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Abstract—Quantum computing has paved a new way for
faster and more efficient solutions to large-scale, real-world
optimization problems that are challenging for classical comput-
ing systems. For instance, selective traveling salesman problem
(sTSP) that is famous in such fields as logistic optimization and
has attracted increasing attention from the research community,
however, is known as an NP-Hard problem. Solving the sTSP is,
therefore, extremely complex because the optimization function
potentially comes with an exponential number of variables that
cannot be solved in polynomial time in general.

To this end, we propose a quantum annealing framework for
time-bounded and near-optimal solutions for the sTSP, overcom-
ing hardware limits of near-term quantum devices. In particular,
we put forth an efficient Hamiltonian (QUBO) to encode the com-
plex decision-making for the sTSP on noisy intermediate-scale
quantum (NISQ) annealer. Furthermore, experimental results we
obtained on the D-Wave 2000Q quantum hardware demonstrate
that the optimal solutions for several instances can be attained.

Index Terms—Quantum computing, quantum annealing, opti-
mization, and selective TSP.

I. INTRODUCTION

Quantum computing is gaining momentum in finding appli-
cations in a wide range of domains, especially those requiring
time-bounded computations. Fujitsu, a company from Japan,
announced that they will be able to provide commercial
quantum computer for researching purposes from 2023 [1].
D-Wave systems has successfully developed their supercon-
ducting quantum processing unit (QPU) based upon quantum
annealing (QA) principles to solve complex combinatorial op-
timization problems and has provided quantum computing as a
cloud service. Quantum annealing is an optimization approach
that utilizes the quantum adiabatic computation proposed by
Kadowaky and and Nishimori [2] to find the global minimum
of a given objective function.

In order for a optimization problem to be solved in an-
nealing machines, they must be expressed in the form of
quadratic unconstrained binary optimization (QUBO). Several
optimization problems, including partitioning problems, graph
coloring, tree problems or resource allocation problems on
emerging domains such as RAN and network slicing have
been formulated as QUBO problems [3]. Traveling salesman
problem (TSP) is one the most well-known NP-Hard combina-
torial optimization problem in the field of computer science. In
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the classical formulation of TSP, there are n cities and a cost
associated with traveling between each pair of cities. The goal
is to find the shortest Hamiltonian path that passes through
each city exactly once. TSP is simple to formulate, but difficult
to solve, and it has a wide range real-world applications. TSP
is used extensively in vehicle routing, printed circuit board
drilling, gas turbine engine overhauling, X-ray crystallography,
computer wiring, and the order-picking problem in warehouses

[4]. Consequently, more and more TSP variants have been

proposed to deal with constraint specific applications. These

variants are categorized as profit-based, time windows-based,

maximal-based, and kinetic-based TSP [5].

Selective travelling salesman problem (sTSP), which is also
known as the orienteering problem (OP), is one of the critical
problems in the profit-based variants of the TSP. In sTSP, each
destination is associated with a prize. Given a budget that must
not be exceeded, the salesperson is not necessarily required to
visit all the cities, and his mission is to collect as many prizes
as possible. There are some similarities between sTSP and
the Knapsack problem (KP), in which we are given a set of
items with weights and values. The objective is to maximize
the total value of these items under a given weight limit. In
other word, sTSP can be considered as a combination of KP
and TSP, in which the profit collected is maximized with the
traveling salesman being subjected to a time or cost constraint.

Motivation. Many existing works have been proposed to
solve the TSP using quantum annealing. In [6], [7], the authors
have comprehensively described the formulation of classical
TSP into a QUBO problem and its solution using D-Wave
quantum computer. The work of C. Papalitsa et al.,(2019)[8]
proposed a QUBO approach for a variant of TSP, known
as traveling salesman problem with time window (TSPTW).
However, to the best of our knowledge, none of the existing
works address the sTSP with the QUBO framework, or even
quantum annealing in general. We summarize our research
contributions as follows:

o QUBO Formulation. Our proposed framework encompasses
a QUBO formulation for the sTSP, the first of its kind. The
existence of the sTSP formulation is the precondition for its
solution on the state-of-the-art D-Wave quantum annealer.

o Analysis and Assessment. The proposed QUBO formulation
is validated using the 2000Q D-Wave quantum computer.
In addition, we extend our discusses on detailed parameters
that influence results of quantum annealer.



Organization. The rest of this paper is organized as follows. In
811, we provide a background of profit-based TSP, quantum an-
nealing, and how a QUBO is solved in D-Wave hardware. We
discuss details of classical sTSP, and its QUBO formulation
in §III. Evaluation results are presented in §IV. We conclude
and highlight contribution and discuss the future works in §V.

II. PRELIMINARIES

In the following sections, we first provide an overview of
TSP and its variants in §II-A and provide the background of
quantum annealing and how it can be applied in solving an
optimization problem in §II-B.

A. Profit-based variants of the Traveling Salesman Problem

In the TSP, the traveling salesman is given a set of cities,
each pair of cities is connected with a certain cost of traveling.
His goal is to find a minimum Hamiltonian cycle on the graph,
that starts and ends at the same node, visits every other nodes
exactly once in the intermediate, and have the lowest total cost
to travel. The problem can be formulated by using discrete
variable, x;, where z; € {1,2,3,4,--- ,n}, to represent the
order in which each city is visited in the route. Each city must
have its unique position in the tour, i.e. one city cannot be
first and second in the route. In this paper, we adopt a binary
decision variable approach to represent whether a path from
one city to others is in the optimal path or not. The integer
linear programming (ILP) for this problem is defined as:

n n

Obj : minimizez Zcij .y (1)
i=1j=1
J#i

n n
Subject to: me = 1,inj =1

i=1 j=1

1#£] i
where ¢;; is the cost to travel between two cities and x;; is a
binary variable takes the value 1 if the salesman travels from
city ¢ to city j, O otherwise. TSP has a wide range of real-
world applications. Consequently, the body of TSP variants
grow overtime, to serve different fields of optimization. The
variants are surveyed and categorized in [5].

Profit-based TSP is one of the most well-studied area of
variants, where each city is associated with a prize to reward
the traveling salesman when he visits. The strict requirement
of visiting every vertex on the graph is removed. Instead,
contention between of reaping the maximum amount of re-
wards and minimizing the total cost of traveling becomes
the objective. There are three main sub-mutations stems from
these aforementioned parameter settings:

1) Selective Traveling Salesman Problem (sTSP): In this vari-
ant, the total cost of travelling is a bounded parameter as
the salesman is given a budget that cannot be exceeded.
The best route is defined as one that amasses the highest
amount of rewards from the trip. This is also known as the
orienteering problem (OP) [9], [10], and such problem can
have many practical applications in the area of scheduling,
routing, where the resources might not be plentiful.

2) Prize-Collecting TSP (PCTSP): Unlike sTSP where the
total cost is upper-bounded, PCTSP put a lower-bound on
the total reward collected, befitting the alternative name
quota TSP [11]. First proposed by Dell’Amico et al. in
1995 [12], this variant apply a lower threshold in which the
total reward collected by the salesman must be exceeded
as a constraint. With this required quota, it is in the self-
interest of the salesman to find the route that cost him the
lowest to travel. This variant is widely useful, in contexts
such as energy conservation.

3) Profitable Tour Problem (PTP): The travelling salesman is
neither being given a travel budget nor a reward quota.
Instead the given objective is a direct contention between
the total cost and the total reward. The best route is defined
as one that maximizes the profit, i.e. the total collected
rewards after subtracting the total cost of the trip.

Numerous approaches utilizing classical heuristic algorithms
have been presented in the literature for solving profit based
variants can be found in [13], [14]. In this work, we examine
SsTSP variant, reformulate it into the QUBO model, and
implement the solution on quantum annealing platform.

B. Quantum Annealing

As stated by the principle of minimum energy, objects
in a closed system tends to arrange themselves to find the
lowest energy setting of the system, quantum annealing is
an optimization strategy that leverage this quantum physi-
cal phenomenon. D-Wave Systems is the first company to
commercialize a quantum computer based on the principle of
quantum annealing. The rest of this section will describe the
technical details of a D-Wave quantum processing unit, and
the process of running an optimization with it.

The current Chimera topology QPU of D-Wave consists of
2048 superconducting qubits [15], each of them conduct a
circulating current, with the Ising Hamiltonian mathematically
describes the lowest energy state of such quantum system:

H(S) = —Zhisi - ZZquijiSj (2)
i ij<i

where s; € {—1,1} denotes the magnetic dipole moment,
while h; denotes the bias, the configurable external electro-
magnetic field setting, at site i. Entanglement of two sites
(i,4) is facilitated by a coupler between them whose strength
is denoted by J; ;. The lowest energy state of a Hamiltonian
encodes the optimal solution for the corresponding quadratic
minimization problem mingey_y 413~ H(s).

In general, three procedures are involved in optimizing
with a quantum annealer. First, the optimization problem is
framed as the problem of finding the minimal energy state
of a quantum system. Second, the initialization of the QPU
by putting all qubits in a superposition state and embedding
the Ising formulation onto the QPU architecture with the
corresponding the bias and coupler. Finally, the solution to
the problem, which is the lowest energy configuration of an
annealing process, is obtained by measuring the circulating
current of each qubit that has collapsed into the classical state.
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Fig. 1: Logical graph presentation of QUBO and the process
of minor-embedding onto the D-Wave Chimera unit cell.

« QUBO formulation. The QUBO model, which is a preva-
lent tool to address discrete optimization problems, can be
readily demonstrated its equivalence to the Ising model. The
variable setting {—1, +1} of the Ising model is not a natural
formulation for the problem of concern, QUBO, on the other
hand, is generally a much more preferable in model for such
optimization problems and for the field of computer science
in general. With the minimization objective equation:

H(z) = Z Qi + Z Qi jxix; 3)

i<j

where x;,z; € {0,1} is the binary variable, Q;; is the
linear coefficients, and (); ; is the quadratic coefficients in
relation to them. By replacing z; = sigl, QUBO is easily
convertible to Ising and vice versa. QUBO formulation
is acceptable by D-wave quantum annealer, in that, the
bias and coupler is derived from the linear and quadratic

coefficients, respectively.

« QUBO graph. An undirected graph that helps visualize the
embedding of the QUBO formulation and how it is mapped
onto the QPU. To construct the graph, the set of vertices
is plotted from the corresponding variables of the objective
function, each vertex is labeled with the linear coefficient
of the associated variable, while the quadratic coefficient of
two variables labels the edge connecting the vertices.

« QPU architectures. Theoretically, if all qubits in a quantum
annealer are fully coupled with one another, the formulated
QUBO graph can be mapped node-to-qubit perfectly to the
QPU. In reality, however, this is not physically achievable
with current technology. Instead, different coupler-limited
QPU architectures such as the D-Wave’s Chimera is de-
signed implemented to make the most of the current techno-
logical availability and maximize the utility of entanglement.

« Minor-embedding. Due to the previously mentioned limita-
tion of the QPU architecture, the chained-qubits technique is
proposed to transform the QPU topology into the unmatched
QUBAO graph. The chained-qubits are created by strengthen-
ing the coupler between adjacent qubits, binding their state

together. The strongly coupled qubits then behave as one
single qubit throughout the annealing process. This gives an
option of node-to-chained-qubits mapping, on top of node-
to-qubit, thus yields more flexibility to map any graph to
a QPU topology. An example of the graph visualization of
a QUBO formulation and the process of minor-embedding
onto the D-Wave Chimera unit cell is illustrated in Fig. 1.

ITII. STSP QUBO FORMULATION

In this section, we begin with an in-depth discussion of the
STSP, its constraints and their meanings in §III-A. Following
that, we convert these objective and constraints (equalities and
inequalities) to QUBO form, which is presented in §III-B.

A. The classical formulation of sTSP

Let G = (V, A) be a complete undirected graph with a set
of vertex denoted by V' = ({vy,...,v,}) and arc set A =
({(vi,v5) : vs,v; € V,v; # v;}). Let p; be a profit associated
with each vertex v; € V. A cost ¢;; is associated with each
arc (v;,v;) € A. The integer linear programming formulation
of sTSP in [16] introduces the use of binary variable denoted
by x;; as follows:

if a visit to v; is followed by a visit to v;
otherwise.

The comprehensive formal definition of sTSP discussed can
be given as follows:

n—1 n
Obj: maximize Z Z Di - Tij 4)
i=2 j=2
J#i
subject to:
n n—1
D= v =1 5)
j=2 i=1
n—1 n
inkZZxkjgl;Vk:2,...7n—l (6)
i=1 j=2
n—1 n
Z Z Cij * Tij < Crmax (7N
i=1 j=2
3D i <IS|-LVScV,2<|S|<n—1  (8)
i€S jes
J#

In most of the cases, the tour of the salesman begins
and ends at fixed vertex v; and v, (v # wv,). However,
in many applications, v; and v, coincide, which form a
Hamiltonian cycle such as the work from Masani et.al[17].
The difference between these two versions is negligible, and
they are interchangeable by adding or removing a trivial
arc between these two vertices. Constraint (5) employs non-
Hamiltonian tour version of sTSP by making sure that the
tour starts at v; and ends at v,. Constraint (6) ensures that
the salesperson visits and leaves each vertex at most once,
which is consistent with the sSTSP given that the tour does



not have to traverse through all of the cities (or vertices in
the graph). Constraint (7) limits the overall cost of the tour
is less than or equal to a specified C),4, constant. Finally,
we prevent subtour in the route by adding constraint (8). This
constraint is essential to exclude closed loop from the route.
The intuition behind this constraint is that a cycle is formed
in a graph when the number of vertices and arcs are equal. By
ensuring that the number of arcs in each subset S is less than
the number of vertices in S, the subtour can be prevented.

Motivation example. Given a set of four vertex V =
{v1,v2,v3,v4}, choosing a subset S = {vy,vy : vi,v9 €
V,S C V}, constraint (8) become:

o> w<isi-1 9)

i€{1,2} je{1,2}
i
which simplifies to:
T2+ 721 <1

Above example gives an idea how constraint (8) can elimi-
nate subtour in the optimal solution. Either of x15 or x2; takes
the value 1, the other must equal to 0, which helps to eliminate
subtour v; — vp — w1 in S. Unfortunately, the number of
constraints to eliminate subtours is exponential, requiring an
efficient approach. In the following section, we consequently
propose a QUBO formulation of classical sTSP that can be
understood and solved by a quantum annealing computer.

B. QUBO formulation for the sTSP

In the literature, there are several problems that naturally fall
into QUBO form, e.g., the number partitioning problem, the
max-cut problem [18]. This is because solving these problems
involves the use of binary decision variables and relations
between these variables can be represented using linear and
quadratic terms. To formulate a combinatorial problem to
QUBO, we need to convert equality and inequality constraints
into penalties (also called Hamiltonian) of the objective func-
tion. These penalties should be equal to zero for all feasible
solutions to the problem and equal to some positive penalty if
the solution violates constraints of the problem. In the rest of
this section, we will use this approach for the construction of
Hamiltonians for sTSP.

The first Hamiltonian is converted from the original objec-
tive function (4):

n—1 n

H=>" pi -z

i=2 j=2
J#i

(10)

In QUBO, equality Az = b is usually treated by converting
to square expression (Ax — b)? as mentioned [19]. Thus,
equality constraint like (5) and can be easily represented as:

n n—1
Cl :Pl[(l—lei)z—i-(l—z.rjn)Q] (11)
=2 Jj=1

Constraint (6) is separated into two Hamiltonians Cs, Cs:

n—1ln—1 n—1
Co=Py> > mir Y, @k (12)
k=2 i=1 j=1
ko i j#k
n—1 n n
Cs=Ps> > i > i (13)
k=2 i=2 j=2
i#k Ak

Consider a vertex vy, if there is only one visit to this vertex,
the quadratic terms corresponding to vy will be equal to 0. If
the constraint hold for all vertices in V'\{vy, v, }, Hamiltonian
Cs will be equal to 0. Thus, it has no effect on the objective
function. Otherwise, it will add a penalty to the objective
function. This penalty can be calculated as:

TLL!

Tz — )l o

| .
where n;, = Y7 5> i— #y; and n, is the number of
ik

1
vertices that violate the constraint. The same principle applies

to Hamiltonian Cj, it will add a penalty equal to P3(nLn—7L7iv)!

n—1

to the objective function where ny; = 22;21 i=1 Tk and
i

n, 1s the number of vertices that violate the consztraint.

Constraint (7) and (8) are in the form of Az < b. In order
to transform these constraints into the objective function as
penalty terms, we introduce a set of slack binary variables
as mentioned in [20]. The number of slack variables for
constraints (7) and (8) are limited to [1 + logy Cae | and
[1+4logy(|S| —1)] respectively, where [.] is the ceiling func-
tion. Accordingly, the Hamiltonian terms for these constraints
is expressed as:

n—1 n [1+1logs Crnax |
=P S et > F - ol
=1 j=2 k=0
J#i
(15)
[1+log, (|S]—-1)]
Cs=Ps() Y wij+ > 2L\ — |8 +1)?
ieSj;S 1=0
JFT

VSCV,2< |8 <n—1
(16)

Finally, to solve sTSP using QUBO framework, the overall
Hamiltonian Hp is given below:

5
Hp=H-> Ci
k=1
It is notable that in each Hamiltonian terms C;,i =1,--- ,5
having a numerical value P; associated with each equation,
which are referred to as a scalar penalty. These number are
not required, and can be arbitrarily chosen based on different
type of constraints. If the constraint is “hard”, which mean it
has to be absolutely satisfied, then the number scalar number
should be large enough to preclude a violation. On the other
hand, some “soft” constraints accept slight violation. In that
case, a moderate P value is sufficient.

7)



C. Analysis: Problem Complexity

This section is dedicated to examining the intricacies of
problem’s complexity. In our QUBO formulation, the total
number of decision variables is equal to the number of
variables z;; that are used to describe the relation between
v; and v; (v;,v; € V) and the number of slack variables A,
A; in (15) and (16), respectively.

Lemma 1. With the input size n, the total number of decision

variables x;;, denoted by Np = n? —n.
Proof.
n!
Np =——
o =2)!
_nmn—1)(n—2)! (18)
(n—2)!
=n?_—n

The total number of slack variables denoted by Ng is equal
to the number of slack variables A; and \;. Given a constant
Cinaz that must not be exceeded, the number of )\, is equal to
[14+1ogy Cinaz |- Let us consider subtour elimination constraint
(8), the number of constraints is equal to Zﬁg_\iz (ﬁgll),
where (75‘1) is the number of combination when choosing
|S| elements from a set of n — 1 elements. Given a subset S,
the number of slack variables we need to convert inequality
constraint (8) to equality constraint (16) is [1+log,(]S|—1)].
Therefore, the total number of slack variables for subtour
elimination constraint is ZK;ILQ ('@1) [1+logy(|S|—1)]. Ns
can be calculated using the following formula:

n—1
n—1
Ns =1+ 1083 s + 3 (") 1+ boma(lS] - 1)
|S]=2
19)
It takes N+ Ng decision variables to formulate sTSP using

our QUBO formulation. This thus completes the proof. [

IV. EXPERIMENT AND EVALUATION

In the previous section, we proposed a QUBO formulation
designated to determine the feasible solution of sTSP for
execution on a quantum annealing computer. The QUBO
formulation can be solved using either QPU solver or hybrid
Quantum-Classical solver. The process explains how QPU
solves a QUBO problem is discussed in section II-B. Solving
a problem with D-Wave 2000Q QPU is only possible for
problems with a limited number of instances. At a larger
scale, we have the hybrid solver developed by D-Wave system,
which utilizes both classical and quantum computing and
can accept inputs that are considerably larger than QPU
solver. In this section, we presents experimental results derived
from the state-of-art D-Wave 2000Q QPU, along with their
corresponding analytical insights.

Dataset. We apply our QUBO approach to a small number
of cities denoted by n = {5,6,7}. In each test case, the set
of cities is denoted by V' = {vy,--- ,v,}, with the starting
and ending cities fixed to v; and v, respectively. The profit

n var. qubit P;

5% 10% 15% 20% 25%
5 16 84 8.67 17.34 26.01 34.69 43.36
6 25 214 17.25 34.50 51.76 69.01 86.27
7 35 418 20.24 40.48 60.73 80.97 101.21

TABLE I: Number of logical variables, physical qubits corre-
sponding to number of cities n = {5,6, 7} and chain strength
of different P;.

associated with each city and the cost to travel between cities
v; and v; are randomly selected among the values {1,2, 3,4}.
Constant C,, 4 is set at 20% of the total cost to travel between
cities. We arbitrarily choose {5%, 10%, 15%, 20%, 25%} of
the total profit as the scalar penalty P; to all Hamiltonians
mentioned in (17). Once the Q matrix is obtained using our
QUBO formulation, we proceed to embed it onto the Chimera
graph of the D-Wave 2000Q QPU and perform evaluations.

Physical qubits. After embedding, the number of physical
qubits are measured. Table I illustrates the quantity of physical
qubits and logical variables that correspond to each city count.
It can be observed that the number of physical qubits grows
significantly as the number of instances increases. The most
advantageous quantum annealer D-Wave 2000Q QPU supports
2048 qubits and 6016 couplers, our analysis leads us to predict
that the QPU is unable to accommodate the problem when
there are more than 15 instances.

Time. Each Ising Model or QUBO problem sent to the D-
Wave quantum machine is known as a Quantum Machine
Instruction (QMI). The overall QPU time that is allocated to
a QMI is decomposed into three main components as follows:

o Access time: Defined as the time QPU execute a specific
QMI, while being unavailable to other QMIs.

« Sampling time: This is the actual annealing time of the QPU
and can be calculated as follows, R- (T, + T} +Ty), where
R is the number of cycles, T, T,,Ty is the annealing time,
read-out time, delay time of one sample respectively.

o Post Process Time: During the access time of a QMI, QPU
return sets of sample in batches. Total post process time is
the total time to post process these sample batches.

o Range of annealing_time is [0.01,2000] us, Fig. 2 breaks
down the overall QPU time with different number of cities
and the annealing_time parameter in [5, 15, 25, 35, 45] us. In
general, the access time and sampling time grows when we
increase the annealing_time, whereas the total post process
time contributes little to the overall QPU time and remains
mostly the same regardless of annealing_time.

Chain strength. One important parameter of QPU solver is
chain_strength. This parameter specifies the relatives coupling
strength of chains embedded onto the QPU hardware graph.
There is a feature called auto-scaling that divides all terms
by the largest QUBO weight if it larger than chain_strength.
Otherwise, it will divide all the QUBO terms by the value of
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Fig. 2: Performance metrics in D-Wave 2000Q QPU Sampler
with num_reads=1000 and annealing_time ranging from 5 to
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chain_strength parameter. If this parameter is set too large, all
QUBO terms is shrink near to 0. Consequently, it no longer
the original problem because variables become independent.
If chain_strength is too small, the relationship between qubits
dose not work as intended. Thus, the value of this parameter
must be carefully chosen. By default, it is calculated using
uniform_torque_compensation function provided by D-Wave
System. Table I reports the chain strength obtained from
uniform_torque_compensation with different number of cities.
With n = 5, 6, there is no chain break using all P;. However,
when n = 7, all chains break with P; = 5% and majority
of chains break with P; = 10. Thus, with a large number of
instances, we suggest that P; should be set greater than 20%
of the total profit.

Solution. With n = 5, the optimal solution is obtained using
P, = 25% regardless annealing_time. When n = 6, we
discover optimal solution with P = 20% and annealing_time
of 15us. However, when n = 7, the optimal solution cannot be
found using P; = {5%, 10%, 15%, 20%, 25%}. In this case, a
larger scalar constant is required to preserve the relationship
between variables. A good value of P; can be found using
specific domain knowledge and trial-and-error.

V. CONCLUSION AND FUTURE WORK

Going beyond classical computing, this paper encloses a
systematic study of quantum computing for selective trav-
eling salesman problem (sTSP). Specifically, we proposed a
quadratic unconstrained binary optimization (QUBO) formu-
lation to encode the complex decision-making for the sTSP on
noisy intermediate-scale quantum (NISQ) annealer. To derive
the QUBO formulation, all classical constraints of STSP were
formulated into Hamiltonian terms. We have further sampled

the proposed algorithm using D-Wave 2000Q QPU solver.
Experimental results obtained on the D-Wave 2000Q quantum
hardware demonstrate that the optimal solutions for several
instances can be attained.

This work will the lay foundation for further research on
"quantum annealing" for TSP and its variants. We look forward
to extending future research topics that can extend experiments
on a much larger dataset and compare the performance of a
purely quantum annealing approach for sTSP with its conven-
tional counterparts, such as the one using the tabu search. Our
objective is to determine what extent pure quantum annealing
approach can outperform the classical methods.
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