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Abstract—Quantum computing has paved a new way for
faster and more efficient solutions to large-scale, real-world
optimization problems that are challenging for classical comput-
ing systems. For instance, selective traveling salesman problem
(sTSP) that is famous in such fields as logistic optimization and
has attracted increasing attention from the research community,
however, is known as an NP-Hard problem. Solving the sTSP is,
therefore, extremely complex because the optimization function
potentially comes with an exponential number of variables that
cannot be solved in polynomial time in general.

To this end, we propose a quantum annealing framework for
time-bounded and near-optimal solutions for the sTSP, overcom-
ing hardware limits of near-term quantum devices. In particular,
we put forth an efficient Hamiltonian (QUBO) to encode the com-
plex decision-making for the sTSP on noisy intermediate-scale
quantum (NISQ) annealer. Furthermore, experimental results we
obtained on the D-Wave 2000Q quantum hardware demonstrate
that the optimal solutions for several instances can be attained.

Index Terms—Quantum computing, quantum annealing, opti-
mization, and selective TSP.

I. INTRODUCTION

Quantum computing is gaining momentum in finding appli-

cations in a wide range of domains, especially those requiring

time-bounded computations. Fujitsu, a company from Japan,

announced that they will be able to provide commercial

quantum computer for researching purposes from 2023 [1].

D-Wave systems has successfully developed their supercon-

ducting quantum processing unit (QPU) based upon quantum

annealing (QA) principles to solve complex combinatorial op-

timization problems and has provided quantum computing as a

cloud service. Quantum annealing is an optimization approach

that utilizes the quantum adiabatic computation proposed by

Kadowaky and and Nishimori [2] to find the global minimum

of a given objective function.

In order for a optimization problem to be solved in an-

nealing machines, they must be expressed in the form of

quadratic unconstrained binary optimization (QUBO). Several

optimization problems, including partitioning problems, graph

coloring, tree problems or resource allocation problems on

emerging domains such as RAN and network slicing have

been formulated as QUBO problems [3]. Traveling salesman

problem (TSP) is one the most well-known NP-Hard combina-

torial optimization problem in the field of computer science. In
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the classical formulation of TSP, there are n cities and a cost

associated with traveling between each pair of cities. The goal

is to find the shortest Hamiltonian path that passes through

each city exactly once. TSP is simple to formulate, but difficult

to solve, and it has a wide range real-world applications. TSP

is used extensively in vehicle routing, printed circuit board

drilling, gas turbine engine overhauling, X-ray crystallography,

computer wiring, and the order-picking problem in warehouses

[4]. Consequently, more and more TSP variants have been

proposed to deal with constraint specific applications. These

variants are categorized as profit-based, time windows-based,

maximal-based, and kinetic-based TSP [5].

Selective travelling salesman problem (sTSP), which is also

known as the orienteering problem (OP), is one of the critical

problems in the profit-based variants of the TSP. In sTSP, each

destination is associated with a prize. Given a budget that must

not be exceeded, the salesperson is not necessarily required to

visit all the cities, and his mission is to collect as many prizes

as possible. There are some similarities between sTSP and

the Knapsack problem (KP), in which we are given a set of

items with weights and values. The objective is to maximize

the total value of these items under a given weight limit. In

other word, sTSP can be considered as a combination of KP

and TSP, in which the profit collected is maximized with the

traveling salesman being subjected to a time or cost constraint.

Motivation. Many existing works have been proposed to

solve the TSP using quantum annealing. In [6], [7], the authors

have comprehensively described the formulation of classical

TSP into a QUBO problem and its solution using D-Wave

quantum computer. The work of C. Papalitsa et al.,(2019)[8]

proposed a QUBO approach for a variant of TSP, known

as traveling salesman problem with time window (TSPTW).

However, to the best of our knowledge, none of the existing

works address the sTSP with the QUBO framework, or even

quantum annealing in general. We summarize our research

contributions as follows:

• QUBO Formulation. Our proposed framework encompasses

a QUBO formulation for the sTSP, the first of its kind. The

existence of the sTSP formulation is the precondition for its

solution on the state-of-the-art D-Wave quantum annealer.

• Analysis and Assessment. The proposed QUBO formulation

is validated using the 2000Q D-Wave quantum computer.

In addition, we extend our discusses on detailed parameters

that influence results of quantum annealer.



Organization. The rest of this paper is organized as follows. In

§II, we provide a background of profit-based TSP, quantum an-

nealing, and how a QUBO is solved in D-Wave hardware. We

discuss details of classical sTSP, and its QUBO formulation

in §III. Evaluation results are presented in §IV. We conclude

and highlight contribution and discuss the future works in §V.

II. PRELIMINARIES

In the following sections, we first provide an overview of

TSP and its variants in §II-A and provide the background of

quantum annealing and how it can be applied in solving an

optimization problem in §II-B.

A. Profit-based variants of the Traveling Salesman Problem

In the TSP, the traveling salesman is given a set of cities,

each pair of cities is connected with a certain cost of traveling.

His goal is to find a minimum Hamiltonian cycle on the graph,

that starts and ends at the same node, visits every other nodes

exactly once in the intermediate, and have the lowest total cost

to travel. The problem can be formulated by using discrete

variable, xi, where xi ∈ {1, 2, 3, 4, · · · , n}, to represent the

order in which each city is visited in the route. Each city must

have its unique position in the tour, i.e. one city cannot be

first and second in the route. In this paper, we adopt a binary

decision variable approach to represent whether a path from

one city to others is in the optimal path or not. The integer

linear programming (ILP) for this problem is defined as:

Obj : minimize

n
∑

i=1

n
∑

j=1
j ̸=i

cij · xij (1)

Subject to:

n
∑

i=1
i̸=j

xij = 1,
n
∑

j=1
j ̸=i

xij = 1

where cij is the cost to travel between two cities and xij is a

binary variable takes the value 1 if the salesman travels from

city i to city j, 0 otherwise. TSP has a wide range of real-

world applications. Consequently, the body of TSP variants

grow overtime, to serve different fields of optimization. The

variants are surveyed and categorized in [5].

Profit-based TSP is one of the most well-studied area of

variants, where each city is associated with a prize to reward

the traveling salesman when he visits. The strict requirement

of visiting every vertex on the graph is removed. Instead,

contention between of reaping the maximum amount of re-

wards and minimizing the total cost of traveling becomes

the objective. There are three main sub-mutations stems from

these aforementioned parameter settings:

1) Selective Traveling Salesman Problem (sTSP): In this vari-

ant, the total cost of travelling is a bounded parameter as

the salesman is given a budget that cannot be exceeded.

The best route is defined as one that amasses the highest

amount of rewards from the trip. This is also known as the

orienteering problem (OP) [9], [10], and such problem can

have many practical applications in the area of scheduling,

routing, where the resources might not be plentiful.

2) Prize-Collecting TSP (PCTSP): Unlike sTSP where the

total cost is upper-bounded, PCTSP put a lower-bound on

the total reward collected, befitting the alternative name

quota TSP [11]. First proposed by Dell’Amico et al. in

1995 [12], this variant apply a lower threshold in which the

total reward collected by the salesman must be exceeded

as a constraint. With this required quota, it is in the self-

interest of the salesman to find the route that cost him the

lowest to travel. This variant is widely useful, in contexts

such as energy conservation.

3) Profitable Tour Problem (PTP): The travelling salesman is

neither being given a travel budget nor a reward quota.

Instead the given objective is a direct contention between

the total cost and the total reward. The best route is defined

as one that maximizes the profit, i.e. the total collected

rewards after subtracting the total cost of the trip.

Numerous approaches utilizing classical heuristic algorithms

have been presented in the literature for solving profit based

variants can be found in [13], [14]. In this work, we examine

sTSP variant, reformulate it into the QUBO model, and

implement the solution on quantum annealing platform.

B. Quantum Annealing

As stated by the principle of minimum energy, objects

in a closed system tends to arrange themselves to find the

lowest energy setting of the system, quantum annealing is

an optimization strategy that leverage this quantum physi-

cal phenomenon. D-Wave Systems is the first company to

commercialize a quantum computer based on the principle of

quantum annealing. The rest of this section will describe the

technical details of a D-Wave quantum processing unit, and

the process of running an optimization with it.

The current Chimera topology QPU of D-Wave consists of

2048 superconducting qubits [15], each of them conduct a

circulating current, with the Ising Hamiltonian mathematically

describes the lowest energy state of such quantum system:

H(s) = −
∑

i

hisi −
∑

i

∑

j<i

Ji,jsisj (2)

where si ∈ {−1, 1} denotes the magnetic dipole moment,

while hi denotes the bias, the configurable external electro-

magnetic field setting, at site i. Entanglement of two sites

(i, j) is facilitated by a coupler between them whose strength

is denoted by Ji,j . The lowest energy state of a Hamiltonian

encodes the optimal solution for the corresponding quadratic

minimization problem mins∈{−1,+1}n H(s).
In general, three procedures are involved in optimizing

with a quantum annealer. First, the optimization problem is

framed as the problem of finding the minimal energy state

of a quantum system. Second, the initialization of the QPU

by putting all qubits in a superposition state and embedding

the Ising formulation onto the QPU architecture with the

corresponding the bias and coupler. Finally, the solution to

the problem, which is the lowest energy configuration of an

annealing process, is obtained by measuring the circulating

current of each qubit that has collapsed into the classical state.
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Fig. 1: Logical graph presentation of QUBO and the process

of minor-embedding onto the D-Wave Chimera unit cell.

• QUBO formulation. The QUBO model, which is a preva-

lent tool to address discrete optimization problems, can be

readily demonstrated its equivalence to the Ising model. The

variable setting {−1,+1} of the Ising model is not a natural

formulation for the problem of concern, QUBO, on the other

hand, is generally a much more preferable in model for such

optimization problems and for the field of computer science

in general. With the minimization objective equation:

H(x) =
∑

i

Qi,ixi +
∑

i<j

Qi,jxixj (3)

where xi, xj ∈ {0, 1} is the binary variable, Qi,i is the

linear coefficients, and Qi,j is the quadratic coefficients in

relation to them. By replacing xi =
si+1
2 , QUBO is easily

convertible to Ising and vice versa. QUBO formulation

is acceptable by D-wave quantum annealer, in that, the

bias and coupler is derived from the linear and quadratic

coefficients, respectively.

• QUBO graph. An undirected graph that helps visualize the

embedding of the QUBO formulation and how it is mapped

onto the QPU. To construct the graph, the set of vertices

is plotted from the corresponding variables of the objective

function, each vertex is labeled with the linear coefficient

of the associated variable, while the quadratic coefficient of

two variables labels the edge connecting the vertices.

• QPU architectures. Theoretically, if all qubits in a quantum

annealer are fully coupled with one another, the formulated

QUBO graph can be mapped node-to-qubit perfectly to the

QPU. In reality, however, this is not physically achievable

with current technology. Instead, different coupler-limited

QPU architectures such as the D-Wave’s Chimera is de-

signed implemented to make the most of the current techno-

logical availability and maximize the utility of entanglement.

• Minor-embedding. Due to the previously mentioned limita-

tion of the QPU architecture, the chained-qubits technique is

proposed to transform the QPU topology into the unmatched

QUBO graph. The chained-qubits are created by strengthen-

ing the coupler between adjacent qubits, binding their state

together. The strongly coupled qubits then behave as one

single qubit throughout the annealing process. This gives an

option of node-to-chained-qubits mapping, on top of node-

to-qubit, thus yields more flexibility to map any graph to

a QPU topology. An example of the graph visualization of

a QUBO formulation and the process of minor-embedding

onto the D-Wave Chimera unit cell is illustrated in Fig. 1.

III. STSP QUBO FORMULATION

In this section, we begin with an in-depth discussion of the

sTSP, its constraints and their meanings in §III-A. Following

that, we convert these objective and constraints (equalities and

inequalities) to QUBO form, which is presented in §III-B.

A. The classical formulation of sTSP

Let G = (V,A) be a complete undirected graph with a set

of vertex denoted by V = ({v1, ..., vn}) and arc set A =
({(vi, vj) : vi, vj ∈ V, vi ̸= vj}). Let pi be a profit associated

with each vertex vi ∈ V . A cost cij is associated with each

arc (vi, vj) ∈ A. The integer linear programming formulation

of sTSP in [16] introduces the use of binary variable denoted

by xij as follows:

xij =

{

1, if a visit to vi is followed by a visit to vj

0, otherwise.

The comprehensive formal definition of sTSP discussed can

be given as follows:

Obj: maximize

n−1
∑

i=2

n
∑

j=2
j ̸=i

pi · xij (4)

subject to:

n
∑

j=2

x1j =

n−1
∑

i=1

xin = 1 (5)

n−1
∑

i=1

xik =
n
∑

j=2

xkj ≤ 1; ∀k = 2, ..., n− 1 (6)

n−1
∑

i=1

n
∑

j=2

cij · xij ≤ Cmax (7)

∑

i∈S

∑

j∈S
j ̸=i

xij ≤ |S| − 1; ∀S ⊂ V, 2 ≤ |S| ≤ n− 1 (8)

In most of the cases, the tour of the salesman begins

and ends at fixed vertex v1 and vn (v1 ̸≡ vn). However,

in many applications, v1 and vn coincide, which form a

Hamiltonian cycle such as the work from Masani et.al[17].

The difference between these two versions is negligible, and

they are interchangeable by adding or removing a trivial

arc between these two vertices. Constraint (5) employs non-

Hamiltonian tour version of sTSP by making sure that the

tour starts at v1 and ends at vn. Constraint (6) ensures that

the salesperson visits and leaves each vertex at most once,

which is consistent with the sTSP given that the tour does



not have to traverse through all of the cities (or vertices in

the graph). Constraint (7) limits the overall cost of the tour

is less than or equal to a specified Cmax constant. Finally,

we prevent subtour in the route by adding constraint (8). This

constraint is essential to exclude closed loop from the route.

The intuition behind this constraint is that a cycle is formed

in a graph when the number of vertices and arcs are equal. By

ensuring that the number of arcs in each subset S is less than

the number of vertices in S, the subtour can be prevented.

Motivation example. Given a set of four vertex V =
{v1, v2, v3, v4}, choosing a subset S = {v1, v2 : v1, v2 ∈
V, S ⊂ V }, constraint (8) become:

∑

i∈{1,2}

∑

j∈{1,2}
j ̸=i

xij ≤ |S| − 1 (9)

which simplifies to:

x12 + x21 ≤ 1

Above example gives an idea how constraint (8) can elimi-

nate subtour in the optimal solution. Either of x12 or x21 takes

the value 1, the other must equal to 0, which helps to eliminate

subtour v1 → v2 → v1 in S. Unfortunately, the number of

constraints to eliminate subtours is exponential, requiring an

efficient approach. In the following section, we consequently

propose a QUBO formulation of classical sTSP that can be

understood and solved by a quantum annealing computer.

B. QUBO formulation for the sTSP

In the literature, there are several problems that naturally fall

into QUBO form, e.g., the number partitioning problem, the

max-cut problem [18]. This is because solving these problems

involves the use of binary decision variables and relations

between these variables can be represented using linear and

quadratic terms. To formulate a combinatorial problem to

QUBO, we need to convert equality and inequality constraints

into penalties (also called Hamiltonian) of the objective func-

tion. These penalties should be equal to zero for all feasible

solutions to the problem and equal to some positive penalty if

the solution violates constraints of the problem. In the rest of

this section, we will use this approach for the construction of

Hamiltonians for sTSP.

The first Hamiltonian is converted from the original objec-

tive function (4):

H =
n−1
∑

i=2

n
∑

j=2
j ̸=i

pi · xij (10)

In QUBO, equality Ax = b is usually treated by converting

to square expression (Ax − b)2 as mentioned [19]. Thus,

equality constraint like (5) and can be easily represented as:

C1 = P1[(1−
n
∑

i=2

x1i)
2 + (1−

n−1
∑

j=1

xjn)
2] (11)

Constraint (6) is separated into two Hamiltonians C2, C3:

C2 = P2

n−1
∑

k=2

n−1
∑

i=1
i̸=k

xik

n−1
∑

j=1
j ̸=i,j ̸=k

xjk (12)

C3 = P3

n−1
∑

k=2

n
∑

i=2
i̸=k

xki

n
∑

j=2
j ̸=i,j ̸=k

xkj (13)

Consider a vertex vk, if there is only one visit to this vertex,

the quadratic terms corresponding to vk will be equal to 0. If

the constraint hold for all vertices in V \{v1, vn}, Hamiltonian

C2 will be equal to 0. Thus, it has no effect on the objective

function. Otherwise, it will add a penalty to the objective

function. This penalty can be calculated as:

P2
nL!

(nL − nV )!
(14)

where nL =
∑n−1

k=2

∑n−1
i=1
i̸=k

xik and nv is the number of

vertices that violate the constraint. The same principle applies

to Hamiltonian C3, it will add a penalty equal to P3
nL!

(nL−nV )!

to the objective function where nL =
∑n−1

k=2

∑n−1
i=1
i̸=k

xki and

nv is the number of vertices that violate the constraint.

Constraint (7) and (8) are in the form of Ax ≤ b. In order

to transform these constraints into the objective function as

penalty terms, we introduce a set of slack binary variables

as mentioned in [20]. The number of slack variables for

constraints (7) and (8) are limited to ⌈1 + log2 Cmax⌉ and

⌈1+ log2(|S|−1)⌉ respectively, where ⌈.⌉ is the ceiling func-

tion. Accordingly, the Hamiltonian terms for these constraints

is expressed as:

C4 = P4(
n−1
∑

i=1

n
∑

j=2
j ̸=i

cij · xij +

⌈1+log
2
Cmax⌉

∑

k=0

2k · λk − Cmax)
2

(15)

C5 = P5(
∑

i∈S

∑

j∈S
j ̸=i

xij +

⌈1+log
2
(|S|−1)⌉

∑

l=0

2l · λl − |S|+ 1)2

∀S ⊂ V, 2 ≤ |S| ≤ n− 1
(16)

Finally, to solve sTSP using QUBO framework, the overall

Hamiltonian HF is given below:

HF = H −
5

∑

k=1

Ck (17)

It is notable that in each Hamiltonian terms Ci, i = 1, · · · , 5
having a numerical value Pi associated with each equation,

which are referred to as a scalar penalty. These number are

not required, and can be arbitrarily chosen based on different

type of constraints. If the constraint is “hard”, which mean it

has to be absolutely satisfied, then the number scalar number

should be large enough to preclude a violation. On the other

hand, some “soft” constraints accept slight violation. In that

case, a moderate P value is sufficient.



C. Analysis: Problem Complexity

This section is dedicated to examining the intricacies of

problem’s complexity. In our QUBO formulation, the total

number of decision variables is equal to the number of

variables xij that are used to describe the relation between

vi and vj (vi, vj ∈ V ) and the number of slack variables λk,

λl in (15) and (16), respectively.

Lemma 1. With the input size n, the total number of decision

variables xij , denoted by NF = n2 − n.

Proof.

NF =
n!

(n− 2)!

=
n(n− 1)(n− 2)!

(n− 2)!

=n2 − n

(18)

The total number of slack variables denoted by NS is equal

to the number of slack variables λk and λl. Given a constant

Cmax that must not be exceeded, the number of λk is equal to

⌈1+log2 Cmax⌉. Let us consider subtour elimination constraint

(8), the number of constraints is equal to
∑n−1

|S|=2

(

n−1
|S|

)

,

where
(

n−1
|S|

)

is the number of combination when choosing

|S| elements from a set of n− 1 elements. Given a subset S,

the number of slack variables we need to convert inequality

constraint (8) to equality constraint (16) is ⌈1+log2(|S|−1)⌉.

Therefore, the total number of slack variables for subtour

elimination constraint is
∑n−1

|S|=2

(

n−1
|S|

)

⌈1+log2(|S|−1)⌉. NS

can be calculated using the following formula:

NS = ⌈1 + log2 Cmax⌉+
n−1
∑

|S|=2

(

n− 1

|S|

)

⌈1 + log2(|S| − 1)⌉

(19)

It takes NF+NS decision variables to formulate sTSP using

our QUBO formulation. This thus completes the proof.

IV. EXPERIMENT AND EVALUATION

In the previous section, we proposed a QUBO formulation

designated to determine the feasible solution of sTSP for

execution on a quantum annealing computer. The QUBO

formulation can be solved using either QPU solver or hybrid

Quantum-Classical solver. The process explains how QPU

solves a QUBO problem is discussed in section II-B. Solving

a problem with D-Wave 2000Q QPU is only possible for

problems with a limited number of instances. At a larger

scale, we have the hybrid solver developed by D-Wave system,

which utilizes both classical and quantum computing and

can accept inputs that are considerably larger than QPU

solver. In this section, we presents experimental results derived

from the state-of-art D-Wave 2000Q QPU, along with their

corresponding analytical insights.

Dataset. We apply our QUBO approach to a small number

of cities denoted by n = {5, 6, 7}. In each test case, the set

of cities is denoted by V = {v1, · · · , vn}, with the starting

and ending cities fixed to v1 and vn, respectively. The profit

n var. qubit Pi

5% 10% 15% 20% 25%

5 16 84 8.67 17.34 26.01 34.69 43.36

6 25 214 17.25 34.50 51.76 69.01 86.27

7 35 418 20.24 40.48 60.73 80.97 101.21

TABLE I: Number of logical variables, physical qubits corre-

sponding to number of cities n = {5, 6, 7} and chain strength

of different Pi.

associated with each city and the cost to travel between cities

vi and vj are randomly selected among the values {1, 2, 3, 4}.

Constant Cmax is set at 20% of the total cost to travel between

cities. We arbitrarily choose {5%, 10%, 15%, 20%, 25%} of

the total profit as the scalar penalty Pi to all Hamiltonians

mentioned in (17). Once the Q matrix is obtained using our

QUBO formulation, we proceed to embed it onto the Chimera

graph of the D-Wave 2000Q QPU and perform evaluations.

Physical qubits. After embedding, the number of physical

qubits are measured. Table I illustrates the quantity of physical

qubits and logical variables that correspond to each city count.

It can be observed that the number of physical qubits grows

significantly as the number of instances increases. The most

advantageous quantum annealer D-Wave 2000Q QPU supports

2048 qubits and 6016 couplers, our analysis leads us to predict

that the QPU is unable to accommodate the problem when

there are more than 15 instances.

Time. Each Ising Model or QUBO problem sent to the D-

Wave quantum machine is known as a Quantum Machine

Instruction (QMI). The overall QPU time that is allocated to

a QMI is decomposed into three main components as follows:

• Access time: Defined as the time QPU execute a specific

QMI, while being unavailable to other QMIs.

• Sampling time: This is the actual annealing time of the QPU

and can be calculated as follows, R · (Ta+Tr +Td), where

R is the number of cycles, Ta, Tr,Td is the annealing time,

read-out time, delay time of one sample respectively.

• Post Process Time: During the access time of a QMI, QPU

return sets of sample in batches. Total post process time is

the total time to post process these sample batches.

• Range of annealing_time is [0.01, 2000] µs, Fig. 2 breaks

down the overall QPU time with different number of cities

and the annealing_time parameter in [5, 15, 25, 35, 45] µs. In

general, the access time and sampling time grows when we

increase the annealing_time, whereas the total post process

time contributes little to the overall QPU time and remains

mostly the same regardless of annealing_time.

Chain strength. One important parameter of QPU solver is

chain_strength. This parameter specifies the relatives coupling

strength of chains embedded onto the QPU hardware graph.

There is a feature called auto-scaling that divides all terms

by the largest QUBO weight if it larger than chain_strength.

Otherwise, it will divide all the QUBO terms by the value of
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Fig. 2: Performance metrics in D-Wave 2000Q QPU Sampler

with num_reads=1000 and annealing_time ranging from 5 to

45 µs when the number of cities n = {5, 6, 7}.

chain_strength parameter. If this parameter is set too large, all

QUBO terms is shrink near to 0. Consequently, it no longer

the original problem because variables become independent.

If chain_strength is too small, the relationship between qubits

dose not work as intended. Thus, the value of this parameter

must be carefully chosen. By default, it is calculated using

uniform_torque_compensation function provided by D-Wave

System. Table I reports the chain strength obtained from

uniform_torque_compensation with different number of cities.

With n = 5, 6, there is no chain break using all Pi. However,

when n = 7, all chains break with Pi = 5% and majority

of chains break with Pi = 10. Thus, with a large number of

instances, we suggest that Pi should be set greater than 20%
of the total profit.

Solution. With n = 5, the optimal solution is obtained using

Pi = 25% regardless annealing_time. When n = 6, we

discover optimal solution with P = 20% and annealing_time

of 15µs. However, when n = 7, the optimal solution cannot be

found using Pi = {5%, 10%, 15%, 20%, 25%}. In this case, a

larger scalar constant is required to preserve the relationship

between variables. A good value of Pi can be found using

specific domain knowledge and trial-and-error.

V. CONCLUSION AND FUTURE WORK

Going beyond classical computing, this paper encloses a

systematic study of quantum computing for selective trav-

eling salesman problem (sTSP). Specifically, we proposed a

quadratic unconstrained binary optimization (QUBO) formu-

lation to encode the complex decision-making for the sTSP on

noisy intermediate-scale quantum (NISQ) annealer. To derive

the QUBO formulation, all classical constraints of sTSP were

formulated into Hamiltonian terms. We have further sampled

the proposed algorithm using D-Wave 2000Q QPU solver.

Experimental results obtained on the D-Wave 2000Q quantum

hardware demonstrate that the optimal solutions for several

instances can be attained.

This work will the lay foundation for further research on

"quantum annealing" for TSP and its variants. We look forward

to extending future research topics that can extend experiments

on a much larger dataset and compare the performance of a

purely quantum annealing approach for sTSP with its conven-

tional counterparts, such as the one using the tabu search. Our

objective is to determine what extent pure quantum annealing

approach can outperform the classical methods.
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