − w∥w ≥
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(1/2)∥w∥−1/2
2 . Therefore, it holds

I1 + I2 ≥
τ2LR3

4096
∥w∗ −w∥w

(
∥w∗ −w∥w −

√
ϵ

4096
√
8ξ

L3µ3/2R3τ2

)

≥ τ2LR3

4096
∥w∗ −w∥w

(
(1/2)∥w∥−1/2

2 −
√
ϵ

4096
√
8ξ

L3µ3/2R3τ2

)

≥ τ2LR3

16384

∥w∗ −w∥w
∥w∥1/22

,

where in the third inequality we used that ϵ∥w∥2ξ2/(L6R6µ3τ2) is less than a sufficient small
constant. Using that ∥w∥2 ≤ CL6R6µ3τ4/(ϵξ2) for a sufficiently small constant C > 0, from the
assumptions of Proposition 15, we get that I1 + I2 ≥ c′ ξ

µ3/2

√
ϵ∥w∗ −w∥w ≥ c′

√
ϵ∥w∗ −w∥w,

where we used that ξ ≥ 1, 1 ≥ µ by assumption.
Moreover, for the case that ∥w∥2 ≤ 2/R, we have I1 ≥ −

√
ϵξ∥w∗ −w∥2. Using Lemma 38,

we have that

I1 + I2 ≥
τ2LR4

2048
∥w∗ −w∥2

(
∥w∗ −w∥2 −

√
ϵ
2048ξ

LR4τ2

)
≥
√
ϵ∥w∗ −w∥2 ,

where in the last inequality we used that ∥w∗ −w∥2 ≥
√
ϵ 4096ξ
LR4τ2

and that ξ ≥ 1.

Case 2: w is far from the target w∗ We now handle the case where our current guess w is far
from the target weight vector v. In particular, we assume that either ∥projw⊥w∗∥2 ≥ 2K/R for
some K ≥ 1, or ∥projww∗∥2 ≥ 2∥w∥2. In this case there is a large enough region for which we
can substitute the r(w∗ · x) by the constant function r(w∗ · x) = 1 (left plot in Figure 3). First, we
handle the case where ∥projw⊥w∗∥2 ≥ 2K/R or ∥projww∗∥2 ≥ 2∥w∥2. We prove the following:

Lemma 40 Let D be an (L,R)-well-behaved distribution. Let θ = θ(w∗,w) ∈ (0, π/2). There
exists a sufficiently small universal constant c′ > 0 such that for any w ∈ Rd, if ∥projw⊥w∗∥2 ≥
2K/R, for K ≥ 1, or ∥projww∗∥2 ≥ 2∥w∥2, it holds:

• If ∥w∥2 ≥ 2/R, then I2 ≥ τ2LR2

72∥w∥1/22

∥w −w∗∥w.

• Otherwise, I2 ≥ τ2LR3

144 ∥w −w∗∥2.

Proof From Claim 37, we have that

I2 ≥ τ2 E
x∼Dx

[(r(w · x)− r(w∗ · x))r′(w · x)(w −w∗) · x]

= τ2 E
x∼Dx

[(w · x− r(w∗ · x))(w −w∗) · x 1{|w · x| ≤ 1}]

≥ τ2 E
x∼Dx

[(w · x− r(w∗ · x))(w −w∗) · x 1{0 ≤ w · x ≤ 1}] .

Note that the last inequality holds because r is a non-decreasing function, and thus we have that
(r(w ·x)−r(w∗ ·x))(w ·x−w∗ ·x) ≥ 0 for all x ∈ Rd. Let c = min(1/∥w∥2, R), and note that the
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w∗

1

w
1

2∥w∥2

1
∥w∥2

−R/2−R

w∗

1

w
1

4∥w∥2

−R/8−R/4

Figure 3: Using our distributional assumptions, there exists a region (“blue”) that provides enough
contribution to the gradient, the left plot corresponds to Lemma 40 where the angle between the
current vector and the target one is large, in this case we take a region where r(w∗ · x) = 1, the
right plot corresponds to Lemma 38, in this case the angle is small, and we take a region where
r(w∗ · x) = w∗ · x.

condition ∥projww∗∥2 ≥ 2∥w∥2 is equivalent to 2∥w∥ ≤ cos θ∥w∗∥2. We consider the following
subset −R ≤ x1 ≤ −R/2 and c/2 ≤ x2 ≤ c which is chosen such w∗ ·x ≥ 1; which holds because
w∗ · x ≥ ∥w∗∥2(cos θx2 +R sin θ/2) ≥ ∥w∗∥2(cos θc/2 +R sin θ/2) and the last part is always
greater than 1 if at least one of the following hold: ∥w∗∥2 sin θ ≥ K/R or 2∥w∥ ≤ cos θ∥w∗∥2.
Therefore, it holds that r(w∗ · x) = 1. Hence, we can write

E
x∼Dx

[(w · x− r(w∗ · x))(w −w∗) · x 1{0 ≤ w · x ≤ 1}]

≥ E
x∼Dx

[(w · x− r(w∗ · x))(w −w∗) · x 1{c/2 ≤ x2 ≤ c,−R ≤ x1 ≤ −R/2}]

≥ E
x∼Dx

[(w · x− 1)(w −w∗) · x 1{c/2 ≤ x2 ≤ 2c/3,−R ≤ x1 ≤ −R/2}] .

Notice that in this case w · x ≤ w∗ · x and that (1−w · x) ≥ 1/3. Therefore,

E
x∼Dx

[(w · x− r(w∗ · x))(w −w∗) · x 1{0 ≤ w · x ≤ 1}]

≥ (1/3) E
x∼Dx

[|(w −w∗) · x|1{c/2 ≤ x2 ≤ 2c/3,−R ≤ x1 ≤ −R/2}] .

Let q = w −w∗. By using the inequality (a2 + b2)1/2 ≥ (1/2)(|a|+ |b|) for any a, b ∈ R and that
(q · x)2 = (q∥w · x)2 + (q⊥w · x)2, we have that

E
x∼Dx

[|(w −w∗)·x|1{c/2 ≤ x2 ≤ 2c/3,−R ≤ x1 ≤ −R/2}]

= E
x∼Dx

[
√

(q · x)21{c/2 ≤ x2 ≤ 2c/3,−R ≤ x1 ≤ −R/2}]

≥ 1

2
E

x∼Dx

[(|q∥w · x|+ |q⊥w · x|)1{c/2 ≤ x2 ≤ 2c/3,−R ≤ x1 ≤ −R/2}]

≥ 1

2

(
∥q∥w∥2

c

2
+ ∥q⊥w∥2

R

2

)
E

x∼Dx

[1{c/2 ≤ x2 ≤ 2c/3,−R ≤ x1 ≤ −R/2}]

≥ cLR

24

(
∥q∥w∥2

c

2
+ ∥q⊥w∥2

R

2

)
,
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where we used that the distribution is (L,R)-well-behaved. For the case that c = 1/∥w∥2, we have
that

I2 ≥
τ2LR

72∥w∥2

(
∥q∥w∥2

1

2∥w∥2
+ ∥q⊥w∥2

R

2

)
≥ τ2LR2

72∥w∥1/22

∥q∥w .

Finally, for the case that c = R, we have that

I2 ≥
τ2LR2

72

(
∥q∥w∥2

R

2
+ ∥q⊥w∥2

R

2

)
≥ τ2LR3

144
∥q∥2 ,

where we used that (a+ b)2 ≥ a2 + b2 for a, b ≥ 0. This completes the proof of Lemma 40.

To prove Proposition 15 for this case (the case for which the assumptions of Lemma 40 hold),
we use the bound of the contribution of the noise to the gradient from Lemma 34, i.e., that I1 ≥
−
√
8ϵ/µ3(ξ/L2)∥w∗ −w∥w, given that ∥w∥2 ≥ 2/R. Putting together our estimates for I1 and

I2, we obtain:

I1 + I2 ≥
τ2LR2

72∥w∥1/22

∥q∥w

(
1−

√
ϵ∥w∥2

ξ72
√
8

L3R2µ3/2τ2

)

≥ τ2LR2

144∥w∥1/22

∥q∥w , (6)

where, we used that
√

ϵ∥w∥2ξ2/(L3R2µ3/2τ2) is less than a sufficiently small constant from the
assumptions of Proposition 15. Observe that from the assumptions of Proposition 15, there exists a
constant C > 0,such that ∥w∥2 ≤ CL6R6µ3τ4/(ϵξ2) hence, we have that

I1 + I2 ≥
√
ϵ∥q∥w ,

where we used that L,R, µ ≤ 1 and ξ ≥ 1.
Finally, similar to the previous case, for the case that ∥w∥2 ≤ 2/R, it holds

I1 + I2 ≥
τ2LR3

144
∥q∥2

(
1−
√
ϵ
144ξ

LR3τ2

)
≥ τ2LR3

288
∥q∥2 ,

where we used that (1−
√
ϵ 144ξ
LR3τ2

) ≥ 1/2.

Case 3: angle of w and w∗ is greater than π/2 We now handle the case where θ(w,w∗) ∈
(π/2, π). This case is very similar to the second case, i.e., Lemma 40.

Lemma 41 Let D be an (L,R)-well-behaved distribution. For any vector w ∈ Rd with θ(w∗,w) ∈
(π/2, π). We show

• If ∥w∥2 ≥ 2/R, then I2 ≥ τ2LR2

16∥w∥1/22

∥w −w∗∥w.

• Otherwise, we have that I2 ≥ τ2LR4

16 ∥w −w∗∥2.
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Proof Let c = min(1/∥w∥2, R). We consider the R/2 ≤ x1 ≤ R and c/2 ≤ x2 ≤ c so that
0 ≥ w∗ · x. Similarly to the previous case, using Claim 37, we get that I2 ≥ τ2Ex∼Dx [(w · x −
r(w∗ · x))(w−w∗) · x 1{0 ≤ w · x ≤ 1}] and for this case it holds that r(w∗ · x) ≤ 0. Hence, we
have that

E
x∼Dx

[(w · x− r(w∗ · x))(w −w∗) · x 1{0 ≤ w · x ≤ 1}]

≥ E
x∼Dx

[(w · x− r(w∗ · x))(w −w∗) · x 1{c/2 ≤ x2 ≤ c,R/2 ≤ x1 ≤ R}]

≥ c∥w∥2
2

E
x∼Dx

[(w −w∗) · x 1{c/2 ≤ x2 ≤ c,R/2 ≤ x1 ≤ R}] .

Note that (w−w∗) ·x = (∥w∥2− cos θ∥w∗∥2)x2 +sin θ∥w∗∥2x1 ≥ (∥w∥2− cos θ∥w∗∥2)c/2+
sin θ∥w∗∥2R/2, when R/2 ≤ x1 ≤ R and c/2 ≤ x2 ≤ c. Denote by q = w − w∗ we get that
(∥w∥2 − cos θ∥w∗∥2)c/2+ sin θ∥w∗∥2R/2 = ∥q∥w∥2c/2+ ∥q⊥w∥2R/2. Furthermore, using that
the distribution D is (L,R)-well-behaved, we have that Ex∼Dx [1{c/2 ≤ x2 ≤ c,R/2 ≤ x1 ≤ R}] ≥
LRc

4 . Hence,

I2 ≥
τ2LRc2∥w∥2

16

(
∥q∥w∥2c+ ∥q⊥w∥2R

)
,

which completes the proof of Lemma 41.

Therefore, if ∥w∥2 ≥ 2/R, we have I1 ≥ −
√

8ϵ/µ3(ξ/L2)∥w∗ − w∥w. Putting together our
estimates for I1 and I2, we obtain:

I1 + I2 ≥
τ2LR2

16∥w∥1/22

∥w −w∗∥w
(
1−

√
ϵ∥w∥2

ξ16

L3R2µ3/2τ2

)
≥ τ2LR2

32∥w∥1/22

∥w −w∗∥w ,

where we used that
√
ϵ∥w∥2ξ/(L3R2µ3/2τ2) is less than a sufficiently small constant from the

assumptions of Proposition 15. Note that from the assumptions of Proposition 15, there exists a
constant C > 0 such that ∥w∥2 ≤ CL6R6µ3τ4/(ϵξ2), and hence it holds

I1 + I2 ≥
√
ϵ∥q∥w ,

where we used that L,R, µ ≤ 1 and ξ ≥ 1.
Finally, similarly to the previous case, we have that if ∥w∥2 ≤ 2/R, it holds that

I1 + I2 ≥
τ2LR4

16
∥w −w∗∥2

(
1−
√
ϵ

16ξ

LR4τ2

)
≥ LR4τ2

32
∥w −w∗∥2 ,

where we used that (1−
√
ϵ 16ξ
LR4τ2

) ≥ 1/2. This completes the proof of Proposition 15.
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A.5. Proof of Claim 31

We restate and prove the following claim.

Claim 42 If c′κ/(ϵΛ2) ≤ ∥w∥2 ≤ c′κ/ϵ and ∥projw⊥w∗∥2 ≥ 2K/R then

∇Fρ(w) · (w −w∗) ≥ (c′/2)
√
ϵ∥w∗ −w∥w .

Proof First, we calculate the contribution of the regularizer in the direction w − w∗. This is
equal to 2ρ∥w∥22(∥w∥2 − ∥w∗∥2 cos θ). Note that this is positive when ∥w∥2 − ∥w∗∥2 cos θ ≥ 0
and negative otherwise. Hence, if θ ∈ [π/2, π) the contribution of the regularizer is positive, and
therefore it is bounded below by the contribution of the gradient without the regularizer. Moreover, if
∥w∥2 ≥ 2∥w∗∥2, then ∥w∥2 − ∥w∗∥2 cos θ ≥ ∥w∥2 − ∥w∗∥2 ≥ 0, therefore we can again bound
from below the contribution of the gradient like before. For the rest of the proof, we consider the
case where θ ∈ (0, π/2) and ∥w∥2 ≤ 2∥w∗∥2.

From Proposition 15 and specifically Equation (6), we have that as long as 2/R ≤ ∥w∥2 ≤ c′κ/(ϵ

and ∥projw⊥w∗∥2 ≥ 2K/R then∇F (w) · (w −w∗) ≥ c′ τ
2LR2

∥w∥1/22

∥w −w∗∥w. Therefore, we have

that

∇Fρ(w) · (w −w∗) ≥ c′τ2LR2 ∥w∗ −w∥w
∥w∥1/22

+ ρ∥w∥2(∥w∥2 − ∥w∗∥2 cos θ)

≥ c′τ2LR2 ∥w∗ −w∥w
∥w∥1/22

− ρ∥w∥2∥w∗∥2

≥ c′τ2LR2 ∥(w −w∗)∥w∥2
∥w∥22

+ c′τ2LR2 1

∥w∥2

(
∥projw⊥w∗∥2 −

ρ∥w∥22∥w∗∥2
c′τ2LR2

)
.

To bound the ∥projw⊥w∗∥2 − ρ∥w∥22∥w∗∥2/(c′τ2LR2), we have that

∥projw⊥w∗∥2c′τ2LR2

2ρ∥w∥22∥w∗∥2
≥ Kc′τ2LR

ρ∥w∥22∥w∗∥2
≥ KF 3(w∗)LRτ2

ρc′2κ2U
≥ 1 ,

where the in the first inequality we used that ∥projw⊥w∗∥2 ≥ 2K/R; in the second that ∥w∥2 ≤
c′κ/ϵ and ∥w∗∥2ϵ ≤ U ; and in the last inequality that ρ ≤ Kϵ3LRτ2

c′2κ2U
. Therefore, we have that(

∥projw⊥w∗∥2 − 2ρ∥w∥22∥w∗∥2/(c′LR2τ2)
)
≥ ∥projw⊥w∗∥2/2 and the result follows similar to

the proof of Claim 30.

A.6. Parameter vs L2
2 Distance

Lemma 43 (Parameter vs L2
2 Distance) Let Dx be an (L,R) well-behaved distribution. Let σ be a

(τ, ξ, µ)-sigmoidal activation. For any vectors w,v ∈ Rd, we have Ex∼Dx [(σ(w ·x)−σ(v ·x))2] ≤
ξ2∥w − v∥22. Moreover, if θ = θ(w,v) < π/4, ∥w∥2 ≤ δ∥v∥2 and δ ≥ 1, and ∥w∥2 > 2/R, it
holds

E
x∼Dx

[(σ(w · x)− σ(v · x))2] ≲ ξ2δ3

L4µ3
∥w − v∥2w .
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Proof First, we consider the case where ∥w∥2 ≥ 2/R and θ ∈ (0, π/4). Let V be the subspace
spanned by w,v and assume without loss of generality that w/∥w∥2 = e2 and therefore v =
∥v∥2(cos θe2 − sin θe1), we abuse the notation of Dx to be the distribution projected on V . It holds
that

E
x∼Dx

[(σ(w · x)− σ(v · x))2] = E
x∼Dx

[(∫ w·x

v·x
σ′(t)dt

)2
]

≤ E
x∼Dx

[(∫ w·x

v·x
ξ exp(−µ|t|)dt

)2
]

≤ ξ2 E
x∼Dx

[(w · x− v · x)2(exp(−2µ|w · x|) + exp(−2µ|v · x|))] ,

where we used that σ is non-decreasing. Let q = w − v. Using Claim 36, it holds that

E
x∼Dx

[(w · x− v · x)2 exp(−2µ|w · x)|)] = E[((q∥w · x)2 + (q⊥w · x)2) exp(−2w · xµ)]

≤ 8

L4
(∥q∥w∥22

1

µ3∥w∥32
+ ∥q⊥w∥22

1

µ∥w∥2
) ≤ 8∥q∥2w

L4µ3
.

Moreover, for the second term, it holds that

E
x∼Dx

[(w · x− v · x)2 exp(−2µ|v · x)|)] = E
x∼Dx

[(q∥w · x)2 + (q⊥w · x)2) exp(−2v · xµ)]

≤ E
x∼Dx

[(q∥w · x)2 + (q⊥w · x)2) exp(−2∥v∥2 cos θx2µ)]

≤ 8

L4
(∥q∥w∥22

1

µ3∥v∥32 cos θ3
+ ∥q⊥w∥22

1

µ∥v∥2 cos θ
) ≲

δ3∥q∥2w
L4µ3

,

where in the last inequality, we used that cos θ ≥ 1/2 and that ∥w∥2 ≤ δ∥v∥2. For the other cases,
we use the “trivial” upper-bound, i.e.,

E
x∼Dx

[(σ(w · x)− σ(v · x))2] ≤ ξ2 E
x∼Dx

[(w · x− v · x)2]

≤ ξ2∥w − v∥22 sup
∥w∥2=1

E
x∼Dx

[(w · x)2]

≤ ξ2∥w − v∥22 ,

where we used that σ is ξ-Lipschitz and that the distribution Dx is isotropic.

Appendix B. Omitted Proofs of Section 4

B.1. Proof of Proposition 21

We restate and prove the following claim.

Proposition 44 Let D be an (ϵ,W )-corrupted, (L,R)-well-behaved distribution and σ be an (α, λ)-
unbounded activation. For any w ∈ Rd with w ·w∗ ≥ 0 and ∥w −w∗∥2 ≥ Cλ/(α2LR4)

√
ϵ, it

holds ∇F (w) · (w −w∗) ≳ α2LR4∥w −w∗∥22.

32



LEARNING A SINGLE NEURON WITH ADVERSARIAL LABEL NOISE VIA GRADIENT DESCENT

w∗ w
R/2

R

−R/2−R

Figure 4: Using our distributional assumptions, we identify a region (“blue”) that provides enough
contribution to the gradient, so that an update step will decrease the distance with the optimal one.

Proof We have

∇F (w) · (w −w∗)

= E[(σ(w∗ · x)− y)σ′(w · x)(w · x−w∗ · x)]︸ ︷︷ ︸
I1

+E[(σ(w · x)− σ(w∗ · x))σ′(w · x)(w · x−w∗ · x)]︸ ︷︷ ︸
I2

.

We start by bounding the contribution of I1. We show that the “noisy” integral I1 has small negative
contribution that is bounded by some multiple of ∥w −w∗∥2

√
ϵ. We show the following claim.

Claim 45 It holds that I1 ≥ −2λ∥w −w∗∥2
√
ϵ.

Proof Using the Cauchy-Schwarz inequality, we have that

I1 ≥ −E[|(σ(w∗ · x)− y)σ′(w · x)(w · x−w∗ · x)|]
≥ −λE[|σ(w∗ · x)− y||w · x−w∗ · x|]
≥ −λ(E[(σ(w∗ · x)− y)2])1/2(E[(w · x−w∗ · x)2])1/2

≥ −λ
√
ϵ ∥w −w∗∥2

(
max

v∈Rd,∥v∥2=1
E[(v · x)2]

)1/2

≥ −2λ∥w −w∗∥2
√
ϵ ,

where in the first inequality we used the fact that σ is λ-Lipschitz, in the second that F (w∗) = ϵ and
in the last the fact that the distribution is isotropic. Hence, we have that

I1 ≥ −2λ∥w −w∗∥2
√
ϵ . (7)

This completes the proof of Claim 45.

Next we bound from below the contribution of the “clean” examples, i.e., I2. We show that this
positive contribution is bounded below by a multiple of ∥w −w∗∥22, which is enough to surpass the
contribution of the negative region I2. We have the following claim.
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Claim 46 It holds that I2 ≥ 7α2LR4

64 ∥w −w∗∥22.

Proof We first notice that (σ(w · x)− σ(w∗ · x))σ′(w · x)(w · x−w∗ · x) ≥ 0 for every x ∈ Rd,
because σ is an increasing function. Without loss of generality, we may assume that w/∥w∥2 = e2
and therefore w∗ = ∥w∗∥2(cos θe2 − sin θe1). For simplicity, we abuse notation and denote Dx

the marginal distribution on the subspace spanned by the vectors w,w∗. From the definition (α, λ)-
unbounded activations, we have that inft∈(0,R/∥w∥2) σ

′(t) ≥ inft∈(0,∞) σ
′(t) ≥ α > 0. We now

have that

I2 = E[(σ(w · x)− σ(w∗ · x))σ′(w · x)(w · x−w∗ · x)]
≥ α2E[(w · x−w∗ · x)21{x1 ∈ (−R,−R/2),x2 ∈ (R/2, R)}] ,

where the region inside the indicator is the “blue region” of Figure 4. We remark that this region
is not particularly “special”: we can use other regions that contain enough mass depending on
the distributional assumptions. At a high level, we only need a rectangle that contains enough
mass and the gradient in these points is non-zero. Therefore, using the fact that the distribution is
(L,R)-well-behaved, we have

E
[
(w · x−w∗ · x)2 1{x1 ∈ (−R,−R/2),x2 ∈ (R/2, R)

]
= E

[
(∥q∥w∥22x2

2 + ∥q⊥w∥22x2
1) 1{x1 ∈ (−R,−R/2),x2 ∈ (R/2, R)}

]
≥ 7LR4

32
(∥q∥w∥22 + ∥q⊥w∥22) =

7LR4

64
∥w −w∗∥22 ,

where q = w −w∗. Therefore, we proved that

I2 ≥
7α2LR4

64
∥w −w∗∥22 . (8)

Thus, combining Equations (7) and (8), we have that

∇F (w) · (w −w∗) ≥ ∥w −w∗∥2
(
α2 7LR

4

64
∥w −w∗∥2 − 2λ

√
ϵ

)
,

which completes the proof of Proposition 21.

B.2. Proof of Theorem 19

We restate and prove the following theorem:

Theorem 47 (Stationary Points of (α, λ)-Unbounded Activations) Let D be an (ϵ,W )-corrupted,
(L,R)-well-behaved distribution in Rd. Let σ be an (α, λ)-unbounded activation and let F (w) =
E(x,y)∼D[(σ(w · x) − y)2]. Then, if for some w ∈ Rd, with w ·w∗ ≥ 0 and ∥w∥2 ≤ W it holds

∥∇F (w)∥2 ≤ 2λ
√
ϵ, then F (w) ≤ C

(
λ
α

)4 1
L2R8 ϵ, for some absolute constant C > 0.
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Remark 48 We remark that we assume σ(0) = 0 to simplify the presentation. If σ(0) ̸= 0, then
we can always consider the loss function σ̃(t) = σ(t)− σ(0) and also subtract σ(0) from the labels
y, i.e., y′ = y − σ(0). Our results directly apply to the transformed instance.

To prove Theorem 19, in order to reach a contradiction we assume that F (w) ≥ C λ4

α4L2R8 ϵ for
absolute constant C > 0 and that ∥∇F (w)∥2 ≤ α2LR4

100

√
ϵ. From Proposition 21, we have that

7α2LR4

64

√
ϵ ≥ ∇F (w) · (w −w∗)

∥w −w∗∥2
≥ 7α2LR4

64

(
∥w −w∗∥2 −

√
ϵ

λ128

7α2LR4

)
,

and therefore

∥w −w∗∥2 ≤
128λ

√
ϵ

7α2LR4
. (9)

Moreover, we have

F (w) = E[(σ(w · x)− y)2] ≤ 2E[(σ(w∗ · x)− y)2] + 2E[(σ(w · x)− σ(w∗ · x))2]
≤ 2ϵ+ 2λ2∥w −w∗∥22 .

Therefore, using Equation (9), we get

F (w) ≤ C

(
λ

α

)4 1

L2R8
ϵ ,

which leads to a contradiction. This completes the proof of Theorem 19.

Appendix C. Omitted Proofs of Section 5

C.1. Proof of Theorem 22

We restate and prove the following theorem:

Theorem 49 (Learning Sigmoidal Activations) Let D be an ϵ-corrupted, (L,R)-well-behaved dis-
tribution on Rd×R and σ(·) be a (τ, µ, ξ)-sigmoidal activation. Set κ = L6R6µ3τ4/ξ2 and let c > 0
be a sufficiently small absolute constant. Then gradient descent (Algorithm 1) with step size η = cϵ2.5,
regularization ρ = (1/c)ϵ3/k5, truncation threshold M = ξ/µ, N = Θ̃(d/ϵ log(1/δ)) poly(1/κ)
samples, and T = poly(1/(ϵκ)) iterations converges to a vector w(T ) ∈ Rd that, with probability
1− δ, satisfies F (w(T )) ≤ poly(1/κ) ϵ .

We will first assume that we have access to the population gradients of the L2
2 objective and then

show that given samples from D, gradient descent again converges to some approximately optimal
solution. Before we start, we observe that, without loss of generality, we may assume that σ(0) = 0
(otherwise we can subtract σ(0) from y and the activation, see Remark 48). Moreover, from Fact 28
we know that |σ(t)| ≤ ξ/µ. Therefore, for every example (x, y) ∼ D we can “truncate” its label
to ŷ = sign(y)min(|y|, ξ/µ) and the new instance will still be (at most) ϵ-corrupted. To simplify
notation, from now on, we will overload the notation and use y instead of ŷ (assuming that for every
example (x, y) it holds that |σ(w · x)− y| ≤ 2ξ/µ).
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Population Gradient Descent Recall that in Proposition 14 we showed that the population gradient
field “points” to the right direction, i.e., a step of gradient descent would decrease the distance
between the current w and a target v. Notice that in Proposition 14 we require that the target vector
v satisfies F (v) = O(ϵ) and ∥v∥2 ≤ O(1/ϵ). Indeed, from Lemma 13, we have that there exists an
approximately optimal target vector v ∈ Rd, such that ∥v∥2 ≤ U/ϵ for some U = O(ξ/(µL)) and
F (v) = O(ϵ).

Moreover, recall the way we measure distances changes depending on how far w is from the
origin (see the three cases of Proposition 14). We first show that, given any gradient field that
satisfies the properties given in Proposition 14, then gradient descent with an appropriate step size
will converge to the target vector v. The distance of v and the guess w(T ) after T gradient iterations
will be measured with respect to ∥ · ∥2 when w(T ) is close to the origin and with respect to ∥ · ∥w(T )

(see Definition 10) otherwise.

Lemma 50 (Gradient Field Distance Reduction) Let Z1 > Z0 ≥ 1. Let g : Rd 7→ Rd be a
vector field with ∥g(w)∥2 ≤ B for every w ∈ Rd with ∥w∥2 ≤ 2Z1. We assume that g satisfies the
following properties with respect to some unknown target vector v:

1. If ∥w∥2 ≤ Z0 and ∥w − v∥2 ≥ α1 then it holds that g(w) · (w − v) ≥ α2∥w − v∥2, for
α1, α2 > 0.

2. If Z0 < ∥w∥2 ≤ Z1 and ∥w − v∥w ≥ β1 it holds that g(w) · (w − v) ≥ β2∥w − v∥w, for
β1, β2 > 0.

3. For some ζ ∈ (0, 1), γ > 0, we have that if ∥w∥2 ≥ ζZ1, it holds that g(w) ·w ≥ γ∥w∥w.

We consider the update rule w(t+1) ← w(t) − ηg(w(t)) initialized with w(0) = 0 and step size

η =
1

B2
min

(
α1α2,

β1β2

Z
3/2
1

,
2γ

Z1
, (1− ζ)Z1B

)
.

Let T be any integer larger than
⌈

∥v∥2

ηmin(α1α2,β1β2/Z
3/2
1 )

⌉
. We have that ∥w(T )∥2 ≤ Z1. Moreover, if

∥w(T )∥2 ≤ Z0 it holds that ∥w(T ) − v∥2 ≤ ηB +max(α1, (2Z0)
3/2β1) and if ∥w(T )∥2 > Z0 we

have ∥w(T ) − v∥w(T ) ≤
√
2ηB +max(

√
2α1, e

3Z
3/2
1 ηBβ1) .

We now show that the population gradient field, ∇F (w) satisfies the assumptions of Lemma 54
for any ∥w∥2 ≤ κ/ϵ. We first show that ∥∇F (w)∥2 is bounded. We have

∥∇F (w)∥2 =
∥∥E[(σ(w · x)− y)σ′(w · x)x] + ρ∥w∥2w

∥∥
2

≤ max
∥u∥2=1

E[(σ(w · x)− y)σ′(w · x)u · x] + ρ∥w∥22

≤ (ξ2/µ) max
∥u∥2=1

E[|u · x|] + ρ∥w∥22 ≤ ξ2/µ+ ρ∥w∥22 ≲ 1/κ ,

where we used the fact that |σ(w · x)− y| ≤ ξ/µ, σ′(t) ≤ ξ, that the x-marginal of D is isotropic
and that ρ = O(ϵ3).

From Proposition 14 we have that for any vector w ∈ Rd, with ∥w∥2 ≤ 2/R, it holds that if
∥w−w∗∥2 ≥

√
ϵ/(c′κ) for some absolute constant c′ > 0 it holds∇Fρ(w) · (w−w∗) ≥

√
ϵ∥w−
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w∗∥2 . Furthermore, for any vector w ∈ Rd, with 2/R ≤ ∥w∥2 ≤ c′κ/ϵ, if ∥w−w∗∥w ≥ c′U
√
ϵ/κ,

then∇Fρ(w) · (w−w∗) ≥ c′
√
ϵ∥w−w∗∥w . Finally, for any vector w ∈ Rd, with c′′κ/ϵ ≤ ∥w∥2,

it holds that ∇Fρ(w) ·w ≥ c′
√
ϵ∥w∥w, for some 0 < c′′ ≤ c′. Therefore, the true gradient field of

F satisfies the assumptions of Lemma 54 with B = O(1/κ), Z0 = O(1/R), Z1 = poly(LRτµ/ξ),
ζ = 1/2, α1, β1 = poly(ξ/(µτLR))

√
ϵ, and α2, β2, γ = O(

√
ϵ).

Using Sample-Estimated Gradients In the following claim we show that since ∇F (w) is a
sub-exponential random variable, with roughly N = Õ(d/ϵ′2) samples we can get ϵ-estimates of the
population gradients. The proof of Claim 51 can be found in Appendix C.

Claim 51 (Sample Complexity of Gradient Estimation) Fix B, ϵ′ > 0 with ϵ′ ≤ 1/
√
B. Us-

ing N = Õ((d/ϵ′2)poly(ξ/(Lµ)) log(B/δ)) samples from D, we define the empirical L2
2-loss as

F̂ (w) =
∑N

i=1(σ(w · x(i))− y(i))2 and its corresponding empirical gradient field ∇F̂ (w). With
probability at least 1 − δ, for all w with ∥w∥ ≤ B, it holds ∥∇F̂ (w) − ∇F (w)∥2 ≤ ϵ′ and
∥∇F̂ (w)−∇F (w)∥∗,w ≤ ϵ′.

Using Claim 51, we can estimate all the gradients with probability 1 − δ′ and accuracy ϵ′, with
N = Õ((d/ϵ′2)poly(ξ/(Lµ)) log(B/δ′)) samples, for some parameters ϵ′, δ > 0 that we will
choose below. We now show that the empirical gradients will also satisfy the required gradient
field assumptions of Lemma 54. Assume that we have ∥∇F̂ (w)−∇F (w)∥2 ≤ ϵ′ and ∥∇F̂ (w)−
∇F (w)∥∗,w ≤ ϵ′ for some ϵ′ to be specified later. Using the triangle inequality we have that

∥∇F̂ (w)∥2 ≤ ∥∇F (w)∥2 + ϵ′ .

Therefore, for ϵ′ ≤ 1/κ we obtain that ∥∇F̂ (w)∥2 = O(1/κ) ≤ O(B). We next show that the
empirical gradient also points to the direction of w−w∗, i.e., satisfies the assumptions of Lemma 50.
For the case where ∥w∥ ≤ Z0 we have that

∇F̂ (w) · (w − v) ≥ ∇F (w) · (w − v)− ϵ′∥w − v∥2 ≥ (α2 − ϵ′)∥w − v∥2 . (10)

Therefore, we need to choose ϵ′ < α2. Similarly, for the case where Z0 < ∥w∥ ≤ Z1 we have that

∇F̂ (w) · (w − v) ≥ ∇F (w) · (w − v)− (∇F̂ (w)−∇F (w)) · (w − v)

≥ β2∥w − v∥w − ∥∇F̂ (w)−∇F (w)∥∗,w∥w − v∥w
≥ (β2 − ϵ′)∥w − v∥w . (11)

Finally, for ∥w∥2 ≥ ζZ1 we similarly get the lower bound

∇F̂ (w) ·w ≥ (γ − ϵ′)∥w∥w . (12)

Therefore, it suffices to choose ϵ′ ≤ min(α2, β2, γ)/2 = (
√
ϵ)poly(LRµτ/ξ). Assuming that

all the empirical gradients used by the gradient descent satisfy the error bound with ϵ′ as above,
from Lemma 50, we obtain that with step size η = poly(ϵτµLR/ξ) after T = poly(1/(ϵη))
iterations, we will have that if w(T ) ≤ Z0, then ∥w(T ) − v∥2 ≤ poly(ξ/(LRτµ))

√
ϵ which using

Lemma 43, implies that F (w(T )) ≤ poly(ξ/(LRµτ)(ϵ). Similarly, if ∥w(T )∥2 > Z0, we obtain that
∥w(T ) − v∥w(T ) ≤ poly(ξ/(LRτµ))

√
ϵ which again implies that F (w(T )) ≤ poly(ξ/(LRµτ))ϵ.
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C.2. Proof of Theorem 23

We restate and prove the following claim.

Theorem 52 (Unbounded Activations) Let D be an (ϵ,W )-corrupted, (L,R)-well-behaved distri-
bution on Rd×R and σ(·) be an (α, λ)-unbounded activation. Set κ = poly(LRα/λ)/(W 2 log(W )).
The gradient descent Algorithm 2 with step size η = κϵ, truncation threshold M = Õ((W/L)
max(log(λ2W 2/ϵ), 1)), N = Θ̃(d/κ log(1/δ)max(poly log(1/ϵ), 1)) samples, and T = poly(log(1/ϵ), 1/κ)
iterations converges to a vector w(T ) ∈ Rd that, with probability 1 − δ, satisfies F (w(T )) ≲
1

LR4

(
λ
α

)4
ϵ .

Proof We consider the population loss F (w) = (1/2)E(x,y)∼D[(σ(w · x)− y)2]. As we discussed
in Remark 11, we can assume that λ ≥ 1 and L ≤ 1 for making the presentation simpler. Moreover,
we can also assume that W ≥ 1, because if W < 1, then inf∥w∥2≤1 F (w) ≤ inf∥w∥2≤W F (w),
therefore the distribution is (ϵ, 1)-corrupted. Denote w∗ to be a vector with ∥w∗∥2 ≤ W that
achieves F (w∗) ≤ ϵ. First, we assume that ϵ ≥ λ2W 2/C, for some C ≥ 10. Then, any solution
w ∈ Rd, gets error F (w) ≤ 2ϵ. To see this, note that

F (w) ≤ 2F (w∗) + E
x∼Dx

[(σ(w · x)− σ(w∗ · x))2] ≤ 2ϵ+ 4λ2W 2 ≤ 2Cϵ .

Next we consider the case where ϵ ≤ λ2W 2/C. First, using the exponential concentration properties
of well-behaved distributions, we observe that we can truncate the labels y such that |y| ≤ M ,
for some M > 0, without increasing the level of corruption by a lot. Given the exponential
concentration of the distribution and the fact that ∥w∗∥2 ≤ W , we show that we can pick M =
Θ(W max(log(W/ϵ), 1)) so that the instance D̃ of (x, ỹ), where ỹ = sign(y)min(|y|,M), is at
most O(ϵ)-corrupted. Formally, we show

Claim 53 Let M = Θ(W max(log(W/ϵ), 1)). Denote by tr(y) = sign(y)min(|y|,M). Then, it
holds that:

E
(x,y)∼D

[(tr(y)− σ(w∗ · x))2] ≤ O(ϵ) .

Thus, from now, on we will assume that |y| ≤M and keep denoting the instance distribution as D.
We first show that, given any gradient field that satisfies the properties given in Proposition 21,

then gradient descent with an appropriate step size will converge to the target vector v.

Lemma 54 (Gradient Field Distance Reduction) Let g : Rd 7→ Rd be a vector field and fix
W,B ≥ 1. We assume that g satisfies the following properties with respect to some unknown target
vector v with ∥v∥2 ≤ W . Fix parameters α1, α2 > 0. For every w ∈ Rd with ∥w∥2 ≤ 2W it
holds that ∥g(w)∥2 ≤ Bmax(∥w−v∥2, α1). Moreover, if ∥w−v∥2 ≥ α1 and θ(w,v) ∈ (0, π/2)
then it holds that g(w) · (w − v) ≥ α2∥w − v∥22. We consider the update rule w(t+1) ←
w(t) − ηg(w(t)) initialized with w(0) = 0 and step size η ≤ α2/B. Let T be any integer larger than
⌈(W 2 + log(1/α1))/(ηα2)⌉, it holds that ∥w(T ) − v∥2 ≤ (1 + ηB)α1.

We first show that Algorithm 2 with the population gradients would converge after polylog(1/ϵ)
iterations to an approximately optimal solution. We have

∥∇F (w)∥2 = ∥E[(σ(w · x)− y)σ′(w · x)x]∥2 = max
∥u∥2=1

E[(σ(w · x)− y)σ′(w · x)u · x] .
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Let w be any vector with ∥w∥2 ≤ W and let u be any unit vector. By adding and subtracting
σ(w∗ · x), we get:

E[(σ(w · x)− y)σ′(w · x)u · x]
= E[(σ(w · x)− y)σ′(w · x)u · x] +E[(σ(w · x)− σ(w∗ · x))σ′(w · x)u · x]
≤ λE[|(σ(w∗ · x)− y)||u · x|] +E[(σ(w · x)− σ(w∗ · x))σ′(w · x)u · x]
≤ λE[(σ(w∗ · x)− y)2]1/2E[(u · x)2]1/2 +E[(σ(w · x)− σ(w∗ · x))2σ′(w · x)2]1/2E[(u · x)2]1/2

≤ λ
√
ϵ+ λ∥w −w∗∥2 ,

where for the third inequality we used the fact the x-marginal of D is isotropic and that E[(σ(w∗ ·
x)− y)2]1/2 ≤

√
ϵ. Hence, we have that ∥∇F (w)∥2 ≤ λ(

√
ϵ+ ∥w−w∗∥2). Using Proposition 21,

we have that, the true gradients point in the right direction: we have that for any vector w ∈ Rd, with
θ(w,w∗) ∈ (0, π/2), it holds that if ∥w −w∗∥2 ≥ c′λ

√
ϵ/(LR4α2), for some absolute constant

c′ > 0, then it holds that ∇F (w) · (w − w∗) ≥ (1/2)α2LR4∥w − w∗∥22 . Therefore, the true
gradient field of F satisfies the assumptions of Lemma 54 with B = O(λ), α1 = c′

√
ϵ/(LR4)λ/α2

and α2 = (1/2)α2LR4.
In the following claim, we show that with roughly Õ(d∥w−w∗∥22/ϵ2) samples in each iteration,

we can get ϵ′-estimates of the population gradients.

Claim 55 Let w be a vector with ∥w−w∗∥ ≥
√
ϵ. Using N = Õ(dλ4∥w−w∗∥22W 2max(log2(1/ϵ), 1)/(Lϵ′)2)

samples, we can compute an empirical gradient g(w) such that ∥g(w)−∇F (w)∥2 ≤ ϵ with proba-
bility 1− δ.

We now show that the empirical gradients will also satisfy the required gradient field assumptions
of Lemma 54. Assume that we have ∥g(w)−∇F (w)∥2 ≤ ϵ′ for some ϵ′ to be specified later. Using
the triangle inequality we get for any w with ∥w∥ ≤ 2W it holds that

∥g(w)∥2 ≤ ∥∇F (w)∥2 + ϵ′ .

Therefore, for ϵ′ ≲ λ(
√
ϵ+ ∥v−w∥2) we obtain that ∥g(w)∥2 = O(λ(

√
ϵ+ ∥v−w∥2)). We next

show that the empirical gradient also points to the direction of w −w∗. It holds that

g(w)·(w−w∗) ≥ ∇F (w)·(w−w∗)−ϵ′∥w−w∗∥2 ≥ ((1/2)α2LR4∥w−w∗∥2−ϵ′)∥w−w∗∥2 .

Therefore, we need to choose ϵ′ = O(α2LR4∥w−w∗∥2). Using that ∥w−w∗∥2 ≥ c′λ
√
ϵ/(LR4α2),

we have that the estimated gradient field of F satisfies the assumptions of Lemma 54 with B = O(λ),
α1 = c′

√
ϵ/(LR4)λ/α2 and α2 = (1/2)α2LR4. Conditioning that all the empirical gradients used

by the gradient descent satisfy the error bound with ϵ′ as above from Lemma 54 we obtain that with
step size η = poly(LRα/λ) after T = poly(1/(αLR))W 2 log(1/α1) iterations we will have that
∥w(T ) −w∗∥2 ≤ poly(1/(LR))λ/α2√ϵ which implies that

F (w(T )) ≤ 2E[(σ(w∗ · x)− y)2] + 2E[(σ(w∗ · x)− σ(w(T ) · x))2]
= poly(1/(LR)) (λ/α)4 O(ϵ),

where we used the fact that σ is λ-Lipschitz and that the x-marginal of D is isotropic. Since we have
to do a union bound over all T iterations, and we draw fresh samples in each round, we need to divide δ
by T in each round, hence, the total sample complexity is N = poly(λ/(αLR)) Õ(dW 2 log3(1/ϵ) log(1/δ))
and the runtime poly(λ/(αLR)) log(1/ϵ)N .
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C.3. Proof of Claim 55

We restate and prove the following claim.

Claim 56 Let w be a vector with ∥w−w∗∥ ≥
√
ϵ. Using N = Õ(dλ4∥w−w∗∥22W 2max(log2(1/ϵ), 1)/(Lϵ′)2)

samples, we can compute an empirical gradient g(w) such that ∥g(w)−∇F (w)∥2 ≤ ϵ with proba-
bility 1− δ.

Proof We start by bounding from above the variance in every direction. Let Σi = E[((σ(w · x)−
y)σ′(w · x)xi)

2], we have that

Σi = E[((σ(w · x)− y)σ′(w · x)xj)
2] ≤ λ2E[(σ(w · x)− y)2x2

j ]

≤ 2λ2E[(σ(w∗ · x)− y)2x2
j ] + 2λ2E[(σ(w∗ · x)− σ(w · x))2x2

j ] .

≤ 2λ2E[(σ(w∗ · x)− y)2x2
j ] + 2λ4∥w∗ −w∥22 max

∥u∥2=1
E[(u · x)2x2

j ] .

To bound the term E[(σ(w∗ · x)− y)2x2
j ], we have that

E[(σ(w∗ · x)− y)2x2
j ] = E[(σ(w∗ · x)− y)2x2

j1{xj ≤M}] +E[(σ(w∗ · x)− y)2x2
j1{xj ≥M}]

≤M2E[(σ(w∗ · x)− y)2] + 4M2E[x2
j1{xj ≥M}]

≲ M2ϵ+ 4M2E[x2
j1{xj ≥M ′}] ≲ ϵM2 .

Moreover, note that
√
ϵ ≤ ∥w −w∗∥2, hence Σi ≲ λ4∥w −w∗∥22M2. From Markov’s inequality,

we have that for each j ≤ d, it holds

Pr

[∣∣∣∣∣
N∑
i=1

1

N
(σ(w · x(i))− y(i))σ′(w · x(i))x

(i)
j −E[(σ(w · x)− y)σ′(w · x)xj ]

∣∣∣∣∣ ≥ ϵ′/
√
d

]

≤ d

Nϵ′2
E[((σ(w · x)− y)σ′(w · x)xj)

2] ≤ d∥w −w∗∥22λ4M2

Nϵ′2
.

Hence, with N = O(
dλ4∥w−w∗∥22M2

ϵ′2 ) samples, we can get an ϵ′/
√
d-approximation to the i-th

coordinate of the gradient (∇F (w))i with constant probability, and by using a standard boosting
procedure we can boost the probability to 1 − δ with a multiplicative overhead of O(log(1/δ))
samples. Finally, doing a union bound over all coordinates j ∈ {1, . . . , d} we obtain that N =
Õ(dλ4∥w −w∗∥22W 2max(log2(1/ϵ), 1)/(L2ϵ′2)) samples suffice.

C.4. Proof of Lemma 50

We restate and prove the following lemma.

Lemma 57 (Gradient Field Distance Reduction) Let Z1 > Z0 ≥ 1. Let g : Rd 7→ Rd be a vector
field with ∥g(w)∥2 ≤ B for every w ∈ Rd with ∥w∥2 ≤ 2Z1. We assume that g satisfies the
following properties with respect to some unknown target vector v:

1. If ∥w∥2 ≤ Z0 and ∥w − v∥2 ≥ α1 then it holds that g(w) · (w − v) ≥ α2∥w − v∥2, for
α1, α2 > 0.
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2. If Z0 < ∥w∥2 ≤ Z1 and ∥w − v∥w ≥ β1 it holds that g(w) · (w − v) ≥ β2∥w − v∥w, for
β1, β2 > 0.

3. For some ζ ∈ (0, 1), γ > 0, we have that if ∥w∥2 ≥ ζZ1, it holds that g(w) ·w ≥ γ∥w∥w.

We consider the update rule w(t+1) ← w(t) − ηg(w(t)) initialized with w(0) = 0 and step size

η =
1

B2
min

(
α1α2,

β1β2

Z
3/2
1

,
2γ

Z1
, (1− ζ)Z1B

)

Let T be any integer larger than
⌈

∥v∥2

ηmin(α1α2,β1β2/Z
3/2
1 )

⌉
. We have that ∥w(T )∥2 ≤ Z1. Moreover, if

∥w(T )∥2 ≤ Z0 it holds that ∥w(T ) − v∥2 ≤ ηB +max(α1, (2Z0)
3/2β1) and if ∥w(T )∥2 > Z0 we

have ∥w(T ) − v∥w(T ) ≤
√
2ηB +max(

√
2α1, e

3Z
3/2
1 ηBβ1) .

Proof We first show by induction that for every t ≥ 0 it holds that ∥w(t)∥2 ≤ Z1. For t = 0 we
have w(0) = 0 so the claim holds. Assume first that ∥w(t)∥2 ≤ ζZ1. Then

∥w(t+1)∥2 ≤ ∥w(t)∥2 + ηB ≤ ζR1 + (1− ζ)Z1 = Z1,

where we used the fact that ηB ≤ (1− ζ)Z1. Now, if ζZ1 ≤ ∥w(t)∥2 ≤ Z1 by assumption 3 of the
vector field g, we have that

∥w(t+1)∥22 = ∥w(t)∥22 − 2ηg(wt) ·w(t) − η2∥g(w(t))∥22
≤ ∥w(t)∥22 − 2ηγ/

√
Z1 − η2B2 .

Since η ≤ 2γ/(B2
√
Z1), we have that −2ηγ/

√
Z1 − η2B2 ≤ 0, and therefore ∥w(t+1)∥22 ≤

∥w(t)∥22 ≤ Z2
1 .

Now that we have that ∥w(t)∥2 is always smaller than Z1, we know that the vector field g(w(t))
has non-trivial component on the direction w − v, i.e., either condition 1 or condition 2 is true. We
next show that when condition 1 or 2 of the Lemma 50 hold, we can improve the distance of w(t) and
the target v. We first assume that ∥w(t)∥2 ≤ Z0 and that ∥w(t) − v∥2 ≥ α1. Then by assumption 1
of the lemma we have that it holds g(w(t)) · (w(t) − v) ≥ α2∥w(t) − v∥2. We have

∥w(t) − v∥22 − ∥w(t+1) − v∥22 = 2ηg(w(t)) · (w(t) − v)− η2∥g(w(t))∥22
≥ 2ηα1α2 − η2∥g(w(t))∥22
≥ ηα1α2 ,

where for the last inequality we used the fact that ∥g(w(t))∥22 ≤ B2 and that η ≤ α1α2/B
2. On the

other hand, if ∥w(t)∥2 ≤ Z0 and ∥w(t) − v∥2 ≥ β1, then by assumption 2 of the lemma we have
that it holds g(w(t)) · (w(t) − v) ≥ β2∥w − v∥w(t) . Similarly to the previous case, we then have

∥w(t) − v∥22 − ∥w(t+1) − v∥22 ≥ 2ηβ2∥w(t) − v∥w(t) − η2∥g(w(t))∥22 .

We next bound from below the norm ∥ · ∥w by the ℓ2 norm. The following rough estimate suffices.

Claim 58 For every x ∈ Rd it holds

min
( 1

∥w∥3/22

,
1

∥w∥1/22

)
∥x∥2 ≤ ∥x∥w ≤

√
2max

( 1

∥w∥3/22

,
1

∥w∥1/22

)
∥x∥2 .
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Proof The claim follows directly from the definition of the norm ∥·∥w and the inequality
√
a2 + b2 ≤

a+ b ≤
√
2
√
a2 + b2 that holds for all a, b ≥ 0.

Using the above bounds and the fact that Z1 ≥ 1, we conclude that ∥w(t)− v∥22−∥w(t+1)− v∥22 ≥
ηβ1β2/Z

3/2
1 , where we used the assumption that η ≤ β1β2/(Z

3/2
1 B2). Recall that we have set

η = 1/B2min(α1α2, β1β2/Z
3/2
1 , 2γ/Z1, (1− ζ)Z1B) which implies that at every iteration where

either ∥w(t)∥2 ≤ Z0 and ∥w(t) − v∥2 ≥ α1, or ∥w(t)∥2 > Z0 and ∥w(t) − v∥w(t) ≥ α1 we have
that ∥w(t)−v∥22−∥w(t+1)−v∥22 ≥ ηmin(α1α2, β1β2/Z

3/2
1 ). Let us denote by T the first iteration

such that the distance reduction stops happening. Since we initialize at w(0) = 0 the first time that
either of the above condition stops being true, namely, T can be at most

⌈
∥v∥2

ηmin(α1α2,β1β2/Z
3/2
1 )

⌉
.

After either ∥w(T ) − v∥2 ≤ α1 or ∥w(T ) − v∥w(T ) ≤ β1 we stop having the guarantee that
updating the guess with g(w(T )) will decrease the distance, and therefore we may move to the wrong
direction. However, since our step size η is small doing a small step in the wrong direction cannot
increase the distance of w(T+1) and v by a lot. We next show that even if we continue updating
after the iteration T , we cannot make the distance of w(T ) and the target vector v much larger.
We first assume that at iteration T we have ∥w(T )∥2 ≤ Z0, and therefore, it must be the case that
∥w(T ) − v∥2 ≤ α1. Notice that it suffices to show that after one iteration the claim holds, since after
∥w(T+1)∥2 grows larger than α1 the distance of w will start to decrease again. For the next iteration,
using the bound ∥g(w(T ))∥2 ≤ B, we obtain that ∥w(T+1) −w(T )∥2 ≤ ηB. Now if ∥w(T+1)∥2 ≤
Z0, using the triangle inequality for the ℓ2 norm, we have that ∥w(T+1) − v∥2 ≤ α1 + ηB. On the
other hand, if ∥w(T+1)∥2 > Z0, using the triangle inequality of the norm ∥ · ∥w we obtain

∥w(T+1) − v∥w(T+1) ≤ ∥w(T+1) −w(T )∥w(T+1) + ∥w(T ) − v∥w(T+1) (13)

≤
√
2(ηB + α1) ,

where we used Claim 58, the fact that w(T+1) −w(T ) = ηg(w(T )) and that ∥w(T+1)∥2 > Z0 ≥ 1.
Next we consider the case ∥w(T )∥2 > Z0 and ∥w(T+1)∥2 > Z0. From Claim 58, we obtain that
∥w(T+1) − w(T )∥w(T+1) ≤

√
2ηB. We prove the next lemma that bounds the ratio between two

weighted euclidean norms with different bases.

Lemma 59 Let u,v,x ∈ Rd be non-zero vectors with ∥u∥2, ∥v∥2 ≤ Q for some Q ≥ 1. Then it
holds that

∥x∥u
∥x∥v

≤ exp

(
Q3/2

(
4θ(u,v)

( 1

∥v∥3/2
+

1

∥v∥1/22

)
+∆(u,v)

))
,

where ∆(u,v) =
∣∣∣ 1

∥v∥3/22

− 1

∥u∥3/22

∣∣∣+ ∣∣∣ 1

∥v∥1/22

− 1

∥u∥1/22

∣∣∣.
Proof We first observe that, ∥λx∥u = |λ|∥x∥u, it suffices to consider x with unit norm ∥x∥2 = 1.
Moreover, from Claim 58 we have that since ∥v∥2, ∥u∥2 ≤ Q it holds that both ∥x∥u, ∥x∥v are
larger than 1/Q3/2. Next, using the fact that the function t 7→ log(t) is 1/t-Lipschitz, we obtain that
log
(
∥x∥u
∥x∥v

)
≤ Q3/2|∥x∥u − ∥x∥v|. Therefore, it suffices to bound the difference of the two norms.

We have that

|∥x∥u − ∥x∥v| ≤
∣∣∣∣∥projux∥2∥u∥3/2

− ∥projvx∥2
∥v∥3/2

∣∣∣∣+ ∣∣∣∣∥proju⊥x∥2
∥u∥1/2

− ∥projv⊥x∥2
∥v∥1/2

∣∣∣∣ .
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We first bound the term
∣∣∣∥projux∥2∥u∥3/2 −

∥projvx∥2
∥v∥3/2

∣∣∣ ≤ ∣∣∣∥projux∥2∥v∥3/2 −
∥projvx∥2
∥v∥3/2

∣∣∣ + ∣∣∣ 1
∥u∥3/2 −

1
∥v∥3/2

∣∣∣ ,
since ∥projvx∥2 ≤ ∥x∥2 = 1. Moreover, by Cauchy-Schwarz inequality, we have that ∥projvx−
projux∥2 ≤ 2θ(v, u). Similarly, we can bound from above the term ∥projv⊥xproju⊥∥2 by 2θ(v, u).
The bound follows.

We will now use Lemma 59. We denote θ(w(T ),w(T+1)) the angle between w(T ),w(T+1) and by
∆(w(T ),w(T+1)) the corresponding difference defined in Lemma 59. Since ∥w(T )∥2, ∥w(T+1)∥2 ≥
Z0 ≥ 1, we have that θ(w(T ),w(T+1)) ≤ ∥w(T ) −w(T+1)∥2 ≤ ηB. Moreover, using the fact that
the mappings w 7→ ∥w∥−3/2

2 and w 7→ ∥w∥−1/2
2 defined for ∥w∥2 ≥ 1 are 3/2 and 1/2-Lipschitz

respectively, we obtain that ∆(w(T ),w(T+1)) ≤ ∥w(T ) −w(T+1)∥2 ≤ ηB. Using Lemma 59, we
conclude that ∥w(T )−v∥w(T+1) ≤ e3Z

3/2
1 ηB∥w(T )−v∥w(T ) . Using the triangle inequality similarly

to Equation (13) and the fact that ∥w(T ) − v∥w(T ) ≤ β1, we obtain

∥w(T+1) − v∥w(T+1) ≤
√
2ηB + e3Z

3/2
1 ηBβ1 .

Finally, we have to consider the case where ∥w(T )∥2 > Z0 and ∥w(T+1)∥2 ≤ Z0. Using once
more the triangle inequality and Claim 58, we obtain ∥w(T+1) − v∥2 ≤ ηB + ∥w(T ) − v∥2 ≤
ηB + (Z0 + ηB)3/2∥w(T ) − v∥w(T ) ≤ ηB + (2Z0)

3/2β1, where we used the fact that ηB ≤ 1 and
Z0 ≥ 1. Combining the bounds for the two cases where ∥w(T+1)∥2 ≤ Z0, we obtain that in this case
it holds ∥w(T+1) − v∥2 ≤ ηB +max(α1, (2Z0)

3/2β1). Similarly, when ∥w(T+1)∥2 > Z0 we have
∥w(T+1) − v∥w(T+1) ≤

√
2ηB +max(

√
2α1, e

3Z
3/2
1 ηBβ1) .

C.5. Proof of Claim 51

We restate and prove the following claim.

Claim 60 (Sample Complexity of Gradient Estimation) Fix B, ϵ′ > 0 with ϵ′ ≤ 1/
√
B. Using

N = Õ((d/ϵ′2)poly(ξ/(Lµ)) log(B/δ)) samples from D, we can compute an empirical gradient
field g(w) such that for all w with ∥w∥ ≤ B, it holds ∥g(w) − ∇F (w)∥2 ≤ ϵ′ and ∥g(w) −
∇F (w)∥∗,w ≤ ϵ′ with probability 1− δ.

Proof The result follows from the fact that the gradient random variable ∇F (w) is sub-exponential
and therefore, its empirical estimate achieves fast convergence rates. We draw use N samples
(x(i), y(i)) from D and form the standard empirical estimate

g(w) =
1

N

m∑
i=1

(σ(w · x(i))− y(i))x(i) .

We first prove the estimation error in the dual norm of ∥ · ∥w. Recall that the dual norm is equal to
∥u∥∗,w = max(∥projwu∥2∥w∥

3/2
2 , ∥projw⊥u∥2∥w∥1/22 ). Recall that σ′(w·x) ≥ 0 and σ′(w·x) ≤

ξe−µ|w·x| for all x. We first show that the distribution of x(σ(w ·x)−y)σ′(w ·x) is sub-exponential.
Fix any unit direction v, we show an upper bound on the tail probability |v ·x| ≥ t. We first consider
the case v ·w = 0 and without loss of generality we may assume that v is parallel to e1 and w is
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parallel to e2. In the following calculations we repeatedly use the properties of (L,R)-well-behaved
distributions and (τ, µ, ξ)-sigmoidal activations. We have

E
(x,y)∼D

[1{|v · x(σ(w · x)− y)| ≥ t}σ′(w · x)] ≤ E
(x,y)∼D

[1{|v · x| ≥ t(ξ/µ)}σ′(w · x)]

≤ E
(x,y)∼D

[1{|v · x| ≥ t(ξ/µ)}ξe−µ|w·x|] ≤ 1

L

∫ ∞

−∞

∫ ∞

−∞
1{|x1| ≥ t(µ/ξ)}e−µ∥w∥2|x2|e−L

√
x2
1+x2

2dx1dx2

≤ 1

L

∫ ∞

−∞
1{|x1| ≥ t(ξ/µ)}e−L|x1|/2dx1

∫ ∞

−∞
e−µ∥w∥2|x2|e−L|x2|/2dx2 =

2

L

e−L/2tµ/ξ

L/2

1

µ∥w∥2 + L/2

≲
1

L2µ(∥w∥2 + 1)
e−Lµ/(2ξ) t ,

where we used again the fact that |σ(w · x) − y| ≤ ξ/µ, the upper bound on the derivative of
sigmoidal activations, see Definition 3 and the fact that the density of any 2 dimensional projection of
Dx is upper bounded by (1/L) exp(−L∥x∥2), see Definition 2. Moreover, using the same properties
as above we have that the variance of∇F (w) = x(y− σ(w · x)σ′(w · x) along the direction v is at
most

Var[∇F (w) · v] ≤
( ξ
µ

)2
E

x∼Dx

[(σ′(w · x)v · x)2]

≤
( ξ
µ

)2 1
L

∫ +∞

−∞

∫ +∞

−∞
e−L
√

x2
1+x2

2 ξe−2µ∥w∥2|x1| dx1dx2

≤ ξ3

µ2L

∫ +∞

−∞
x2
2e

−L|x2| dx2

∫ +∞

−∞
e−2µ∥w∥2|x1| dx1

≲
ξ3

µ3L4

1

∥w∥2
.

Therefore, along any direction v orthogonal to w we have that ∇F (w) is (σ2
1, b1)-sub-exponential

with variance proxy σ2
1 = poly(ξ/(Lµ))1/∥w∥2 and rate b1 = O(ξ/(Lµ)). Therefore, Bernstein’s

inequality (see, e.g., Vershynin (2018)) implies that the empirical estimate g(w) with N samples
satisfies

Pr [|g(w)−∇F (w)) · v| ≥ t] ≤ 2e
− Nt2/2

σ2
1+b1t .

We next analyze the gradient ∇F (w) along the direction of w. We denote by ŵ the unit
vector that is parallel to w. ∥projwg(w) − projw∇F (w)∥2 = ∥ŵ · g(w)ŵ − ŵ · g(w)ŵ∥2 =
|ŵ · g(w)− ŵ · g(w)|. We first show the sub-exponential tail bound:

E
(x,y)∼D

[1{|w · x(σ(w · x)− y)| ≥ t}σ′(w · x)] ≤ E
(x,y)∼D

[1{|w · x| ≥ t(ξ/µ)}σ′(w · x)]

≤ 1

L

∫ ∞

−∞
1{|x2| ≥ t(µ/ξ)}e−µ∥w∥2|x2|e−L|x2|dx2

=
1

L(µ∥w∥2 + L)
e−(µ∥w∥2+L)µ/ξt .
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Similarly, we can compute the variance along the direction of w.

Var[∇F (w) · ŵ] ≤ E
(x,y)∼D

[((σ(w · x)− y)σ′(w · x)ŵ · x)2]

≤
( ξ
µ

)2
E

x∼Dx

[(σ′(w · x)ŵ · x)2]

≤ ξ3

µ2L

∫ +∞

−∞
e−2µ∥w∥2|t|t2dt

=
ξ3

2µ5L

1

∥w∥32
,

where we used the fact that |σ(w · x)− y| ≤ ξ/µ, the upper bound on the derivative of sigmoidal
activations, see Definition 3 and the anti-concentration property of (L,R)-well-behaved distributions,
see Definition 2.

Therefore, along the direction w we have that ∇F (w) is (σ2
2, b2)-sub-exponential with vari-

ance proxy σ2
2 = poly(ξ/(Lµ))1/∥w∥32 and rate b1 = O(ξ/(Lµ2∥w∥2)). Therefore, Bernstein’s

inequality (see, e.g., Vershynin (2018)) implies that the empirical estimate g(w) with N samples,
satisfies

Pr [|(g(w)−∇F (w)) · ŵ| ≥ t] ≤ 2e
− Nt2/2

σ2
2+b2t .

Thus, we can now perform a union bound on every direction u and every ∥w∥ ≤ B by using a r =
poly(Lµ)/(ξB)ϵ′)-net of the unit sphere and the ball of radius B (which will have size rO(d), see
e.g., Vershynin (2018)), we obtain that along any direction v orthogonal to w it holds that |v·(g(w)−

∇F (w))| ≤ ϵ/∥w∥1/22 | with probability at least 1− 2rO(d)e
− Nϵ2/2

∥w∥2σ2
1+∥w∥1/22 b1ϵ . Substituting the vari-

ance and rate values σ1
1, b1, we observe that ∥w∥2σ2

1 + ∥w∥
1/2
2 b1t ≤ poly(ξ/(Lµ)), where we used

our assumption that ϵ′ ≤ 1/
√
B (and that ∥w∥2 ≤ B). Picking N = Õ(d/ϵ′2poly(ξ/(Lµ)) log(B/δ))

we obtain that the above bound holds with probability at least 1− δ/2. Similarly, performing the
same union bound for the direction of w and using the sub-exponential bound with σ2

2, b2 and the
fact that ϵ′ ≤ 1/

√
B we again obtain that |v · (g(w)−∇F (w))| ≤ ϵ′/∥w∥3/22 with probability at

least 1− δ/2 with N = Õ(d/ϵ′2poly(ξ/(Lµ)) log(B/δ)) samples. The bound for the ℓ2 distance
of g(w) and ∇F (w) follows similarly from the above concentration bounds.

C.6. Proof of Lemma 54

We restate and prove the following:

Lemma 61 (Gradient Field Distance Reduction) Let g : Rd 7→ Rd be a vector field and fix
W,B ≥ 1. We assume that g satisfies the following properties with respect to some unknown target
vector v with ∥v∥2 ≤ W . Fix parameters α1, α2 > 0. For every w ∈ Rd with ∥w∥2 ≤ 2W it
holds that ∥g(w)∥2 ≤ Bmax(∥w−v∥2, α1). Moreover, if ∥w−v∥2 ≥ α1 and θ(w,v) ∈ (0, π/2)
then it holds that g(w) · (w − v) ≥ α2∥w − v∥22. We consider the update rule w(t+1) ←
w(t) − ηg(w(t)) initialized with w(0) = 0 and step size η ≤ α2/B. Let T be any integer larger than
⌈(W 2 + log(1/α1))/(ηα2)⌉, it holds that ∥w(T ) − v∥2 ≤ (1 + ηB)α1.
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Proof We first show that at every round the distance of w(t) and the target v decreases. Since we
initialize at w = 0 (notice that in this case it holds trivially ∥w(0)∥2 ≤W ) after the first update we
have

∥w(1) − v∥22 − ∥w(0) − v∥22 = −2ηg(w(0)) · (w(0) − v) + η2∥g(w(0))∥22
≤ −2ηα2∥w(0) − v∥22 + η2B2∥w(0) − v∥22
≤ −ηα2∥w(0) − v∥22 ,

where we used that since η ≤ α2/B it holds that ηα2 − η2B2 ≥ 0. Moreover, we observe that
after the first iteration we are going to have w(1) · v ≥ 0 (since otherwise the distance to v would
increase). This implies that θ(w(1),v) ∈ (0, π/2). Observe now that it holds ∥w(1)∥2 ≤ 2W since
w(1) is closer to v than w(0). Using induction, similarly to the previous case we can show that
for all iterations t where g(w(t)) · (w(t) − v) ≥ α2∥w(t) − v∥22 it holds ∥w(t+1)∥2 ≤ 2W and
θ(w(t+1),v) ∈ (0, π/2) and that the distance to the target vector v decreases at every iteration:

∥w(t+1) − v∥22 ≤ ∥w(t) − v∥22(1− ηα2) ≤ ∥w(0) − v∥22(1− ηα2)
t .

Let T ′ be the first iteration where the assumption g(w(T ′)) · (w(T ′) − v) ≥ α2∥w(T ′) − v∥22 does
not hold. Since at each round we decrease the distance of w(t) and v, and we initialize at 0 we have
that the number of iterations T ′ ≤ ⌈(∥v∥22 + log(1/α))/(ηα2)⌉. Moreover, even if we continue to
use the update rule after the iteration T ′ from the triangle inequality we have that

∥w(T ′+1) − v∥2 ≤ ∥w(T ′+1) −w(T ′)∥2 + ∥w(T ′) − v∥2 ≤ η∥g(w(T ′))∥2 + α1 ≤ (1 + ηB)α1 .

Therefore, by induction we get that for all T ≥ T ′ it holds that ∥w(T ) − v∥2 ≤ (1 + ηB)α1.

C.7. Proof of Claim 53

We restate and prove the following claim.

Claim 62 Let M = Θ(W max(log(W/ϵ), 1)). Denote by tr(y) = sign(y)min(|y|,M). Then, it
holds that:

E
(x,y)∼D

[(tr(y)− σ(w∗ · x))2] ≤ O(ϵ) .

Proof Denote B = {x ∈ Rd : |w∗ · x| ≤M}, i.e., the points x such that |w∗ · x| is at most M . We
have that for x ∈ B, it holds that |ỹ − σ(w∗ · x)| ≤ |y − σ(w∗ · x)|, where ỹ is equal to y truncated
in −M ≤ y ≤M . Therefore, we have that

E
(x,y)∼D

[(ỹ − σ(w∗ · x))21{x ∈ B}] ≤ E
(x,y)∼D

[(y − σ(w∗ · x))21{x ∈ B}] ≤ ϵ .

Using the triangle inequality, we have

E
(x,y)∼D

[(ỹ − σ(w∗ · x))2] = E
(x,y)∼D

[(ỹ − σ(w∗ · x))21{x ∈ B}] + E
(x,y)∼D

[(ỹ − σ(w∗ · x))21{x ̸∈ B}]

≤ ϵ+ 2M2 Pr
x∼Dx

[x ̸∈ B] + 2 E
x∼Dx

[σ(w∗ · x)21{x ̸∈ B}] .
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To bound Ex∼Dx [σ(w
∗ · x)21{x ̸∈ B}], note that ∥w∗∥2 ≤ W and that |σ(w∗ · x)| ≤ λ|w∗ · x|.

Assuming without loss of generality that w∗ is parallel to e1 and let V be the subspace spanned by
w∗ and any other vector orthogonal to w∗. Using that the distribution Dx is (L,R)-well-behaved,
we have that it holds that

E
x∼Dx

[σ(w∗ · x)21{x ̸∈ B}] ≤ λ2W 2 E
x∼Dx

[x2
11{x1 ≥M/W}] ≤ ϵ/2 ,

which follows from λ2Ex∼Dx [|x1|21{x1 ≥ M/W}] ≤ λ2(M2/(L2W 2)) exp(−LM/W ) ≤ ϵ/2,
its proof is similar with the proof of Claim 36. It remains to bound the Prx∼Dx [x ̸∈ B], we have

Pr
x∼Dx

[x ̸∈ B] =
∫
|w∗·x|̸∈B

γV (x)dx ≤
2

L

∫
t≥M/∥w∗∥2

e−Ltdt =
2

L2
e−LM/∥w∗∥2 ≤ ϵ

2M2
.

Hence, (1/2)E(x,y)∼D[(ỹ−σ(w∗ ·x))2] ≲ ϵ. Therefore, by truncated the y to values−M ≤ y ≤M ,
we increase the total error at most ϵ′ = O(ϵ). For the rest of the proof for simplicity we abuse the
notation of the symbol y for the ỹ and ϵ for the ϵ′.

Corollary 63 Let D be an (L,R)-well-behaved distribution on Rd × R and σ(·) be a (τ, µ, ξ)-
sigmoidal activation. Define F (w) = (1/2)E(x,y)∼D[(σ(w · x)− y)2] and opt = infw∈Rd F (w).
Set κ = poly(LRτµ/ξ). There exists an algorithm that given N = Θ̃(d/ϵ log(1/δ)) poly(1/κ)
samples, runs in time T = poly(1/(ϵκ)) and returns a vector ŵ ∈ Rd that, with probability 1− δ,
satisfies

F (ŵ) ≤ poly(1/κ) opt + ϵ .

Proof The proof of Corollary 63 is similar to the proof of Theorem 22, the main point which the
two proofs diverge is that we have to guess the value ρ of the regularizer. To do this, we construct
a grid of the possible values of opt, i.e., G = {ϵ, 2ϵ, . . . ,Θ(ξ/µ)}. We choose the upper bound
to be of size Θ(ξ/µ) because this is the maximum value that the error can get, see e.g., Fact 28.
Therefore, by running the Algorithm 1, with appropriate parameters as in Theorem 22 but by using
for the regularizer, each value of G instead of opt. There exist a t ∈ G such that |opt − t| ≤ ϵ,
therefore from Proposition 14, this will converge to a stationary point with (1 + ϵ)poly(1/k)opt,
see e.g., Proposition 14 for Λ = 1 + ϵ. Hence, by running Algorithm 1 for each value in G,
we output a list U that contains O(ξ/(µϵ)) different hypothesis. We construct the empirical DN

of D by taking N samples. We need enough samples, such that for each w ∈ U , it will hold
F̂ (w) = E(x,y)∼DN

[(σ(w · x) − y)2] ≤ 2E(x,y)∼D[(σ(w · x) − y)2]. From Markov’s inequality
we have that

Pr[|F̂ (w)− F (w)| ≥ F (w)/2] ≤ 4
E[F̂ (w)2]

F (w)2
≤ E[(σ(w · x)− y)4]

NF (w)2
.

Note that because y, σ(w·x) is bounded by Θ(ξ/µ), we have that E[(σ(w·x)−y)4] ≤ poly(ξ/µ)E[(σ(w·
x)− y)2], hence we have that

Pr[|F̂ (w)− F (w)| ≥ F (w)/2] ≲ poly(ξ/µ)
1

NF (w)
≲ poly(ξ/µ)

1

Nϵ
,
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therefore by choosing N = poly(ξ/µ)(1/ϵ), we have with probability at least 2/3 that F̂ (w) ≤
2F (w) + ϵ and by standard boosting procedure we can increase the probability to 1 − δ′′ with
O(log(1/δ′′)) samples. Hence, by choosing δ′′ = δ/|U |, we have with probability 1 − δ, that for
ŵ = argminw∈U F̂ (w), it holds that F (ŵ) ≲ opt + ϵ.

Appendix D. Learning Halfspaces using the Ramp Activation

In this section we show that by optimizing as a surrogate function the ramp activation, we can find a
ŵ ∈ Rd, that gets error E(x,y)∼D[(sign(ŵ · x)− y)2] = O(ϵ). Specifically, we show the following
corollary of Corollary 63.

Corollary 64 Let D be an (L,R)-well-behaved distribution on Rd × {±1}. Define F (w) =
(1/2)E(x,y)∼D[(sign(w · x) − y)2] and opt = infw∈Rd F (w). Fix ϵ, δ ∈ (0, 1) and set κ =

poly(LR). There exists an algorithm that given N = Θ̃(d/ϵ log(1/δ)) poly(1/κ) samples, runs in
time T = poly(1/(ϵκ)) and returns a vector ŵ ∈ Rd that, with probability 1− δ, satisfies

F (ŵ) ≤ poly(1/κ) opt + ϵ .

Proof We are going to show that by optimizing the ramp activation instead of the sign(·), we can
find a good candidate solution. First note that r(t) is an (1, e, 1)-sigmoidal activation. The proof
relies on the following fact:

Fact 65 Let w ∈ Rd be a unit vector. Then, for any x ∈ Rd, it holds that

lim
z→∞

r(zw · x) = sign(w · x) .

Therefore, for any unit vector w ∈ Rd, from Lemma 13 there exists a w′ ∈ Rd with ∥w′∥2 = O(1/ϵ)
such that Ex∼Dx [(r(w

′ · x) − sign(w · x))2] ≤ ϵ. From Corollary 63, we get that there exists an
algorithm that with N = Θ̃(d/ϵ log(1/δ)) poly(1/κ) samples, and runtime T = poly(1/(ϵκ))
returns v̂ ∈ Rd with ∥v̂∥2 = O(1/ϵ), such that with probability 1− δ, it holds

(1/2) E
(x,y)∼D

[(r(v̂ · x)− y)2] ≤ poly(1/(LR))opt + ϵ .

The proof follows by noting that because r(v̂) ∈ (−1, 1) and y ∈ {±1}, it holds that

E
(x,y)∼D

[(r(v̂ ·x)−y)2] ≥ (1/2) E
(x,y)∼D

[(sign(r(v̂ ·x))−y)2] = (1/2) E
(x,y)∼D

[(sign(v̂ ·x)−y)2] .

Hence, F (v̂) ≤ poly(1/(LR))opt + 2ϵ.

Next, we prove the following sample complexity lower bound for optimizing sigmoidal activa-
tions.

Lemma 66 (Sample Complexity Lower Bound for Sigmoidal Activations) Fix any absolute con-
stant C ≥ 1 and let σ(t) = 1/(1 + e−t) be the logistic activation. Any C-approximate algorithm
that learns (with success probability at least 2/3) the logistic activation under any ϵ-corrupted D
with standard normal x-marginal requires Ω(d/ϵ) samples from D.
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Proof Assume that y = 1{w∗ · x ≥ 0} for some unit vector w∗, i.e., y is a noiseless halfspace.
It is easy to see that the corresponding distribution D with Gaussian x-marginal and y given by
1{w · x ≥ 0} is ϵ-corrupted for any ϵ > 0. Since limz→∞ σ(zw∗ · x) = 1{w · x ≥ 0}, by
the dominated convergence theorem we have that limz→∞E(x,y)∼D FD,σ(zw∗) = 0 . Therefore,
infw∈Rd FD,σ(w) = 0. Let A be any algorithm that given a sigmoidal activation σ and N > 0
samples from D, returns a vector w such that FD,σ(w) ≤ ϵ. We will show that w corresponds to a
classifier with at most 2Cϵ error. By noting that σ(w) ∈ (0, 1) and y ∈ {0, 1}, it holds that

E
(x,y)∼D

[(σ(w · x)− y)2] ≥ (1/2) E
(x,y)∼D

[(1{σ(w · x) ≥ 1/2})− y)2]

= (1/2) Pr
(x,y)∼D

[1{σ(w · x) ≥ 1/2}) ̸= y] .

Thus, we have constructed a binary classifier that achieves disagreement at most 2Cϵ with y. It is
well-known that any algorithm that finds a vector w ∈ Rd such that Pr[sign(w · x) ̸= y] ≤ O(ϵ),
needs Ω(d/ϵ) samples (see, e.g., Long (1995)). Hence, A needs at least N = Ω(d/ϵ) samples.
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