
Published as a conference paper at ICLR 2023

SMARTFRZ: AN EFFICIENT TRAINING FRAMEWORK
USING ATTENTION-BASED LAYER FREEZING

Sheng Li∗1, Geng Yuan∗2, Yue Dai∗1, Youtao Zhang1, Yanzhi Wang2, Xulong Tang1

1University of Pittsburgh 2Northeastern University
{shl188,yud42,xulongtang}@pitt.edu
{yuan.geng,yanz.wang}@northeastern.edu zhangyt@cs.pitt.edu

ABSTRACT

There has been a proliferation of artificial intelligence applications, where model
training is key to promising high-quality services for these applications. However,
the model training process is both time-intensive and energy-intensive, inevitably
affecting the user’s demand for application efficiency. Layer freezing, an efficient
model training technique, has been proposed to improve training efficiency. Al-
though existing layer freezing methods demonstrate the great potential to reduce
model training costs, they still remain shortcomings such as lacking generaliz-
ability and compromised accuracy. For instance, existing layer freezing methods
either require the freeze configurations to be manually defined before training,
which does not apply to different networks, or use heuristic freezing criteria that
is hard to guarantee decent accuracy in different scenarios. Therefore, there lacks
a generic and smart layer freezing method that can automatically perform “in-
situation” layer freezing for different networks during training processes. To this
end, we propose a generic and efficient training framework (SmartFRZ). The core
proposed technique in SmartFRZ is attention-guided layer freezing, which can au-
tomatically select the appropriate layers to freeze without compromising accuracy.
Experimental results show that SmartFRZ effectively reduces the amount of com-
putation in training and achieves significant training acceleration, and outperforms
the state-of-the-art layer freezing approaches.

1 INTRODUCTION

Deep neural networks (DNNs) have become the core enabler of a wide spectrum of AI applica-
tions, such as natural language processing (Vaswani et al., 2017; Kenton & Toutanova, 2019), visual
recognition (Li et al., 2022; Faraki et al., 2021), automatic machine translation (Sun et al., 2020;
Zheng et al., 2021), and also the emerging application domains such as robot-assisted eldercare (Do
et al., 2018; Bemelmans et al., 2012), mobile diagnosis (Panindre et al., 2021; Abdel-Basset et al.,
2020), and wild surveillance (Akbari et al., 2021; Ke et al., 2020). To satisfy the growing demand for
adaptability and training efficiency of DNN models in deployment, a surge of research efforts has
been devoted to designing efficient training paradigms (He et al., 2021; Yuan et al., 2021; Wu et al.,
2020; 2021). For example, sparse training (Evci et al., 2020; Yuan et al., 2021) and low-precision
training (Yang et al., 2020; Zhao et al., 2021) are two active research areas for efficient training that
can effectively reduce training costs, such as computing FLOPs and memory. However, there are
still fundamental limitations in the generality of these methods when used in practice. Concretely,
sparse training methods generally require the support of dedicated libraries or compiler optimiza-
tions (Chen et al., 2018; Niu et al., 2020) to leverage the model sparsity and save computation costs.
Similarly, low-precision training (e.g., INT-8 or fewer bits) is hard to be supported by GPUs and
requires specialized designs for edge devices such as field-programmable gate arrays (FPGAs) and
application-specific integrated circuits (ASICs). Therefore, it is desirable to have a generic efficient
training method that can be easily and effectively adapted to various application scenarios.

Recent studies (Brock et al., 2017; Liu et al., 2021) revealed that freezing some DNN layers at a
certain stage (i.e., training iteration) during the training process will not degrade the accuracy of

*These authors contributed equally.

1



Published as a conference paper at ICLR 2023

the final trained model and can effectively reduce training costs. Most importantly, layer freezing
can be achieved using native training frameworks such as PyTorch/TensorFlow without additional
support, making it more accessible to wide applications and users for training costs reduction and
acceleration. Previous work has mainly used heuristic freezing strategies, such as empirically se-
lecting which DNN layers to freeze and when to freeze (Lee et al., 2019; Yuan et al., 2022). As
such, these heuristic freezing strategies require a trial-and-error process to find appropriate freezing
configurations for individual tasks/networks, resulting in inconvenience and inefficiency when de-
ployed to various application scenarios. Some recent works attempt to freeze the DNN layers in an
adaptive manner by using the gradient-norm (Liu et al., 2021) or SVCCA score (He et al., 2021).
However, it is known that DNN models generally do not monotonically converge to their optimal
position. As a result, these adaptive methods, which decide whether the layers are frozen or not us-
ing the heuristic criteria, are less robust to the fluctuation of model training, leading to compromised
accuracy. Therefore, we raise a fundamental question that has seldom been asked:

Is there a layer freezing method that can overcome the above-mentioned short-
comings while keeping the method efficient?

Inspired by the outstanding performance of attention mechanism in solving sequence classification
problems such as classification tasks (Long et al., 2018), dialog detection (Shen & Lee, 2016), and
affect recognition (Gorrostieta et al., 2018), it is possible that the attention mechanism could also be
a promising solution for layer freezing in efficient training, but it has never been explored in prior lit-
erature. In this paper, we innovatively introduce attention mechanism for layer freezing. In specific,
we design a lightweight attention-based predictor to collect and rank the DNN context information
from multiple timestamps during training process. Based on the prediction, we adaptively freeze
DNN layers to save training computation costs and accelerate training process while maintaining
high model accuracy. To train the attention-based predictor, we propose a layer representational
similarity-based method to generate a special training dataset using publicly available dataset (e.g.,
ImageNet). Then, the predictor is trained offline once, and learns the generic convergence pattern
along the training history, which can be generalized across different models and datasets. We sum-
marize our contributions as:

• We design a novel and lightweight predictor using attention mechanism for layer freezing
in efficient training. The predictor automatically captures DNN context information from
multiple timestamps and adaptively freezes the layers during the training process.

• We propose to leverage the layer representational similarity to generate a special dataset
for training the attention-based predictor. The trained predictor can be used for different
datasets and networks.

• Combining the attention-based predictor design and its training method, we propose a
generic efficient training framework, namely SmartFRZ, which can effectively reduce the
training costs and accelerate training time. Specifically, for fine-tuning scenarios, Smart-
FRZ consistently achieves higher training acceleration while maintaining similar or higher
accuracy compared to the prior works. For training from scratch scenarios, our Smart-
FRZ shows more significant advantages compared to the baseline methods including full
training, linear freezing, and AutoFreeze, which achieves 0.16%, 2.65%, and 4.82% higher
accuracy with 24%, 13%, and 15% less training time, respectively.

2 BACKGROUND AND RELATED WORK

Layer Freezing. Recent researches (Brock et al., 2017; Kornblith et al., 2019) have found that
not all layers in deep nerual networks need to be trained equally. For example, the early layers in
DNNs are responsible for low-level features extraction and usually have fewer parameters than the
later layers, making the early layers converge faster during training. Therefore, the layer freezing
techniques are proposed, which stop updating certain layers during the training process to save the
training costs (Lee et al., 2019; Zhang & He, 2020).

The previous work mainly uses heuristic strategies to determine which layers to freeze and when
to freeze them. For example, Brock et al. (2017) uses a linear/cubic schedule to freeze the layers
sequentially (one by one from the first layers to the later layers). The recent work Yuan et al. (2022)

2



Published as a conference paper at ICLR 2023

t1 t2 tn
……

Weights 
of Layer 1 

Weights 
of Layer 2 

Weights 
of Layer 3 

Weights 
of Layer 1 

Weights 
of Layer 2 

Weights 
of Layer 3 

1 0 0
Freeze Decision of Three Layers

Attention-Based Predictor

tn+1

Weights 
of Layer 2 

Weights 
of Layer 3 

Training Stage Training StageFreezing Stage

Frozen 
Layer

Figure 1: Overview of our attention-based layer freezing framework SmartFRZ. SmartFRZ con-
tinuously records the weights of all actively being-trained layers during the training process. Pe-
riodically, there will be a freezing stage, when SmartFRZ applies an attention-based predictor to
determine whether each active layer can be frozen at this moment, based on the collected historical
data. After the freezing stage, the model training process continues, and the frozen layer will not be
updated and its weights will not be recorded anymore. In this figure, we assume that the attention-
based predictor predicts to freeze layer 1 only.

also freezes layer by layer in a constant interval, but uses target training FLOPs reduction to decide
the time to start freezing. Another branch of works attempt to freeze DNN layers adaptively and
use the criteria such as gradient-norm (Liu et al., 2021) or SVCCA score (He et al., 2021) to control
the freezing. However, all of these heuristic-based freezing strategies require manually designed
freezing configurations or threshold, which can be varied between different networks and datasets.
In this paper, we intend to address these shortcomings and propose a generic freezing method that
can be adopted to different scenarios.

Training Costs Reduction through Layer Freezing. Layer freezing technique can save training
costs including computation FLOPs and memory accesses. Generally, each iteration of DNN train-
ing consists of forward and backward propagation. On the one hand, once a layer is frozen, it still
needs to compute the forward propagation since the subsequent layers still need its output features
as their input features. Therefore, layer freezing cannot save training costs in forward propagation.
On the other hand, the backward propagation consists of two parts of computations: i) calculating
the gradients of weights and ii) calculating the gradients of activations. A frozen layer can always
eliminate the computation cost and memory cost of the former part since the weights in the layer
will not be updated anymore. However, the computation costs and memory costs of the latter part
can only be eliminated if all the predecessor layers earlier than the current layer are frozen as well.
This is because if a predecessor layer is not frozen, it needs to calculate the gradients of activations
of the current layer to maintain the data pass through the backward propagation. Compared to the
other efficient training techniques such as pruning or quantization, one significant advantage of layer
freezing is that it does not require dedicated supports such as compiler optimizations or specialized
hardware. It can be easily integrated into the general deep learning frameworks (e.g., PyTorch)
and achieve almost linear acceleration according to the computation FLOPs reduction (Yuan et al.,
2022). Meanwhile, it focuses on layers as granularity which is more efficient in reducing the training
cost, and potentially, it can be combined with pruning and quantization to bring combined benefits.

3 SMARTFRZ FRAMEWORK DESIGN

3.1 FRAMEWORK OVERVIEW

In this section, we introduce our proposed layer freezing framework for efficient training, which
can automatically freeze appropriate network layers to reduce unnecessary computation during the
training process without compromising accuracy. Figure 1 shows the overview of the SmartFRZ
framework. The core component of our framework is a lightweight attention-based predictor, which
can automatically decide which layers will be frozen and when to freeze them during the training
process. However, the attention-based predictor cannot be directly trained using conventional dataset
for the classification tasks such as ImageNet. Therefore, we propose a novel method to generate the
training dataset. We adopt offline training to train the predictor. Once the predictor is well-trained,
it can be used for different datasets and networks since it learns generic converging patterns from
collected training histories.

3



Published as a conference paper at ICLR 2023

𝑾𝒍
𝟎

𝑻𝒊𝒎𝒆

…

𝒕𝟎

𝑲𝒍
𝟎 …

𝒂𝒍
𝟎

𝜶𝒍𝟎

𝑪𝒍𝒕
∑

𝐒𝐨𝐟𝐭𝐦𝐚𝐱

Attention-based Predictor

Training history 
encoding

Attention-based 
training history
aggregating

𝐌𝐋𝐏𝐯𝐌𝐋𝐏𝐪𝐌𝐋𝐏𝐤
𝑸𝒍𝟎 𝑽𝒍

𝟎

𝑾𝒍
𝟎

𝐌𝐋𝐏𝐯𝐌𝐋𝐏𝐪

𝑸𝒍𝟏 𝑽𝒍𝟏

𝑾𝒍
𝟎

𝐌𝐋𝐏𝐯𝐌𝐋𝐏𝐪

𝑸𝒍𝒕 𝑽𝒍𝒕𝑲𝒍
𝟏

𝒂𝒍𝟏

𝜶𝒍𝟏

𝐌𝐋𝐏𝐤
𝑲𝒍
𝒕

𝒂𝒍𝒕

𝜶𝒍𝒕

𝐌𝐋𝐏𝐤

𝐌𝐋𝐏𝐳

𝒕𝟏 𝒕𝟐

Argmax

𝒅𝒍
𝒕

1

2

3
4

5

k Weights at timestamp k

Optimal weights
m Noisy weights history

Predictor

𝑑*+ = 1

More attention
Less attention

(a) (b)
Figure 2: (a) An illustrated example of noisy weight history in which a darker shade within the circle
indicates a lower loss. The training loss decreases at iteration {1, 2, 5}, yet increases at iterations
{3, 4}. So the predictor needs to pay more attention to the weight history from iteration {1, 2, 5}
and less attention to the weight history from iterations {3, 4} since the latter converge towards less
optimal directions. (b) Detailed workflow of the attention-based predictor. At timestamp t, the pre-
dictor decides whether to freeze a specific layer l in three steps. First, it encodes the training history
independently into feature vectors (i.e., Kj

l , Qj
l , V j

l ). Second, it computes attention scores αj
l and

aggregates the historical state feature into a context vector Ct
l . Third, it predicts the confidence

scores of freezing or not and selects the decision with higher confidence.

In the following parts of this section, we will first introduce the design principle and workflow of
our attention-based predictor in Section 3.2 and Section 3.3. Then, we will introduce how to create
the special training dataset for the predictor in Section 3.4.

3.2 DESIGN PRINCIPLE OF THE ATTENTION-BASED PREDICTOR

The goal of the predictor is to decide whether to freeze a layer or not at a specific training iteration.
While existing approaches measure the gradient norm change between two timestamps (Liu et al.,
2021), the patterns of long-term converging history are missed. To this end, it is desirable to leverage
the long-term weight history sequence for the prediction. Specifically, the predictor is designed to
capture the generic converging pattern within the model training histories. We can define the task of
the predictor as follows:

Freezing Prediction Task (Definition #1). For a layer l, whose weights at timestamp j can be
denoted as W j

l : Given a sequence of its weight history (W j
l )

t
j=0 at timestamp t, yield positive

decision to freeze the layer at the current iteration (i.e., dtl = 1) if the layer is ready to be frozen, and
yield negative decision (i.e., dtl = 0) if the layer needs further training.

The task is non-trivial due to noisy weight history information within the input sequence. Since
the training model does not monotonically converge to the optimal solution, there exist scenarios
such that: the history weight Wn

l from iteration n is less optimal than the history weight Wm
l from

iteration m, even if the Wn
l is updated from Wm

l (i.e., n > m). We call weights like Wn
l as

noisy weight history. These noisy weight histories represent incorrect converging directions, thus
introducing unnecessary noises. We illustrate an example of the scenario in Figure 2(a). To this end,
the predictor should avoid leveraging these misleading weight histories and selectively focus on
other weight histories that provide more accurate training information toward the optimal weights.

We apply an attention-based predictor to meet the requirement. The predictor ranks the information
from each timestamp (i.e., sampled iteration) and adaptively aggregates weight history from the
input sequence. The aggregation is input-dependent and can select the history from those preferred
timestamps. The detailed workflow is discussed in Section 3.3.

Layer Tailoring. To minimize the overheads introduced by the predictor, we need to make the
predictor lightweight. Instead of assigning individual predictors for each layer, we intend to use only
one predictor to serve different layers, thanks to the attention mechanism that makes the predictor
can learn the generic convergence pattern. However, this raises another issue: how to fit weight
information with different sizes from different layers into a fixed-sized MLP predictor?

4



Published as a conference paper at ICLR 2023

(a) (b)

Figure 3: The histogram of the gradient value frequency distribution of a network layer at a certain
point during the training. Figure (a) counts all the parameters of the layer, while Figure (b) counts
the randomly selected 1024 parameters. These gradient values belong to the 30th CONV layer of
ResNet50 and were sampled during the training of ResNet50 on CIFAR-10.

To solve the above issue, we conduct an experiment to explore the relationship between a layer’s
parameter subsets and all its parameters. We observe the gradient value frequency distribution since
the gradients are the most direct factor that determines the weight updates in the training process.
As shown in Figure 3, we can observe that, for a network layer, the gradient distribution of the
randomly selected weights subset is highly similar to the gradient distribution of all the weights.
Therefore, we make the assumption that the updating pattern of parameter subsets can represent that
of the whole layer. This characteristic provides us with the feasibility to design the layer tailoring
technique. In specific, we randomly sample the weights from each layer to tailor all the layers to
a uniform size (e.g., 1024) and fit the sampled weights into the predictor model. With our layer
tailoring, the predictor can be shared by the layers with different sizes.

3.3 WORKFLOW OF THE LIGHTWEIGHT ATTENTION-BASED PREDICTOR

The overview of the detailed predictor workflow is depicted in Figure 2(b). For each historical
weight W j

l (sampled parameter of layer l at timestamp j ∈ {0, 1, · · · , t}), the predictor first encodes
them into a query vector Qj

l , a key vector Kj
l , and a value vector V j

l , following Equation 1, in which
MLPk/q/v(·) denotes trainable three-layer Multi-Layer-Perceptrons.

Kj
l = MLPk(W

j
l ), Q

j
l = MLPq(W

j
l ), V

j
l = MLPv(W

j
l ), j ∈ {0, 1, · · · , t} (1)

Next, it computes the correlation score ajl between the current time (i.e., iteration t) and each pre-
vious timestamp j. Specifically, it conducts dot-product between query vector at time t (i.e., Qt

l)
with key vectors from timestamp j (i.e., Kj

l ), then gets a normalized attention score αj
l by softmax

across all previous timestamps, following Equation 2.

ajl = Qt
l ·K

j
l , j ∈ {0, 1, · · · , t} (2)

αj
l =

exp (ajl )∑t
i=0 exp(a

i
l)
, j ∈ {0, 1, · · · , t}

The value vector from each timestamp j (i.e., vjl ) is weighted by the attention score αj
l , and accu-

mulated to the final context vector Ct
l , following Equation 3. Hence, the aggregated context vector

keeps more information from those with higher attention scores while paying less attention to those
with low scores.

Ct
l =

t∑
j=0

αj
lV

j
l (3)

In the end, the prediction module MLPz(·) (i.e., a three-layer MLP followed by a softmax) com-
putes confident scores of freezing or not as a two-element vector. We choose a decision with higher
confidence, as shown in Equation 4. If dtl = 1, we will freeze layer l at timestamp t; otherwise, we
continue its training at the moment. The predictor is lightweight in terms of both computing and
memory overhead. Details of the model size and overheads are discussed in Appendix C.

dtl = Argmax(MLPz(C
t
l )) (4)

5



Published as a conference paper at ICLR 2023

3.4 TRAINING THE PREDICTOR

In order to not seize the computational resources during the model training, we decide to train the
predictor offline and then use it during the training process instead of jointly training the predictor.
To train the attention-based predictor, we need to generate a dataset ourselves. As mentioned in
Section 3.2, we use the layer weights as input data and then apply a layer representational similarity-
based method to label the input data.

Layer Representational Similarity. As training proceeds, the model layers are continuously being
updated, and the representational similarity between a layer of the model being trained and the
corresponding layer of the well-trained model will increase. The representational similarity indicates
the feature extraction capability of a specific layer. We adopt a widely-used index Centered Kernel
Alignment (CKA) to indicate the representational similarity of two layers (Kornblith et al., 2019).
CKA is obtained by comparing the output feature maps of two layers under the same input image
batch. It is calculated as:

CKA (X,Y ) =
∥∥Y TX

∥∥2
F
/
(∥∥XTX

∥∥
F

∥∥Y TY
∥∥
F

)
(5)

where X and Y are the output feature maps from two layers, and ∥·∥2F represents the square of the
Frobenius norm of a matrix. A higher CKA value indicates that the two layers will output more
similar feature maps with the same inputs. Further, if the CKA value of a layer stabilizes during the
training process, we consider this layer is converged and ready to be frozen.

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10R
ep

re
se

nt
at

io
na

l S
im

ila
rit

y

Training Epochs

layer10
layer20
layer30
layer40
layer50

Figure 4: CKA variation curve as training
proceeds. Result is obtained while training
ResNet50 on CIFAR-10 and the ResNet50
is pre-trained on ImageNet.

Figure 4 plots the CKA value curve of several CONV
layers as training proceeds. As one can observe from
the figure, after a period of fine-tuning, the layer’s
CKA stabilizes, which means that the feature extrac-
tion capability of those layers hardly changes even if
the training continues. At this moment, freezing those
layers will have little impact on accuracy. Moreover,
the similarity with the well-trained model is not mono-
tonically increasing but fluctuating, which correlates
with our discussion in section 3.2 that it is not always
the most recent model that has the most significant im-
pact on the current model parameters. We can also
observe from the figure that different layers require
different training epochs to stabilize, and basically the
layers in the front stabilize faster than the layers in the
back (e.g., layers 10 and 20 stabilize faster than layers 40 and 50). But it is interesting to see that the
layer in the back is possible to stabilize faster than the front layer (e.g., layer 30 stabilizes faster than
layers 10 and 20). This is due to the presence of residual connections in the ResNet architecture,
which allows some of the later layers to behave like the earlier layers (Veit et al., 2016). These
observations demonstrate the need for an adaptive layer freezing method, which is exactly what the
SmartFRZ does, rather than forcing sequential freezing from front to back. Note that we cannot di-
rectly use this representational similarity-guided freezing because we cannot obtain the well-trained
reference model in advance in practice.

Generating the Training Dataset. We first train a model on a certain dataset and use it as a well-
trained reference model for CKA calculation. Then we train the same network on the same dataset
again, in which we periodically calculate the CKA value between the well-trained model and the
model under training for all the layers. With the CKA value, we are able to determine whether
to freeze a layer or not. In this way, each piece of training data includes a sequence of historical
weights of a tailored layer and a label indicating whether to freeze that layer or not at the moment
of the latest record of this sequence.

We conduct an experiment to show the effectiveness of labeling the data through layer representa-
tional similarity. Specifically, we first train and obtain well-trained ResNet50 (He et al., 2016) and
VGG11 (Simonyan & Zisserman, 2015) models on the CIFAR-100 (Krizhevsky & Hinton, 2009)
dataset. Then we train another ResNet50 and VGG11 model with CIFAR-100 dataset again and
freeze the network layers under the guidance of layer representational similarity during the training
process. In this experiment, the freezing is conducted at the end of each epoch. Table 1 shows the
experimental results of the training with and without layer freezing. As shown in the table, training

6



Published as a conference paper at ICLR 2023

Table 1: Comparison of model accuracy and total computation of the training process using different
methods: full training and layer representational similarity-guided freezing. Both models are pre-
trained on the ImageNet dataset and then trained for 10 epochs on CIFAR-100.

Method ResNet50 VGG11
Accuracy Comp. (TFLOPs) Accuracy Comp. (TFLOPs)

Full Training 81.68% 12,360 74.95% 22,950
Similarity-Guided Freezing 81.75% 6,454 74.89% 12,811

the networks using the representational similarity-guided freezing method can significantly reduce
the computation cost (e.g., it saves 48% computation for training ResNet50) while maintaining the
model accuracy, demonstrating the effectiveness of our similarity-guided labeling method and the
correctness of the generated dataset.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

In this section, we evaluate the proposed SmartFRZ framework in both computer vision and lan-
guage domains. In CV domain, we use three representative CNN models ResNet50, VGG11, and
MobileNetV2 (Sandler et al., 2018), and a vision transformer model DeiT-T (Touvron et al., 2021).
And we use three widely-used datasets ImageNet (Deng et al., 2009), CIFAR-10, and CIFAR-100.
In NLP domain, we fine-tune the pre-trained BERT-base model (Kenton & Toutanova, 2019) using
two datasets MRPC (Dolan & Brockett, 2005) and CoLA (Warstadt et al., 2019) in GLUE bench-
mark (Wang et al., 2019). We conduct our experiments on two servers: i) a server with 8× NVIDIA
RTX 2080Ti GPUs is used for the experiments on ImageNet dataset and ii) an NVIDIA Tesla P100
GPU server is used in all other experiments. Both the predictor and the target networks are trained
using the SGD optimizer with momentum. The training data is divided into batches with a size of
32. In CNN models, we freeze the BN layer together with its corresponding CONV layer to avoid
unnecessary computation costs in back-propagation. The attention-based lightweight predictor is
trained once on ImageNet using ResNet50 and then used in different models and datasets. The at-
tention window size for the predictor is 30. And we tailor all the layers into the size of 1024 by
random sampling to fit into the generic predictor. All the accuracy results in this paper are the aver-
age of 5 runs using different random seeds. And the overhead introduced by predictor is included in
the results. A benchmark is defined as a model-dataset combination (e.g., VGG11+CIFAR-100).

4.2 MAIN RESULTS

Fine-tuning. Table 2 shows the results of different freezing methods (Linear Freezing (Brock et al.,
2017) and AutoFreeze (Liu et al., 2021)). Linear freezing is a manually determined sequential freez-
ing method. In our experiments, we set the number of frozen layers to increase according to the num-
ber of training epochs and let its total training time similar to that of SmartFRZ for fair comparison
as it is highly rely on manually predefined freezing configurations. AutoFreeze is also a sequential
freezing scheme and uses the variation of gradients norm as the metric to guide the freezing. More
details of the hyperparameters of these two methods are provided in the Appendix B. SmartFRZ can
significantly reduce computation cost and training time without compromising accuracy compared
to full training. And it consistently outperforms Linear Freezing and AutoFreeze.

Compared to Linear Freezing, SmartFRZ provides up to 1.4% higher accuracy (VGG11 CIFAR-
100), with 0.7% higher on average, while consuming similar time and energy. This is because
Linear Freezing freezes layers in a fixed order at a pre-determined time, so some layers that are not
well-trained might also be frozen. Moreover, linear freezing performs poorly on some benchmarks
(i.e., VGG11 CIFAR-10, VGG11 CIFAR-100, and MobileNetV2 CIFAR-100). This is because
linear freezing is highly dependent on a predefined freezing configuration, which does not adapt
to different scenarios. For example, the training epochs required to converge is definitely different
when training different model on different datasets with different complexity (e.g., ImageNet vs.
MNIST), so the freeze configuration should also be different.

Compared to AutoFreeze, SmartFRZ reduces up to 20.4% time (MobileNetV2 CIFAR-10 bench-
mark) and 24.7% computation cost (VGG11 CIFAR-10 benchmark) while providing similar accu-

7



Published as a conference paper at ICLR 2023

Table 2: Comparison of different freezing methods. All the models are pre-trained on ImageNet
dataset. Then the CNN models and ViT model are trained for 10 epochs and 100 epochs to converge,
respectively, using a cosine annealing learning rate scheduler according to the training epochs.

Model Method CIFAR-10 CIFAR-100

Accuracy Time Computation Accuracy Time Computation
(Second) (TFLOPs) (Second) (TFLOPs)

ResNet50

Full Training 96.10%±0.12% 2,594 12,360 81.68%±0.15% 2,500 12,360
Linear Freezing 96.05%±0.25% 1,980 8,247 81.48%±0.29% 1,844 7,085

AutoFreeze 96.24%±0.38% 2,424 8,716 81.30%±0.48% 1,963 7,716
SmartFRZ (Ours) 96.12%±0.19% 1,955 8,122 81.73%±0.22% 1,787 6,398

VGG11

Full Training 93.36%±0.17% 2,698 22,950 74.95%±0.11% 2,703 22,950
Linear Freezing 92.35%±0.19% 1,587 10,291 73.26%±0.23% 1,846 12,307

AutoFreeze 93.08%±0.53% 1,895 13,350 74.74%±0.36% 2,027 13,946
SmartFRZ (Ours) 93.58%±0.25% 1,554 10,059 74.66%±0.29% 1,831 12,121

MobileNetV2

Full Training 94.15%±0.10% 1,369 960 76.52%±0.21% 1,371 960
Linear Freezing 94.19%±0.26% 977 567 75.59%±0.27% 1,000 540

AutoFreeze 94.26%±0.23% 1,245 678 76.43%±0.42% 1,248 652
SmartFRZ (Ours) 94.03%±0.17% 972 561 76.73%±0.20% 986 532

DeiT-T

Full Training 97.48%±0.20% 14,603 32,400 85.03%±0.28% 14,628 32,400
Linear Freezing 97.06%±0.23% 8,760 16,290 83.89%±0.19% 9,956 17,542

AutoFreeze 97.35%±0.46% 10,368 17,786 84.59%±0.37% 11,154 18,710
SmartFRZ (Ours) 97.65%±0.36% 8,662 15,529 84.82%±0.25% 9,599 16,636

racy. The reasons behind this are three-fold. First, SmartFRZ applies an attention-based predictor
that can precisely determine the moment to freeze a layer. Second, AutoFreeze only freezes the layer
where all the layers in front of it have been frozen. However, as discussed in Section 3.4, one layer
might stabilize earlier than some of the layers in front of it. Therefore, forcing sequential freezing
may result in wasting computation. Third, AutoFreeze incurs considerable overhead as it needs to
compute the L2 Norm for all the gradients. Specifically, this overhead consumes 20%, 12%, 11%
and 3% of the total training time while training ResNet50, MobileNetV2, DeiT-T, and VGG11, re-
spectively. As a result, AutoFreeze only shows a marginal improvement in time consumption on
the MobileNetV2 benchmark. We also evaluate the SmartFRZ framework in NLP domains and the
experimental results are provided in the Appendix A.1.

Table 3: Comparison of different freezing methods in training
a model from scratch (160 epochs for ResNet50-CIFAR-10
and 100 epochs for ResNet50-ImageNet).

Method CIFAR-100 ImageNet

Accuracy Time Accuracy Time
(Min.) (Min.)

Full Training 77.48%±0.14% 711 76.89%±0.12% 780
Linear Freezing 74.99%±0.19% 615 75.45%±0.36% 626

AutoFreeze 72.82%±0.25% 630 74.06%±0.31% 682
SmartFRZ (Ours) 77.64%±0.22% 538 76.80%±0.26% 621

Training From Scratch. In addi-
tion to fine-tuning, we also investi-
gate the performance of our Smart-
FRZ framework in training a model
from scratch. As shown in table
3, SmartFRZ saves training time by
22.4% on average without compro-
mising accuracy compared to full
training. SmartFRZ also consis-
tently outperforms linear freezing
and AutoFreeze in training from
scratch. Compared to linear freez-
ing, SmartFRZ provides 2% higher
accuracy with 6.7% less time consumption on average. The performance of linear freezing degrades
severely compared to fine-tuning. This is because the robustness of the raw model in the training
from scratch experiment is much lower than that of the pre-trained model in the fine-tuning exper-
iment. Linear freezing, which relies heavily on manually predefined freezing configuration, cannot
handle this more complex training scenario. Compared to AutoFreeze, SmartFRZ provides a sig-
nificantly 3.78% higher accuracy with 11.8% less time consumption. Besides the CNN model, we
also evaluate the effectiveness of our SmartFRZ framework in training the vision transformer model
DeiT-T from scratch, and the experimental results are shown in the Appendix A.2.

4.3 MEMORY COST REDUCTION AND FREEZING PATTERN

Our SmartFRZ framework not only reduces training computation costs by freezing layers, but also
reduces memory costs due to the reduction of intermediate data generated during back-propagation.
Figure 5(a) shows the memory cost as training proceeds. We can observe from the figure that

8



Published as a conference paper at ICLR 2023

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10

M
em

or
y 

C
os

t (
G

B
)

Training Epochs

VGG11
ResNet50
MobileNetV2

1
3
5
7
9

11

1 14 27 40 53

Fr
ee

zi
ng

 M
om

en
t 

(E
po

ch
)

Network Layer
(a) (b)

Figure 5: (a) Memory cost as training proceeds. Results are obtained by training VGG11, ResNet50,
and MobileNetV2 on CIFAR-100 dataset. (b) The frozen moment for each layer while training
ResNet50 on CIFAR-100.
Table 4: Comparison of the model accuracy
when the attention window size for freezing pre-
diction varies. The results are obtained using
ResNet50 and VGG11 on CIFAR-100. The tai-
lored layer size is set to 1024.

Model Window Size
20 30 40 50

ResNet50 81.17% 81.73% 81.75% 82.11%
VGG11 74.45% 74.66% 75.11% 74.67%

Table 5: Comparison of the model accuracy
when the uniform tailored layer size varies. The
results are obtained using ResNet50 and VGG11
on CIFAR-100. The attention window size is set
to 30.

Model Tailored Layer Size
512 1024 2048 4096

ResNet50 81.28% 81.73% 81.33% 81.69%
VGG11 73.98% 74.66% 74.48% 75.12%

SmartFRZ can significantly save more than 80% memory for ResNet50 and about 50% memory for
VGG11 and MobileNetV2. Considering the limited GPU memory capacity, our approach enlarges
the potential of accommodating multiple DNN tasks within a single GPU. Figure 5(b) shows the
freezing moment for each layer while training ResNet50 on CIFAR-100. As shown in the figure,
although there are still some layers in the back getting frozen earlier than some front layers, Smart-
FRZ tends to freeze the front layers earlier than the layers in the back. This is because the front
layers mainly extract low-level features (e.g., detecting edges), while the back layers extract high-
level features (Yosinski et al., 2014; Zeiler & Fergus, 2014). And the low-level feature extraction
capability can be inherited from the pre-training process more easily.

4.4 SENSITIVITY STUDY AND OVERHEAD ANALYSIS

We investigate the effect of adopting different attention window sizes (i.e., the number of historical
data used) to predict the freezing probability. Table 4 shows the accuracy when the attention win-
dow size varies. As one can observe, SmartFRZ consistently delivers a high model accuracy under
different window sizes. It demonstrates the robustness of SmartFRZ in handling scenarios of dif-
ferent attention window sizes. This is because the attention mechanism adaptively selects valuable
information within the long window ranges.

We also study how the uniform tailored layer size affects our SmartFRZ framework. As shown in
table 5, our proposed SmartFRZ framework remains robust except for a very slight accuracy drop
in accuracy (i.e., less than 1%) when the layer size is 512. And the reason behind this is that if the
tailored layer size is too small, the sampled parameters might be hard to represent the status of the
whole layer’s parameters. Therefore, we tailor the layer to the size of at least 1024, which samples
richer layer information while yielding negligible overheads (Details discussed in Section B).

5 CONCLUSION

This work considers an efficient training technique layer freezing on both fine-tuning and training
from scratch scenarios. We propose an attention-based layer freezing framework SmartFRZ. The key
idea is to leverage the training histories to predict the freezing probability of a layer during the train-
ing process. Our attention-based layer freezing predictor can learn comprehensive information about
the network layer. The predictor is trained offline on a dataset with layer weights as input data which
is labeled by a layer representation similarity-based method. Our extensive experiments demonstrate
that SmartFRZ significantly saves training time and computation by automatically freezing layers
without compromising accuracy.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their constructive feedback and sug-
gestions. This work is supported in part by NSF grants #2011146, #2154973, #1725657, and
#1909172.

REFERENCES

Mohamed Abdel-Basset, Weiping Ding, and Laila Abdel-Fatah. The fusion of internet of intel-
ligent things (ioit) in remote diagnosis of obstructive sleep apnea: A survey and a new model.
Information Fusion, 61:84–100, 2020.

Younes Akbari, Noor Almaadeed, Somaya Al-Maadeed, and Omar Elharrouss. Applications,
databases and open computer vision research from drone videos and images: a survey. Artificial
Intelligence Review, 54(5):3887–3938, 2021.

Roger Bemelmans, Gert Jan Gelderblom, Pieter Jonker, and Luc De Witte. Socially assistive robots
in elderly care: a systematic review into effects and effectiveness. Journal of the American
Medical Directors Association, 13(2):114–120, 2012.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Freezeout: Accelerate training
by progressively freezing layers. arXiv preprint arXiv:1706.04983, 2017.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm:
An automated end-to-end optimizing compiler for deep learning. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pp. 578–594, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Ha Manh Do, Minh Pham, Weihua Sheng, Dan Yang, and Meiqin Liu. Rish: A robot-integrated
smart home for elderly care. Robotics and Autonomous Systems, 101:74–92, 2018.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third International Workshop on Paraphrasing (IWP2005), 2005.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Masoud Faraki, Xiang Yu, Yi-Hsuan Tsai, Yumin Suh, and Manmohan Chandraker. Cross-domain
similarity learning for face recognition in unseen domains. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15292–15301, 2021.

Cristina Gorrostieta, Richard Brutti, Kye Taylor, Avi Shapiro, Joseph Moran, Ali Azarbayejani,
and John Kane. Attention-based sequence classification for affect detection. In Interspeech, pp.
506–510, 2018.

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetransformer: Automated
elastic pipelining for distributed training of transformers. arXiv preprint arXiv:2102.03161, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Ruimin Ke, Yifan Zhuang, Ziyuan Pu, and Yinhai Wang. A smart, efficient, and reliable park-
ing surveillance system with edge artificial intelligence on iot devices. IEEE Transactions on
Intelligent Transportation Systems, 22(8):4962–4974, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

10



Published as a conference paper at ICLR 2023

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, pp. 3519–
3529. PMLR, 2019.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Jaejun Lee, Raphael Tang, and Jimmy Lin. What would elsa do? freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090, 2019.

Yehao Li, Ting Yao, Yingwei Pan, and Tao Mei. Contextual transformer networks for visual recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning. arXiv preprint arXiv:2102.01386, 2021.

Xiang Long, Chuang Gan, Gerard De Melo, Jiajun Wu, Xiao Liu, and Shilei Wen. Attention clusters:
Purely attention based local feature integration for video classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7834–7843, 2018.

Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi Wang, and Bin
Ren. Patdnn: Achieving real-time dnn execution on mobile devices with pattern-based weight
pruning. In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 907–922, 2020.

Prabodh Panindre, Vijay Gandhi, and Sunil Kumar. Artificial intelligence-based remote diagnosis
of sleep apnea using instantaneous heart rates. In 2021 11th International Conference on Cloud
Computing, Data Science & Engineering (Confluence), pp. 169–174. IEEE, 2021.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Sheng-syun Shen and Hung-yi Lee. Neural attention models for sequence classification: Anal-
ysis and application to key term extraction and dialogue act detection. arXiv preprint
arXiv:1604.00077, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Zeyu Sun, Jie M Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. Automatic testing and
improvement of machine translation. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pp. 974–985, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers amp; distillation through attention. In
International Conference on Machine Learning, volume 139, pp. 10347–10357, July 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29, 2016.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Yawen Wu, Zhepeng Wang, Yiyu Shi, and Jingtong Hu. Enabling on-device cnn training by self-
supervised instance filtering and error map pruning. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(11):3445–3457, 2020.

11



Published as a conference paper at ICLR 2023

Yawen Wu, Zhepeng Wang, Dewen Zeng, Yiyu Shi, and Jingtong Hu. Enabling on-device self-
supervised contrastive learning with selective data contrast. In Design Automation Conference,
pp. 655–660. IEEE, 2021.

Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, and Guoqi Li. Training high-
performance and large-scale deep neural networks with full 8-bit integers. Neural Networks,
125:70–82, 2020.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems, 34:20838–20850,
2021.

Geng Yuan, Yanyu Li, Sheng Li, Zhenglun Kong, Sergey Tulyakov, Xulong Tang, Yanzhi Wang,
and Jian Ren. Layer freezing & data sieving: Missing pieces of a generic framework for sparse
training. arXiv preprint arXiv:2209.11204, 2022.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. Advances in Neural Information Processing Systems, 33:14011–
14023, 2020.

Kang Zhao, Sida Huang, Pan Pan, Yinghan Li, Yingya Zhang, Zhenyu Gu, and Yinghui Xu. Dis-
tribution adaptive int8 quantization for training cnns. In Proceedings of the Thirty-Fifth AAAI
Conference on Artificial Intelligence, 2021.

Zaixiang Zheng, Xiang Yue, Shujian Huang, Jiajun Chen, and Alexandra Birch. Towards making the
most of context in neural machine translation. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence, pp. 3983–3989, 2021.

12



Published as a conference paper at ICLR 2023

APPENDIX

A EXTENDED EXPERIMENTAL RESULTS

A.1 NLP TASKS USING BERT-BASE

In this section, we provide the experimental results of different freezing approaches in NLP tasks.
As shown in Table 6, SmartFrz is able to significantly reduce fine-tuning time without accuracy
loss. Moreover, SmartFrz delivers an average of 0.86% higher accuracy than linear freezing with
similar training time. Compared to AutoFreeze, SmartFrz provides 0.68% higher accuracy while
consuming 10.5% less time on average. These results demonstrate the superiority of SmartFrz over
linear freezing and AutoFreeze.

Table 6: Comparison of different freezing methods in NLP domain. The results are obtained by
fine-tuning 5 epochs of pretrained BERT-base on two datasets MRPC and CoLA, respectively.

Method MRPC CoLA
Accuracy Time (Second) Accuracy Time (Second)

Full Training 86.51%±0.24% 316 56.65%±0.18% 723
Linear Freezing 85.80%±0.21% 221 55.90%±0.29% 429

AutoFreeze 86.02%±0.36% 266 56.05%±0.21% 431
SmartFRZ (Ours) 86.76%±0.25% 215 56.66%±0.22% 423

A.2 TRAINING FROM SCRATCH EXPERIMENTS USING DEIT-T MODEL

Table 7: Comparison of different freezing methods in training DeiT-T from scratch on ImageNet
dataset (300 epochs).

Method Accuracy Time (Minute)
Full Training 72.21%±0.12% 2,190

Linear Freezing 71.19%±0.24% 1,817
AutoFreeze 71.55%±0.48% 1,815

SmartFRZ (Ours) 72.06%±0.29% 1,801

In this section, we provide the experimental results of training the vision transformer model DeiT-T
from scratch on ImageNet dataset. As one can observe from Table 7, SmartFRZ delivers higher
accuracy (0.69% on average) than linear freezing and AutoFreeze with the lowest training time.

B CONFIGURATIONS OF LINEAR FREEZING AND AUTOFREEZE BASELINES

To show the fairness of the experiments, in this section, we provide the details of the configurations
of linear freezing (Brock et al., 2017) and AutoFreeze (Liu et al., 2021).

Linear Freezing. Linear freezing employs a layer-wise cosine annealing learning rate schedule
without restarts, where the first layer’s learning rate is reduced to zero partway through training (at
t0), and each subsequent layer’s learning rate is annealed to zero thereafter. Once a layer’s learning
rate reaches zero, it is frozen and will not be updated afterward. The learning rate αi of layer li
(whose learning rate anneals to zero at ti) at iteration t is calculated as:

αi(t) = 0.5 ∗ αi(0)(1 + cosπt/ti) (6)

There is one hyperparameter in linear freezing, t0, which defines which epoch the learning of the
first layer reaches zero. The value of ti is linearly spaced between t0 and the total number of epochs.
We explore the impact of the value of t0. Table 8 shows the results with different configurations of
t0. Following the setting in the original paper, we vary the number of total training epochs for each
configuration to make the total training time of each configuration almost the same. As shown in
the table, with similar training time, setting t0 to 0.5 provides the highest accuracy, which is also

13



Published as a conference paper at ICLR 2023

Table 8: Hyperparameter sweep at different t0 values in linear freezing (Brock et al., 2017). The
results are obtained by fine-tuning ResNet50 on CIFAR-10 dataset.

Accuracy Time (Second)
t0 = 0.3 95.62% 1,989
t0 = 0.4 95.81% 1,986
t0 = 0.5 96.05% 1,980
t0 = 0.6 95.97% 2,015

recommended by the original paper. To ensure fair comparisons, we have selected the best results
of linear freezing as a baseline to compare against our method.

AutoFreeze. AutoFreeze periodically freezes layers whose gradients norm change rate is low. There
are two hyperparameters in the AutoFreeze framework. The first one is the number of evaluation
intervals M , which indicates the frequency of freezing layers. For example, 4 intervals/epoch means
that AutoFreeze evaluates the gradient norm change rate for each active layer and freezes the layers
with a low gradient norm change rate 4 times per epoch. The second hyperparameter is the threshold
N to determine whether a layer is converged or not. If a layer’s gradient norm change rate is in the
bottom N th percentile of all the active layers, it is considered converged and ready to be frozen
(there is another requirement that a layer can be frozen until all the layers in front of it have been
frozen).

Table 9: Hyperparameter sweep at different number of evaluation intervals per epoch in Aut-
oFreeze (Liu et al., 2021). The results are obtained by fine-tuning ResNet50 on CIFAR-10 dataset.

Accuracy Time (Second)
M = 2 96.19% 2,536
M = 3 96.28% 2,487
M = 4 96.24% 2,424
M = 5 95.69% 2,378

In our experiments, we follow the recommendation from original paper (Liu et al., 2021) and set the
N to 50%. For a fair comparison, we further study how the number of evaluation intervals per epoch
(i.e., M ) affects the accuracy and training time. We conduct the experiments by varying the intervals
per epoch from 2 to 5 since (Liu et al., 2021) finds the trade-off between accuracy and training time
is balanced for a range of values (2 to 5 intervals/epoch). Table 9 shows the experimental results, and
it can be observed from the table that sets the M to 4 can maintain the accuracy with high training
time reduction. To this end, in our main paper, we set the N to 50% and M to 4 to get the best
results of AutoFreeze.

C OVERHEAD ANALYSIS

In terms of predictor size, our lightweight predictor consists of only one MLPk(·), one MLPq(·),
one MLPv(·), and one MLPz(·), as shown in Figure 2. In specific, the MLPk(·), MLPq(·), and
MLPv(·) in equation 1, which are used for encoding weight histories, are 3-layer Multi-Layer-
Perceptrons (input size as 1024, hidden sizes as 256, and output sizes as 64). We adopt one layer of
attention (i.e., without stacking multiple attention layers as BERT Kenton & Toutanova (2019)) with
one single head (i.e., encoding one single group of key, query, and value vectors with one group of
MLPk(·), MLPq(·), and MLPv(·) for each timestamp) in our design. The MLPz(·) in equation 4,
which is used for computing confident scores of freezing or not, is a 3-layer Multi-Layer-Perceptron
(input size as 64, hidden sizes as 32, and output sizes as 2). To this end, the whole predictor consists
of four 3-layer MLPs. The predictor size is about 4 MB, which is negligible compared to the training
overheads. Moreover, since we tailor the layer by subsampling layer weights to a fixed-size vector
(e.g., a size of 1024), SmartFRZ only requires hundreds of KB to store the whole model once (e.g.,
about 200 KB for ResNet50). As such, SmartFRZ only requires about 6 MB of memory to store the
historical weights for freezing prediction even with a large attention window of size 30.

14



Published as a conference paper at ICLR 2023

The computation cost for one inference is 0.12 GFLOPs if we set the attention window size to 30
and the tailored layer size to 1024. So, it only consumes negligible less than 0.1% of total train-
ing time. Noticeably, the computation complexity of our predictor is linear-scaled to the sequence
length instead of quadratic-scaled since it handles the sequence classification task (which requires
all-to-one attention) instead of the sequence-to-sequence translation task (which requires all-to-all
attention). The encoding stage (i.e., equation 1) encodes each time stamp, yielding O(t) complexity.
The aggregating stage (i.e., equation 2 equation 3) calculates weights from the current timestamp
to sequences of timestamps as a one-to-all procedure, and it causes O(t) as well. Furthermore, the
last MLP classification steps only cause O(1). In summary, our predictor has linear complexity
(∼ O(t)) in terms of sequence length instead of quadratic complexity (∼ O2(t)). Moreover, once
a layer is frozen, we do not need to predict the freezing decision for that layer anymore and can
discard its historical weights. So the computation cost and memory cost introduced by the predictor
will decrease as training proceeds.

15


	Introduction
	Background and Related Work
	SmartFRZ Framework Design
	Framework Overview
	Design Principle of the Attention-based Predictor
	Workflow of the Lightweight Attention-based Predictor
	Training the Predictor

	Evaluation
	Experimental Setup
	Main Results
	Memory Cost Reduction and Freezing Pattern
	Sensitivity Study and Overhead Analysis

	Conclusion
	Extended Experimental Results
	NLP Tasks using BERT-base
	Training From Scratch Experiments using DeiT-T Model

	Configurations of Linear Freezing and AutoFreeze Baselines
	Overhead Analysis

