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Modularity Analysis of Makerspaces to Determine Potential Hubs and Critical Tools in the 

Makerspace 

 
 

Abstract 

 

Globally, universities have heavily invested in makerspaces. Purposeful investment however 

requires an understanding of how students use tools and how tools aid in engineering education. 

This paper utilizes a modularity analysis in combination with student surveys to analyze and 

understand the space as a network of student-tool interactions. The results show that a 

modularity analysis is able to identify the roles of different tool groupings in the space by 

measuring how well tool groups are connected within their own “module” and their connection 

to tools outside of their module. A highly connected tool in both categories is considered a hub 

that is critical to the network. Poorly connected tools indicate insignificance or under utilization. 

Makerspaces at two universities were investigated: School A with a full-time staff running the 

makerspace and School B run by student-volunteers. The results show that 3D printers and metal 

tools are hubs at School A and 3D printers, metal tools, and laser cutters are hubs at School B. 

School B was also found to have a higher overall interaction with all the tools in the space. The 

modularity analysis results are validated using two-semesters worth of student self-reported 

survey data. The results support the use of a modularity analysis as a way to analyze and 

visualize the complex network interactions occurring within a makerspace, which can support 

the improvement of current makerspaces and development of future makerspaces. 
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Introduction 

 

Makerspaces have recently become integrated into a wide variety of engineering programs at 

universities worldwide [1]. This has drawn increasing attention as to how best to create an area 

where students gain hands-on experience [2, 3]. Several studies in the past few years have 

focused on barriers to entry and how tools vary in different makerspaces [4-6], identifying 

impediments to student use are often linked to a student's self-confidence, fear of failure, their 

training and mentoring [7]. Research has identified the need for rapid prototyping tools in 

makerspaces [8], however, the success of a makerspace as a result of other tools has not yet been 

established. Preliminary work used a bipartite network analysis to understand makerspaces as a 

tool-student network, providing a standardized system-level view of the space missing from 

standard survey-based investigations that can be expensive[9-12]. This paper continues that 

work, analyzing makerspaces using a modularity analysis to establish tool-student interaction 

patterns. This analysis approach is then compared to a conventional survey-based investigation 

for validation. 

 

The work presented here tracks makerspace tool usage with surveys and log-in/check-out 

systems [10]. The tool usage data is quantified in a matrix and analyzed as a network using 

modularity analysis. Capturing interaction information in a matrix is used extensively in social 
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science to understand how events impact actors, which in this case is how the tools connections 

to the students drive the interactions of the space [13, 14]. A modularity analysis is commonly 

used in ecology to analyze complex networks, such as plant-pollinator networks [15, 16]. Two 

metrics are calculated, participation and z-values, that classify the patterns among network 

connections and the nature of those connections. This process is able to identify critical network 

components, known as “hubs” with participation and z-values aiding in quantifying the tools 

interactions with the students in the network [16]. Hub plant species in a plant-pollinator 

network, for example, have a wide variety of bees interacting with the hub and linking different 

species together. Tools in a makerspace are viewed as analogous to plants and students to bees in 

a plant-pollinator network: students from different majors use the hub tools when interacting 

with the space. A modularity analysis has also been used for mapping complex air transportation 

networks, visualizing the most important air traffic locations and their connections, aiding in the 

understanding of air transportation networks [17]. Analyzing the student and their interactions as 

a network can provide a better understanding of the makerspace and enable alternate data 

collection and analysis techniques to be used beyond survey-based methods. 

 
 

Methods 

 

Survey Data Collection 

 

The primary method for gathering results was through self-reported student surveys. The surveys 

consisted of end-of-semester surveys that focused primarily on the student's usage of the space 

throughout the semester. The order that students learned the tools and the classes students used 

the tools for were also self-reported in the surveys. This data was used to validate the modularity 

analysis results. Table 1 details the differences between the two universities and lists the tool 

categories. The nomenclature for the tools will be kept consistent in later parts of the analysis. 

Tool names are normalized between the two schools surveyed for consistency in comparisons. 

Table 2 shows the 11 general tool categories used for analysis along with a comparison of the 

tools at each school within that category. School A has more training before each of the tools can 

be used and did not teach laser cutting, while School B has fewer restrictions for tool usage and 

does teach the laser cutter. The difference in restrictions between the two schools is important to 

note when delving deeper into the analysis. 

Slight modifications were made to the survey between the two semesters, such as increasing the 

variety of tools students could pick to better reflect the selection within the makerspaces. The 

main difference is that three categories (crafts, paint booth, and CAD station) were not included 

for School A in the Fall 2020 survey, but do show up in the Spring 2021 survey. These tools are 

not included in the modularity analysis for School A for the Fall 2020 semester. 
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Table 1: The tool list included in the surveys. Relevant differences between the two schools (A 

and B) are highlighted in terms of the barriers to their use (training required, course directed use, 

and no supervision required). Tools that were not part of the Fall 2020 survey for School A are 

denoted with * and for both Schools A & B with **. 

 
TOOL CATEGORIES 

Requires 

Training 

Used by a 

Class 

Student Use 

Without 

Supervision 

A B A B A B 

Tool 1 3D Printing X X X X X X 

Tool 2 Metal Tools X  X X X X 

Tool 3 Laser Cutter X   X  X 

Tool 4 Wood Tools X    X X 

Tool 5 Handheld Tools   X X X X 

Tool 6 Electronic Tools   X X X X 

Tool 7 Studied at the Space     X X 

Tool 8 Got Help   X X   

Tool 9 Crafting* X      

Tool 10 Cad Station* X  X X  X 

Tool 11 Paint Booth**     X X 

 
 

Table 2: Tool category breakdown with specific tools available in the space. 
 

Tool Category Specific Tools Included 

(1) 3D Printing 
Ultimaker 3D Printer, Formlabs Form 2 Printer, Stratasys 3D Printer, 

3D Scanner Arm 

(2) Metal Tools 
Angle Grinder, Band Saw, CNC Metal Mill, Manual Mill, Manual 

Lathe, Drill Press, Belt Sander, Polishing Wheel, Table Vice 
(3) Laser Cutter Lasercutter 

 

(4) Wood Tools 

Band Saw, Belt Sander, Circular Saw, Miter, Jigsaw, Drill Press, CNC 

Wood Router, Router, Planer, Table Saw, Hammers, Measuring Tape, 

Hand Saw, Dremel 

(5) Handheld Tools 
Pliers, Vice Grips, Clamps, Screw Drivers, Hand Drills, Chisels, Tin 

Snips 

(6) Electronic Tools 
Circuit Board Plotter, Multimeter, Power, Supply, Soldering Station, 

Oscilloscope, Logic Analyzer 

(7) Studied Studied, Hung out, Met with a Group 

(8) Got Help 
Got Help From Makerspace Volunteer, Got Help From Someone Who 

Wasn’t a makerspace volunteer, Gave Help 

(9) Crafting* 
Embroidery Machine, Sewing Machine, Vinyl/Paper Cutter, X-Acto 

Knife, Scissors, Glue Gun, Wire Cutters 
(10) CAD Station* Cad Station, Workbench, Whiteboards 

(11) Paint Booth** Paint Booth 
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Makerspace Network Creation 

 

Survey data was used to map interactions between students and tools in a graph (Fig. 1b) and in a 

quantitively complete structural matrix (Fig. 1c) for the modularity analysis. The tool usage data 

from the surveys was converted into a bipartite network, which visualizes the connections 

between two groups: the students and tools [18]. A value of one or zero was used to 

quantitatively map these interactions into a matrix form (Fig. 1c), indicating if a student used a 

tool (one) or not (zero) [18]. An example interaction matrix with tool usage is shown in Figure 

1a, with seven students interacting with three tools. The matrix in Fig. 1c quantifies the presence 

of interactions for the network shown in Fig. 1a, enabling a modularity analysis to then be 

conducted. 
 
 

Figure 1: Bipartite network analysis with tool student interaction were a) is a hypothetical 

makerspace network with student-tool interactions, b) depicts this as a digraph, and c) shows the 

resultant bipartite interaction matrix. Figure used with permission from [9]. 

 

Modularity Analysis 

 

A modularity analysis requires two steps: 1) creating modules and 2) calculating the participation 

and z-values [16]. Modules are calculated using the primary method with the MATLAB package 

BiMat, which allows for analysis of complex bipartite networks [19]. BiMat was used to identify 

sets of tools that students often use in combination with each other, assigning such tools to a 

module. The process takes an unordered, bipartite matrix and runs it through potential modular 

scenarios until it optimizes the modularity of the system [19]. Modularity refers to the degree 

that nodes in the network can be grouped into clusters with overlapping interactions. Modularity 

is calculated using Eq. 1, where E represents the total number of interactions between students 

and tools, Bij is the bipartite adjacency matrix (as shown in Fig. 1), and ki and dj represent the 

number of interactions for each individual tool and student, respectively [19, 20]. The δ function 



2022 ASEE Conference 

© American Society for Engineering Education, 2022 

 

 

checks the module indexes of each student-tool pairing, yielding a value of one if the two actors 

are in the same module and a value of zero if they are not [21]. 
 

 

1 
𝑄𝑄𝑏𝑏  = 

𝐸𝐸 
�(𝐵𝐵𝑖𝑖𝑖𝑖 − 

𝑖𝑖𝑖𝑖 

𝑘𝑘𝑖𝑖𝑑𝑑𝑖𝑖 
 

 

𝐸𝐸 
)𝛿𝛿�𝑔𝑔𝑖𝑖, ℎ𝑖𝑖� (1) 

 

The Newman/Leading Eigenvector method was used for optimization, as it generates a 

reproducible set of module assignments given consistent inputs [22]. This method starts with a 

two-module structure and identifies module assignments for each node that optimize modularity. 

Additional modules can then be added by repeating this process within each module, accepting a 

new subdivision only if it increases the modularity of the entire network [23]. All new modules 

are then checked again, with the final, optimal assignments determined when no additional 

subdivisions exist that would result in an increase in modularity. 

 

The connectivity (z) and participation (p) values of Eq. 2 and 3 quantify how connected a 

particular tool is to the rest of the network. For these bipartite makerspace networks, tools and 
students act as nodes (N), while links between nodes represent the interaction of a specific 

student using a specific tool [24]. Since tools and students are both placed in modules within the 
space, all links between nodes can be classified as either links within a module or links between 

two modules. The ki in Eq. 2 is the number of links of node i to other students/tools within its 

own module, ksi is the average number of links of each node (other tools/students) in the module, 

and 𝜎𝜎𝑘𝑘𝑘𝑘𝑖𝑖 is the standard deviation of ksi. The kis in Eq. 3 is the number of links of node i (a 

specific tool) to other nodes in module s and ki is the total number of interactions that node i has 

with other nodes [25]. 
 

 

𝑧𝑧𝑖𝑖 = 
𝑘𝑘𝑖𝑖 − 
𝑘𝑘𝑘𝑘𝑖𝑖 
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𝑁𝑁𝑀𝑀 

 
(2) 

𝑝𝑝𝑖𝑖 = 1 − 

�(
𝑘𝑘𝑖𝑖𝑘𝑘

)2 
𝑘𝑘𝑖𝑖 

𝑘𝑘=1 

(3) 

While one tool may be in a module due to its dominant interactions, tools can still interact with 

tools outside of their module. As an example, while the mill and lathe may be used primarily by 

students who only use mechanical tools, there may still be students who primarily use craft tools 

but also the mill and lathe, thus creating a connection with tools outside of the mill/lathe’s 

module. The z or connectivity value quantifies the within module degree of a tool or student. If 

many students that use the same set of tools are also all using the laser cutter, the laser cutter 

would have a high connectivity value. If within that same group of students only one of them had 

used the laser cutter it would have a low connectivity value. These metrics are calculated from 

the modular network matrix and quantify the patterns and characteristics of connections between 

students and tools in the space. 
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Figure 2: Modularity analysis sectioning determined by connectivity (z) and participation (p) 

values. The regions R1-7 specify the role that a tool and/or student has in a network, as described 

in the main text. 

 

Equations 2 and 3 were plotted in Fig. 2, which illustrates the different regions as defined by the 

values of p and z. The regions describe seven different roles that students and tools can have 

within the space, and are used in network analysis as a cartographical representation of the roles 

in a complex network and better understand the functions of actors in the network [25]. The 

work here tests an analogy between makerspaces and mutualistic ecosystems, where the 

interactions between species groups (here students and tools) is mutually beneficial. Ecologists 

have classified each region as serving a different role for the network (or in this case, the 

students and tools). The cutoffs lines shown in Fig. 2 are non-trivial and come from the work of 

Guimerà and Amaral [25]. 

 

• R1 (p≈0, Z<2.5): Ultra Peripheral Nodes, niche or rarely used tools 

• R2 (p<0.625, Z<2.5): Peripheral Nodes, tools that are not used as often 

• R3 (p<0.8, Z<2.5): Non-Hub Connectors, tools that interact heavily within their own 

module 

• R4 (p>0.8, Z<2.5): Non-Hub Kinless Nodes, tools critical to their own module 

• R5 (p<0.3, Z<2.5): Provincial Hubs, tools that interact with a variety of tools of different 

modules 

• R6 (p<0.75, Z<2.5): Connector Hubs, tools That interact heavily within their module and 

with other modules 

• R7 (p>0.75, Z<2.5): Kinless Hubs, tools that interact heavily with everything in the space 

and cannot be assigned a module 

 

The seven roles in the space guide conclusions depend on where the tools/students fall when 

plotted. A tool in the R6 region is considered a Connector Hub, meaning it is critical to the space 

and interacts with a wide variety of students both in its own module as well as with other 

modules. A tool in the R1 region is considered an Ultra-Peripheral Node and is less important to 

the network’s functioning, likely being a niche or rarely used tool. 
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Results 

 

Tool Usage: Comparing Survey & Modularity Results 
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Figure 3: Proportion of students (as a % of total survey population) at School A (blue, N=123) 

and B (orange, N=85) that indicated using a tool out of all survey participants for Spring 2021. 

 

Figure 3 highlights that there are substantial differences in the usage patterns at both institutions. 

School B has a higher overall tool usage than School A, with a particularly high usage for 3D 

printers, hand tools, and the laser cutter in both semesters. School A was found to have a 

relatively high 3D printer usage compared to its other tool groups. School A’s metal room usage 

exceeded that of School B. Tools like laser cutters and craft-related tools had almost no usage at 

School A. 

 

These tool usage patterns directly correlate with the modularity analysis results in Fig. 4, where 

key tools can be quickly identified from the interaction data. The results of the modularity 

analysis for both School A and School B are shown in Fig. 4. Figure 4 bottom left image shows 

that two tools in School A fall in the R1 region (the bottom left most quadrant, as described in 

Fig. 2), labeling them as ultra-peripheral nodes and indicating that very few students used the 

tool, if any at all. The relative spread of the data points in Fig. 4 is also an important indicator. At 

School B a majority of the tools investigated were found to be hubs. School A had a wider 

spread, with some tools highly used by both students within the same module and those from 

others (and therefor hubs) and others less so. The modularity analysis easily identifies these tool 

usage roles and highlights heavily used tools that connect across the space (hubs). These hub 

tools have high numbers of interactions with a wide variety of students, confirming the 

importance of the tool to the overall success of the makerspace. These tools that are found in 
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region R7, the top right corner, of the plots in Fig. 4. Two major hub tools at School A are the 

3D printer and the metal tools. Hub tools at School B are the 3D printer, laser cutter, and craft 

space. 

 

Data about the order that students learn tools was also collected via surveys. The results of this 

question at both institutions can be seen in Fig. 5. The 3D printer, the manual mill, and the laser 

cutter at both schools were the tools that student most often reported as learning first, suggesting 

that these tools may act as a gateway into the space. 
 

 

 

 
 

Figure 4: School A (left) and B (right) modularity analysis results between two semesters, Fall 

2020 (top) and Spring 2021 (bottom). The regions delineated by the blue lines correlate with R1- 

7 as described in Fig. 2. 
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Figure 5: Categories of the first five tools learned by students at Schools A (N = 61) & B (N = 

41) for Fall 2020, from self reported surveys. 
 

Discussion 

 

The modularity analysis quantitatively characterizes interactions within the makerspace, 

identifying high-impact tools (hubs) that serve as critical parts of the makerspace and low-impact 

tools that may need more support to encourage student use. A major advantage of this analysis is 

its ability to condense a vast amount of data and visualize it, as opposed to relying on more 

conventional methods that require far more analysis and graphics to convey the same 

information. With only a few graphs like those in Fig. 4, a modularity analysis can provide 

insight into both usage rates and the significance of tools for the successful functioning of the 

makerspace. 

 

The modularity analysis for the two schools is also able to provide insight into differences 

between the makerspaces. The tools that were found in Fig. 4 to be hubs may be due to their use 

for specific courses. For both schools, tools that were used within a course (for example the 3D 

printers, mill, and lathe at School A, and the laser cutter at School B) tended to have a higher 

usage within the space. Additionally, for both schools, 3D printing was a major hub for students 

and one of the major tools that students used first. Another key difference is that School A is 

staff-run and School B is student-run. The overall higher interaction rate at the student-run space 

of School B may be a result of this configuration. This is evident in the modularity analysis as 

the tools in Fig. 4 fall closer to the left side of the graph (due to fewer interactions) for School A. 

The survey data also supports this claim, indicating that a smaller percentage of the total 

population at School A uses many tools in the space. This can be seen in Fig. 5 with a side by 

side comparison of the tools with School B having higher percentage of students using a majority 

of the tools, often more than a 10% difference with each tool between schools, with the only 

exception being the metal tools. 

School School School School School School School School School School 
A B A B A B A B A B 

1st 2nd 3rd 4th 5th 
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Figure 5 highights the survey results about the order that students reported learning tools. At both 

schools, students reported that the 3D printer, the manual mill, and the laser cutter were the tools 

they learned first, suggesting that these tools may act as a gateway for students into the space. 

Introductory engineering courses often promote these tools as they are relatively easy to learn 

and teach the fundamentals of CAD. These tools represent a relatively small portion of the later 

tools learned, as expected students progress to more niche and specialized tools over the years. 

Specialized tools may be less promoted by classes, resulting in their use being more dependent 

on a student's interest and hobbies. 

 

The modularity analysis results are validated by the survey responses about percentages of tools 

used shown in Figure 3. Figure 3 shows that 3D printers and the lasercutter were the two highest 

use tools in the space for School B in 2021. Similarly, the modularity analysis shows the 3D 

printer as well as the lasercutter as hub tools with the highest participation and z-value. On the 

other hand for School A, the two least-used tools identified in the survey were craft tools and the 

paint booth. The modularity analysis gives these two the lowest participation and z-values out of 

all the tools investigated. This validation supports the ability of a modularity analysis to identify 

heavily used tools as well as tools not used as often, allowing for visualization of the roles and 

interactions of the tools in the network. 

 

The survey data from both Fall 2020 and Spring 2021 are impacted by each school’s COVID-19 

related rules. As a result, the results are not entirely reflective of normal space use as access to 

was heavily restricted. At School A, students were only allowed to work on class projects with a 

select few clubs granted limited access to the space. Personal use was explicitly prohibited 

during this time, although this policy was not enforced particularly strictly. School B, on the 

other hand, had significantly fewer restrictions than School A. The restrictions that were in place 

at School B consisted of requests for social distancingand reduced capacity for the space as 

opposed to blanket bans on categories of usage. Due to these differences, it is imperative that a 

follow-up survey be conducted when Covid-19 restrictions are lifted from these spaces. 

 

Future work will make slight modifications to the surveys to streamline tools that may have been 

added or removed from each of the spaces. Considering that self-reported frequency estimations 

have proved to be inaccurate, whether this dimension of the survey or not should be included is 

in question. That being said, whether such a change would render future surveys incomparable to 

the surveys herein and from previous semesters or not is a valid concern as well. The modularity 

analysis shown here primarily focuses on tools; however, the analysis can be expanded to learn 

more about the students who are using the tools. Expanding the general tool groups into specific 

tools can also provide a better understanding as to why certain tools may be considered hubs, 

such as Ultimaker 3D printers being used more than the Stratasys resin 3D printer. Further 

understanding of the student aspect of the makerspace is needed because the differences in 

student demographics and in the cultures of the spaces can also play a role in the space’s use. 

This work, however, does supports theuse of a modularity analysis to identify key tools and 

student-tool interactions, the method courses use a makerspace, and space culture to make 

recommendations for current and future makerspaces. Understanding how class schedules and 

tool usage relates to makerspace usage is vital to our implementation of spaces can implement 

courses to promote certain tool interactions or expand on course curriculum to better use gateway 

tools and increase overall student use of the space. 
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Conclusions 

 

Makerspace analysis investigating the aggregate of all tool-student interactions within a 

makerspace has not been previously conducted. The work within this paper demonstrates the 

utility of this style of analysis in characterizing university makerspaces. Understanding how 

different tools are being used in the makerspace allows for recommendations to be made to 

promote the tools that lead to advantageous learning outcomes. The research in this paper 

focuses on utilizing modularity analysis to better identify key role interactions with the space and 

identify potential "hub" tools. Analysis was conducted for two schools with different makerspace 

cultures, School A being run by staff and B primarily being run by students. Results from the 

modularity analysis revealed School A had a large number of tools that were not being used 

often with other tools acting as the "hubs" that would bring students in, primarily the 3D printer 

and the metal tools. On the other hand, in School B, most tools were being highly used in the 

space and many tools were considered hubs, with the 3D printer being the major huband the laser 

cutter as another hub. Several hypotheses regarding the difference between the two schools can 

be linked to the culture and to class schedule, as some tools are not as promoted by classes. 

Survey results expand on modularity analysis and corroborate the results discussed. 
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