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Abstract
Shortest path graph distances are widely used in data science and machine learning, since
they can approximate the underlying geodesic distance on the data manifold. However, the
shortest path distance is highly sensitive to the addition of corrupted edges in the graph,
either through noise or an adversarial perturbation. In this paper we study a family of
Hamilton-Jacobi equations on graphs that we call the p-eikonal equation. We show that
the p-eikonal equation with p = 1 is a provably robust distance-type function on a graph,
and the p → ∞ limit recovers shortest path distances. While the p-eikonal equation does not
correspond to a shortest-path graph distance, we nonetheless show that the continuum limit
of the p-eikonal equation on a random geometric graph recovers a geodesic density weighted
distance in the continuum. We consider applications of the p-eikonal equation to data depth
and semi-supervised learning, and use the continuum limit to prove asymptotic consistency
results for both applications. Finally, we show the results of experiments with data depth
and semi-supervised learning on real image datasets, including MNIST, FashionMNIST
and CIFAR-10, which show that the p-eikonal equation offers significantly better results
compared to shortest path distances.
Keywords: Data depth, Graph learning, Hamilton-Jacobi equation, Robust statistics,
Semi-supervised learning, viscosity solutions, discrete to continuum limits, partial differen-
tial equations

1. Introduction

Shortest path distances on graphs have found applications in many areas of data science
and machine learning, including dimensionality reduction (e.g., the ISOMAP algorithm
(Tenenbaum et al., 2000)), semi-supervised learning on graphs (Moscovich et al., 2016;
Chapelle and Zien, 2005; Bijral et al., 2012; Rozza et al., 2014; Yang et al., 2021), graph
classification (Borgwardt and Kriegel, 2005), and data depth (Molina-Fructuoso and Murray,
2021, 2022; Calder et al., 2022b). In many applications, the shortest paths are density
weighted, to make path lengths shorter in high density regions of the graph, and longer in
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sparse regions (Bijral et al., 2012; Little et al., 2022). Shortest path algorithms offer different
information compared to second order methods based on graph Laplacians, like spectral
clustering (Ng et al., 2002), Laplacian eigenmaps (Belkin and Niyogi, 2003), diffusion maps
(Coifman and Lafon, 2006), or Laplacian based semi-supervised learning (Zhu et al., 2003;
Calder et al., 2020a), which offer information about average or typical paths through graphs.
Some recent works have even combined shortest path metrics with graph Laplacian spectras
to improve spectral clustering (Little et al., 2020).

However, a main drawback of shortest path distances is their lack of robustness to
perturbations in graph structure. The addition of a single edge can have a strong effect on
the shortest path, while simultaneously having little or no effect on the average or typical
path, which gives an intuitive reason for the apparent superiority of graph Laplacian based
methods for semi-supervised learning and dimension reduction, among other problems.

In this paper, we approach the problem of robustly computing distance functions on
graphs from the viewpoint of Hamilton-Jacobi equations. We study a family of Hamilton-
Jacobi equations on graphs, which we call the p-eikonal equations, that are provably robust
to graph perturbations, especially for p = 1. The equations have the form

(1)
n∑

j=1
wji(u(xi) − u(xj))p

+ = f(xi),

where a+ = max{a, 0}, and wij is the weight between nodes i and j in the graph. We prove
that as p → ∞, these p-eikonal equations recover shortest path graph distances, while for
p = 1 the solutions provide information that is different from shortest paths and far more
robust to graph perturbations. The solution of the p-eikonal equation can be computed in
similar time to shortest path distances, using a slight variation on the fast marching method
(Sethian, 1996).

While the p-eikonal equations do not describe shortest path graph distances, we prove
rigorously that the continuum limit of the p-eikonal equation, as the number of data points
tends to infinity while p is fixed, is exactly a density weighted geodesic distance function on
the underlying space (either a Euclidean domain or data manifold). Hence, the p-eikonal
equation offers a robust estimation of geodesic distances in the continuum for any finite
value of p. Our techniques for proving discrete to continuum convergence are quite different
from existing spectral convergence results for graph Laplacians (see, e.g., (Calder et al.,
2022a; Calder and García Trillos, 2022; García Trillos et al., 2020)). We use the viscosity
solution machinery and the maximum principle, as in (Yuan et al., 2021; Flores et al., 2022).
Our theory is also quite different from previous work on continuum limits for shortest path
distances (see, e.g., (Alamgir and Von Luxburg, 2012; Bungert et al., 2022; Hwang et al.,
2016; Calder et al., 2022b)) which crucially use the shortest path interpretation on the
graph.

To illustrate the robustness of the p-eikonal equation, we consider applications of density
weighted graph distances to data depth and semi-supervised learning. For data depth we use
an approach similar to geometric medians on Riemannian manifolds (Fletcher et al., 2009).
For semi-supervised learning we use a nearest neighbor classifier via the p-eikonal distance.
In both applications we consider density-weighted distances, for which path lengths are
shorter in high density regions of the graph and longer in sparse regions. This improves
accuracy in semi-supervised learning and encourages the median to be placed in a high
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density region of the graph in data depth problems, making the methods more robust to
outliers. We test our methods on both toy and real datasets, including semi-supervised
learning on MNIST, FashionMNIST and CIFAR-10. The classification results for the p-
eikonal equation are uniformly better than shortest path graph distances, which we attribute
to the robustness properties of the p-eikonal equation to spurious corrupted edges in real
world graphs.

Using our continuum limit results, we go on to prove that p-eikonal based data depth and
semi-supervised learning are asymptotically consistent. In particular, for semi-supervised
learning, we take a clusterability assumption for the data and show that p-eikonal semi-
supervised learning with arbitrarily few labels can recover the true labels for each cluster.
The proofs of asymptotic consistency are particularly simple for graph distances, compared
to the analogous results for graph Laplacian based techniques (see, e.g., (Hoffmann et al.,
2022)). We also examine the role of class priors in semi-supervised learning, and show how
utilizing information about the relative sizes of each class improves the asymptotic consis-
tency results by allowing a weaker clusterability assumption. We enforce class priors by
using a weighted minimum in the label decision, as was done in the volume label projection
in (Calder et al., 2020a).

There is a considerable amount of related work in both data depth and semi-supervsied
learning. The problem of data depth, and in general, the ordering of multivariate data,
is a common problem in statistics (Barnett, 1976; Liu et al., 1999). The Tukey halfspace
depth (Tukey, 1975) is one of the oldest and most well-studied notions of depths, and
it has been extended to graphs (Small, 1997) and metric spaces (Carrizosa, 1996). The
Tukey depth has been connected, at the continuum population level, to the solution of
a non-standard Hamilton-Jacobi equation (Molina-Fructuoso and Murray, 2021). Other
interesting notions of data depth include the Monge-Kantorovich depth (Chernozhukov
et al., 2017), and notions of depth for curves (de Micheaux et al., 2020). Another way to
define data depth is by repeatedly peeling away extremal points. Several related algorithms,
including convex hull peeling, nondominated sorting, and Pareto envelope peeling, have
been recently connected to viscosity solutions of partial differential equations (PDEs) in
the continuum limit (Calder and Smart, 2020; Calder et al., 2014, 2015; Calder, 2016, 2017;
Bou-Rabee and Morfe, 2021; Cook and Calder, 2022).

We were recently made aware of another paper (Molina-Fructuoso and Murray, 2022)
that was developed in parallel with ours, and proposes to use the eikonal equation for data
depth. The method in (Molina-Fructuoso and Murray, 2022) requires identifying boundary
points first, and then the depth is defined as the length of a shortest density-weighted
path back to the boundary. This approach, without density weighting, was also used in
(Calder et al., 2022b), in combination with a method for detecting boundary points. Our
approach to data depth based on the geometric median framework is much different than
these works, and in particular, it does not require the a priori identification of boundary
points to compute depth.

The problem of semi-supervised learning at low label rates has received a significant
amount of attention recently, since it was pointed out in (Nadler et al., 2009) that Laplace
learning (or label propagation) (Zhu et al., 2003) is ill-posed with very few labels. Many
graph-based semi-supervised learning algorithms have been proposed recently at low label
rates, including higher-order Laplacians (Zhou and Belkin, 2011), p-Laplacian methods
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(El Alaoui et al., 2016; Kyng et al., 2015; Slepčev and Thorpe, 2019; Calder, 2018b, 2019;
Flores et al., 2022), reweighted Laplacians (Shi et al., 2017; Calder and Slepčev, 2019),
the centered-kernel method (Mai and Couillet, 2018a,b), volume constrained MBO (Jacobs
et al., 2018), and Poisson learning (Calder et al., 2020a), and the low label rate issue has
been studied theoretically in (Calder et al., 2020b). The only methods that are provably
well-posed at arbitrarily low label rates are the p-Laplacian methods (Calder, 2018b; Slepčev
and Thorpe, 2019) for p > d1 and the Properly Weighted Laplacian (Calder and Slepčev,
2019), but neither has been shown to be asymptotically consistent at low label rates. In
contrast, our results show that p-eikonal based semi-supervised learning gives well-posed,
stable and informative classification results, and is asymptotically consistent, at arbitrarily
low label rates and for any p ≥ 1.

We also mention that the p-eikonal equation (1) is not new in our paper, and has
already been introduced in a series of papers (Ta et al., 2009, 2010; Desquesnes et al., 2013;
Desquesnes and Elmoataz, 2017). These previous works introduced the family of p-eikonal
operators on graphs and presented an array of interesting applications to problems such
as image segmentation, erosion, and noise removal. Our work focuses more on theoretical
foundations, with our main focus being the robustness properties of the operators, and the
approximation of geodesic distance in the continuum, both of which are not considered in
previous work. In this sense, our results can be viewed as complementary to previous work,
and provide a rigorous justification for the usefulness of the p-eikonal equation.

1.1 Outline

This paper is organized as follows. In Section 2 we study Hamilton-Jacobi equations on
graphs, and introduce the p-eikonal equation. We establish our main robustness result, and
then consider applications to data depth and semi-supervised learning. In Section 3 we
introduce the continuum geodesic distances, and review the connection to state constrained
eikonal equations. In Section 4 we prove our main discrete to continuum convergence result,
showing that the p-eikonal equations recover geodesic density weighted distances in the
continuum limit, for any value of p ≥ 1. In Section 5 we use the continuum limit theory
to study the asymptotic consistency of data depth and semi-supervised learning with the
p-eikonal equation. Finally, in Section 6 we show the results of experiments with real data.

2. First order equations on graphs

In this section we first study the general theory of first order equations on graphs in Section
2.1 and review the graph distance function in Section 2.2. Then in Section 2.3 we introduce
the p-eikonal equation, and discuss its robustness properties and computational complex-
ity. In Section 2.4 we consider applications of the graph p-eikonal equation to data depth
and semi-supervised learning. We give some toy examples in Section 2.4, and postpone
experiments with real data to Section 6.

Let us first introduce some notation. Let G = (X,W ) be a weighted graph with vertices
X = {x1, . . . , xn} ⊂ Rd and nonnegative edge weights W = (wij)n

i,j=1. The edge weights
encode similarity between data points, with wij � 0 indicating xi and xj are similar, and

1. Here, d is the intrinsic dimension of the data.
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wij ≈ 0 indicating dissimilarity. We do not assume the weight matrix is symmetric, so in
general we have wij 6= wji. This includes graphs such as k-nearest neighbor graphs. For first
order equations, symmetry is not a main concern, since we do not require any operators to
be self-adjoint, as in the case of graph Laplacians. Any zero edge weight wij = 0 indicates
the absence of an edge from i to j. We also let F (X) denote the vector space of functions
u : X → R, and let In = {1, . . . , n} denote the indices of the graph vertices. For a function
u ∈ F (X) and a vertex xi ∈ X, we define the gradient ∇Xu(xi) ∈ Rn by

(2) ∇Xu(xi) = (u(xi) − u(x1), u(xi) − u(x2), . . . , u(xi) − u(xn)).

For convenience, we will write ∇j
Xu(xi) = u(xi) − u(xj), so that

∇Xu(xi) = (∇1
Xu(xi),∇2

Xu(xi), . . . ,∇n
Xu(xi)).

Finally, throughout this section, we let K denote the unweighted maximum incoming degree
of the graph, that is

(3) K = max
1≤i≤n

n∑
j=1

1wji>0.

2.1 General theory

We begin by developing a general theory for first order equations on graphs, and give general
existence and uniqueness results. Letting Γ ⊂ X denote a set of boundary or terminal nodes,
a general graph PDE has the form

(4)
{
H(∇Xu(xi), u(xi), xi) = 0, if xi ∈ X \ Γ

u(xi) = g(xi), if xi ∈ Γ,

where g : Γ → R are some prescribed boundary values. The Hamiltonian H is a function

(5) H : Rn × R ×X → R,

that also implicitly depends on the weight matrix W , which encodes the graph structure. It
is also possible to pose a graph PDE on all of X with no boundary conditions, in the form

(6) H(∇Xu(xi), u(xi), xi) = 0 for all xi ∈ X.

We will write H = H(q, z, xi) in general, for q ∈ Rn, z ∈ R, xi ∈ X. While we will focus on
first order equations (in the sense that their continuum limits are first order PDEs), we note
that this formulation of graph PDEs is very general, and contains as a subset the graph
Laplacian by setting

(7) H(q, z, xi) =
n∑

j=1
wijqj .

In this section, we establish existence and uniqueness of solutions to the graph PDE (4).
Some of this analysis is similar to previous work studying PDEs on graphs, see for instance
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(Manfredi et al., 2015; Calder, 2018b, 2019). Our arguments are slightly different, and cover
more general cases.

Existence and uniqueness of solutions to (4) is based on a comparison principle, which
allows us to compare the values of a subsolution u to a supersolution v, based on comparing
their values on the boundary Γ. A subsolution u ∈ F (X) of (4) satisfies

(8) H(∇Xu(xi), u(xi), xi) ≤ 0 for all xi ∈ X \ Γ,

while a supersolution v ∈ F (X) of (4) satisfies

(9) H(∇Xv(xi), v(xi), xi) ≥ 0 for all xi ∈ X \ Γ.

Throughout this section, Γ ⊂ X is fixed, and may be empty.

Definition 1. We say that H admits comparison if for all u ∈ F (X) satisfying (8) and
v ∈ F (X) satisfying (9), if u ≤ v on Γ then u ≤ v on X.

In this section, we establish conditions under which H admits comparison. An important
class of PDEs are those which are monotone. For vectors p, q ∈ Rn, we write p ≤ q if pi ≤ qi

for all i.

Definition 2. We say H is monotone if

(10) p ≤ q and s ≤ t =⇒ H(p, s, x) ≤ H(q, t, x)

for all x ∈ X.

This definition of monotonicity is related to upwind discretizations of Hamilton-Jacobi
equations, and monotone discetizations of second order equations (Sethian, 1996; Oberman,
2006). As an example, the graph Laplacian (7) is clearly monotone, since wij ≥ 0.

Monotonicity allows us to apply maximum principle arguments to prove a comparison
principle, which is based on the following observation.

Proposition 3. Assume H is monotone and let u, v ∈ F (X). If u−v attains its maximum
over X at xi ∈ X and u(xi) ≥ v(xi), then

H(∇Xu(xi), u(xi), xi) ≥ H(∇Xv(xi), v(xi), xi).

Proof We simply note that u(xj) − v(xj) ≤ u(xi) − v(xi) for all j, which implies that

u(xi) − u(xj) ≥ v(xi) − v(xj) for all j,

and so ∇Xu(xi) ≥ ∇Xv(xi). The result now follows from monotonicity of H

We can immediately prove a comparison principle when H is monotone, and one of the
sub or supersolutions is strict.

Theorem 4. Assume H is monotone. Let u, v ∈ F (X) such that

(11) H(∇Xu(xi), u(xi), xi) < H(∇Xv(xi), v(xi), xi) for all xi ∈ X \ Γ,

and u ≤ v on Γ. Then u ≤ v on X.
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Proof Let xi ∈ X be a point at which u − v attains its maximum over X. If xi ∈ X \ Γ,
then by Proposition 3 and the assumption (11), we find that u(xi) < v(xi). If xi ∈ Γ, then
u(xi) ≤ v(xi) by assumption, which completes the proof.

The comparison principle in Theorem 4 requires that u be a strict subsolution relative
to v. The strategy to prove a true comparison principle (i.e., without the strictness, as
in Definition 1) will be to make small perturbations of subsolutions (or supersolutions) to
obtain the strictness required in Theorem 4. This requires that we place further assumptions
on H.

Definition 5. We say H is proper if there exists a strictly increasing function γ : [0,∞) →
[0,∞) with γ(0) = 0 such that when t ≥ s we have

(12) H(q, t, x) ≥ H(q, s, x) + γ(t− s)

for all x ∈ X and q ∈ Rn.

An example of an equation that is proper is one with a positive zeroth order term, of
the form

H(q, z, x) = λz +G(q, x),

where λ > 0 and G : Rn ×X → R. In this case, γ(t) = λt.
We now establish several situations where comparison holds.

Lemma 6. Assume H is monotone. Then H admits comparison if any of the following
hold.

(i) H is proper.

(ii) H = H(q, x), q 7→ H(q, x) is convex, and there exists φ ∈ F (X) and λ > 0 such that

(13) H(∇Xφ(xi), xi) + λ ≤ 0 for all xi ∈ X \ Γ.

(iii) H(q, z, x) = G(q) − f(x), where f > 0 on X, and G is positively p-homogeneous for
p > 0.

Proof Let u satisfy (8) and v satisfy (9), and assume that u ≤ v on Γ. In each case we
will produce a perturbation uε of u satisfying uε ≤ v on Γ, H(∇Xuε, u, x) < 0, and uε → u
as ε → 0. Then by Theorem 4 we have uε ≤ v and sending ε → 0 completes the proof.

(i) We set uε = u − ε and use the fact that H is proper to get the strict subsolution
condition.

(ii) We set uε = (1 − ε)u + εφ. We can shift φ by a constant, if necessary, so that
φ− u ≤ 0, and so uε ≤ u. Since q 7→ H(q, x) is convex, we have

H(∇Xuε(xi), xi) = H((1 − ε)∇Xu(xi) + ε∇Xφ(xi), xi)
≤ (1 − ε)H(∇Xu(xi), xi) + εH(∇Xφ(xi), xi) ≤ −λε,

for all xi ∈ X \ Γ.
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(iii) Define uε = (1−ε)u+εminX u. Then uε ≤ u. Since G is positively p-homogeneous
we have G(aq) = |a|pG(q) for all a ∈ R and q ∈ Rn, and so

G(∇Xuε(xi)) = G((1 − ε)∇Xu(xi)) = (1 − ε)pG(∇Xu(xi)) ≤ (1 − ε)pf(xi).

Hence, we have
G(∇Xuε(xi)) − f(xi) ≤ − (1 − (1 − ε)p) f(xi) < 0.

If H admits comparison, then we can prove existence of a solution to (4) using the
Perron method. We summarize this in the following result.

Theorem 7. Assume H is monotone, continuous in p and z, and admits comparison.
Assume there exists φ,ψ ∈ F (X) such that ψ ≥ φ = g on Γ and for xi ∈ X \ Γ

H(∇Xφ(xi), φ(xi), xi) ≤ 0 and H(∇Xψ(xi), ψ(xi), xi) ≥ 0.

Then there exists a unique solution u ∈ F (X) of (4) and φ ≤ u ≤ ψ.

The proof of Theorem 7 is very similar to existing results (e.g., Theorem 4 of (Calder,
2018b)). We include the proof in Appendix B for reference.

Remark 8. Notice that none of the results in this section have required graph connectivity,
which is a common assumption in the analysis of PDEs on graphs. Normally, graph con-
nectivity is used in a path to the boundary argument to establish a comparison principle
(see, e.g., (Manfredi et al., 2015; Calder, 2018b, 2019)). Our arguments do not require
graph connectivity to establish comparison. The one place connectivity requirements may
appear is in the construction of the super and subsolutions φ and ψ in the Perron method
in Theorem 7.

2.2 Graph distance functions

The graph distance dG : X ×X → R is defined by

(14) dG(xi, xj) = min
m≥1

min
τ∈Im

n

{
w−1

i,τ1
+

m−1∑
i=1

w−1
τi,τi+1 + w−1

τm,j

}
,

where we recall that In = {1, . . . , n}, and Im
n = (In)m. We use the interpretation that

w−1
ij = ∞ whenever wij = 0, which implicitly restricts the feasible paths to follow edges in

the graph and to connect xi to xj .

Definition 9. We say that the graph G is connected if dG(xi, xj) < ∞ for all xi, xj ∈ X.

We also define the graph distance to a set Γ ⊂ X as follows

dG(xi,Γ) = min
xj∈Γ

dG(xi, xj).

We recall that the graph distance function satisfies a certain graph eikonal equation. The
result is well-known (see, e.g., Lemma 3 of (Bungert et al., 2022)), but usually stated for
symmetric graphs, so we will sketch a proof for completeness.
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Lemma 10 ((Bungert et al., 2022)). Assume G is connected and let Γ ⊂ X. Then the graph
distance function u(x) := dG(x,Γ) is the unique solution of the graph eikonal equation

(15) max
xj∈X

wji(u(xi) − u(xj)) = 1 for all xi ∈ X \ Γ,

satisfying u(xi) = 0 for xi ∈ Γ.

Remark 11. We call (15) the graph eikonal equation, since its solution is a distance
function, in the same way that the continuum eikonal equation (see Section 3) represents
continuum path distances. In the notation of Section 2.1, the graph eikonal equation corre-
sponds to the monotone Hamiltonian H(q, xi) = max1≤j≤nwjiqj − 1.

In terms of computational complexity, the solution of (15) can be computed with Di-
jkstra’s algorithm in O(nK log(n)) time, where we recall K is the maximum (unweighted)
degree of any node in the graph, defined in (3).

Proof [Proof of Lemma 10] The main idea of the proof is to use the fact that u satisfies
the dynamic programming principle

(16) u(xi) = min
xj∈X

(u(xj) + w−1
ji ).

Since the graph is connected, there exists some j with wji > 0, and both u(xj) and u(xi)
are finite. We can rearrange this to obtain

max
xj∈X

(u(xi) − u(xj) − w−1
ji ) = 0.

Since the max is zero, we can multiply by wji inside the brackets above and rearrange to
obtain the result. To prove uniqueness, we can run the proof in the opposite direction,
showing that any solution of (15) satisfies the dynamic programming principle (16), and is
thus the graph distance function dG(·,Γ).

It is common to consider density weighted distances in data science and machine learning
applications. This allows us to make it more expensive for paths to travel through sparse
regions in space, and less expensive to travel within dense regions. This makes points within
clusters closer together, while driving points in different clusters further apart, which is
useful for cluster and semi-supervised learning.

In the context of the graph eikonal equation (15), density weighting can be introduced
by solving the equation with a right hand side, of the form

(17) max
xj∈X

wji(u(xi) − u(xj)) = f(xi) for all xi ∈ X \ Γ.

One can choose, for example, f(xi) = ρ̂(xi)−α for α ≥ 0, where ρ̂ : X → R is any density
estimator (say, a kernel density estimator or a k-nearest neighbor estimator), and α is a
tunable parameter. Since we did not assume the graph was connected in Lemma 10, we
can apply the lemma to (17) with the graph weights wij = f(xj)−1wij to obtain that the
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solution of (17) subject to u(xi) = 0 for xi ∈ Γ corresponds to the density weighted graph
distance

(18) dG,f (xi, xj) := min
m≥1

min
τ∈Im

n

{
w−1

i,τ1
f(xτ1) +

m−1∑
i=1

w−1
τi,τi+1f(xτi+1) + w−1

τm,jf(xτj )
}
.

When f = ρ̂−α with α ≥ 0, the reweighted equation (17) makes it more expensive for paths
to travel through regions where the density, ρ̂, is low, and less expensive where the density
is high. Of course, choosing α ≤ 0 has the opposite effect.

2.2.1 Sensitivity to noise

We mention that the graph eikonal equation (17) is highly sensitive to corruption in the
weight matrix W used to construct the graph. Indeed, we can see this quite easily from the
distance function interpretation, since adding a single spurious edge between two distant
nodes in a graph creates a short-cut that drastically changes the distance function. Thus,
while the graph eikonal equation (17) does indeed approximate geodesic distances on the
underlying data manifold well (see, e.g., (Hwang et al., 2016)), the graph distance lacks
robustness to noise and other corruptions. To illustrate this, we refer to Figure 1a, which
shows how drastically the graph distance function can change with the addition of a few
spurious edges in the graph. The graph is a simple unweighted proximity graph on n = 20000
uniformly distributed random variables on the unit ball. Points within distance ε = 0.05
are connected by an edge with edge weight of 1, and the boundary set Γ is chosen to be all
points within distance ε of the boundary of the ball. From left to right in Figure 1a, we
add 0, 10, 20, and 50 corrupted edges at random, and show the resulting distance functions
to the boundary.

2.3 The p-eikonal equation

The issue with lack of robustness of the graph eikonal equation (17) stems from the form of
the max in the operator, which means its value is highly sensitive to a single outlying edge
weight. We introduce here the p-eikonal equation on a graph, which uses information from
all neighbors, and as we will show below, gives a more robust distance function on a graph.
For p > 0, we define the p-eikonal operator AG,p : F (X) → F (X) by

(19) AG,pu(xi) =
n∑

j=1
wji(u(xi) − u(xj))p

+,

where a+ := max{a, 0} is the positive part. For Γ ⊂ X and f ∈ F (X), we consider the
p-eikonal equation

(20)
{

AG,pu = f, in X \ Γ
u = 0, on Γ.

We show in Figure 1b the robustness experiment described in the last section with the p-
eikonal equation with p = 1. The p-eikonal equation is clearly more robust to the additional
corrupted edges in the graph. After some preliminary results, we prove in Theorem 14,
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(a) Graph distance function with corrupted edges

(b) p-eikonal equation with p = 1 with corrupted edges

Figure 1: Robustness of graph-distance functions compared to the p-eikonal equation under
random corruptions of edges in the graph. We computed each distance function
on an unweighted proximity graph over n = 20000 uniformly distributed random
variables on the unit ball with graph connectivity length scale ε = 0.05. The
boundary points Γ were chosen to be all points within ε of the boundary of the
unit ball, so the distance function gives a notion of data depth. From left to right
we added an increasing number of corrupted edges (0, 10, 50, and 200) with edge
weight wij = 1. We see the solution of the p-eikonal equation is far more robust
under the addition of corrupted edges.

below, a robustness estimate for the p-eikonal equation that explains the experimental
results in Figure 1b.

We first use the theory from Section 2.1 to establish that (20) is well-posed. For q ≥ 0
we denote by Gq the graph Gq = (X,W q) with weights W q = (wq

ij)n
i,j=1. We interpret

00 = 0 so that G0 is the unweighted graph with the same edges as G.

Theorem 12 (Well-posedness). Let p > 0 and f > 0. If G is connected, then (20) has a
unique solution u ∈ F (X), and

(21) K
− 1

p

(
min

X
f

1
p

)
d

G
1
p
(xi,Γ) ≤ u(xi) ≤

(
max

X
f

1
p

)
d

G
1
p
(xi,Γ).

Proof In the notation of Section 2.1, the p-eikonal equation (20) corresponds to the
Hamiltonian

H(q, xi) =
n∑

j=1
wji(qj)p

+ − f(xi).

11
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This Hamiltonian is monotone, and positively p-homogeneous (and also convex in q when
p ≥ 1). Thus, (20) admits comparison by Lemma 6. Hence, existence follows from the
Perron method (Theorem 7), provided we can exhibit a subsolution φ and supersolution ψ
with φ = 0 ≤ ψ on Γ. We can take φ = 0, but we will construct a larger subsolution to
prove the bound (21).

For c > 0 to be determined, let us define

φ(xi) = cd
G

1
p
(xi,Γ).

By Lemma 10, φ solves the graph eikonal equation

max
xj∈X

w
1
p

ji(φ(xi) − φ(xj))+ = c.

Since the right hand side c is positive, we can trivially add the positive part above. Then
we have

AG,pφ(xi) =
n∑

j=1
wji(φ(xi) − φ(xj))p

+

≤ K max
xj∈X

wji(φ(xi) − φ(xj))p
+

= K

(
max
xj∈X

w
1
p

ji(φ(xi) − φ(xj))+

)p

= Kcp.

Setting c = K
− 1

p minX f
1
p , we have AG,pφ ≤ f on X \ Γ, which proves the subsolution

condition. We likewise define
ψ(xi) = Cd

G
1
p
(xi,Γ),

and use a similar argument to find that a choice of C = maxX f
1
p yields the supersolution

condition.

Remark 13. Let up for p > 0 denote the solution of (20), which exists and is unique due
to Theorem 12. By (21) we see that up → dG0(·,Γ) as p → ∞. Thus, the p → ∞ limit of
the p-eikonal equation recovers the unweighted graph distance. By a similar argument, the
solution of AGp,pup = fp will satisfy up → u as p → ∞, where u is the solution of the graph
eikonal equation (17).

2.3.1 Robustness to noise

We now turn to the question of robustness of the p-eikonal equation to graph perturbations.
We consider a perturbation W̃ = W+δW , where the only requirement is that the pertrubed
matrix W̃ is a valid similarity matrix (i.e., has nonnegative entries), and that the graph
remains connected after the pertrubation, so that the p-eikonal equation has a unique
solution. This allow the addition or deletion of edges, or simply the modification of existing
edges. We define A+ = max{A, 0} and A− = min{A, 0} for a matrix A, where the minimum
and maximum are pointwise.

12
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Theorem 14. Assume G = (X,W ) is connected. Let δW ∈ Rn×n such that W̃ := W +
δW ≥ 0 and G̃ := (X, W̃ ) is connected. Let Γ ⊂ X, f ∈ F (X) with f > 0 and let
u, ũ ∈ F (X) satisfy

(22)
{A

G̃,p
ũ(xi) = AG,pu(xi) = f(xi), if xi ∈ X \ Γ

ũ(xi) = u(xi) = 0, if xi ∈ Γ.

Then for all xi ∈ X we have

(23) −
(

max
X\Γ

AδG−,pũ

f

) 1
p

≤ u(xi) − ũ(xi)
min{u(xi), ũ(xi)}

≤
(

max
X\Γ

AδG+,pu

f

) 1
p

,

where δG± = (X,±δW±).

Proof For notational simplicity, let us set

δ = max
X\Γ

AδG+,pu

f
.

Let G+ = (X,W + δW+) and let u− denote the solution of AG+,pu+ = f subject to u+ = 0
on Γ. Notice we have

AG,pu = f = AG+,pu+ ≥ AG,pu+,

and so it follows from comparison that u+ ≤ u. A similar argument shows that u+ ≤ ũ.
We now compute

AG+,pu(xi)
AG+,pu+(xi)

≤
f(xi) + AδG+,pu(xi)

f(xi)
≤ 1 + max

X\Γ

AδG+,pu

f
= 1 + δ

for all xi ∈ X \ Γ. Therefore AG+,pu ≤ AG+,p((1 + δ)
1
pu+) on X \ Γ. By the comparison

principle we have
u ≤ (1 + δ)

1
pu+ ≤ ũ+ δ

1
p min{u, ũ},

as u+ ≤ min{u, ũ}. Therefore u− ũ ≤ δ
1
p min{u, ũ}, which completes the proof of the upper

bound in (23).
To prove the lower bound, we simply swap u and ũ in the argument above, and use that

W = W̃ − δW .

Remark 15. Theorem 14 controls the relative error between u and ũ. We note, in particular,
that the dependence on p shows that p = 1 offers the greatest robustness, and as p → ∞
we lose the robustness completely. We note that there are several ways we can reformulate
Theorem 14. First, let us define the upwind 1-norm of a matrix, relative to the function
u ∈ F (X), by

‖A‖u,1 = max
1≤j≤n

n∑
i=1

|Aij |1u(xj)>u(xi).

13
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We note that ‖A‖u,1 ≤ ‖A‖1, where ‖A‖1 = max1≤j≤n
∑n

i=1 |Aij | is the usual 1-norm. The
norm ‖δW‖u,1 measures the maximum amount of corruption among the incoming edges of
any node from directions where u is smaller (the upwind direction). Then we compute

AδG±,pu(xi) = ±
n∑

j=1
(δwji)±(u(xi)−u(xj))p

+ ≤ u(xi)p
n∑

j=1
|δwji|1u(xi)>u(xj) ≤ u(xi)p‖δW‖u,1.

Thus, for example, the upper bound in Theorem 14 implies that

u(xi) − ũ(xi)
min{u(xi), ũ(xi)}

≤
(

max
X\Γ

u

f
1
p

)
‖δW‖u,1.

Finally, using the upper bound in Theorem 12 we obtain

u(xi) − ũ(xi)
min{u(xi), ũ(xi)}

≤ C

(
fmax

fmin

) 1
p

‖δW‖
1
p

u,1,

where 0 < fmin ≤ f ≤ fmax and C = maxxi∈X d
G

1
p
(xi,Γ). A similar statement holds for

the lower bound in thm:robust.

2.3.2 Computational complexity

The p-eikonal equation (20) can be solved in a similar computational time as the graph
eikonal equation (17) using the fast marching method (Sethian, 1996) on a graph. The
solution of (20) via fast marching requires repeatedly solving the equation

(24)
n∑

j=1
wji(t− sj)p

+ = a,

for the unknown t, given sj , j = 1, . . . , n, and a. Of course, only the sj with wji > 0 need to
be considered. Since the left hand side is increasing in t, the equation can be solved with a
bisection search for any p > 0. Using a tolerance of δ, the complexity of solving the scheme
(24) with a bisection search is O(K log(δ−1)), where K is the maximum unweighted degree
of the graph defined in (3).

When p = 1, we can in fact solve the scheme (24) explicitly without a bisection search.
We first sort the sj in ascending order (and relabel the wji in the same order), and then
note that the solution t will have the form

t = tm :=
a+

∑m
j=1wjisj∑m

j=1wji
,

for some m ≤ n. We can compute all the tm recursively in O(K log(K)) time, and simply
check which is correct, yielding O(K log(K)) complexity for solving (24) when p = 1. A
similar observation can be made for p = 2, except that t = tm will be the solution of a
quadratic equation.

The fast marching method visits each node in the graph exactly once, in order of in-
creasing values of the solution u(xi). When each node is visited, the scheme (24) is solved

14
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at all neighbors of the node. Each time the scheme is solved, a heap2 of size at most n is up-
dated, which takes log(n) time. Thus the fast marching method takes O(nK2 log(K) log(n))
computational time for p = 1 or p = 2, and O(nK2 log(δ−1) log(n)) time for other positive
values of p, where δ is the bisection solver tolerance. In our implementation, of the method,
we use the exact solution of the scheme for p = 1, and the bisection search for all p > 1 (i.e.,
we did not implement the quadratic method described above for p = 2, since we found it
did not improve over the bisection search).

2.3.3 Shortest paths

While the solution of the p-eikonal equation (20) does not represent a true distance function
on the graph, as the eikonal equation (17) does, we can still construct a notion of a shortest
path from any xi ∈ X \ Γ back to the set Γ, by descending on u as quickly as possible. In
particular, given the solution u of (20) and an initial point xi0 ∈ X \ Γ, we select the next
point, for k ≥ 0, to satisfy

xik+1 ∈ argmin
xj∈X

wj,ik
>0

u(xj).

In other words, the next point is the neighbor of xik
with the smallest value of u, which is

the “closest” to Γ. Provided f > 0 and xik
6∈ Γ, there must exist a neighbor with a strictly

smaller value for u, otherwise we would have AG,pu(xik
) = 0 < f(xik

), which contradicts
that u solves the p-eikonal equation (20). Thus, the path chosen in this way is strictly
decreasing in u, that is

u(xi0) > u(xi1) > u(xi2) > · · · .

This guarantees that the path can never visit a node twice, and will eventually terminate
at a point xiT ∈ Γ after some number of steps, T . The shortest paths computed in this
way are shown in red in the data depth experiments in Figures 2 and 3. We also use this
method to compute the shortest paths through real data in Section 6.

2.4 Applications

The solution of the p-eikonal equation (20), while not a true graph distance function, gives
us a type of approximate distance that is useful for data depth and semi-supervised learn-
ing. We discuss these applications initially in this section, and show the results of some
experiments on toy datasets. We postpone experiments with real data to Section 6.

Given a set Γ ⊂ X and a density estimation ρ̂ : X → R, we consider solving the density
reweighted p-eikonal equation

(25)
{

AG,pu = ρ̂−α, in X \ Γ
u = 0, on Γ,

where the exponent α is a tunable parameter. We denote the solution of (25) by Dp,α
Γ (x) =

u(x). When Γ = {x} is a single point we write Dp,α
x .

2. The heap stores the current best guesses of u(xi) for nodes xi that have not been finalized/visited yet.
At each iteration of fast marching, we need to retrieve the node with smallest best guess, which can be
done in O(log(n)) time with a heap data structure. When updating the scheme at all neighbors, the
heap needs to be updated, also taking O(log(n)) time.
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(a) Moon (b) Gaussian (c) Gaussian mixture

Figure 2: The p-eikonal medians and depth on 2D toy datasets with p = 1 (see Section
2.4.1 for definitions). The medians are shown for different values of the density
parameter α in (25) with α = −1 (▽), α = 0 (□) and the α = 1 (4), while
the points are colored by the α = 1 data depth. We also show the shortest path
from the shallowest point to the deepest point in red. We only recommend α ≥ 0
in all our applications; we have shown α = −1 just to illustrate how reverse
density weighting affects the median computation (in this case, it prefers placing
the median in sparse regions of the graph).

(a) Helix (b) Half Sphere (c) Swiss Roll

Figure 3: The p-eikonal data depth on 3D toy datasets sampled from manifolds embedded
in R3. We use p = 1 and α = 1. We note that the swiss roll is more dense on
one end than the other, which explains why the depth is not symmetric along the
length of the roll.

16
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2.4.1 Data depth

We can approach data depth through the framework of the geometric median. Let us recall
that for a collection of points x1, . . . , xn in Rd, the geometric median x∗ is defined by

x∗ ∈ argmin
x∈Rd

n∑
i=1

|xi − x|.

The geometric median generalizes the 1-dimensional median, and inherits many of its ro-
bustness properties (its breakdown point is also 0.5, for example). Given the notion of
depth Dp,α

x , we define the p-eikonal median xp,α by

(26) xp,α ∈ argmin
xj∈X

∑
xi∈X

Dp,α
xj

(xi).

In practice, we approximate the median by restricting xj ∈ X̂ ⊂ X, where X̂ is a much
smaller subset of X chosen at random. In all our experiments we take X̂ to have 5% of the
points in X.

Once we have computed the median xp,α, we obtain a notion of data depth via the
distance to the median

depthp,α(x) = max
y∈X

Dp,α
xp,α

(y) −Dp,α
xp,α

(x).

Figure 2 gives an example of the medians and depths for different toy datasets in 2 dimen-
sions, and for α ∈ {−1, 0, 1}. We use p = 1 in all experiments, and color the point cloud by
the α = 1 depth. We can see that the α = 1 median outperforms the other weighting choices.
In particular, in the Gaussian mixture example, the α = 1 median is completely insensitive
to the addition of the outlying cluster, which has 1

6 of the points in the main cluster. This
insensitivy is desirable in robust statistics, as it ensures that the p-eikonal median, like its
one dimensional counterpart, is robust in the presence of noise, such as outliers (compared,
for example, to the mean, which lacks such robustness). We show in Figure 3 example of
the p-eikonal median and depth on point clouds sampled from submanifolds of R3. In this
case we just show the α = 1 depth. In all images we also show the shortest path, computed
as described in Section 2.3.3, from the shallowest to the deepest point.

Let us remark briefly that the density weighting with α > 0 encourages the median to
be placed in regions of high density, since path lengths are shorter here. In contrast, taking
α < 0 encourages the median to be in regions of low density. We do not recommend using
α < 0 in data depth (or in semi-supervised learning). We also remark that in Figure 3, the
depth on the swiss roll is not symmetric along the length of the roll. This is to be expected
with density weighting, since the swiss roll is more dense near one end of the roll (near the
origin) and less dense on the other end. We postpone examples of the p-eikonal depth on
real data to Section 6.

2.4.2 Semi-supervised learning

Given the approximate distances Dp,α
Γ we can perform semi-supervised learning with a

nearest neighbor approach. Suppose we have k classes, and for each class j = 1, . . . , k, we
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(e) α = −1 (f) α = 0 (g) α = 1 (h) α = 1 with class priors

Figure 4: Example of semi-supervised learning with the density weighted p-eikonal equation
on the two moons dataset. The 4 markers give the locations of the two labeled
points in each example. We show different choices of density reweighting, and the
addition of class priors on the right side.

are provided some labeled nodes Γj ⊂ X. The label prediction ℓi for an unlabeled node
xi 6∈ Γj for any j, is the label of the closest labeled node, under the distance Dp,α

Γ , that is

(27) ℓi = argmin
1≤j≤k

Dp,α
Γj

(xi).

Semi-supervised learning with the p-eikonal equation thus requires solving k separate p-
eikonal equations, which is similar to the one-vs-rest approach in machine learning for
producing a multi-class classifier out of a binary one.

As we shall see in our analysis later in Section 5, distance-based classifiers can be highly
sensitive to the geometry of the clusters, even with appropriate density weighting. In such
cases, we can improve the accuracy of the classifier by incorporating information about
class priors, so that the classifier predicts the correct proportion of nodes in each class. To
do this, we follow (Calder et al., 2020a) and modify the label decision with the addition of
positive weights s1, . . . , sk so that the new label decision is

(28) ℓi = argmin
1≤j≤k

{
sjD

p,α
Γj

(xi)
}
.

By increasing or decreasing the weights sj , we can increase or decrease the number of nodes
predicted in each class. The weights sj can be adjusted incrementally until class balancing
is achieved. We do this with the volume constrained label projection method from (Calder
et al., 2020a).

As a preliminary toy example, we consider classification of the two-moons dataset in
Figure 4. The two rows in the figure correspond to different choices of the labeled nodes.
In each case we take one label per class and indicate its position with a 4. In the first row,
the training nodes are both inliers in their respective clusters, and all choices of weighting
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exponents α give good classification, and the addition of class priors is not needed. In the
second row, the training point for the upper half of the moon is an outlier for that cluster,
and the lower cluster leaks over significantly for α = 0, 1. We see on the right that this
issue can be corrected with the addition of class prior information, to enforce the predicted
classes to have the same size. It is also interesting to note in the second row that the
reverse density weighting α = −1 produces the correct classification without class priors.
This is because the reverse density weighting brings the outlying training point closer to
its cluster. In general, when we do not expect training points to be outliers, we do not
recommend reverse density weighting in semi-supervised learning (and we do not observe
good results with reverse density weighting with real data). In Section 6 we present more in
depth results with semi-supervised learning on real data. We remark here that other types
of perturbation like missing data or undersampled graphs maybe an interesting subject for
future investigations.

3. State-constrained eikonal equations

The continuum limit of the graph p-eikonal equation is a PDE called the state-constrained
eikonal equation, which has the form3

(29)
{

|∇u| = f, in Ω \ Γ
u = 0, on Γ.

Here, u is a function u : Ω → R and ∇u denotes the gradient of u, which is the vector of
partial derivatives ∇u = (ux1 , ux2 , . . . , uxd

) where uxi is the partial derivative in the ith co-
ordinate. The notation |∇u| is the Euclidean norm of ∇u. The equation is state-constrained
because, as we shall see below, the solution represents a geodesic distance function to Γ,
and the set Ω constrains the geodesic paths (e.g., the state).

Remark 16. For the reader who is unfamiliar with PDEs, let us give an example of a
solution to the state constrained equation (29) in the special case that d = 1, f ≡ 1,

Ω = (−2, 2) and Γ = {−1, 1}.

In this case, the solution of (29) should satisfy |u′(x)| = 1 for x 6= ±1, and u(±1) =
0. However, there is no continuously differentiable function with these properties. Indeed,
any such function would have a critical point in the interval (−1, 1), which contradicts the
equation |u′(x)| = 1. This well-known issue with first order Hamilton-Jacobi equations led
to the development of a weak notion of solution for PDEs known as the viscosity solution
(Crandall and Lions, 1983; Crandall et al., 1984), which we define below for the state
constrained problem. In this example, the viscosity solution is given by

(30) u(x) = min{|x+ 1|, |x− 1|},

3. We note that the f in (29) is not the same as the f on the right hand side of the p-eikonal graph equation
(20), as we have absorbed the density and exponent p into a generic right hand side (see (48) for the
precise form of the continuum limit). It is more convenient in this section to treat the general state
constrained equation with any right hand side.
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Figure 5: The viscosity solution discussed in Remark 16 is shown as a solid line, while some
other Lipschitz functions that solve the state-constrained PDE at all points of
differentiability are shown as dotted lines.

and is depicted in Figure 5. Notice that u(x) is exactly the distance function u(x) =
miny∈Γ |x− y| to the set Γ, which is also explained below in this section.

We also remark that the solution u given above satisfies |u′(x)| = 1 at all points x ∈ Ω\Γ
except the point x = 0 where the function is not differentiable. Clearly there are other such
functions that satisfy the equation at all points of differentiability; for example, the function
v(x) = −u(x), or the function

w(x) = min{|x+ 1|, |x− 1|, |x|}.

In fact, if we merely look for a Lipschitz continuous function u satisfying |u′(x)| = 1 at
all points of differentiability and u(±1) = 0, then there are infinitely many such functions
(see Figure 5 for a depiction of some of them). The notion of viscosity solution selects a
particular solution out of this infinite family that is relevant in nearly all applications (in
this case the viscosity solution selects the distance function to Γ). For the interested reader,
the reflected function v(x) = −u(x) is also a viscosity solution, but of the negated equation
−|u′(x)| = −1. Looking below to the definition of viscosity solution, we see that the sign of
the equation is important.

We now proceed to introduce the notion of viscosity solution, and review some properties
of the state-constrained eikonal equation (29). Throughout this section we assume f is
positive and Lipschitz continuous, Ω ⊂ Rd is an open, bounded and connected domain, with
a C1,1 boundary ∂Ω, and Γ ⊂ Ω is a closed set where we specify the homogeneous Dirichlet
boundary conditions. In particular, we are not explicitly specifying boundary conditions on
∂Ω, and instead we consider the state constrained problem (Capuzzo-Dolcetta and Lions,
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1990). For the reader unfamiliar with PDE theory, we note that the assumption that ∂Ω is
C1,1 is equivalent to assuming there is a radius R such that at every boundary point x ∈ ∂Ω,
there exist balls of radius R touching x from inside and outside the domain (Lewicka and
Peres, 2020). This is also equivalent to assuming the reach4 of the boundary ∂Ω, as a
submanifold of Rd is lower bounded by R, and that the unit normal vector to the boundary
is Lipschitz with constant 1

R . Throughout this section we use the C0,1 norm of a function,
which is defined by

(31) ‖u‖C0,1(Ω) = ‖u‖C0(Ω) + Lip(u),

where ‖u‖C0(Ω) = maxx∈Ω |u(x)| and

Lip(u) = sup
x,y∈Ω
x 6=y

|u(x) − u(y)|
|x− y|

.

We review the definition of viscosity solution for the state constrained problem here.

Definition 17. We say that u ∈ C(Ω) is a viscosity subsolution of the state constrained
equation (29) if u ≤ 0 on Γ and if for each x ∈ Ω \ Γ and each φ ∈ C∞(Rd) such that u−φ
has a local maximum at x, we have

(32) |∇φ(x)| ≤ f(x).

We say that v ∈ C(Ω) is a viscosity supersolution of the state constrained equation (29)
if v ≥ 0 on Γ and if for each x ∈ Ω \ Γ and each φ ∈ C∞(Rd) such that v − φ has a local
minimum at x, relative to Ω, we have

(33) |∇φ(x)| ≥ f(x).

We say that u is a viscosity solution of (29) if u is both a viscosity subsolution and a
viscosity supersolution.

Notice the key difference between the super and subsolution definitions is that in state
constrained problems, we require the supersolution property to hold on the boundary ∂Ω,
but do not require the same in the subsolution property. We give a simple justification
for this fact in the connection with the variational interpretation below. For a reference on
viscosity solutions of Hamilton-Jacobi equations and connections to optimal control, we refer
the reader to (Bardi et al., 1997), while as a reference for state constrained Hamilton-Jacobi
equations, we refer to (Capuzzo-Dolcetta and Lions, 1990).

We quote below a comparison principle for state constrained Hamilton-Jacobi equations.

Theorem 18 (Capuzzo-Dolcetta and Lions, 1990). If u is a viscosity subsolution of (29)
and v is a viscosity supersolution, then u ≤ v on Ω.

It follows from Theorem 18 that solutions of (29) are unique. Existence can be obtained
with the Perron method, or through the variational interpretation, which we discuss next.

4. The reach of a ∂Ω is the largest R > 0 such that any point x strictly within distance R of ∂Ω has a
unique closest point in ∂Ω.
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3.1 Variational interpretation

The variational interpretation of (29) states that the solution of (29) is essentially a distance
function on Ω to the set Γ, where distance is weighted by the positive function f . In
particular, we first define the pairwise geodesic distance

(34) df (x, y) := inf
{∫ 1

0
f(γ(t))|γ′(t)| dt : γ ∈ C1([0, 1]; Ω), γ(0) = x, and γ(1) = y

}
.

The distance function df (x, y) has been thoroughly studied in other works, we refer the
reader to (Bardi et al., 1997; Calder, 2018a) for more details, and recall some relevant facts
here. The function df : Ω × Ω → R is a metric, and in particular, it satisfies the triangle
inequality

df (x, z) ≤ df (x, y) + df (y, z).

We denote the distance function df with f ≡ 1 as

dΩ(x, y) = d1(x, y).

The function dΩ : Ω × Ω → R is the geodesic distance function on Ω. Associated with the
geodesic distance function, we define geodesic balls by

BΩ(x, r) = {y ∈ Ω : dΩ(x, y) ≤ r}.

We will have to frequently utilize the geodesic distance dΩ(x, y) in place of the Euclidean
distance |x− y|, and we will need to compare the two distances. Since the boundary ∂Ω is
C1,1 and Ω is connected, there exists a constant C > 0, depending only on ∂Ω such that

(35) |x− y| ≤ dΩ(x, y) ≤ |x− y| + C|x− y|2 for all x, y ∈ Ω.

We refer to Bungert et al. (2022, Proposition 5.1) for a proof of this fact. In fact, if
the domain is convex then we have dΩ(x, y) = |x − y|, but we will not place such strong
assumptions on the domain here. Associated with the geodesic distance, we also define the
geodesic diameter

diam(Ω) = max
x,y∈Ω

dΩ(x, y).

The geodesic diameter is finite, since Ω is connected and ∂Ω is C1,1 (so that (35) holds).
Given the definition of the path distance function df (x, y), we recall that the solution u

of (29) is given by the variational representation formula

(36) u(x) = min
y∈Γ

df (x, y).

Theorem 19. The function u defined in (36) is the unique viscosity solution of (29).

The proof of Theorem 19 is standard in viscosity solution theory, and follows arguments
in (Bardi et al., 1997) closely. We include a proof in Appendix Section B for the interested
reader.
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3.2 Lipschitz regularity

The variational interpretation of the eikonal equation gives a simple proof of Lipschitzness
of the solution u.

Lemma 20. Let u ∈ C(Ω) be the solution of (29). Then u is Lipschitz continuous and

Lip(u) ≤ C‖f‖C0(Ω),

where C depends only on diam(Ω) and the C1,1 bound on ∂Ω.

Proof Since Ω is open and connected, we have dΩ(x, y) < ∞ for all x, y ∈ Ω. By (35),
there exists C̃ > 0 such that

dΩ(x, y) ≤ C̃|x− y| for all x, y ∈ Ω with |x− y| ≤ 1.

For |x− y| ≥ 1 we have

dΩ(x, y) ≤ diam(Ω) ≤ diam(Ω)|x− y|.

Therefore
dΩ(x, y) ≤ C|x− y| for all x, y ∈ Ω,

where C = max{C̃, diam(Ω)}.
Using Theorem 19 and the dynamic programming principle we have

u(y) ≤ u(x) + df (x, y) ≤ u(x) + ‖f‖C0(Ω)dΩ(x, y).

Swapping the roles of x and y yields

|u(x) − u(y)| ≤ ‖f‖C0(Ω)dΩ(x, y) ≤ C‖f‖C0(Ω)|x− y|,

which completes the proof.

3.3 Domain perturbations

In our discrete to continuum convergence theory in Section 4 below, we will need some
results on the stability of the solution u of (29) under perturbations in the domain Ω. Let
us define the signed distance function to the boundary ∂Ω by

d∂Ω(x) =
{

dist(x, ∂Ω), if x ∈ Ω
−dist(x, ∂Ω), otherwise.

For δ ∈ R we also define

(37) Ωδ = {x ∈ Rd : d∂Ω(x) > δ} and ∂δΩ = {x ∈ Rd : |d∂Ω(x)| ≤ δ}.

We also recall the positive and negative part notation δ+ = max{δ, 0} and δ− = min{δ, 0}.
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Theorem 21. For δ ∈ R let uδ ∈ C(Ωδ) denote the viscosity solution of

(38)
{

|∇uδ| = f, in Ωδ \ Γ
uδ = 0, on Γ,

and let u = u0 be the viscosity solution of (29). There exists C, c > 0, depending only on
∂Ω and dist(Γ, ∂Ω), such that whenever |δ| ≤ c the following hold.

(i) Lip(uδ) ≤ C‖f‖C0(Ω), and

(ii) ‖u− uδ‖C0(Ωδ+ ) ≤ Cf−1
min‖f‖C0,1(Ωδ− )δ, where fmin = minΩδ−

f .

Proof Since the boundary ∂Ω is C1,1, the reach of ∂Ω is bounded below by a positive
number R > 0 (in fact, 1

R is the Lipschitz constant of the unit normal vector to the
boundary, we refer to (Lewicka and Peres, 2020) for details ). Hence, within the tube ∂R

2
Ω,

the signed distance function d∂Ω is uniformly C1,1. Hence, the perturbed boundaries ∂Ωδ

are uniformly C1,1 for |δ| ≤ R
4 . Invoking Lemma 20 proves (i). We take c ≤ R

2 smaller, if
necessary, so that Γ ⊂ Ωc, and we assume |δ| ≤ c for the rest of the proof.

We will prove the case of δ > 0; the proof for δ < 0 is very similar. It is clear that
u ≤ uδ on Ωδ, since there are more restrictions on the feasible paths in the variational
interpretation of uδ, compared to u. To prove the estimate in the other direction, that
uδ ≤ u + Cf−1

min‖f‖C0,1(Ω)δ, we use the comparison principle Theorem 18, with a suitable
extension of uδ to Ω. To do this, we define the cutoff function

(39) ζ(x) =


1, if 0 ≤ d∂Ω(x) ≤ R

4
2 − 4

Rd∂Ω(x), if R
4 ≤ d∂Ω(x) ≤ R

2
0, if d∂Ω(x) ≥ R

2 .

The function ζ is a Lipschitz cutoff functions near the boundary ∂Ω. Since |∇d∂Ω| = 1 we
have that |∇ζ| ≤ 4

R = C, where C depends only on ∂Ω, at all points of differentiability of
ζ in ∂R

2
Ω. We now define the extended function w ∈ C(Ω) by

(40) w(x) = uδ(x+ δ ζ(x)∇d∂Ω(x)).

To shed light on the definition of w, we note that ∇d∂Ω gives a natural extension of the unit
inward normal vector ν from the boundary ∂Ω to the tube ∂RΩ. Indeed, ∇d∂Ω agrees with
the unit inward normal vector on the boundary ∂Ω, and in fact, ∇d∂Ω(x) = ν(x∗), where
x∗ ∈ ∂Ω is the closest point to x from the boundary. Thus, we are simply stretching uδ

onto the larger domain Ω.
We first check that w is well-defined. If x ∈ Ω \ Ω R

4
, then ζ(x) = 1 and so

d∂Ω(x+ δ ζ(x)∇d∂Ω(x)) = d∂Ω(x+ δ∇d∂Ω(x)) = d∂Ω(x) + δ > δ.

Hence x+ δ ζ(x)∇d∂Ω(x) ∈ Ωδ belongs to the domain of uδ. If x ∈ Ω R
4

, then

d∂Ω(x+ δζ(x)∇d∂Ω(x)) = d∂Ω(x) + ζ(x)δ ≥ d∂Ω(x) > R

4
≥ δ,
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and we reach the same conclusion. This establishes that w is well-defined.
We will show that w is a viscosity subsolution of a similar equation, and then apply the

comparison principle. To do this, we will use the fact that for a Hamiltonian that is convex
in the gradient (i.e., the eikonal Hamiltonian |∇u|), Lipschitz continuous almost everywhere
subsolutions are also viscosity subsolutions (the same is not true for supersolutions). This is
a standard fact in viscosity solution theory, whose proof can be found in standard references
(Bardi et al., 1997). Thus, we can work directly with ∇w at points of differentiability, instead
of using the test function definition of viscosity solutions.

Let x ∈ Ω, and assume that w and ζ are differentiable and x, and that d∂Ω is twice
differentiable at x. Since d∂Ω is C1,1, it is twice differentiable almost everywhere due to
Radamacher’s Theorem (Evans, 2010), so the set of such x has full measure. Then we
compute

∇w(x) = [I + δ(ζ∇2d∂Ω(x) + ∇ζ(x)) ⊗ ∇d∂Ω(x)]∇uδ(x+ δζ(x)∇d∂Ω(x)).

Taking norms on both sides yields

|∇w(x)| ≤ ‖I + δ(ζ∇2d∂Ω(x) + ∇ζ(x)) ⊗ ∇d∂Ω(x)‖|∇u(x+ δζ(x)∇d∂Ω(x))|

≤
(
1 + δ

(
‖∇2d∂Ω(x)‖ + |∇ζ(x)||∇d∂Ω(x)|

))
f(x+ δζ(x)∇d∂Ω(x)).

Since ∇d∂Ω is Lipschitz continuous in Ω R
2

, we have a uniform bound on ‖∇2d∂Ω‖ at all
points of differentiability. Thus, taking C larger, if necessary, we have

|∇w(x)| ≤ (1 + Cδ)f(x+ δζ(x)∇d∂Ω(x)) ≤ f(x) + C‖f‖C0,1(Ω)δ.

Set v(x) = (1 + Cf−1
min‖f‖C0,1(Ω)δ)u(x). Then v is a viscosity solution of

|∇v(x)| ≥ (1 + Cf−1
min‖f‖C0,1(Ω)δ)f(x) ≥ f(x) + C‖f‖C0,1(Ω)δ.

By the comparison principle Theorem 18 we have w ≤ v, and hence

uδ(x+ δ ζ(x)∇d∂Ω(x)) ≤ u(x) + Cf−1
min‖f‖C0,1(Ω)δ

for all x ∈ Ω. For x ∈ Ωδ we compute

uδ(x) ≤ uδ(x+ δ ζ(x)∇d∂Ω(x)) + Lip(uδ)δ ≤ u(x) + Cf−1
min‖f‖C0,1(Ω)δ + C‖f‖C0(Ω)δ,

which completes the proof.

The domain perturbation result in Theorem 21 was the main objective in this section. Look-
ing forward to Section 4, the domain perturbation allows us to handle the state-constrained
boundary condition in the convergence proofs given in Theorems 22 and 23.

4. Discrete to continuum convergence

In this section we establish a continuum limit for the p-eikonal equation on a random
geometric graph. In particular, we show that even though the p-eikonal equation does
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not correspond to a graph distance function, its continuum limit does in fact recover the
geodesic distance.

Let x1, x2, . . . , xn be a sequence of i.i.d random variables on Ω with density ρ. As in
Section 3 we assume that Ω ⊂ Rd is open, bounded and connected with a C1,1 boundary
∂Ω. We assume the density ρ is Lipschitz continuous and bounded above and below by
positive constants

(41) ρmin ≤ ρ(x) ≤ ρmax

for all x ∈ Ω. The vertices of the graph are denoted by

(42) X := {x1, x2, . . . , xn}.

To define the edges in a random geometric graph, we introduce a kernel η : [0,∞) → [0,∞),
which is Lipschitz and nonincreasing and satisfies η(0) > 0 and η(t) = 0 for t > 1. For
notational convenience, we also assume η has unit mass, so that∫

B(0,1)
η(|z|) dz = 1.

For ε > 0 define ηε(t) := 1
εd η( t

ε) and set σp :=
∫
Rd ηε(|z|)|z1|pdz. Note also that

∫
B(0,ε) ηε(|z|) dz =

1. The normalized weight wij between xi and xj is then given by

(43) wij = ηε(|xi − xj |)
nσpεp

.

Letting Gn,ε denote the graph with edge weights given in (43), the p-eikonal operator AGn,ε,p

is defined in (19), and is given by

(44) AGn,ε,pu(x) := 1
nσpεp

∑
y∈X

ηε
(
|x− y|

)(
u(x) − u(y)

)p
+.

For notational simplicity, we will write An,ε = AGn,ε,p.
For p ≥ 1 we consider the p-eikonal equation with arbitrary right hand side f :

(45)
{

An,εu(x) = f(x) if x ∈ X \ Γ
u(x) = 0 if x ∈ Γ,

where Γ ⊂ X is a subset of the graph nodes where the homogeneous Dirichlet condition
is set, and f : Ω → R. We assume that f is Lipschitz continuous and that there exists
0 < fmin ≤ fmax such that

(46) 0 < fmin ≤ f(x) ≤ fmax for all x ∈ Ω.

We also need to assume Γ is not too close to the topological boundary ∂Ω. In particular,
we assume

(47) dist(Γ, ∂Ω) ≥ R
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where R is the reach of ∂Ω. Other than this, we place no assumptions on Γ. We compare
this graph equation to its continuum counterpart, the state-constrained eikonal equation

(48)
{
ρ|∇u|p = f in Ω \ Γ

u = 0 on Γ.

It is important to point out that the set Γ is the same in (45) and (48), so the solution of
(48) is in fact a random variable, depending on the locations of the points in Γ.

We recall from Section 3 that the solution of the state-constrained eikonal equation (48)
is given by the geodesic distance function u(x) = dg(x,Γ) where g := ρ

− 1
p f

1
p (indeed, we

simply rearrange (48) to read |∇u| = g).
Our main discrete to continuum convergence results are broken into two theorems, which

are summarized below. In the theorem statements we write un,ε for the solution of (45).

Theorem 22. There exists C, c > 0 such that for ε sufficiently small and any 0 < λ ≤ 1
we have

(49) P
(

max
x∈X

(dg(x,Γ) − un,ε(x)) ≤ C(
√
ε+ λ)

)
≥ 1 − 2n exp(−cnεdλ2).

Theorem 23. There exists C, c > 0 such that for ε sufficiently small and any 0 < λ ≤ 1
we have

(50) P
(

max
x∈X

(un,ε(x) − dg(x,Γ)) ≤ C

(√
ε+

(
nεp+d

) 1
p + λ

))
≥ 1 − 3n2 exp(−cnεdλ2).

Remark 24. The constants in both theorems depend on diam(Ω), the C1,1 bound on ∂Ω (or,
equivalently, the reach of ∂Ω), the kernel η (in particular η(0), and the constants r ∈ (0, 1]
and µ > 0 defined in Lemma 32), the dimension d, ρmin, ρmax,Lip(ρ), fmin, fmax,Lip(f),
and p. The dependence on p is uniform over compact sets, that is if p ∈ [1, p0], the constants
depend only on p0.

Remark 25. In order for the result of Theorem 23 to be non-vacuous, we require that

(51) nεd+p � 1.

For the probabilities in both Theorems 22 and 23 to be close to one, for arbitrarily small
choices of λ > 0, we require nεd � log(n). Combining these two restrictions leads to the
following restrictions on ε:

(52)
( log(n)

n

) 1
d

� ε �
( 1
n

) 1
p+d

.

Since p ≥ 1, there is always room between the upper and lower bounds to select a feasible ε.
In general, we believe the upper bound is tight. Figure 6 shows the solution of the p-eikonal
equation with Γ = {0}, giving a cone-like function, for different choices of p and ε. When
the upper bound is violated, we see a spike forming at Γ, and the solution will fail to attain
the boundary condition u = 0 on Γ in the continuum limit (note that this spike is utilized
in our Lipschitz estimate in Section 4.2). We do expect, however, that the upper bound in
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(52) can be relaxed if we place more assumptions on the boundary nodes Γ, so that isolated
points need not be considered. In particular, if Γ contains all points within distance ε of
∂Ω, then the upper bound can be dropped using arguments from (Calder et al., 2020b).

Finally, we note that there is some precedent for bandwidth restrictions like (52) in the
analysis of p-Laplacian semi-supervised learning in the same setting of arbitrarily low label
rates. In (Slepčev and Thorpe, 2019) it was shown that p-Laplacian semi-supervised learning
at low label rates requires the much more restrictive condition

( log(n)
n

) 1
d

� ε �
( 1
n

) 1
p

,

which is only true when p > d.

Remark 26. If we choose λ =
√
ε in Theorems 22 and 23, then we obtain that the conver-

gence rate

max
x∈X

|un,ε(x) − dg(x,Γ)| ≤ C

(√
ε+

(
nεp+d

) 1
p

)
holds with probability at least 1 − 5n2 exp

(
−cnεd+1

)
. If we additionally choose ε so that(

nεp+d
) 1

p ≤
√
ε, that is, we make the restriction

ε ≤
( 1
n

) 2
p+2d

,

then the rate
max
x∈X

|un,ε(x) − dg(x,Γ)| ≤ C
√
ε

holds with the same probability. Without any further assumptions on the boundary set Γ,
we expect the O(

√
ε) rate is optimal, in this general setting.

Remark 27. We expect that the results in this section will hold for other geometric graph
constructions, with minor modifications to the statements. In particular, for real data it
is very common to use k-nearest neighbor graphs, since they have better sparsity properties
and are better adapted to the data. Since we use k-nearest neighbor graphs in all of our
experiments with real data in Section 6, it is worth discussing briefly how the continuum
limit results given in Theorem 22 and 23 would change.

A k-nearest neighbor graph can be viewed as a random geometric graph with weights
given by (43) where the bandwidth ε is locally adapted to be the distance to the kth nearest
neighbor. Let εk(x) denote the distance from x to its kth nearest neighbor, and note that
εk(x) approximately satisfies nεk(x)dρ(x)ωd = k, where ωd = |B(0, 1)| is the measure of the
unit ball.5 Therefore

(53) εk(x) ≈
(

k

nρ(x)ωd

) 1
d

.

5. The quantity εk(x)dρ(x)ωd approximates the probability mass of the ball B(x, εk(x)) when εk(x) is small.
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(a) ε = 0.03, p = 1 (b) ε = 0.06, p = 1 (c) ε = 0.09, p = 1

(d) ε = 0.03, p = 2 (e) ε = 0.06, p = 2 (f) ε = 0.09, p = 2

(g) ε = 0.03, p = 4 (h) ε = 0.06, p = 4 (i) ε = 0.09, p = 4

Figure 6: Simulations showing the solution of the p-eikonal equation with Γ = {0} and
f ≡ 1 (so we do not use density weighting) for different values of p and ε. The
cones are inverted for a better viewing angle. The graph weights are given by
(43) with η(t) = 1[0,1](t). We see the size of the spike, which our theory shows
is nεd+p, increases with ε and decreases with p, as expected. For reference, for
ε = 0.03 each node in the graph has on average approximately 20 neighbors,
while for ε = 0.06 and ε = 0.09 each node has on average 70 and 160 neighbors,
respectively.

The approximation becomes better as n → ∞, and so εk → 0 (depending on the scaling of
k = kn of course). Thus, if we were to normalize the p-eikonal equation on a k-nearest
neighbor graph in the form

(54) 1
nσpεk(x)p

∑
y∈X

ηεk(x)
(
|x− y|

)(
u(x) − u(y)

)p
+ = f(x),
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then the continuum limit would be the same eikonal equation (48). However, this type of
normalization is not common, since one often does not have access to the distances εk(x),
and so a more common normalization would be to replace εk(x)p with

(
k

nωd

) p
d , due to the

approximation (53). In this case, the p-eikonal operator on a k-nearest neighbor graph would
be

(55) An,ku(x) := 1
nσp

(
nωd

k

) p
d ∑

y∈X

ηεk(x)
(
|x− y|

)(
u(x) − u(y)

)p
+ = f(x).

The only difference between (54) and (55), in the continuum limit, is the missing term
ρ(x)

p
d . This suggests that the continuum limit of the equation (55) is given by

ρ1− p
d |∇u|p = f.

The solution of this equation is the weighted geodesic distance dg(x,Γ) where g = ρ
1
d

− 1
d f

1
p .

4.1 Pointwise consistency

The first ingredient for a discrete to continuum limit result is pointwise consistency for the
operator An,ε. As usual, pointwise consistency passes through a nonlocal operator, which
in this case has the form

(56) Aεu(x) := 1
σpεp

∫
Ω
ηε(|x− y|)

(
u(x) − u(y)

)p
+ρ(y)dy,

for u ∈ C0(Ω). Pointwise consistency is obtained in two steps, the first step (Lemma 28)
passes from the discrete operator An,ε to the nonlocal counterpart Aε via concentration of
measure, while the second (Lemma 30) uses Taylor expansion to relate the nonlocal operator
to the eikonal equation.

Lemma 28. (Discrete to nonlocal) Let u : Ω → R be Lipschitz continuous and n ≥ 2. Then
for any λ > 0 we have that

(57) max
x∈X

|An,εu(x) − Aεu(x)| ≤ η(0)ρmax Lip(u)pλ

holds with probability at least

(58) 1 − 2n exp

−η(0)σ2
pρmaxnε

dλ2

4
(
1 + 1

3σpη(0)λ
)
 .

Remark 29. We note that to ensure the probability in (58) is close to 1, when λ > 0 can
be arbitrarily small, we require that

nεd � log(n).

This is the same restriction required for graph connectivity in random geometric graphs
(Penrose, 2003) (more correctly, the restriction for graph connectivity is nεd ≥ C log(n) for

30



Hamilton-Jacobi equations on graphs: semi-supervised learning and data depth

a large enough constant C). In contrast, pointwise consistency for graph Laplacians requires
a more restrictive length scale restriction of the form nεd+2 � log(n) (see, e.g., (Calder
et al., 2020b)), which does not cover smaller bandwidths ε where the graph is still connected.
The reason for this difference is that graph Laplacians are second order differential operators,
and are normalized by an additional factor of ε to obtain meaningful continuum limits.

Proof [Proof of Lemma 28] Fix x ∈ Ω and let Yi := ηε(|x− xi|)(u(x) − u(xi))p
+ so that

(59) An,εu(x) = 1
σpεp

1
n

n∑
i=1

Yi.

Then we compute

(60) E(Yi) =
∫

Ω
ηε(|x− y|)

(
u(x) − u(y)

)p
+ρ(y)dy

and for σ2 := Var(Yi)

σ2 ≤ E(Y 2
i ) =

∫
Ω∩B(x,ε)

η2
ε(|x− y|)

(
u(x) − u(y)

)2p

+ ρ(y)dy(61)

≤ ρmax Lip(u)2pε2p
∫

B(x,ε)
η2

ε(|x− y|)dy

≤ η(0)ρmax Lip(u)2pε2p−d
∫

B(x,ε)
ηε(|x− y|)dy

= η(0)ρmax Lip(u)2pε2p−d.

We also compute

|Yi| = ηε(|x− xi|)|(u(x) − u(xi))p
+| ≤ ηε(|x− xi|)|u(x) − u(xi)|p ≤ η(0) Lip(u)pεp−d.(62)

We now invoke Bernstein’s inequality (see Appendix A) to obtain

(63)
∣∣∣ 1
n

n∑
i=1

Yi −
∫

Ω
ηε(|x− y|)

(
u(x) − u(y)

)p
+ρ(y)dy

∣∣∣ ≤ t

holds with probability at least

1 − 2 exp
(

−nt2

2η(0) Lip(u)pεp−d
(
ρmax Lip(u)pεp + t

3
)) .

Setting t = η(0)ρmaxσp Lip(u)pεpλ for a new parameter λ > 0 we obtain

|An,εu(x) − Aεu(x)| ≤ η(0)ρmax Lip(u)pλ

with probability at least

1 − 2 exp

−η(0)σ2
pρmaxnε

dλ2

2
(
1 + 1

3σpη(0)λ
)
 .
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The rest of proof is completed by conditioning on xi and then applying a union bound.
Indeed, conditioning on xi = x, the other n− 1 points form an i.i.d. sequence, and we note
that

An,εu(xi) := 1
nσpεp

∑
j 6=i

ηε
(
|x− xj |

)(
u(xi) − u(xj)

)p
+

is exactly in the form considered above, except the sum is over n−1 i.i.d. random variables,
instead of n. Thus, we can apply the argument above, replacing n with n − 1, and then
union bounding over i = 1, . . . , n. To simplify the probability we use the bound n−1 ≥ n/2
for n ≥ 2.

We now turn to comparing the nonlocal operator Aε to its continuum counterpart
ρ|∇u|p.

Lemma 30. (Nonlocal to local) There exists C > 0 such that for every ε > 0, p ≥ 1 and
φ ∈ C2(Rd), the following hold.

(i) If dist(x, ∂Ω) ≥ ε then ∣∣∣Aεφ(x) − ρ(x)|∇φ(x)|p
∣∣∣ ≤ CMε,

where
M := σ−1

p ‖ρ‖C0,1

(
p(Lip(φ) + ‖φ‖C2ε)p−1‖φ‖C2 + 1

)
.

(ii) If dist(x, ∂Ω) < ε then

Aεφ(x) − ρ(x)|∇φ(x)|p ≤ CMε.

For convenience, we recall that the C0,1 norm is defined in (31).
Proof We first prove (i). Since B(x, ε) ⊂ Ω, we make the change of variables z := (y−x)/ε
in the nonlocal operator (56) and obtain

(64) Aεφ(x) = 1
σpεp

∫
B(0,1)

η(|z|)
(
φ(x) − φ(x+ εz)

)p
+ρ(x+ εz)dz.

Using the Taylor expansion

(65) ρ(x+ zε) = ρ(x) + O(Lip(ρ)ε)

for |z| ≤ 1 we have

Aεφ(x) = 1
σpεp

∫
B(0,1)

η(|z|)
(
φ(x) − φ(x+ εz)

)p
+ρ(x)dz + O(σ−1

p Lip(ρ)pε)

We now use the Taylor expansion

(66) φ(x) − φ(x+ zε) = εz · ∇φ(x) + O(‖φ‖C2ε2)
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to obtain

(67) Aεφ(x) = 1
σp

∫
B(0,1)

η(|z|)
(
z · ∇φ(x) + O(‖φ‖C2ε)

)p
+ρ(x)dz + O(σ−1

p Lip(ρ)ε).

We make the change of variables y = Az for an orthogonal matrix A such that A∇φ(x) =
|∇φ(x)|ed. Then we have that z · ∇φ(x) = Az ·A∇φ(x) = |∇φ(x)|yd and thereby

(68) Aεφ(x) = 1
σp

∫
B(0,1)

η(|y|)
(
|∇φ(x)|yd + O(‖φ‖C2ε)

)p
+ρ(x)dy + O(σ−1

p Lip(ρ)ε).

We now use the bound
|(a+ t)p

+ − ap
+| ≤ p(|a| + |t|)p−1|t|,

for a, t ∈ R and p ≥ 1, which follows from Taylor expansion, to obtain(
|∇φ(x)|yd + O(‖φ‖C2ε)

)p
+ = |∇φ(x)|p(yd)p

+ + O
(
p(Lip(φ) + ‖φ‖C2ε)p−1‖φ‖C2ε

)
.

Substituting this above, we have

(69) Aεφ(x) = ρ(x)|∇φ(x)|p 1
σp

∫
B(0,1)

η(|y|)(yd)p
+dy +M,

where
|M | ≤ Cσ−1

p

(
p(Lip(φ) + ‖φ‖C2ε)p−1‖φ‖C2ρmax + Lip(ρ)

)
ε.

Applying the definition of σp and using the bound ρmax,Lip(ρ) ≤ ‖ρ‖C0,1 completes the
proof of (i).

The proof of (ii) proceeds in a similar way, except that on the first step, since B(x, ε) ∩
∂Ω 6= ∅, the change of variables z = (y − x)/ε yields

Aεφ(x) ≤ 1
σpεp

∫
B(0,1)

η(|z|)
(
φ(x) − φ(x+ εz)

)p
+ρ(x+ εz)dz,

where ρ is any extension of ρ to Rd that preserves its Lipschitz constant. The proof then
proceeds in the same way as (i).

4.2 Lipschitz regularity

Since we allow for general closed Dirichlet boundary sets Γ ⊂ Ω in our discrete to continuum
framework, our results require an a priori Lipschitz bound for the discrete solutions of (45).
In this section we prove a Lipschitz estimate with the barrier method. The first ingredient
is a lower bounds on the volume of the set BΩ(x, r) ∩ Ω.

Proposition 31. For r > 0 sufficiently small, depending only on ∂Ω, we have

|BΩ(x, r) ∩ Ω| ≥ cdr
d for all x ∈ Ω,

where
cd = ωd−1

2
3d+1

2 (d+ 1)
,

and ωd = |B(0, 1)| denotes the volume of the unit ball in Rd.
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We postpone the proof of Proposition 31 to Appendix B, and proceed to define our
barrier function for the Lipschitz estimate. For y ∈ Rd we define

δy(x) =
{

1, if y = x

0, otherwise.

Our barrier function will be a geodesic cone with a jump (or spike) at the origin. In
particular, we define

vβ,y(x) := β(1 − δy(x)) + dΩ(x, y)

for β > 0 to be determined. We refer the reader to Figure 6 for an illustration of the barrier,
for different size spikes (though the cones are inverted in the figure). The following lemma
establishes the basic supersolution properties of our barrier function.

Lemma 32. Let y ∈ Ω and β > 0. Let r ∈ (0, 1] and µ > 0, such that η(|t|) ≥ µ > 0 for
all |t| ≤ r, and let cd be the constant from Proposition 31. Then for ε sufficiently small,
depending only on ∂Ω, the following results hold:

(i) For x ∈ Ω \B(y, rε) it holds that

(70) P
(

An,εvβ,y(x) ≥ cdµr
d+p

σp22d+p+1

)
≥ 1 − exp

(
− cdrd

22d+3 ρminnε
d
)
.

(ii) For x ∈ Ω ∩B(y, rε) \ {y} we have

(71) An,εvβ,y(x) ≥ µβp

σpnεp+d
.

Proof We will prove the two cases above separately.
(i) Assume x ∈ Ω \B(y, rε) and let us define

D :=
{
z ∈ B(x, rε) : dΩ(x, y) − dΩ(y, z) ≥ rε

2

}
.

Since x 6= y we compute

An,εvβ,y(x) = 1
nσpεp

∑
z∈X

ηε(|x− z|)
(
β + dΩ(x, y) − β(1 − δy(z)) − dΩ(y, z)

)p
+

≥ µ

nσpεp+d

∑
z∈X∩B(x,rε)

(
dΩ(x, y) − dΩ(y, z)

)p
+

≥ µ

nσpεp+d

∑
z∈X∩D

(
rε

2

)p

+

= µrp

2pnσpεd
#(X ∩D).

(72)

To bound the number of points in D ∩ X, we use the Chernoff bound (see Appendix A),
which produces the lower bound

(73) An,εvβ,y(x) ≥ µrp

2p+1σpεd
|D ∩ Ω|
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with probability at least 1 − exp
(
−1

8ρmin|D ∩ Ω|n
)
.

We need to lower bound |D ∩ Ω| to complete the proof. There exists z∗ ∈ ∂B(x, 3rε
4 ) so

that
dΩ(x, y) = dΩ(x, z∗) + dΩ(z∗, y).

Since dΩ(x, z∗) ≥ |x− z∗| = 3rε
4 this becomes

dΩ(x, y) − dΩ(y, z∗) ≥ 3rε
4
.

It follows that BΩ(z∗,
rε
4 ) ⊂ D. Indeed, if dΩ(z, z∗) ≤ rε

4 then by the triangle inequality we
have

dΩ(x, y) − dΩ(y, z) ≥ dΩ(x, y) − dΩ(y, z∗) − dΩ(z, z∗) ≥ 3rε
4

− rε

4
= rε

2
.

Invoking Proposition 31 we have

|D ∩ Ω| ≥ |BΩ(z∗,
rε
4 ) ∩ Ω| ≥ cd

(
rε

4

)d

,

for ε sufficiently small. Combining this with (73) completes the proof of (i).
(ii) Let x ∈ Ω ∩B(y, rε) \ {y}, and compute

An,εvβ,y(x) ≥ ηε(|x− y|)
σpnεp

(
vβ,y(x) − vβ,y(y)

)p
+

≥ µ

σpnεp+d
(β + dΩ(x, y) − dΩ(y, y))p

+

≥ µβp

σpnεp+d
,

(74)

which completes the proof.

We are now equipped to prove global Lipschitzness for the p-eikonal equation. The proof
is based on the barrier method, using the barrier studied in Lemma 32.

Theorem 33. Let u be the solution of (45). Let cd, r, and µ be as defined as in Lemma
32. Define

γp =
(
cdr

d+p

22d+p+1

) 1
p

and cp =
(
σp

µ

) 1
p

.

Then it holds with probability at least 1 − n2 exp
(
− cdrd

22d+3 ρminnε
d
)

that

(75) |u(x) − u(y)| ≤ cpγ
−1
p max

X
f

1
p dΩ(x, y) + γp

(
nεp+d

) 1
p , for all x, y ∈ X.

Proof We choose β in Lemma 32 to satisfy

(76) βp = cdr
d+p

22d+p+1nε
p+d = γp

pnε
p+d,
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and we set vy = vβ,y. Then by Lemma 32 and a union bound, we have that

(77) An,εvy(x) ≥
µγp

p

σp
for all x, y ∈ X,x 6= y,

holds with probability at least 1−n2 exp
(
− cdrd

22d+3 ρminnε
d
)

(note that the n2 comes from the
union bound over the over the pairs (x, y) ∈ X2 with x 6= y, for which there are n2 −n ≤ n2

events ). For the rest of the proof we assume this event holds.
Let us define

C =
(
σp

µγp
p

) 1
p

max
X

f
1
p .

Then since An,ε is p-homogeneous we have

An,ε(Cvy)(x) = CpAn,εvy(x) ≥ max
X

f ≥ An,εu(x),

for all x, y ∈ X with x 6= y. Therefore, Cvy is a supersolution, relative to the function
w(x) := u(x)−u(y) on the set X \(Γ∪{y}). Furthermore, w(y) = u(y)−u(y) = 0 ≤ Cvy(y)
and for x ∈ Γ we have w(x) = u(x)−u(y) ≤ 0−u(y) ≤ 0 ≤ vy(x). Thus, by the comparison
principle (Lemma 6) we have that u(x) − u(y) ≤ Cvy(x) for all x, y ∈ X with x 6= y, which
becomes

u(x) − u(y) ≤
(
σp

µγp
p

) 1
p

max
X

f
1
p dΩ(x, y) + β.

Substituting the definition of β, and reversing the role of x and y to get an absolute value
bound, completes the proof.

Remark 34. Similar to Lemma 20, we can use the bound dΩ(x, y) ≤ C|x − y| to obtain
that the solution u of (45) satisfies

|u(x) − u(y)| ≤ C

(
|x− y| +

(
nεp+d

) 1
p

)
,

with probability at least 1 − n2 exp
(
−cnεd

)
, where C and c are constants whose precise

values are given in Theorem 33.

4.3 Discrete to continuum convergence

We now proceed to prove our main discrete to continuum convergence results. The results
are split into two theorems. Throughout the proof of Theorems 22 and 23, we use the
convention that 0 ≤ c ≤ 1 and C ≥ 1 denote arbitrary constants, whose value can change
from line to line, to reduce the notational burden.
Proof [Proof of Theorem 22] For 0 < δ ≤ c, where c > 0 is given in Theorem 21, let uδ

denote the viscosity solution of (38) over the perturbed domain Ω−δ \Γ, defined in Theorem
21, except with g in place of f on the right hand side. For 0 < θ < 1 and 1 ≤ α ≤ ε−1 we
define the auxiliary function

Φ(x, y) := (1 − θ)uδ(x) − un,ε(y) − α

2
|x− y|2, (x, y) ∈ Ω−δ ×X.
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Let (xα, yα) ∈ Ω−δ ×X be a point at which Φ is maximized over Ω−δ ×X. To see why the
auxiliary function is useful, we first note that the equality

(1 − θ)uδ(x) − un,ε(x) = Φ(x, x)

implies that
max

X
((1 − θ)uδ − un,ε) ≤ max

x∈X
Φ(x, x) ≤ Φ(xα, yα).

We also have
max

X
(uδ − un,ε) ≤ max

X
((1 − θ)uδ − un,ε) + Cθ,

and by Theorem 21 (ii) we have |u − uδ| ≤ Cδ, with C depending on f and ρ, where
u(x) = u0(x) = dg(x,Γ) and g = ρ

− 1
p f

1
p . Therefore, we obtain the bound

(78) max
X

(u− un,ε) ≤ Φ(xα, yα) + C(θ + δ).

Thus, we will obtain an error estimate on u− un,ε by estimating Φ(xα, yα), while choosing
the parameters θ and δ as small as possible, and optimizing over α.

Since Φ(xα, yα) ≥ Φ(yα, yα), we have

(79) (1 − θ)uδ(xα) − un,ε(yα) − α

2
|xα − yα|2 ≥ (1 − θ)uδ(yα) − un,ε(yα).

By Theorem 21 (i), uδ is Lipschitz continuous, and so

(80) α

2
|xα − yα|2 ≤ (1 − θ)(uδ(xα) − uδ(yα)) ≤ C|xα − yα|.

Hence we have the bound

(81) |xα − yα| ≤ Cα−1.

Thus, for α > Cδ−1, we have |xα − yα| < δ and so xα ∈ Ω−δ, since yα ∈ Ω. We assume
α > Cδ−1 throughout the rest of the proof.

We now have several cases to consider.
(i) If yα ∈ Γ, then un,ε(yα) = 0 = uδ(yα) and so

uδ(xα) − un,ε(yα) = uδ(xα) − uδ(yα) ≤ C|xα − yα| ≤ Cα−1.(82)

Therefore
Φ(xα, yα) ≤ uδ(xα) − un,ε(yα) ≤ Cα−1.

(ii) If xα ∈ Γ, then uδ(xα) = 0 = un,ε(xα) and thus

(83) uδ(xα) − un,ε(yα) = un,ε(xα) − un,ε(yα) ≤ 0,

since un,ε ≥ 0. In this case we have Φ(xα, yα) ≤ 0.
(iii) We now consider the case of interior maxima; in particular, that xα ∈ Ω−δ \ Γ and

yα ∈ X \ Γ. Our plan is to choose the parameter θ so that interior maxima are impossible,
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and so this case need not be considered when estimating Φ(xα, yα). We first note that the
map

x 7→ uδ(x) − α

2
(1 − θ)−1|x− yα|2

attains its maximum at xα over the open set Ω−δ. Using φ(x) = α
2 (1 − θ)−1|x − yα|2 as a

test function for the definition of viscosity subsolution for uδ, we have

(84) |pα| ≤ (1 − θ)g(xα),

where pα = α(xα − yα). Likewise, the map y 7→ un,ε(y) + α
2 |xα − y|2 attains its minimum

at yα ∈ X over the point cloud X. Setting ψ(y) := −α
2 |xα − y|2, we see that the inequality

un,ε(yα) − un,ε(y) ≤ ψ(yα) − ψ(y)

holds for all y ∈ X. It follows that

f(yα) = An,εun,ε(yα) ≤ An,εψ(yα).

Using pointwise consistency (Lemmas 28 and 30), and noting that Lip(ψ) ≤ C, ‖ψ‖C2 ≤ Cα,
and ∇ψ(yα) = pα we obtain that

f(yα) ≤ ρ(yα)|pα|p + C(αε+ λ),

holds for any 0 < λ ≤ 1 with probability at least 1 − 2n exp
(
−cnεdλ2

)
, where C depends

on p, σp, ‖ρ‖C0,1 , η(0), and ρmax, and c depends on η(0), σp, and ρmax. Dividing by ρ on
both sides, and combining with (84) yields

g(yα)p ≤ (1 − θ)pg(xα)p + C(αε+ λ).

Since (1 − θ)p ≤ 1 − θ, and gp is Lipschitz, we can rearrange this and use (81) to obtain

θg(xα) − C(αε+ λ) ≤ g(xα)p − g(yα)p ≤ C|xα − yα| ≤ Cα−1.

Since g is bounded below by a positive constant, this yields

θ ≤ C(α−1 + αε+ λ).

Hence, we set
θ = (C + 1)(α−1 + αε+ λ),

so that case (iii) cannot hold.
The proof is completed by noting that cases (i) and (ii) yield Φ(xα, yα) ≤ Cα−1, and so

(78) yields
max

X
(u− un,ε) ≤ C(α−1 + αε+ δ + λ).

Optimizing over α yields α = 1√
ε
. We also made the restriction α ≥ Cδ−1 earlier, so we

choose δ ≥ C
√
ε. Recalling that u(x) = dg(x,Γ) (see Theorem 19), the proof is complete.
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Below we give the proof of Theorem 23. The main difference with the proof of Theorem
22 is that we now need to use the discrete Lipschitz estimate proved in Theorem 33. This
introduces the additional error term nεd+p and modifies the probability with which the
convergence rate holds.
Proof [Proof of Theorem 23] The start of the proof is similar to Theorem 22. For 0 < δ ≤ c,
where c > 0 is given in Theorem 21, let uδ denote the viscosity solution of (38) over the
perturbed domain Ωδ \ Γ, defined in Theorem 21, except with g in place of f on the right
hand side. For 0 < θ ≤ 1 and 1 ≤ α ≤ ε−1 we define the auxiliary function

Φ(x, y) := un,ε(x) − (1 + θ)uδ(y) − α

2
|x− y|2, (x, y) ∈ X × Ωδ.

Let (xα, yα) ∈ X × Ωδ be a point at which Φ is maximized over X × Ωδ. As in the proof of
Theorem 22 we have

max
X∩Ωδ

(un,ε − uδ) ≤ Φ(xα, yα) + Cθ,

where u(x) = u0(x) = dg(x,Γ). By the Lipschitzness of un,ε (see Theorem 33 and Remark
34) and that of uδ (see Theorem 21 (i)), this yields

(85) max
X

(un,ε − u) ≤ Φ(xα, yα) + C

(
θ + δ +

(
nεp+d

) 1
p

)
,

with probability at least 1 − n2 exp(−cnεd). As in the proof of Theorem 22, the proof
proceeds by estimating Φ(xα, yα), while choosing the parameters θ, δ and α appropriately.

Since Φ(xα, yα) ≥ Φ(xα, xα), we have

(86) un,ε(xα) − (1 + θ)uδ(yα) − α

2
|xα − yα|2 ≥ un,ε(xα) − (1 + θ)uδ(xα).

Since uδ is Lipschitz continuous we have

(87) α

2
|xα − yα|2 ≤ (1 + θ)(uδ(xα) − uδ(yα)) ≤ C|xα − yα|.

Hence we obtain the same bound |xα − yα| ≤ Cα−1 as in (81) from Theorem 22. We now
make the restriction δ ≥ 2ε, and Cα−1 ≤ δ so that |xα − yα| ≤ ε. Since yα ∈ Ωδ, this
ensures that

dist(xα, ∂Ω) ≥ dist(yα, ∂Ω) − |xα − yα| ≥ δ − ε ≥ ε.

Therefore B(xα, ε) ⊂ Ω, which will allow us to utilize the pointwise consistency results
(Lemmas 28 and 30) later on in the proof.

We again have several cases to consider.
(i) If yα ∈ Γ, then uδ(yα) = 0 = un,ε(yα) and so by the Lipschitz continuity of un,ε (see

Remark 34) we have

un,ε(xα) − uδ(yα) = un,ε(xα) − un,ε(yα)

≤ C

(
|xα − yα| +

(
nεp+d

) 1
p

)
≤ C

(
α−1 +

(
nεp+d

) 1
p

)
.
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Therefore
Φ(xα, yα) ≤ un,ε(xα) − uδ(yα) ≤ C

(
α−1 +

(
nεp+d

) 1
p

)
.

(ii) If xα ∈ Γ, then un,ε(xα) = 0 = uδ(xα) and thus

(88) un,ε(xα) − uδ(yα) = uδ(xα) − uδ(yα) ≤ 0,

since uδ ≥ 0.
(iii) We now consider the case of xα ∈ X \ Γ and yα ∈ Ωδ \ Γ, and we again show that

θ can be chosen to rule out this case. We first note that the map

y 7→ uδ(y) + α

2
(1 + θ)−1|xα − y|2

attains its minimum at yα ∈ Ωδ relative to the closed set Ωδ. Using φ(x) = −α
2 (1+θ)−1|xα−

y|2 as a test function for the definition of viscosity supersolution for uδ, and recalling from
Definition 17 that the supersolution condition holds even on the boundary ∂Ωδ, we have

(89) |pα| ≥ (1 + θ)g(yα),

where pα = α(xα − yα). Likewise, the map x 7→ un,ε(x) − α
2 |x− yα|2 attains its maximum

at xα ∈ X over the point cloud X. Setting ψ(x) := α
2 |x− yα|2, we see that the inequality

un,ε(xα) − un,ε(x) ≥ ψ(xα) − ψ(x)

holds for all x ∈ X. It follows that

f(xα) = An,εun,ε(xα) ≥ An,εψ(xα).

Since B(xα, ε) ⊂ Ω, we can use pointwise consistency (Lemmas 28 and 30) to obtain

f(xα) ≥ ρ(xα)|pα|p − C(αε+ λ),

holds for any 0 < λ ≤ 1 with probability at least 1 − 2n exp
(
−cnεdλ2

)
, where C depends

on p, σp, ‖ρ‖C0,1 , η(0), and ρmax, and c depends on η(0), σp, and ρmax. Dividing by ρ on
both sides, and combining with (89) yields

g(xα)p + C(αε+ λ) ≥ (1 + θ)pg(yα)p.

Since (1 + θ)p ≥ 1 + θ, and gp is Lipschitz, we can rearrange this and use (81) to obtain

θg(yα)p − C(αε+ λ) ≤ g(xα)p − g(yα)p ≤ C|xα − yα| ≤ Cα−1.

Since g is bounded below by a positive constant, this yields

θ ≤ C(α−1 + αε+ λ).

Hence, we set
θ = (C + 1)(α−1 + αε+ λ),
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so that case (iii) cannot hold.
The proof is completed by combining cases (i) and (ii) with (85) to obtain

max
X

(un,ε − u) ≤ C

(
α−1 + αε+ δ +

(
nεp+d

) 1
p + λ

)
.

Optimizing over α yields α = 1√
ε
. We also made the restrictions δ ≥ 2ε and δ ≥ Cα−1 =

C
√
ε. Thus, we can again choose δ = C

√
ε to satisfy these conditions, which completes the

proof.

5. Continuum analysis

Given the discrete to continuum convergence results from Section 4, which show that the
solution of the p-eikonal equation converges to a density weighted geodesic distance, we now
proceed to study the asymptotic consistency of the p-eikonal equation for both data depth
and semi-supervised learning. Throughout this section we let Ω be an open, connected
domain, and denote by ρ the density function on Ω.

5.1 Background on medians and data depth

Before proceeding with our analysis, we give a background on medians in one dimension,
and their extensions to higher dimensions, as well as various notions of data depth. In one
dimension, the median of data points x1, x2, . . . , xn ∈ R is any point x minimizing

(90)
n∑

i=1
|x− xi|.

If n is odd, then x = xi, where xi is the middle point after sorting the datapoints from
smallest to largest. If n is even, then any x between the two middle points is a valid median.
We obtain a population level version of the median by assuming the xi are i.i.d. with density
ρ and taking the expectation of (90) to obtain the problem

min
x∈R

∫ ∞

−∞
|x− y|ρ(y) dy.

The population level median is thus any x satisfying∫ ∞

x
ρ dy =

∫ x

−∞
ρ dy = 1

2
.

Writing the notion of median in this way gives a natural extension to higher dimensions,
x, xi ∈ Rd, by simply replacing the absolute values in (90) by the Euclidean norm. In this
case, the notion of median is called the geometric median (see, e.g., (Minsker, 2015)). In
fact, in even more general settings, we can replace the norm by any metric d, yielding a
generalized geometric median, or barycenter problem

(91) min
x

n∑
i=1

d(x, xi).
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Here, we may take (X, d) to be a metric space and x, xi ∈ X, but in general, we may
consider (91) even when d is not a true metric. This approach is taken, for example, in the
manifold setting by Fletcher et al. (2009). Our approach to medians follows this generalized
geometric median approach, where the density weighting is involved in the metric d. We
note that the problem (91) has the population level analog

(92) min
x

∫
Rn
d(x, y)ρ(y) dy,

when the data points xi are sampled from a probability distribution ρ.
Our approach to data depth is to first compute the median and then take the depth as

the distance to the median. There are many other approaches to data depth that proceed
in the opposite direction, first defining data depth and then taking the median to be the
deepest point. For example, in one dimension, we can order the points from smallest to
largest, and define the depth as the fewest number of points to the right or left. The
population level version of this in one dimension is

depth(x) = min
{∫ ∞

x
ρ dy,

∫ x

−∞
ρ dy

}
.

Any point with maximum depth is clearly the (population level) median. A natural ex-
tension of this to higher dimensions is the Tukey depth (Tukey, 1975), which is given by

(93) Tukey Depth(x) = min
|v|=1

∫
(y−x)·v>0

ρ dy.

The Tukey depth is also called the half-space depth, and any point with the largest Tukey
depth can be defined as the Tukey Depth Median. Tukey depth has been extended to
graphs (Small, 1997) and metric spaces (Carrizosa, 1996), and at the populuation level has
been recently connected to a nonstandard eikonal equation (Molina-Fructuoso and Murray,
2021). Other notions of data depth include the Monge-Kantorovich depth (Chernozhukov
et al., 2017), depth for curves (de Micheaux et al., 2020), and data peeling (Calder and
Smart, 2020; Calder et al., 2014, 2015; Calder, 2016, 2017; Bou-Rabee and Morfe, 2021;
Cook and Calder, 2022). For a general survey on ordering of multivariate data, we refer to
(Barnett, 1976; Liu et al., 1999).

We mention that when using density weighting in any of these approaches, the type
of weighting that will be effective (i.e., directly proportional, or inversely) depends on
the notion of median or data depth under consideration. For example, in the generalized
geometric median, or barycenter problem (92) that we consider, the density weighting is
performed in the computation of the quantity d(x, y), which measures the distance between
x and y. In this context, inverse density weighting, where paths in high density regions are
very short and inexpensive, while paths in low density regions are longer, encourages the
median to be placed in a high density region that can be quickly accessed from anywhere
in the dataset, which is desirable in many applications. Conversely, if one were to re-weight
the density in the Tukey depth (93), that is, replace ρ by ρ−α for some exponent α, then it
is important to ensure the weighting is proportional to the density (i.e., α < 0).
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5.2 Analysis of median and data depth

We first begin with a continuum analysis of the p-eikonal median and data depth. The
continuum limit of the discrete p-eikonal median (26) is the geodesic geometric median

(94) x∗ ∈ argmin
x∈Ω

∫
Ω
dρ−α(y, {x})ρ(y) dy.

The associated depth is based on the distance to x∗, and is given by

(95) depthα(x) = max
Ω

dρ−α(·, x∗) − dρ−α(x, x∗).

We note that this notion of depth and median is only defined for distributions without com-
pact support Ω. We expect that with some appropriate tail bounds, the case of unbounded
distributions, like normal distributions, could be addressed as well.

We study here the case of a radial density ρ(x) = ρ(|x|) that is radially decreasing on
the unit ball Ω = B(0, 1). In this case we expect the median to be the origin x∗ = 0 for
α > 0. We are able to obtain a partial result for uniform densities.

Lemma 35. If ρ ≡ 1 on Ω = B(0, 1), then x∗ = 0.

Proof Since the ball is convex and ρ ≡ 1, we have that dρ−α(x, y) = |x − y| for all
x, y ∈ B(0, 1). Therefore

x∗ ∈ argmin
x∈B(0,1)

∫
B(0,1)

|x− y| dy.

Let x 6= 0. We first note that

(96)
∫

B(0,1)
|y| dy =

∫
B(x,1)

|x− y| dy =
∫

B(0,1)∩B(x,1)
|x− y| dy +

∫
B(x,1)\B(0,1)

|x− y| dy.

Since x 6= 0 and |B(x, 1) \ B(0, 1)| = |B(0, 1) \ B(x, 1)| and |x − y| < 1 for y ∈ B(x, 1) we
have ∫

B(x,1)\B(0,1)
|x− y| dy <

∫
B(x,1)\B(0,1)

dy =
∫

B(0,1)\B(x,1)
dy.

Since 1 < |x− y| for y ∈ B(0, 1) \B(x, 1) we obtain∫
B(x,1)\B(0,1)

|x− y| dy <
∫

B(0,1)\B(x,1)
|x− y| dy.

Substituting this into (96) yields∫
B(0,1)

|y| dy <
∫

B(0,1)∩B(x,1)
|x− y| dy +

∫
B(0,1)\B(x,1)

|x− y| dy =
∫

B(0,1)
|x− y| dy.

It follows that
0 = argmin

x∈B(0,1)

∫
B(0,1)

|x− y| dy,

which completes the proof.
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Remark 36. We expect that Lemma 35 holds for any radially decreasing density ρ on the
unit ball B(0, 1) provided α ≥ 0, but it appears the proof would be substantially different
than Lemma 35.

If the median is at the origin, and ρ is radial, we can easily compute the depth function
for any choice of density weighting.

Lemma 37. Let α ∈ R. Assume ρ(x) = ρ(|x|) is radial and Ω = B(0, 1). If x∗ = 0 then

depthα(x) =
∫ 1

1−|x|
ρ(r)−α dr.

Proof Since ρ is radial and decreasing, the shortest paths to the origin are straight lines.
Indeed, let x ∈ Ω, x 6= 0, and take any Lipschitz curve γ : [0, 1] → Ω with γ(0) = 0 and
γ(1) = x. The density weighted length of this path is

ℓ :=
∫ 1

0
ρ(|γ(t)|)−α|γ′(t)| dt.

We now use the change of variables r = |γ(t)|, for which |r′(t)| ≤ |γ′(t)|. The change of
variables formula (Evans and Garzepy, 2018, Theorem 3.9) yields

ℓ ≥
∫ 1

0
ρ(|γ(t)|)−α|r′(t)| dt =

∫ |x|

0

 ∑
t : |γ(t)|=r

ρ(r)−α

 dr ≥
∫ |x|

0
ρ(r)−α dr.

Since the integral on the right hand side is the density weighted length of the straight line
γ(t) = x

|x| t, the claim is established.
It follows that

dρ−α(x, 0) =
∫ |x|

0
ρ(r)−α dr.

Hence maxΩ dρ−α(·, 0) =
∫ 1

0 ρ(r)−α dr, which completes the proof.

Remark 38. Note in Lemma 37 that if we take ρ ≡ 1 then depthα(x) = 1 − |x|.

Finally, we show that in one dimension the p-eikonal depth reduces to the usual notion
of median, regardless of the choice of density weighting.

Lemma 39. Assume that d = 1, Ω = (a, b), α ∈ R, and ρ > 0 on Ω. Then the p-eikonal
median x∗ is the median of ρ, that is, it holds that∫ x∗

a
ρ(x) dx =

∫ b

x∗
ρ(x) dx.

Proof In this setting, for any x, y ∈ [a, b] the density weighted distance is given by

dρ−α(y, {x}) =
∫

[x,y]
ρ(t)−α dt.
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Therefore, the continuum p-ekkonal median problem (94) becomes

min
x∈[a,b]

g(x) :=
∫ b

a

∫
[x,y]

ρ(t)−α dt ρ(y) dy.

Differentiating in x we obtain

g′(x) =
∫ b

a

(
1{y≤x}ρ(x)−α − 1{y>x}ρ(x)−α

)
ρ(y) dy

= ρ(x)−α

(∫ x

a
ρ(y) dy −

∫ b

x
ρ(y) dy

)
.

Let xm be the median of ρ, which satisfies∫ xm

a
ρ(y) dy −

∫ b

xm

ρ(y) dy = 0.

Then g′(xm) = 0. For x > xm we clearly have g′(x) > 0, while for x < xm we have g′(x) < 0.
This implies that xm is the global minimizer of g(x), and so x∗ = xm.

5.3 Analysis of semi-supervised learning

In order to study the consistency of semi-supervised learning, we make a clusterability
assumption on the density ρ. We assume there are k classes, represented by the open and
connected sets Ω1, . . . ,Ωk ⊂ Ω, all of which are mutually disjoint. For each j = 1, . . . , k we
let

ρj = min
Ωj

ρ,

and we set Ω̃ = Ω \
⋃k

j=1 Ωj and
δ = max

Ω̃
ρ.

We assume there are closed sets Γj ⊂ Ωj for each j = 1, . . . , k that correspond to the
labeled data for each class. Then the continuum limit of the p-eikonal semi-supervised
learning algorithm from Section 2.4.1 produces the predicted labels ℓ : Ω → {1, . . . , k}
given by

(97) ℓ(x) = argmin
1≤j≤k

dρ−α(x,Γj).

Definition 40. We say that the classification is asymptotically consistent if for all j =
1, . . . , k we have ℓ(x) = j for all x ∈ Ωj.

Note that the definition of asymptotic consistency does not place any conditions on the
label function in the space between classes Ω̃.

We define the Hausdorff distance

H(Γj ,Ωj) = max
x∈Ωj

dΩj (x,Γj),
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which measures how well the labeled set Γj covers the class Ωj via geodesic distance on
Ωj . We note that for any A ⊂ Ω, we take the definition of dA to be dA(x,Γ) = df (x,Γ)
where f = 1A is the indicator function of A, and df is defined in Section 3. Thus, the
feasible paths for dA(x,Γ) can travel anywhere in Ω, but we only measure the length of the
segments of the path that lie in A. We also define the separation of classes i and j by

S(Ωi,Ωj) = min{dΩ̃(x, y) : x ∈ Ωi and y ∈ Ωj}.

The separation S(Ωi,Ωj) is the length of the shortest path from a point in Ωi to a point in
Ωj , where only the distance traveled in Ω̃ is counted.

We now define

(98) βij = δαH(Γj ,Ωj)
ρα

j S(Ωi,Ωj)
.

We will assume that Γj ⊊ Ωj for each j, so that βij > 0 for all i 6= j (otherwise the
classification of class j is trivial). As we shall see in the results below, our clusterability
assumption relates to the smallness of βij . This includes measures of how well Γj covers Ωj ,
the ratio of the background density δ to the class density ρj , and the separation between
classes i and j.

Theorem 41. Let α ≥ 0. If βij < 1 for all i 6= j, then the classification (97) is asymptoti-
cally consistent.

Proof To show that the classification is asymptotically consistent, we need to show that
for all i 6= j we have

(99) dρ−α(x,Γj) < dρ−α(x,Γi) for all x ∈ Ωj .

Let x ∈ Ωj . Since ρ ≥ ρj on Ωj we have

dρ−α(x,Γj) ≤ ρ−α
j dΩ(x,Ωj) ≤ ρ−α

j H(Γj ,Ωj).

Similarly, since ρ ≤ δ in Ω̃ we have

dρ−α(x,Γi) ≥ δ−αS(Ωi,Ωj).

Combining these two inequalities, we have that (99) holds provided

δ−αS(Ωi,Ωj) > ρ−α
j H(Γj ,Ωj)

for all i 6= j. Rearranging we obtain βij < 1, which completes the proof.

We now consider the inclusion of class priors. Given positive weights s1, . . . , sk, the
continuum limit of the class priors label decision (28) is given by

(100) ℓ(x) = argmin
1≤j≤k

{sjdρ−α(x,Γj)}.
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Theorem 42. Let α ≥ 0 and define

[β]∗ = max
C

 ∏
(i,j)∈C

βij

 1
|C|

,

where the maximum is over all cycles of {1, 2, . . . , k}. If [β]∗ < 1, then there exists s ∈ Rk
+

such that the classification (100) is asymptotically consistent.

Remark 43. We note that [β]∗ ≤ maxi 6=j βij, so Theorem 42 shows that the utilization of
class priors leads to a weaker condition for asymptotic consistency. In the case of binary
classification, k = 2, there is only one cycle C = {(1, 2), (2, 1)} and we have

[β]∗ =
√
β12β21.

Thus, Theorem 42 shows that the class priors label decision (100) with the optimal choice
of s is asymptotically consistent for binary classification provided β12β21 < 1, which allows,
for example β12 > 1 and β21 < 1 (or vice versa). This is a much more relaxed condition
compared to the consistency of the label decision (97) without class priors, which requires
both β12 < 1 and β21 < 1. Thus, Theorem 42 shows how class priors are able to correct
for poor separation between classes, poor choices of labeled training data, or low density
clusters, provided there is another class with good clusterability properties to tradeoff with.

The proof of Theorem 42 is based on an alternative characterization of [β]∗.

Proposition 44. We have

(101) [β]∗ = min
s∈Rk

+

max
i 6=j

{s−1
i sjβij}.

Proof Let us define F : Rk
+ → R by

(102) F (s) = max
i 6=j

{s−1
i sjβij}.

We first show that the minimum of F exists. Since only ratios of s appear, we may restrict
to s with s1 = 1. Set βmin = mini 6=j βij and βmax = maxi 6=j βij , and note that βmin > 0 by
assumption. Then F (s) ≥ βminsj for all j. Since inf F ≤ βmax, we may also restrict to s
such that βminsj ≤ βmax, that is sj ≤ βmax/βmin. Likewise, we have F (s) ≥ βmins

−1
i for

all all i, so we may restrict to s with βmins
−1
i ≤ βmax, or si ≥ βmin/βmax. Thus, we have

reduced the problem to minimizing the continuous function F over a compact set, and so
the minimum exists.

Let us write F∗ = mins∈Rk
+
F (s). Let s ∈ Rk

+ be a minimizer of F . Let C be any cycle
in the complete graph on {1, 2, . . . , k}. Then since s−1

i sjβij ≤ F∗ for all i 6= j we have

∏
(i,j)∈C

s−1
i sjβij ≤ F

|C|
∗ .
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In the product on the left side, the weights si all cancel out, since C is a cycle, and so we
have

(103) F∗ ≥

 ∏
(i,j)∈C

βij

 1
|C|

.

Maximizing over C on the right hand side yields one direction of the proposition, that
F∗ ≥ [β]∗.

To prove the other direction, for s ∈ Rk
+ let us define

M(s) = {(i, j) : i 6= j and s−1
i sjβij = F∗}.

For any minimizer s of F , we have #M(s) ≥ 2. Indeed, by the definition of F in (102),
we must have at least one pair (i, j), i 6= j, with s−1

i sjβij = F (s) = F∗, since s is optimal,
so (i, j) ∈ M(s) and #M(s) ≥ 1. Assume now, by way of contradiction, that #M(s) = 1.
Then (j, i) 6∈ M(s) and so s−1

j siβji < F∗. Since #M(s) = 1 we have s−1
k sℓβkℓ < F∗ for all

other pairs (k, ℓ) 6= (i, j). Let ε > 0 and define s̃ ∈ Rk
+ by s̃i = si + ε, s̃j = sj − ε and

s̃k = sk for all k 6∈ {i, j}. For sufficiently small ε > 0 we have

max
i 6=j

{s−1
i sjβij} < F∗ = F (s),

which is a contradiction to the minimality of s. Therefore #M(s) ≥ 2.
We now select a minimizer s for which M(s) contains the fewest number of edges (this

minimizer need not be unique). We claim that M(s) must contain a cycle. To see this, note
that if M(s) did not contain a cycle, then there would exist an edge (i, j) ∈ M(s) such that
(j, k) 6∈ M(s) for all k 6= j. We can therefore decrease sj slightly (similar to the argument
above) to produce another minimizer s̃ with 2 ≤ #M(s̃) < #M(s), which contradicts our
selection of s. Therefore M(s) must contain a cycle.

Let C be a cycle contained in M(s). Then for each (i, j) ∈ C we have s−1
i sjβij = F∗

and so ∏
(i,j)∈C

βij =
∏

(i,j)∈C

s−1
i sjβij = F

|C|
∗ ,

which shows that F∗ ≤ [β]∗, and completes the proof.

We now give the proof of Theorem 42.
Proof [Proof of Theorem 42] To show that the classification is asymptotically consistent,
we need to show that there exist weights sj such that for all i 6= j we have

(104) sjdρ−α(x,Γj) < sidρ−α(x,Γi) for all x ∈ Ωj .

Applying the same arguments as in the proof of Theorem 41, we find that (104) is equivalent
to s−1

i sjβij < 1 for all i 6= j. If [β]∗ < 1, then such weights exist, by Proposition 44, and
the proof is complete.
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Remark 45. We briefly mention that all of the results in this section can be extended to hold
for the finite sample size p-eikonal learning problem, with high probability and additional
error terms, due to the quantitative convergence results given in Theorems 22 and 23. To
avoid additional technicalities, we leave such considerations to future work.

Remark 46. We also mention that all of our results in this section are in the setting of
a dataset that is highly clusterable (due to the assumption that Ωi ∩ Ωj = ∅), so that only
a finite number of labels are required to obtain asymptotic classification consistency in the
continuum limit. In the setting where there is overlap between classes, and the dataset is
not very well-clusterable, then we expect that the number of labels required for asymptotic
consistency of classification should grow to infinity as n → ∞, at some appropriate rate.
We leave investigations of these higher label rate problems to future work.

6. Numerical experiments

We present here some numerical experiments with real datasets. All code for the experi-
ments is available online6 and uses the GraphLearning Python package (Calder, 2022). In
all experiments we solved the graph p-eikonal equation (20) with the fast marching solver
described in Section 2.3.2, implemented in the C programming language. The rest of this
section is broken up into data depth experiments in Section 6.1 and semi-supervised learning
experiments in Section 6.2.

6.1 Data depth

We consider the MNIST dataset of handwritten digits (LeCun et al., 1998) and the Fashion-
MNIST dataset (Xiao et al., 2017), which is a drop-in replacement for MNIST consisting of
10 classes of clothing items. Each dataset has 70,000 grayscale images of size 28 × 28 pixels.
For both datasets we restricted the computations of data depth to each individual class,
which consists of about 7000 datapoints per class. We constructed the graph by connecting
each image to its K-nearest neighbors with Gaussian weights given by

(105) wij = exp
(

−4|xi − xj |2

dK(xi)2

)
,

where xi represents the pixel values for image i, and dK(xi) is the distance between xi and
its Kth nearest neighbor. We used K = 20 in all experiments. The weight matrix was then
symmetrized by replacing W with W +W T .

We computed the p-eikonal median via the definition (26) with p = 1 and α = 2. For
the density estimator ρ̂ we used a k-nearest neighbor density estimator with k = 30. To
speed up the computation of (26), we computed the minimum in (26) over 5% of the nodes
in each class, chosen at random. This takes about 5 minutes to compute for each dataset
(30 seconds per class), which includes the time for the k-nearest neighbor search.

In Figures 7 and 8 we show the deepest images (i.e., the medians) and the shallowest
images (i.e., outliers) from each class for the MNIST and FashionMNIST datasets. We
can see that the deepest handwritten digits are very clean and self-consistent, while the

6. https://github.com/jwcalder/peikonal
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(a) Deepest images (median) (b) Shallowest images (outliers)

Figure 7: Comparison of deepest (median) images to shallowest (outlier) images from each
MNIST digit.

(a) Deepest images (median) (b) Shallowest images (outliers)

Figure 8: Comparison of deepest (median) images to shallowest (outlier) images from each
FashionMNIST class.

shallowest do appear visually to be outliers. For FashionMNIST the deepest images are
again self-similar and very plain, while the shallowest images tend to be more varied and
have patterns on the clothing items. Finally, in Figure 9 we show paths through each
class from the shallowest point to the deepest point, following the gradient descent path
construction from Section 2.3.3.

6.2 Semi-supervised learning

We tested the p-eikonal equation for semi-supervised learning at very low label rates with
p = 1. In addition to MNIST and FashionMNIST, we also tested on CIFAR-10 (Krizhevsky
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(a) MNIST (b) FashionMNIST

Figure 9: Paths from shallowest point to median for each class computed with the gradient
descent method from Section 2.3.3.

10 15 20 25 30 35 40 45 50

Number of labels

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

Poisson Learning

p-eikonal w/o priors (p = 1,α = 0)

p-eikonal with priors (p = 1,α = 0)

p-eikonal w/o priors (p = 1,α = 3)

p-eikonal with priors (p = 1,α = 3)

eikonal w/o priors (p = 1,α = 3)

eikonal with priors (p = 1,α = 3)

(a) MNIST

10 15 20 25 30 35 40 45 50

Number of labels

30

35

40

45

50

55

60

65

70

75

A
cc

u
ra

cy
(%

)

Poisson Learning

p-eikonal w/o priors (p = 1,α = 0)

p-eikonal with priors (p = 1,α = 0)

p-eikonal w/o priors (p = 1,α = 3)

p-eikonal with priors (p = 1,α = 3)

eikonal w/o priors (p = 1,α = 3)

eikonal with priors (p = 1,α = 3)
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Figure 10: Comparison of the p-eikonal equation with p = 1 for semi-supervised image
classification to Poisson learning (Calder et al., 2020a) and the eikonal equation
(17).

et al., 2009). To build good quality graphs for classification, we cannot use the pixel-wise
differences that we did for data depth in Section 6.1. Instead we follow the methods from
(Calder et al., 2020a) and trained autoencoders to extract important features from the data.
For MNIST and FashionMNIST, we used variational autoencoders, similar to (Kingma and
Welling, 2014), while for CIFAR-10 we used the AutoEncoding Transformations architecture
from (Zhang et al., 2019). After training the autoencoders we built K-nearest neighbor
graphs with weights given by (105) over the latent variables using the angular similarity
with K = 20 neighbors. We again used a k-nearest neighbor density estimator with k = 30
neighbors for the reweighting. We refer to (Calder et al., 2020a) for more details about the
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(b) Accuracy vs α

Figure 11: (a) Accuracy results for the p-eikonal equation with p = 1 for semi-supervised
image classification on CIFAR-10, and (b) change in accuracy as the density
reweighting exponent α is adjusted.
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(b) p = 2, α = 3

Figure 12: Comparison of how the classification accuracy depends on the exponent p in the
p-eikonal equation. In both experiments we used density weighting with α = 3.

autoencoder graph construction, which was also used successfully in another recent work
(Miller et al., 2022). After the graphs have been constructed, the classification results on
any of the 3 datasets, which requires solving 10 p-eikonal equations, takes a few seconds to
run the classification for each trial.

We ran 100 trials at 1 label per class up to 5 labels per class, randomly choosing different
labeled data for each trial. We compared against Poisson learning (Calder et al., 2020a)
and the graph distance eikonal equation (17) with the same density reweighting schemes.
We tested the p-eikonal and eikonal equations with and without class priors, as described
in Section 2.4.2. Figure 10 shows the results for MNIST and FashionMNIST, while Figure
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11a shows the results on CIFAR-10. We see that with class priors, p-eikonal learning is
comparable to Poisson learning on MNIST, slightly worse on FashionMNIST and slightly
better on CIFAR-10. We also see that p-eikonal offers a significant improvement over the
shortest path based eikonal classifier, even though we applied the same density reweighting
to both. Since the asymptotic consistency results from Section 5.3 would hold equally
well for the density reweighted eikonal equation, we attribute the improved results to the
robustness properties of the p-eikonal equation (see Theorem 14) to perturbations in graphs,
which are common in real data.

In Figure 11b we show how the accuracy changes for each dataset as the density exponent
is increased. We find a quite surprising result here; without class priors the accuracy
actually decreases when density reweighting is used. A possible explanation of this is that
the density reweighting makes the optimal classification thresholds more dependent on the
cluster geometry and density. Indeed, it is only with the addition of class priors that the
density reweighting can increase the accuracy of the classifier. This is true across all datasets
and validates our theoretical findings in Theorem 42 that class priors can effectively make
use of density reweighting to improve classification results.

Finally, in Figure 12a we show how the accuracy changes as the exponent p in the p-
eikonal equation is changed (here, α = 3). All our previous experiments were with p = 1,
and we find another surprising result here; the classification accuracy improves up to p = 2
without class priors, but is monotonically decreasing when utilizing class priors. This may
simply be due to the fact that the classification accuracy is already very high with class
priors, and very low without. Indeed, in Figure 12b we show the accuracy for p = 2 and
α = 3 for each dataset, and both with and without class priors. We see that even though
p = 2 is better for the classifiers without class priors, the incorporation of class priors still
improves the accuracy significantly.

7. Conclusion

We introduced and studied a family of graph-based distance-type equations called the p-
eikonal equation. We showed that the p-eikonal equation for p = 1 is a robust estimator of
the geodesic density weighted path distance on the underlying Euclidean space, compared
to the standard shortest-path graph distance. We proved that, while the p-eikonal equation
is not a distance function on a graph, it has similar properties and its continuum limit
recovers the geodesic density weighted distance on the underlying Euclidean space, with
quantitative convergence rates. We used the continuum limit theory to prove asymptotic
consistency of data depth and semi-supervised learning with the p-eikonal equation and
then gave some experiments with real data on the MNIST, FashionMNIST, and CIFAR-10
datasets.

Acknowledgments and Disclosure of Funding

The authors thank the Institute for Mathematics and its Applications (IMA), where part
of this work was conducted. JC acknowledges funding from NSF grant DMS:1944925, the
Alfred P. Sloan foundation, and a McKnight Presidential Fellowship.

53



Calder and Ettehad

A. Concentration of measure

We recall here some useful concentration of measure results, the proofs of which can be
found in (Boucheron et al., 2013).

Theorem 47. (Bernstein inequality) Let x1, x2, . . . , xn be a sequence of i.i.d real-valued
random variables with finite expectation µ = E(xi) and variance σ2 = Var(xi), and write
Sn := 1

n

∑n
i=1 xi. Assume there exists b > 0 such that |xi − µ| ≤ b almost surely. Then for

any t > 0 we have

(106) P(Sn − µ ≥ t) ≤ exp
(

− nt2

2(σ2 + bt
3 )

)

Theorem 48. (Chernoff bounds) Let x1, x2, . . . , xn be a sequence of i.i.d Bernoulli random
variables with parameter p ∈ [0, 1]. Then for any δ > 0 we have

(107) P
( n∑

i=1
xi ≥ (1 + δ)np

)
≤ exp

(
− npδ2

2(1 + 1
3δ)

)

and for any 0 ≤ δ < 1 we have

(108) P
( n∑

i=1
xi ≤ (1 − δ)np

)
≤ exp

(
− 1

2
npδ2

)

B. Technical proofs

We include here some technical, but elementary, proofs from the paper.
Proof [Proof of Theorem 7] Since H admits comparison, there is at most one solution of
(4), so we only have to establish existence. We use the Perron method. Let F be the set of
all v ∈ F (X) such that

H(∇Xv(xi), v(xi), xi) ≤ 0 for all xi ∈ X \ Γ

and v = g on Γ. The set F is nonempty, since φ ∈ F . Define the Perron function

u(xi) = sup {v(xi) : v ∈ F} .

Since H admits comparison, we have v ≤ ψ for all v ∈ F , and so φ ≤ u ≤ ψ.
We now claim that

H(∇Xu(xi), u(xi), xi) ≤ 0 for all xi ∈ X \ Γ.

To see this, let xi ∈ X \ Γ and let ε > 0. There exist v ∈ F such that u(xi) ≤ v(xi) + ε. By
definition we have u(xj) ≥ v(xj) for all j, and so ∇Xu(xi) − ε1 ≤ ∇Xv(xi). Therefore

0 ≥ H(∇Xv(xi), v(xi), xi) ≥ H(∇Xu(xi) − ε1, u(xi) − ε, xi).

Sending ε → 0 and using continuity of H establishes the claim.
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We now claim that

H(∇Xu(xi), u(xi), xi) ≥ 0 for all xi ∈ X \ Γ,

which will complete the proof. Assume, by way of contradiction, that

H(∇Xu(xi), u(xi), xi) < 0 for some xi ∈ X \ Γ.

Let ε > 0 and define uε ∈ F (X) by uε(xj) = u(xj) for j 6= i, and uε(xi) = u(xi) + ε. By
continuity of H, there is a sufficiently small ε > 0 so that

H(∇Xuε(xi), uε(xi), xi) ≤ 0.

Furthermore, for any j 6= i, we have uε(xj) = u(xj) and ∇Xuε(xj) ≤ ∇Xu(xj). Since H is
monotone we find that

H(∇Xuε(xj), uε(xj), xj) ≤ H(∇Xu(xj), u(xj), xj) ≤ 0

for j 6= i with xj ∈ X \Γ. Therefore uε ∈ F , which is a contradiction (since uε(xi) > u(xi)),
establishing the claim and completing the proof.

Proof [Proof of Theorem 19] The proof uses the following dynamic programming principle

u(x) = min
y∈∂B(x,r)∩Ω

{u(y) + df (x, y)},

which holds provided B(x, r) ⊂ Ω \ Γ and is immediate to verify. Rearranging the dynamic
programming principle we obtain

(109) max
y∈∂B(x,r)∩Ω

{u(x) − u(y) − df (x, y)} = 0.

Since f is Lipschitz continuous, we have

df (x, y) = f(x)|x− y| + O(|x− y|2),

which, when substituted above, yields

(110) max
y∈∂B(x,r)∩Ω

{
u(x) − u(y)

r

}
= f(x) + O(r).

We now prove the subsolution property. Let x ∈ Ω \ Γ and let φ ∈ C∞(Rd) such that
u− φ has a local maximum at x. Then for r > 0 sufficiently small we have B(x, r) ⊂ Ω \ Γ
and

u(x) − φ(x) ≥ u(y) − φ(y) for all y ∈ B(x, r).

Rearranging we have

u(x) − u(y) ≥ φ(x) − φ(y) for all y ∈ B(x, r).
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Plugging this into (110) yields

max
y∈∂B(x,r)

{
φ(x) − φ(y)

r

}
≤ f(x) + O(r).

Notice the maximum is over only ∂B(x, r), since B(x, r) ⊂ Ω \ Γ. Sending r → 0 yields
|∇φ(x)| ≤ f(x), which is exactly the subsolution property.

To prove the supersolution property, let x ∈ Ω \ Γ and let φ ∈ C∞(Rd) such that u− φ
has a local minimum at x. As above, this means that

u(x) − u(y) ≤ φ(x) − φ(y) for all y ∈ B(x, r) ∩ Ω.

For r > 0 small enough B(x, r) ⊂ Ω \ Γ, and so we can substitute this into (110) to obtain

max
y∈∂B(x,r)∩Ω

{
φ(x) − φ(y)

r

}
≥ f(x) + O(r).

By enlarging the domain in the maximum above, we obtain

max
y∈∂B(x,r)

{
φ(x) − φ(y)

r

}
≥ f(x) + O(r).

We now send r → 0 to obtain |∇φ(x)| ≥ f(x), which completes the proof.

Proof [Proof of Proposition 31] We note that the inequality (35) can be restated as

(111) B(x, r) ⊂ BΩ(x, r + Cr2) and BΩ(x, r) ⊂ B(x, r).

For r > 0 sufficiently small, so that Cr ≤ 1
2 , the first inclusion above implies that

(112) BΩ(x, r) ⊃ B(x, r − Cr2) ⊃ B(x, r
2).

Since the boundary ∂Ω is C1,1, there exists v ∈ Rd with |v| = 1 and c > 0 such that

B(x, r
2) ∩ Ω ⊃ {y ∈ B(x, r

2) : (y − x) · v ≥ cr2}.

For r smaller, so that cr ≤ 1
4 as well, we have

|BΩ(x, r) ∩ Ω| ≥ |B(x, r
2) ∩ Ω|

≥ |{y ∈ B(x, r
2) : (y − x) · v ≥ r

4}|

=
(
r

2

)d

|{z ∈ B(0, 1) : z · v ≥ 1
2}|

= cdr
d

where
cd := 1

2d

∫
B(0,1)∩{z1≥ 1

2 }
dx.
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We finally compute

cd = 1
2d

∫ 1

1
2

ωd−1(1 − z2
1)

d−1
2 dz

≥ ωd−1
2d

∫ 1

1
2

z1(1 − z2
1)

d−1
2 dz

= − ωd−1
2d(d+ 1)

(1 − z2
1)

d+1
2

∣∣∣11
2

= ωd−1
2d(d+ 1)

(3
4

) d+1
2
.

Applying the lower bound 3
4 ≥ 1

2 above to simplify the constant completes the proof.
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