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Abstract— Given point cloud input, the problem of 6-DoF
grasp pose detection is to identify a set of hand poses in
SE(3) from which an object can be successfully grasped. This
important problem has many practical applications. Here we
propose a novel method and neural network model that enables
better grasp success rates relative to what is available in the
literature. The method takes standard point cloud data as input
and works well with single-view point clouds observed from
arbitrary viewing directions.

I. INTRODUCTION

Grasp detection [1], [2], [3] is a critical robotic skill. The

robot first observes a scene containing objects in the form of

images, voxels, or point clouds, and detects a set of viable

grasp poses from which an object may be grasped stably.

There are two general approaches to grasp detection: SE(2)
methods where the model reasons in terms of a top-down

image of the scene (e.g. [4], [5], [6], [7], [8]), and SE(3)
methods where the model reasons in terms of a point cloud

or voxel grid (e.g. [1], [3], [9], [10]). SE(3) methods have

a distinct advantage over SE(2) methods because they can

find side grasps more easily and they are easier to apply

in general robotics settings where only a point cloud is

available. Unfortunately, SE(3) methods are generally much

more complex, so SE(2) models are often preferred.

This paper tackles the problem of SE(3) grasping with a

novel grasp detection model that we call the Edge Grasp

Network. The model is based on a novel representation

of a 6-DoF grasp that uses a pair of vertices in a graph.

Given a single approach point (a position the hand will

approach), we define a KNN graph that contains all the

points in the point cloud that are within a fixed radius of the

approach point. Each point in this KNN graph corresponds

to an orientation of the gripper and, when paired with the

approach point, defines a distinct 6-DOF grasp pose. We

infer the quality of all such grasps simultaneously using a

graph neural network to compute point features. These are

used to compute features on the edges connecting point pairs

and ultimately evaluate the probability of grasp success for

each grasp candidate associated with the approach point. In

order to evaluate the qualities of grasps defined with respect

to several approach points in a single forward pass through

the model, we can simply form a batch comprised of several

individual KNN graphs. This approach is novel relative to

the literature in three ways: 1) First, our method of defining

unique grasp candidates in terms of a pair of vertices in a

graph is new; 2) Second, our inference model using a graph

neural network defined with respect to a single approach

point is novel; 3) Third, our model is the first SE(3) grasp

method that incorporates SO(3) equivariance.

Our approach has several advantages over prior work.

First, and perhaps most importantly from a practical perspec-

tive, our method works well with single-view point clouds of

a scene taken from arbitrary directions. The ability to use a

single arbitrary direction is especially relevant because many

methods like VGN [11] or GIGA [9] are trained specifically

for multiple camera views or a particular viewpoint direction

and do not generalize well to point clouds generated from

a novel viewing direction. The consequence is that it is

difficult to apply these methods out of the box to practical

problems. Another key advantage of our method is that we

can easily provide the approximate position of a desired

grasp as an input to the model. If we want to grasp a tool

by its handle, for example, this is easily achieved by only

considering approach positions and contact locations on the

handle. Finally, this work goes to great lengths to perform

fair comparisons with other grasp detection methods in the

literature, both in simulation and on physical systems. The

results indicate that our method has better grasp success rates

than several strong baselines including VGN [11], VPN [10],

GIGA [9], and the method of Zhu et al. [12].

II. RELATED WORK

A. 6-DoF gasping methods

There are two main types of 6-DoF grasping methods

in recent research. Sample-based methods like GPD [2],

PoinetNetGDP [13], GraspNet [3] that are often comprised

of a grasp sampler module and a grasp evaluator module.

These methods often require long training time and exe-

cution time since each grasp is represented and evaluated

individually. In contrast, our method uses shared features

to represent different grasps and achieve more computation

efficiency. Element-wise prediction methods include point-

based methods [10], [14], [15], [16] and volumetric-based

methods [11], [9]. They estimate grasp qualities for all

interesting points or voxels with a single feed-forward prop-

agation. For instance, S4G [14] generates each point feature

through PointNet++ [17] and predicts the grasp quality and

the grasp pose together. REGNet [16] considers the geometry

of radius sphere around the sampled points and regresses
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