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Abstract
Non-Gaussian Component Analysis (NGCA) is the following distribution learning problem: Given
i.i.d. samples from a distribution on Rd that is non-gaussian in a hidden direction v and an in-
dependent standard Gaussian in the orthogonal directions, the goal is to approximate the hidden
direction v. Prior work (Diakonikolas et al., 2017) provided formal evidence for the existence of
an information-computation tradeoff for NGCA under appropriate moment-matching conditions on
the univariate non-gaussian distribution A. The latter result does not apply when the distribution A
is discrete. A natural question is whether information-computation tradeoffs persist in this setting.
In this paper, we answer this question in the negative by obtaining a sample and computationally
efficient algorithm for NGCA in the regime that A is discrete or nearly discrete, in a well-defined
technical sense. The key tool leveraged in our algorithm is the LLL method (Lenstra et al., 1982)
for lattice basis reduction.
Keywords: Non-Gaussian Component Analysis, Lattice Basis Reduction, SoS Lower Bounds

1. Introduction

1.1. Background and Motivation

Non-Gaussian Component Analysis. Non-gaussian component analysis (NGCA) is a distribu-
tion learning problem modeling the natural task of finding “interesting” directions in high-dimensional
data. As the name suggests, the objective is to find a “non-gaussian” direction (or, more generally,
low-dimensional subspace) in a high-dimensional dataset, under a natural generative model. NGCA
was defined in Blanchard et al. (2006) and subsequently studied from an algorithmic standpoint in a
number of works, see, e.g., Vempala and Xiao (2011); Tan and Vershynin (2018); Goyal and Shetty
(2019) and references therein.

For concreteness, we start by defining the relevant family of high-dimensional distributions.

Definition 1 (High-Dimensional Hidden Direction Distribution) For a distributionA on the real
line with probability density function A(x) and a unit vector v ∈ Rd, consider the distribution over
Rd with probability density function PA

v (x) = A(v · x) exp
(
−‖x− (v · x)v‖22/2

)
/(2π)(d−1)/2.

That is, PA
v is the product distribution whose orthogonal projection onto the direction of v isA, and

onto the subspace perpendicular to v is the standard (d− 1)-dimensional normal distribution.

The NGCA learning problem is the following: Given i.i.d. samples from a distribution PA
v on

Rd, where the direction v is unknown, find (or approximate) v. The standard formulation assumes
that the univariate distribution A is known to the algorithm, it matches its first k moments with
N(0, 1), for some k ∈ Z+, and there is a non-trivial difference in the moment of order (k + 1).
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Information-Computation Tradeoffs for NGCA. Since A has its (k + 1)th moment differ-
ing from that of a standard Gaussian, a moment computation on PA

v allows us to approximate
v in roughly O(dk+1) samples and time. Interestingly, ignoring computational considerations, the
NGCA problem can usually be solved withO(d) samples. Perhaps surprisingly, the aforementioned
simple method (requiring Ω(dk+1) samples) is qualitatively the best known sample-polynomial time
algorithm for the problem. Given this state of affairs, it is natural to ask whether this information-
computation gap is inherent for the problem itself.

In prior work, Diakonikolas et al. (2017) provided formal evidence for the existence of an
information-computation tradeoff for NGCA under appropriate assumptions on the univariate non-
gaussian distribution A. The Diakonikolas et al. (2017) result holds for a restricted model of com-
putation, known as the Statistical Query (SQ) model. Statistical Query (SQ) algorithms are the class
of algorithms that are only allowed to query expectations of bounded functions of the underlying
distribution rather than directly access samples. The SQ model was introduced by Kearns (1998)
and has been extensively studied in learning theory. A recent line of work, see, e.g., Feldman et al.
(2017a, 2015, 2017b), generalized the SQ framework for search problems over distributions. The
reader is referred to Feldman (2016) for a survey.

In more detail, the SQ lower bound of Diakonikolas et al. (2017) applies even for the (easier)
hypothesis testing version of NGCA, where the goal is to distinguish between the standard Gaussian
N(0, I) on Rd and a planted distribution PA

v , for a hidden direction v. (Hardness for hypothesis test-
ing can easily be used to derive hardness for the corresponding search problem.) Roughly speaking,
they established the following generic SQ-hardness result:

Informal Theorem (Diakonikolas et al., 2017): Let A be a one-dimensional distribu-
tion that matches its first k moments with the standard Gaussian G = N(0, 1) and its
chi-squared norm with G, χ2(A,G), is finite. Suppose we want to distinguish between
N(0, I) on Rd and the distribution PA

v for a random direction v. Then any SQ algo-
rithm for this testing task requires either at least dΩ(k)/χ2(A,G) samples or at least
2d

Ω(1)
time.

A concrete application of the above result, given in Diakonikolas et al. (2017), is an SQ lower
bound for the classical problem of learning mixtures of high-dimensional Gaussians. To obtain
the hard family of instances, we take the one-dimensional distribution A be a mixture of univariate
Gaussians

∑k
i=1wiN(µi, σ

2) with pairwise separated and bounded means µi and common variance
σ2 = 1/poly(k) such thatAmatches Ω(k) moments withN(0, 1). Moreover,Awill have total total
variation distance at least 1/2 from N(0, 1). Then, each distribution PA

v will look like a collection
of k “parallel pancakes”, in which the means lie on a line (corresponding to the smallest eigenvalue
of the identical covariance matrices of the components). The orthogonal directions will have an
eigenvalue of one, which is much larger than the smallest eigenvalue.

More broadly, the aforementioned generic SQ lower bound (Diakonikolas et al., 2017) has been
the basis for a host of new and near-optimal information-computation tradeoffs (in the SQ model) for
high-dimensional estimation tasks, including robust mean and covariance estimation (Diakonikolas
et al., 2017), robust sparse mean estimation (Diakonikolas et al., 2017), adversarially robust learn-
ing (Bubeck et al., 2018), robust linear regression (Diakonikolas et al., 2019), list-decodable esti-
mation (Diakonikolas et al., 2018, 2021b), learning simple neural networks (Diakonikolas et al.,
2020b), and robust supervised learning in a variety of noise models (Diakonikolas et al., 2020a,
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2021c; Diakonikolas and Kane, 2020; Diakonikolas et al., 2021a). Interestingly, subsequent work
has obtained additional evidence of hardness for some of these problems via reductions from lat-
tice problems (Bruna et al., 2021) and variants of the planted clique problem (Brennan and Bresler,
2020).

Motivation for This Work. Interestingly, the generic SQ lower bound of Diakonikolas et al.
(2017) is vacuous for the natural setting where the distribution A is discrete (in which case, we
have χ2(A,N(0, 1)) = ∞) or, more generally, when A has very large chi-squared norm with the
standard Gaussian. More specifically, for the parallel pancakes distribution described above, one
needs the “thickness parameter” (corresponding to the eigenvalue of the covariance in the hidden
direction) to be at least inverse exponential in the dimension. A natural question, which served as
one of the motivations for this work, is whether information-computation tradeoffs persist for the
discrete case.

Consider for example the case where A is supported on a discrete domain of size k and matches
its first Ω(k) moments with N(0, 1). This corresponds to the special case of the parallel pancakes
distribution, where the component covariances are degenerate — having zero eigenvalue in the
hidden-direction. Does any efficient algorithm for these instances require dωk(1) samples?

We answer these questions in the negative by designing a sample and computationally efficient
algorithm for NGCA when A is discrete or nearly discrete in a well-defined sense (Assumption 2).
The key tool leveraged in our reuslt is the LLL algorithm (Lenstra et al., 1982) for lattice basis re-
duction. We note that prior work (Bruna et al., 2021; Song et al., 2021) had used the LLL algorithm
to obtain efficient learners for related problems that could be viewed as special cases of NGCA.

Connection with Sum-of-Squares (SoS) and Low-Degree Tests. Before we proceed with a de-
tailed description of our results, a final remark is in order. As already mentioned, the SQ lower
bounds of Diakonikolas et al. (2017) are vacuous when A is a discrete distribution. On the other
hand, recent work has established information-computation tradeoffs for NGCA when A is sup-
ported on {−1, 0, 1}, both for low-degree polynomial tests (Mao and Wein, 2021) and for SoS
algorithms (Ghosh et al., 2020). At first sight, these hardness results combined with our algorithm
might appear to cast doubt on the validity of the low-degree conjecture (Hopkins, 2018). We note,
however, that the latter conjecture only posits that a noisy version of the corresponding problem is
computationally hard (as opposed to the problem itself) — a statement that appears to hold true in
our setting. Conceptually, we view our algorithmic contribution as a novel example of an efficient
algorithm (beyond Gaussian elimination) not captured by the aforementioned restricted models of
computation.

1.2. Our Contributions

We consider the NGCA learning problem under the following assumption:

Assumption 2 The distribution A on R is such that:

1. There exist rj ∈ R for j ∈ [k] with |rj | = O(1), B ∈ Z+, and ε > 0 such that a sample
y ∼ A is deterministically within additive ε of some number of the form

∑k
j=1 njrj , for

nj ∈ Z with |nj | ≤ B for all j ∈ [k].

2. The distribution A is anti-concentrated around 0, specifically PrX∼A[|X| > 1/d] > 1/d.
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3. The distribution A is concentrated around 0, specifically PrX∼A[|X| > poly(d)] < 1/d.

Some comments are in order to interpret Assumption 2. Condition 1 above is the critical con-
dition requiring that A is approximately supported on points that are (small) integer linear combi-
nations of the rj’s. This is the key condition that underlies our main technique. Notice that this
condition can be satisfied by any distribution A that has support size at most k, or even a distribu-
tion A that is supported on k intervals, each of length at most ε. In fact, it is sufficient for A to be
O(1/d)-close in total variation distance to such a distribution, as there will be a constant probabil-
ity that any O(d) sample set drawn from it are supported on the appropriate intervals. This means
that our algorithmic results applies, for example, to parallel pancake distributions, as long as the
thickness of the pancakes is no more than O(ε/

√
log(d)).

Conditions 2 and 3 are technical conditions that are needed for our particular algorithm to work.
However, note that if Condition 2 is not satisfied, then it is reasonably likely that O(d) random
samples from PA

v will have much smaller variance in the v-direction than in any of the orthogonal
directions. This provides a much easier method for approximating v. Condition 3 is essentially
required to guarantee that we do not need to deal with unlimited precision to approximate points.
However, it is easy to see that if this condition is violated, one can approximate v simply by nor-
malizing any samples from PA

v with `2-norm more than d.
We prove the following theorem:

Theorem 3 (Main Result) Under Assumption 2, if ε < 2−Ω(dk2)B−Ω(k) with sufficiently large
implied universal constants in the big-Ω, there exists an algorithm that drawsm = 2d i.i.d. samples
from PA

v for an unknown unit vector v ∈ Rd, runs in time poly(d, k, logB), and outputs a vector
v∗ such that with constant probability either ‖v∗ − v‖2 is small or ‖v∗ + v‖2 is small.

We note that Theorem 3 only guarantees an approximation of either v or −v. Such a guarantee
may be inherent, as if A is a symmetric distribution we have that PA

v = PA
−v.

1.3. Overview of Techniques

We begin by considering the simple case where the univariate distribution A is supported exactly on
integers. This special case provides a somewhat simpler version of our algorithm while capturing
some of the key ideas. In this case, we draw m = d + 1 i.i.d. samples xi ∈ Rd from PA

v and note
that (with high probability) they will satisfy a unique (up to scaling) linear relation

∑m
i=1 cixi = 0,

for some ci ∈ R with at least one ci 6= 0. In particular, we have that
∑m

i=1 ci(v · xi) = 0. Since
the quantities v · xi for i ∈ [m] are all integers, we hope to solve for them by finding the (with high
probability unique, up to scaling) integer linear relation among the ci’s. It turns out that this can be
achieved by leveraging the Lenstra-Lenstra-Lovasz (LLL) lattice basis reduction algorithm. Having
found an integer solution

∑m
i=1 cini = 0 for ni ∈ Z, we can solve the system of linear equations

v · xi = ni, i ∈ [m], for the hidden vector v.
We now proceed to deal with the case where A is no longer supported on integers, but is instead

supported on elements that are close (within some additive error ε) to integers. In this case, we
will similarly have

∑m
i=1 ci(v · xi) = 0, which means that if ni is the integer closest to v · xi, we

will have that
∑m

i=1 cini is close to 0. In order to solve for this near-integer linear-relation, we
make essential use of basic lattice techniques. In particular, for n = (ni)

m
i=1 ∈ Zm, we define the

quadratic form Q(n) :=
∑m

i=1 n
2
i + N (

∑m
i=1 cini)

2, for some appropriately large N . Note that
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integer vectors with small norm under Q must have |ni| small for all i ∈ [m] and have |
∑m

i=1 cini|
be very small. It is not hard to show that if ε is sufficiently small and N is chosen appropriately,
with high probability over the samples xi, taking ni to be the integer closest to v ·xi for each i ∈ [m]
will give substantially the smallest non-zero norm under Q. Therefore, using the LLL algorithm to
find an approximate smallest vector will return (some multiple of) this vector. Given the ni’s, we
note that v · xi ≈ ni for all i ∈ [m], and we can then use least-squares regression to solve for an
approximation to v.

Unfortunately, if the above approach is applied naively, it will work only if ε is assumed to be
exponentially small in d2, i.e., 2−Ω(d2), rather than in d. This is because the LLL algorithm only
guarantees a 2O(d)-approximation to the smallest vector. The

∑m
i=1 n

2
i -term in Q ensures that any

such vector will have ni at most exponential in d. But given that there are 2Ω(d2) integer vectors
with coefficients of this size, we can expect one to randomly have |

∑m
i=1 cini| be only 2−Ω(d2). This

will be distinguishable from the vector we are looking for only if ε is smaller than this quantity.

In order to fix this issue, instead of taking only m = d + 1 samples from PA
v , we instead draw

m = 2d samples. These now have d linear relations and we note that the vector of ni’s should
approximately satisfy all of them. In particular, letting V be the vector space of linear relations
satisfied by the xi’s, we consider the quadratic form defined by Q(n) := ‖n‖22 + N ‖ProjV (n)‖22.
This improves things because it is now much less likely that one of our 2O(d2) “small” n’s will
randomly have a small projection onto V . This allows us to operate even when ε is only 2−Ω(d).
Note that we cannot hope to do much better than this because the LLL algorithm will still have an
exponential gap between the shortest vector and the one that it finds.

Finally, we are also able to extend our algorithm to the setting where the distribution A is not
supported on integers, but instead on numbers of the form

∑k
j=1 ajrj , where the aj’s are (not too

large) integers and the rj’s are some k specific (known) real numbers. In this more general setting,
instead of v ·xi ≈ ni, we will have that v ·xi ≈

∑k
j=1 ni,jrj , for some integers ni,j , i ∈ [m], j ∈ [k].

We then set-up a quadratic form similar to the one before, namely Q(n) = ‖n‖22 +N ‖ProjV (t)‖22,
where t = (ti)i∈[m] is the vector with coordinates ti =

∑k
j=1 nijrj for some integers nij . Once

again, the correct integer vector n will be an unusually small vector with respect to this quadratic
form; and if we can find it, we will be able to use it to approximate the hidden direction v.

A subtle issue in this case is that the correct vector (and multiples) need not be the only small
vectors in this lattice. In particular, if the rj’s satisfy an approximate linear relation

∑k
j=1 kjrj ≈ 0,

then letting nij = kj · δi,i0 , for some i0, will also have ProjV (t) small, because t will be small. To
deal with this issue, we will need to apply the LLL algorithm and take not just the single smallest
vector, but the smallest few vectors (in a carefully selected way). We can then show that the true
vector n that we are looking for is in the subspace spanned by these vectors. By finding a lattice
vector in this space such that t is large but ProjV (t) is small, we can find a t where each ti is
approximately some multiple of v · xi for all i. Using this t, we can solve for v as before.

Independent Work. Concurrent and independent work by Zadik et al. (2021) obtained a simi-
lar algorithm for NGCA under similar assumptions, by also leveraging the LLL algorthm. More
concretely, the algorithm of Zadik et al. (2021) efficiently solves the NGCA problem when A is a
discrete distribution on an integer lattice, roughly corresponding to the k = 1 and ε = 0 case of our
result.
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2. Proof of Theorem 3

The pseudo-code for our algorithm is given below.

Algorithm LLL-based-NGCA
Input: m = 2d i.i.d. samples from PA

v , where A satisfies Assumption 2 for given real num-
bers r1, r2, . . . , rk and some parameters k,B, ε with ε < 2−C

′dk2
B−C

′k, where C ′ > 0 is a
sufficiently large constant.

1. Let N = 2Cmk2
BCk be a positive integer, for C a sufficiently large constant, such that

N < 1/ε2.

2. Let x1, x2, . . . , xm be m i.i.d. samples from PA
v each rounded to the nearest multiple of

δ = ε/N2.

3. Let S be the d×m matrix with columns x1, x2, . . . , xm and V be the right kernel of S.

4. Define the quadratic form Q on Zm×k such that for an input vector n = {ni,j}i∈[m],j∈[k]

we have that Q(n) :=
∑m

i=1

∑k
j=1 n

2
i,j +N

∥∥∥∥ProjV

({∑k
j=1 ni,jrj

}
i∈[m]

)∥∥∥∥2

2

.

5. Compute a δ-LLL reduced basis, for δ = 3/4, {b1, b2, . . . , bmk} for Q, where bi ∈
Rm×k.

6. Apply the Gram-Schmidt orthogonalization process to the bi’s, using Q as our norm, to
obtain an orthogonal basis {b∗1, b∗2, . . . , b∗mk}.

7. Let `∈ [mk] be the largest integer such that Q(b∗` ) ≤ mkB2 + Nmkε2. Let W be the
real span of {b1, b2, . . . , b`}.

8. Consider the quadratic formR on Rm×k defined byR(n) =
∑m

i=1

(∑k
j=1 ni,jrj

)2
. For

a sufficiently large universal constant C > 0, find a vector w = {wi,j}i∈[m],j∈[k] ∈ W
with Q(w) = 2Cmk B2 such that R(w)/Q(w) is approximately maximized. Note that
this can be done with an eigenvalue computation.

9. Write the vector w in the form w =
∑`

i=1 cibi, for some ci ∈ R. Let w′=
∑`

i=1 c
′
ibi,

where c′i is the nearest integer to ci.

10. Let v∗ be the minimizer of
∑m

i=1

(
v∗ · xi −

∑k
j=1w

′
i,jrj

)2
. Note that this can be found

using least squares regression. Return the normalization of v∗.

Background on Lattices and Lattice Basis Reduction For the sake of clarity, we review basic
facts and definitions about lattices and lattice reduction algorithms. One can find references for the
claims here for example in Cohen (2010), Chapters 2.5 and 2.6.

We define a lattice to be a finitely-generated (and thus discrete) subgroup of an inner product
space. The lattice will inherit the inner product and norm from the underlying inner product space.
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Given a lattice L, we note that as a group it must be isomorphic to Zd for some d. We call d
the dimension of L. We also call any set of d elements of L that generate L as a group a basis of
L. Given such a basis b1, b2, . . . , bd, we let the associated Gram Matrix G be the d× d matrix with
Gi,j = 〈bi, bj〉. We note that the Gram matrix can be thought of as an implicit way of defining the
lattice L.

Given a basis b1, . . . , bd for a lattice using Gram-Schmidt orthogonalization, one can uniquely
find vectors b∗1, . . . , b

∗
d in the underlying vector space so that b∗i = bi +

∑
j<i ci,jbj for some real

numbers ci,j and so that 〈b∗i , b∗j 〉 = 0 for i 6= j. We call this basis reduced if ‖b∗i ‖2 ≥ ‖b∗i−1‖2/2
for all 1 < i ≤ d (we note that this is a slightly weaker condition than the standard condition for a
reduced basis). The important result is that such a basis can be efficiently computed.

Theorem 4 (LLL) There exists an algorithm that given the Gram matrix G for a lattice L (cor-
responding to some basis b1, . . . , bd) so that G has rational entries, runs in time polynomial in the
dimension of L and the bit complexity of the entries of G, and returns a reduced basis for L (by
writing the elements of this basis as linear combinations of the bi).

Analysis of Our Algorithm To begin the analysis, we first analyze the infinite precision version
of this problem, ignoring the rounding and instead simply letting the xi’s be i.i.d. samples from PA

v .
We begin by analyzing some of the basic properties of the above procedure. We start by showing

that with high probability over our set of samples x1, . . . , xm the quadratic form Q(n) is small if
and only if the vector y(n)∈ Rm with coordinates

∑k
j=1 ni,jrj , i ∈ [m], is approximately a multiple

of the vector y∈ Rm with coordinates v · xi, i ∈ [m].
Specifically, we prove the following lemma:

Lemma 5 Let y ∈ Rm be the vector with coordinates yi := v · xi, i ∈ [m]. Consider a vector
n =(ni,j) ∈ Rm×k. Let y(n)∈ Rm be the vector with coordinates (y(n))i :=

∑k
j=1 ni,jrj , i ∈ [m],

and let (y(n))′∈ Rm be the component of y(n) orthogonal to y. Then we have that

Q(n) ≤ ‖n‖22 +N ‖(y(n))′‖22 . (1)

Furthermore, for any positive integer M and with high probability over the choice of S = [xi]
m
i=1,

for all such n with ‖n‖2 ≤Mmk, we have that:

Q(n) ≥ N O(M)−mk/(m−d) ‖(y(n))′‖22 . (2)

Proof We start by writing S using an orthonormal basis for Rd in which v is the first vector. (Note
that changing the basis we use for Rd does not change V .) In this basis, observe that y is the first
row of S. Moreover, all other entries of S in this basis are independent standard Gaussians. Thus,

we can write S as
[
y
G

]
, where G is an independent Gaussian matrix. Note that the kernel of G is

a random subspace of Rm of dimension m − d + 1. Thus, after conditioning on y, V is a random
(m− d)-dimensional subspace orthogonal to y. Also note that we can generate a subspace with the
same distribution by taking the span of m− d independent standard orthogonal-to-y Gaussians.

We next consider a vector n = (ni,j) ∈ Rm×k. Let y(n) ∈ Rm be the vector with coordinates∑k
j=1 ni,jrj , and let (y(n))′∈ Rm be the component of y(n) orthogonal to y. To begin with, we note

that ‖ProjV (y(n))‖2 ≤ ‖(y(n))′‖2, and this implies Equation (1).
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We prove Equation (2) by a union bound over the O(M)mk many vectors of appropriate norm.
In particular, fix such an n. Recall that conditioning on y, the kernel of v is the span of g1, g2, . . . , gm−d,
where the gi are independent orthogonal-to-y Gaussians. Note that ‖ProjV (y(n))‖2 ≥ maxi |gi ·
y(n)|/‖gi‖2. Note that gi · y(n) is distributed like a Gaussian with standard deviation ‖(y(n))′‖2. For
δ > 0, it is not hard to see that for each i we have that |gi · y(n)|/‖gi‖2 < δ/

√
mk with proba-

bility O(δ) (for example because the probability that |gi · y(n)| < tδ and ‖gi‖2 > (t − 1)
√
mk is

O(δ/t2) for any positive integer t). Thus, the probability that ‖ProjV (y(n))‖2 < δ/
√
mk is at most

O(δ)m−d. Letting δ be equal to (CM)−mk/(m−d), for a sufficiently large constant C, yields the
result.

We will henceforth assume that the high probability conclusion of Lemma 5 holds for the sam-
ples our algorithm has selected with M := 22CmkB, for C > 0 a sufficiently large universal
constant. Given this assumption, we next need to analyze which vectors give us small values of
Q and what this means about the output of our call to the LLL algorithm. In particular, there is a
particular vector n∗ that would cause t to approximate y. We claim that Q(n∗) is small and that this
in turn implies that n∗ is an integer linear combination of b1, b2, . . . , b`.

By assumption, each yi = v · xi is within additive ε of
∑k

j=1 n
∗
i,jrj , for some n∗i,j ∈ Z. Com-

bining these n∗i,j’s, we get a single vector n∗= (n∗ij)i∈[m],j∈[k] ∈ Zm×k which has all entries with
absolute value at most B, and by Lemma 5 satisfies Q(n∗) ≤ mkB2 + Nmkε2. Note that n∗ is
a linear combination of the bi’s, namely n∗ =

∑mk
i=1 cibi. Let t be the largest i such that ci 6= 0.

Note that we can also write n∗ as
∑mk

i=1 c
′
ib
∗
i , for some real c′i, and that c′t = ct. Since the b∗i are

orthogonal with respect to the quadratic form Q, this implies that

Q(n∗) ≥ Q(c′tb
∗
t ) ≥ Q(b∗t ) .

In particular, this means that Q(b∗t ) ≤ mkB2 +Nmkε2. By our choice of `, this implies that t ≤ `,
and in particular that n∗ is a linear combination of b1, b2, . . . , b`.

Unfortunately, we cannot necessarily find n∗ within this subspace. However, it will suffice for
our purposes to find a vector z for which ‖z‖2 is large, but the part of z orthogonal to y is small. To
do this, it will suffice to find an integer vector n for which R(n) is large (implying that ‖y(n)‖2 is
large), but for which Q(n) is small (implying that y(n) is nearly orthogonal to y). We know that n∗

is such a vector and that it is somewhere in W . It now remains to find it.
Note that n∗ ∈W . Note thatR(n∗) = ‖y(n∗)‖22 ≥ ‖y‖22/2+O(mε2). By the anti-concentration

Condition 2, with constant probability over the choice of y, this is Ω(1/d2). On the other hand, we
have that Q(n∗) ≤ mk(B2 +Nε2). Therefore, we have that

R(n∗)/Q(n∗) ≥ Ω(1/(d2mkB2)) .

Given our algorithm’s choice of w, we have that R(w)/Q(w) ≥ Ω(1/(d2mkB2)). On the other
hand, we note that for i ≤ ` we have that

Q(bi) ≤ 2mkQ(b∗` ) ≤ 2mk(mkB2) .

This in particular follows from the fact that Q(b∗i+1) ≥ Q(b∗i )/2 for positive integers i. The latter
statement can be derived, for example, from p. 86 of Cohen (2010)). This means that ‖bi‖22 ≤
2mk(mkB2), and thus R(bi) ≤ 2O(mk)B2. This implies that R(w − w′) ≤ 2O(mk)(B2 + Nε2).
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However, sinceQ(bi) ≤ 2mk(mkB2), by similar reasoning, we obtain thatQ(w−w′) ≤ 2O(mk)B2.
Together, this implies that ‖w′‖22 ≤ Q(w′) = Θ(2CmkB2), and that

R(w′)/Q(w′) = Ω(1/(d2mkB2)) .

Assuming the high probability statement of Lemma 5 with M := 22CmkB, we have that

Q(w′) ≥ N2−O(m2k2/(m−d))B−mk/(m−d)‖(y(w′))′‖22 .

This implies that ‖(y(w′))′‖22 ≤ N−12O(m2k2/(m−d))BO(mk/(m−d)). Note that this means that the
vector with coordinates

∑k
j=1w

′
i,jrj is within N−12O(m2k2/(m−d))BO(mk/(m−d)) of some multiple

of y. Thus, taking v∗ to be an appropriate multiple of v yields an error of at most

N−12O(m2k2/(m−d))BO(mk/(m−d))

in the defining equation of v∗.
We next need to determine how close the above implies that v∗ will be to a multiple of v. To

analyze this, we consider the eigenvalues of the matrix
∑m

i=1 xix
T
i . By Condition 2, with large

constant probability, the eigenvalue in the v-direction will be at least Ω(1/d2). As the xi’s in
orthogonal directions are independent standard Gaussians, it is not hard to see (for example via a
cover argument) that with this large constant probability all eigenvalues of

∑m
i=1 xix

T
i are at least

Ω(1/d2). The error in the least-squares regression problem equals

m∑
i=1

v∗ · xi − k∑
j=1

w′i,jrj

2

=
m∑
i=1

(
v∗ · xi − αyi − ((y(w′))′)i

)2
,

where α is some real multiple. Notice that v∗ · xi − αyi = (v∗ − αv) · xi. Therefore the above is

(v∗ − αv)T
m∑
i=1

xix
T
i (v∗ − αv) +O

(
(m/d)‖(y(w′))′‖22 + (m/d) ‖(y(w′))′‖2 ‖v∗ − αv‖2

)
.

In particular, noting that setting v∗ = αv obtains a value ofO(m/d)
(
N−12O(m2k2/(m−d))BO(mk/(m−d))

)2
,

the true v∗ must satisfy

‖v∗ − αv‖2 ≤ N−12O(m2k2/(m−d))BO(mk/(m−d)) .

On the other hand, since R(w′) > 1, we have that ‖(y(w′))′‖22 > 1, which (assuming that all xi’s
have norm O(

√
d) which holds with high probability) implies that ‖v∗‖2 � 1/

√
d. This means by

the above that the normalization of v∗ is within `2-error

N−12O(m2k2/(m−d))BO(mk/(m−d))

of ±v.
Since we have selected m = 2d, N = 2Cmk2

BCk, for C a sufficiently large constant, and
ε < 2−C

′dk2
B−C

′k, for some sufficiently large constant C ′, it follows that the normalization of v∗

is exponentially close to ±v.
Next we need to show that rounding the xi’s does not affect the correctness of our procedure.

For this, we note that the above analysis only needed the following facts about the xi:

9



DIAKONIKOLAS KANE

1. Lemma 5 holds for M = 22CmkB.

2.
∑m

i=1 xix
T
i � Ω(I/d2).

3. v ·xi is within 2−Ω(dk2)B−Ω(k) (with sufficiently large constants in the big-Ω) of some integer
linear combination of the ri’s with coefficients of absolute value at most B for all i.

We note that these hold with reasonable probability by the above. We claim that if they hold for the
unrounded xi’s and if the xi’s have absolute value at most poly(d) (which happens with constant
probability by Condition 3), then they hold for the rounded xi’s, perhaps with slightly worse implied
constants in the big-O and big-Ω terms.

To show this, we begin with Condition 3. This still holds since rounding an xi changes the value
of v · xi by at most dδ < ε.

For Condition 2, we note that changing each coordinate of xi by δ changes
∑m

i=1 xix
T
i by at

most dmδmaxi ‖xi‖2 in Frobenius norm. As this is much less than 1/d2, the minimum eigenvector
of
∑m

i=1 xix
T
i is still large enough after the rounding.

Finally, for Lemma 5, we note that the argument for Equation (1) still applies. For Equation
(2), we note that for a vector z, ProjV (z) = z − t, where t is the unique vector in the range of ST

such that St = Sz. From this, we conclude that t = ST (SST )−1Sz. We claim that rounding this
does not change the value of t (or, therefore, the value of ‖t − z‖22) by much. In particular, it is
easy to see that rounding changes S and ST byO(mdδ) in Frobenius norm. The effect on (SST )−1

is more complicated; but we know that SST =
∑

i xix
T
i � Ω((1/d2)) I . This and the fact that

the rounding changes SST by relatively little in terms of Frobenius norm, suffices to imply that the
rounding does not change much the value of Q(n), for any vector n with coefficients of absolute
value M .

Having established correctness, we need to bound the runtime. This is relatively straightforward,
as we have to solve problems in dimension poly(md) with poly(md log(B)) bits of precision. In
particular, Step 3 boils down to row-reduction; Step 4 requires computing a projection matrix;
Step 5 uses the LLL algorithm; Step 8 can be done via an approximate eigenvalue computation; and
Step 10 is least squares. Each of these operations can be performed in time that is polynomial in the
dimension of the problem and in the number of bits of precision required.

This completes the proof of Theorem 3.

Remark 6 We remark that our algorithm works with any number m > d samples, as long as ε
is less than 2−Ω(dk2m/(m−d))B−Ω(km/(m−d)) for sufficiently large constants in the big-Ω’s. For
example, one could take m = d+ 1 samples, as long as ε < 2−C

′d2k2
B−C

′dk.
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