
GCD2: A Globally Optimizing Compiler for Mapping DNNs to Mobile DSPs

Wei Niu

William & Mary, USA
wniu@wm.edu

Yanzhi Wang

Northeastern University, USA
yanz.wang@northeastern.edu

Jiexiong Guan

William & Mary, USA
jguan@wm.edu

Gagan Agrawal

Augusta University, USA
gagrawal@augusta.edu

Xipeng Shen

North Carolina State University, USA
xshen5@ncsu.edu

Bin Ren

William & Mary, USA
bren@wm.edu

Abstract—More specialized chips are exploiting available
high transistor density to expose parallelism at a large scale
with more intricate instruction sets. This paper reports on a
compilation system GCD2, developed to support complex Deep
Neural Network (DNN) workloads on mobile DSP chips. We
observe several challenges in fully exploiting this architecture,
related to SIMD width, more complex SIMD/vector instructions,
and VLIW pipeline with the notion of soft dependencies. GCD2

comprises the following contributions: 1) development of matrix
layout formats that support the use of different novel SIMD
instructions, 2) formulation and solution of a global optimization
problem related to choosing the best instruction (and associated
layout) for implementation of each operator in a complete
DNN, and 3) SDA, an algorithm for packing instructions
with consideration for soft dependencies. These solutions are
incorporated in a complete compilation system that is extensively
evaluated against other systems using 10 large DNN models.
Evaluation results show that GCD2 outperforms two product-
level state-of-the-art end-to-end DNN execution frameworks
(TFLite and Qualcomm SNPE) that support mobile DSPs by up
to 6.0× speedup, and outperforms three established compilers
(Halide, TVM, and RAKE) by up to 4.5 ×, 3.4 ×, and 4.0
× speedup, respectively. GCD2 is also unique in supporting
real-time execution of certain DNNs, while its implementation
enables two major DNNs to execute on a mobile DSP for the
first time.

Keywords-VLIW instruction packing; compiler optimization;
deep neural network; mobile devices;

I. INTRODUCTION

Despite the upcoming end of Moore’s law, the last several

years have seen a quick increase in transistors density. For

example, in going from 22 nm technology to 10 nm, Intel

chips saw a nearly 7× increase in transistor density, and the

most chip manufacturers are building chips with more than

100 million transistor per square millimeter at the time of

writing this paper1. All processors, but more particularly the

specialized ones, have exploited this density by supporting

an increasing amount of parallelism, often combined with

intricate ways in which this parallelism can be exploited. Even

in mainstream processors, the SIMD width has increased

1https://www.techcenturion.com/7nm-10nm-14nm-fabrication

and the flexibility of programming API has improved with

AVX-512 instruction set that has features like scatter, gather,

and masks.

An example of a class of specialized chips that offer a

programming interface suited for general purpose processing

is the Digital Signal Processing (DSP) chips. Particularly,

smartphones have invested in sophisticated DSP chips that are

also capable of accelerating other highly parallel workloads.

To date, however, there is only a limited exploration on the

use of DSP chips for other workloads [1], [2], [3], [4].

In recent years, machine learning (ML) or deep learning

(DL) workloads, particularly the Deep Neural Networks

(DNNs), have emerged as important workloads that have

been targeted on a range of hardware – from mainstream

processors and accelerators [5], [6], [7], [8], [9], [10], [11],

[12] to mobile devices [13], [14], [15], [16], [17], [18],

[19], [20], [21], [22], [23] (including mobile DSP [24]) to

chips specifically designed for them [25], [26], [27], [28].

A particular requirement, and the driver of our work, is

performing inference using complex Deep Neural Network

(DNN) models on mobile phones in a time, memory, and

power-efficient manner. We observe that DSP chips are a

natural candidate for accelerating DNN inference in a mobile

setting, not only because mobile phone already have a DSP

chip, but also because these chips are optimized for matrix

and vector computations on fixed-point values.

This paper reports a compilation system that optimizes

Deep Neural Networks (DNNs) for execution on a mobile

DSP chip. As a quick motivation for this effort, results from

Table I show that with an existing framework, TFLite [14],

execution on a DSP chip outperforms both mobile CPU and

GPU in terms of execution time and power. Conceptually,

however, it also turns out that compiling for the DSP chip

involves dealing with many advanced features, especially

with respect to low-level parallelism exposed through its

instruction set, requiring techniques well beyond the ones

implemented in current systems or otherwise developed.

More specifically, modern (mobile) DSP chips have much

more complex SIMD instruction sets with both a larger

512

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-6654-6272-3/22/$31.00 ©2022 IEEE
DOI 10.1109/MICRO56248.2022.00044

20
22

 5
5t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ic
ro

ar
ch

ite
ct

ur
e

(M
IC

R
O

) |
 9

78
-1

-6
65

4-
62

72
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
IC

R
O

56
24

8.
20

22
.0

00
44

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

Table I: Latency and Power Comparisons among Mobile
CPU, GPU, and DSP. Experiments are conducted on a

Samsung Galaxy S20 with TFLite [14]. CPU, GPU, and DSP

uses int8, float16, and int8, respectively. Power is collected by

the Android system interface. Results are for each inference.

Model #MACS† Latency (ms) Power�

CPU GPU DSP CPU GPU DSP
EfficientNet-b0 [33] 0.4G 53 11.3 9.1 10.7 1.6 1.0
ResNet [34] 4.1G 62 34.4 13.9 6.2 2.3 1.0
PixOr [35] 8.8G 280 64.6 43 6.7 1.8 1.0
CycleGAN [36] 186G 4320 477 450 5.5 1.2 1.0
† #MACS denotes the number of multiply-accumulate operations.
� Normalized by DSP’s power for readability.

width and a greater variety of instructions as compared

to the mainstream processors, and thus require techniques

beyond those explored in current literature [29], [30], [31].

Besides 1024-bit width, there are instructions combining

vector operations and reductions in different ways, going

even beyond Intel’s additions under VNNIW and FMAPS

extentions [32]. In addition, VLIW instructions exist that

can combine multiple SIMD instructions for simultaneous

execution, and there are other performance characteristics that

require new methods for effective mapping of the workload.

This paper develops techniques for exploiting these archi-

tectural features. Our contributions include:

• Methods for Exploiting Disparate SIMD Instructions.
We develop data layouts and execution schemes that use

different new instructions for key Deep Learning (DL)

kernels. We also investigate the trade-offs between different

approaches depending upon the size of the operands.

• Formulating and Solving a Global Optimization Prob-
lem. We show how the choice of instruction (and their

corresponding data layouts) for one operator impacts

the choice for their successor and formulate a global

optimization problem. We show an optimal linear-time

solution for this problem when the operators form a linear

chain, and develop useful heuristics for the general case

of a computational graph.

• VLIW Packing (i.e., Scheduling) Problem. Considering

many unique aspects of our target architecture (including

the notion of soft dependencies, and latency sensitivity), we

present a novel Soft Dependencies Aware (SDA) algorithm

for instructions packing.

• Design of an End-to-End Compilation System. We

engineer a system that includes a nuanced code generation

design and several additional optimizations.

GCD2 is extensively evaluated on 10 real-world large

DNNs, with a range of model sizes and operator counts

and designed for various ML tasks, targeting popular mobile

DSPs. Compared with two state-of-the-art DNN frameworks

(TFLite [14] and Qualcomm SNPE [37]) that support end-

to-end mobile DSPs execution, GCD2 achieves 2.8× and

2.1× speedup (in geometric mean), respectively, reaching

real-time execution for some of them for the first time. In

fact, for two of the models, GCD2 implementation supports

mobile DSP execution for the first time. While comparing

with three established compilers (Halide [38], TVM [5],

and RAKE [4]) that support efficient kernels execution on

mobile DSPs, GCD2 achieves 4.5×, 3.4×, and 4.0× speedup,

respectively. GCD2 outperforms others primarily because of

improved SIMD execution and optimized VLIW instruction

scheduling and the evaluation justifies the choices made in

GCD2’s algorithms for these optimizations.

II. EXECUTING DNNS ON MOBILE DSPS

Modern mobile DSPs have become increasingly powerful

with key features as follows: 1) larger SIMD widths, 2) richer

vector instructions with growing computation capabilities, and

3) more flexible instruction pipelines that can tolerate certain

data dependencies. Take Qualcomm Hexagon 698 DSP [39]2

as an example. Its SIMD width is 1024-bit, twice that of

Hexagon 680 [40] and its instruction set includes multiple

SIMD/vector instructions (e.g., vmpy, vmpa, and vrmpy
elaborated in Section III), and can support complicated

MAC (multiply–accumulate) operations. Multiple vector (and

scalar) instructions can be packed into a VLIW pipeline,

further improving the computational throughput. Finally, the

pipeline offers hardware mechanisms to guarantee execution

correctness even in the presence of certain dependencies,

thus offering more flexibility.

Mobile DSPs support fix-point operations (8/16/32-bit)

with extremely high performance (e.g., the theoretical peak

for Hexagon 698 DSP is 15 TOPS [41]). While considering

DSP chips for DNN execution, the important context here

is that Quantization, a well-known technique to convert

floating-point values to integer ones, has been very effective

in accelerating DNN executions, particularly on resource-

constraint devices [42], [43]. The cutting-edge DNN ac-

celeration frameworks, (e.g., TFLite [14] and SNPE [37],

and Qualcomm’s built-in library Hexagon NN [44]) aim to

combine the benefits of both quantization and mobile DSPs

to accelerate DNN execution, achieving both (near) state-of-

the-art model accuracy and lower latency as compared to

the other parts of the mobile SoC (i.e., CPUs and GPUs).

Similarly, MobiSR schedules the super-resolution model over

Heterogeneous Mobile Processors (including CPU, GPU, and

DSP) [45].

Despite these rapid developments, compilers and libraries

built for DSP chips cannot fully exploit the device’s computa-

tion power – this applies to, but is not limited to, the compilers

and libraries for DNN execution listed above. Specifically,

the performance of the mobile DSP is sensitive to 1) the

input/output data layout, and 2) the VLIW instruction packing

2Qualcomm Snapdragon is one of the most popular SoC and many
generations of Snapdragon are equipped with Hexagon DSPs. Although
our presentation and evaluation is on Hexagon DSP, the work is generally
applicable to other mobile DSPs as well, e.g., Cadence, which is the other
major player in the mobile DSP market.

513

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

Table II: Execution Latency w/ Different SIMD Instruc-
tions (and Layouts) for Matrix Multiplication C = A×B.
M, K, and N denote the dimension size of Matrix A (M×K),

B (K ×N), and C (M×N), respectively. Execution latency

and total data size with padding are normalized by vmpy
for readability. Smaller numbers mean better latency or less

padding. Bold ones denote the best case.

M K N
Execution Latency Total Data Size w/ Pad

vmpy vmpa vrmpy vmpy vmpa vrmpy
32 32 32 1.00 0.79 0.63 1.00 0.56 0.33
64 64 64 1.00 0.69 0.76 1.00 0.60 0.60
96 96 96 1.00 1.06 0.89 1.00 1.00 0.82

128 128 128 1.00 1.10 1.23 1.00 1.00 1.00

(or scheduling) in view of all hardware resource constraints.

This is because first, various SIMD/vector instructions are

designed to perform MAC operations in different ways and

they are friendly to different input/output data sizes and data

layouts. Second, the VLIW pipeline imposes many constraints

on the instructions that can be packed together.

In the context of DNN acceleration, complex DNN designs

challenge the DSP-oriented implementations in multiple ways.

First, modern DNNs usually consist of many operators (e.g.,

the latest BERT consists of over 1000 operators [46]), and

even with the same operator, operands can be of different

shapes and sizes. Mapping growing SIMD/vector width and

instruction set (variety) to these operators and operands

is challenging. Second, as discussed above, the complex

opportunities and constraints in VLIW packing need to be

considered for implementations of specific operators.

III. INSTRUCTIONS AND LAYOUTS

Our target instruction set includes novel and complex

SIMD instructions capable of optimizing computations found

in ML (and scientific) workloads. We show three representa-

tive instructions in Figure 1. While these instructions are used

for multiple operators in a DNN (e.g., the convolutions), our

presentation here uses matrix multiplication for illustration.

Similarly, other instructions like vtmpy and vmpye can also

be used to implement these operators. Our discussion here

considers only three instructions. However, as a motivation,

we first show the trade-offs between their use.

Table II shows how the cost of matrix multiplication varies

with the three choices when input tensors have different

shapes. We can see that the instruction vmpy (and the

corresponding 1-column layout, both are elaborated later)

provides better execution efficiency if the operands have

a certain length. However, for other cases, this instruction

causes padding overheads, thus making the other instructions

more time- and space -efficient.

As additional background, many recent works show that

the floating-point representations (and operations) for weights

and activations are not necessary to achieve good accuracy

for DNNs, but instead fixed point (8-bit or even less) suffices

[42], [47], [48], [49], [50], [51]. However, one caution is

that the product between two 8-bit values should be stored

in 16-bits to avoid data overflow, and similarly, accumulating

several such products requires 32-bits. In either case, a

requantization phase is required to generate the 8-bit final

output.

With this motivation and background, we explain the

existing instructions and associated data layouts we have

developed. In Figure 1 (a), we show the instruction vmpy,

whose inputs are a vector with 128 8-bit values and four

scalar values. In vmpy, four consecutive values in the vector

are multiplied by four distinct scalars, with the output being

two vectors with 64 16-bit values, each storing alternate

results of multiplications.

In Figure 1 (b), the input for the instruction vmpa are two

vectors with 128 8-bit values each. A pair of corresponding

values from the two vectors are multiplied by two scalar

values and then added together. Specifically, alternate pairs

are multiplied with the first two and the last two scalars,

respectively, and accumulated to two different output vectors.

Finally, in Figure 1 (c), the instruction vrmpy is illus-

trated – here, four consecutive values from the vector are

successively multiplied by four distinct scalar values, and

accumulated together. The result is a vector with 32 32-bit

values.

In this work, we have developed novel dense matrix

data layouts that optimize the use of these instructions

for multiple key operators in DNN computations (e.g.,

MatMul, CONV, Depthwise CONV, etc.), and this part

takes matrix multiplication (MatMul), a critical kernel for

our target workload as an example. Developing layouts for

implementing arbitrary loop nests using these or similar

instructions is an open problem beyond the scope of this

paper.

In Figure 2 (a), we show the layout that enables the use of

vmpy instruction shown earlier in Figure 1 (a). For efficiency,

it is very important that the set of values that are to be loaded

to or stored from a vector register are stored in a contiguous

fashion. The layout we use is referred to as the 1-column
layout. The numbers shown in the boxes represent the offset

of the location of that element. In 1-column layout, a set

of 128 rows is stored in a column-major way, and this pattern

is repeated for the next set of rows. In carrying out the matrix

multiplication, the first column is loaded to a vector and all

values are multiplied with the first weight (0) stored in the

scalar register. The outputs are two vectors storing 64 16-bit

elements each, which will eventually be shuffled to obtain

an output layout matching the input layout. The process

continues by loading the next 128 elements physically stored

in our layout, multiplying them with the second weight (1),

and reducing the output to the same two vectors.

In Figure 2 (b), we show the layout and the key steps

of matrix multiplication with the instruction vmpa, which

was shown earlier in Figure 1 (b). The layout we have

designed is referred to as 2-column layout – within the

514

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

v v v v … v v v v
s s s s

v s + v s+ v s + v s … v s + v s +v s + v s
(c) vrmpy

v v v v … v v v vs s s sv s v s … v s v sv s v s … v s v s
(a) vmpy

v v v v … v v v vv v v v … v v v v
s s s s

v s+ v s v s+ v s … v s+ v s v s+ v sv s+ v s v s+ v s … v s+ v s v s+ v s

High addr. Low addr.128

(b) vmpa

Vector pair

Vector pairVector

Byte 2-Byte 4-Byte v /v : i-th element in the vector registers : i-th element in the scalar register

Vector

Figure 1: SIMD/Vector Multiply Instruction Examples in Mobile DSP Chip

126 124 … 2 0

Byte 2-Byte 4-Byte

0 128 256 384
1 129 257 385
… … … …

127 255 383 511
512 640 768 896
513 641 769 897
… … … …

639 767 895 1023

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

0 128 256 384
1 129 257 385
… … … …

127 255 383 511
512 640 768 896
513 641 769 897
… … … …

639 767 895 1023

1

127126125124 … 4 3 2 1 0

127 125 … 3 1
64

128

128

128

Splat one element

Output vector pair

Input vector

Input Weight Output

1 1 1

0 0 0 0

128

Primary computation

(a) 1-column layout example (instruction: vmpy).

0, 1 128, 129
2, 3 130, 131
… …

126, 127 254, 255
256, 257 384, 385
258, 259 386, 387

… …
382, 383 510, 511

64

0, 1 128, 129
2, 3 130, 131
… …

126, 127 254, 255
256, 257 384, 385
258, 259 386, 387

… …
382, 383 510, 511

2

255 254 253 252 … 132 131 130 129 128

126 124 … 2 0

Weight scalar
Output vector pair

64

127 126 125 124 … 4 3 2 1 0

Input vector pair

126 124 … 2 0

0 4 8 12
2 6 10 14
1 5 9 13
3 7 11 15

128

64

Reorder

2

Input Weight Output

21

3 2 1 0

(b) 2-column layout example (instruction: vmpa).

0, 1, 2, 3
4, 5, 6, 7

…
124, 125, 126, 127
128, 129, 130, 131
132, 133, 134, 135

…
252, 253, 254, 255

0, 1, 2, 3
4, 5, 6, 7

…
124, 125, 126, 127
128, 129, 130, 131
132, 133, 134, 135

…
252, 253, 254, 255

127 126 125 124 … 4 3 2 1 0

31 … 0

128

32

4

32

32

Weight scalar

Output vector

Input vector0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Input Weight Output

3 2 1 0

(c) 4-column layout example (instruction: vrmpy).

Figure 2: Data Layouts to Support Usage of Varied
SIMD Instructions for Matrix Multiplication. Each number

denotes the linear storage offset of an element. A blue, yellow,

and orange cell takes 1, 2, and 4 bytes, respectively. Left

shows data storage, and right shows computation.

64-row panels, values for 2 columns are stored adjacent to

each other, before following the column-major storage. In

applying matrix multiplication, elements 0, 1, 128, and 129,

which are from the same rows of the matrix, are multiplied

by the output weights 0, 1, 2, and 3, respectively, stored

in scalar registers. Note that the two corresponding output

elements in the output vectors need to be further added to

obtain the results.
In Figure 2 (c), we show the matrix multiplication

operations and layouts with the use of the instruction vrmpy
shown in Figure 1 (c). The input and weight matrix are

of different shapes as compared to the previous examples,

in order to illustrate the layout and the computation. Here,

Table III: SIMD Instructions Selected and Performance
by RAKE [4] and GCD2. Representative Conv2d kernels

(w/ varied shapes, 7×7, 1×1, and 3×3) are from ResNet-50.

Conv2d properties Instruction Speedup
Ours/RAKEInput shape Weight shape Output shape RAKE Ours

1x3x224x224 64x3x7x7 1x64x112x112 vrmpy vmpy 1.63x
1x64x56x56 64x64x1x1 1x64x56x56 vmpy vmpa 1.98x
1x128x28x28 128x128x3x3 1x128x28x28 vrmpy vmpy 2.06x

panels of 32 rows are used and four elements from each row

are stored together. Four elements in a row are multiplied

with four weights stored in scalar registers. We also note that

while there is an instruction somewhat similar to vrmpy in

Intel instruction set (vpdpbusd), there are no counterparts

to vmpy or vmpa at the current time.

Overall, our work considers a relatively small number of

candidate instructions for implementing a single operation,

using a “pre-designed” approach for each pair of operator and

instruction. Efforts do exist on trying to automate the selection

of instruction and code generating using the instruction [3],

[4], [52]. We have conducted a brief comparison of our

approach against the code generated by the most recent

of these efforts (which also targets the same instruction

set), i.e. RAKE [4]. As shown in Table III, our approach

is able to deliver significantly higher performance. Thus,

while automation of instruction selection and code generation

is valuable, current approaches are not matching the “pre-

designed” approach we are taking.

IV. SYSTEM DESIGN OF GCD2

This section highlights the major optimizations developed

in GCD2, followed by a brief summary of implementations.

A. SIMD Global Opt. Problem Formulation

From the discussion earlier in Section III, the important

takeaway is that different instructions can be used for

the same operation, but with different requirements on

input formats, resulting in different output formats, and

with different trade-offs (which were summarized earlier

in Table II).

With a relatively small number of instructions available

to implement a single operation, the instruction and the

layout selection can be performed (in isolation) by explicitly

515

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Examples of Computational Graphs. Left and

right show partial CGs in ResNet [34] and TinyBERT [53].

considering all choices and choosing the one that requires the

fewest cycles for execution. However, it turns out that with

distinct input and output layouts for different instructions,

choices for each operation cannot be made in isolation.

Suppose an operator A can be implemented in the most

efficient fashion using the instruction vmpa. Let the output

of the operation A be the input to the operation B. Without

considering the need for the formatting of input tensors,

let the most efficient implementation of B be using the

instruction vrmpy. However, the output tensor from the

operation A will be in the two-column format (Figure 2 (b)),

whereas if B is implemented using vrmpy, it is expected

that the input tensors are in the four-column format (Figure 2

(c)). Converting the layout of a tensor itself is a time-

consuming step. Thus, if the sequence of two operators

A and B are considered, it is possible that the most efficient

implementation involves using the same instructor (and thus

layouts) for the two operators. In practice, DNN models use

many operators (e.g., the model EfficientDet-D0 used in our

evaluation has 822 operators), and thus, we have a complex

optimization problem.

To formulate this global optimization problem, we use an

existing intermediate representation called the Computational

Graph (CG) [5], which captures the data-flow and basic

operator information like the operator type and parameters.

Figure 3 shows examples of such graphs. Let V be the set of

vertices in a CG and let E be the set of edges. Each vertex

is an operation that produces exactly one output tensor. A

directed edge (vi,v j) denotes that the output of the vertex

(operation) vi is (one of) input(s) to the operation v j. The

source of the edge e is also denoted as vin(e) and similarly,

the destination of e is denoted as vout(e).
Now, given an operator (vertex) O in the CG, let it have a

set of immediate predecessors we denote as Pre(O). By each

predecessor, we denote interchangeably both the operators

and their output. After performing the local analysis of

possible implementations and associated layouts for the

operator O we obtain a set of possible execution plans

EP(O), comprising execution plans ep1(O), ep2(O), and

so on. Associated with every execution plan, there is a

cost of execution, denoted by Cost(epi(O), which is based

on the number of instructions (cycles) required. This cost

calculation assumes that all input tensors are already stored

in the required layout for the SIMD instruction used.

We consider an execution plan epi(O) and a predecessor

tensor of O , which we denote as I (I ∈ Pre(O)). If

the operator I is executed with the plan ep j(I), then

there could be a data transformation with the associated

cost TC(ep j(I), epi(O)) (this cost will be 0 when data

transformation is not required).

Given this background, the global optimization problem is

as follows. For each operator (vertex) v in the CG, we want

to select an execution plan epv, such that the total cost of

execution for the graph G, which is denoted as

Agg Cost(G) = ∑
v∈V

Cost(epv(v)) +

∑
e∈E

TC(epvin(e)(vin(e)),epvout(e)(vout(e)))
(1)

is minimized. In the expression above for Agg Cost(G),
the first term is the cost of execution associated with each

operation under the choice of plan made, whereas the second

term is the cost of data transformation between the layouts

for the source and the sink of the edge, under the choices

of implementation plans chosen for the source and sink

operators.

B. Layout & Instruction Select Solution

It is easy to see that a trivial approach for solving this

problem will involve comparing k|V | options, where |V | is the

number of vertices in the graph and k is number of (assumed

fixed for all operators) options available for each operator.

Even when k is 2 or 3, this cost can be easily prohibitive for

realistic DNN models. Furthermore, the above problem is

really a Partitioned Boolean Quadratic Programming (PBQP)

problem, which is known to be NP-hard [54].

If we simply have a linear chain of operations

O1,O2, . . . ,On, then the following approach can be used

to solve the problem. Let Sol(i, j) denote the lowest possible

cost of execution operations O1,O2, . . . ,Oi such that the

output from the operator Oi is the jth available choice (j ≤ k,

where k is the number of choices available for each operator).

Then, we have

Sol(i, j) = minl=1,...,k(Sol(i−1, l) + TC(epl(Oi−1),ep j(Oi)) (2)

Here, Sol(i, j) is computed by comparing k choices, which

are the lowest cost ways of reaching each of the k different

output formats for the previous operation in the chain. It is

easy to see that this recurrence can be solved in O(|V |× k2)
time. Moreover, this solution can be easily extended to the

cases when either every path from a “source” vertex of a

DAG to a given vertex is of the same length, or when every

vertex has at most one output. However, this approach does

not work for an arbitrary DAG and we focus on an effective

516

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

heuristic solution. While considering a PBQP solver [54],

[55], which is not guaranteed to provide an optimal solution

but is in practice close, is an option, we instead focus on

exploiting the properties of our target domain. For this, we

consider the following definition:

Definition IV.1 (Cost Optimal Partitioning). Given a com-

putational graph G, a cost optimal partitioning of G is a

disjoint graph partitioning P = {G1,G2, . . . ,Gn}, such that

for Agg Cost(G) (as defined in Equation 1), we have

Agg Cost(G) = Agg Cost(G1) + Agg Cost(G2) +

. . .+Agg Cost(Gn)
(3)

Note that we use the popular definition of graph partition-

ing, where the edges between vertices that are in different

partitions are not considered part of either partition. If

such partitioning can be found, the optimal plans for all

operators within each partition can be determined in isolation,

translating to a significant reduction in the complexity of

search.

In practice, What we can hope to achieve is to find

a set of partitions that can be optimized independently,

i.e. where the lowest cost for the entire graph is achieved

by choosing plans within each partition independently. To

achieve this, we note that an edge e = (vi,v j) is a desirable

partitioning edge if 1) the node v j has only one predecessor

(vi), and 2) The operator v j is a layout transformation
operator or the transformation along the edge e is a profitable
transformation. Typical examples of layout transformation

operators include Reshape and Transpose – they do

not perform any computations but change the shape of

the operand. A transformation along an edge is considered

profitable if the reduction in execution time of the successor

operator with the transformed layout is higher than the cost of

the data transformation itself. The intuition for this definition

of desirable partitioning edge is that decisions on nodes

leading up to this edge and vertices following this edge can

be made in isolation.

However, as next challenge for us, partitioning a graph

typically involves many cut edges. Now, if we can find

a cut edge that is dominant, i.e, if every path from the

(assumed to be unique) source vertex in the DAG to the

(again, assumed unique) sink vertex passes through this edge,

then the problem is simplified. When this is not feasible, we

can add complementary edges to the identified cut edges to

create complete partitions.

C. VLIW Optimization

Instruction packing or scheduling is a long-standing

issue in VLIW research that has been proved to be NP-

hard [56], [57]. Because of the specific opportunities as well

as challenges associated with our target architecture, a new

algorithm is developed in this work.

Optimization Foundation: Hard/Soft Dependencies. For

our target architecture, dependencies between two instructions

Read ad from RF Load into R1

Read R2 from RF Assign R1+R2 to R3 Write R3 to RF

Execution pipelines

R1 load(ad)
R3 R2 + R1

Read R1 from RF Assign R1 + R2 to R3

Read R2 from RF

Write R3 to RF

Read ad from RF

R3 R1 + R2
store(R3, ad)

(b) Store after writing

(a) Read after loading

Store R3

Stage: read Stage: execute Stage: write

Figure 4: Two Examples of Packing Instructions with
Soft Dependencies. Different colors show different VLIW

execution pipeline stages (read in green, execute in or-

ange, and write in blue). In (a), the second stage (Assign
R1+R2 to R3) of the second instruction requires to wait

for the completion of the first instruction, incurring packing

penalty. A similar situation happens to (b) between Assign
and Store.

can be characterized into two types with respect to their

implication on placing them in the same VLIW packet3

• Hard dependency denotes a strict dependence relationship

where placing such instructions in the same packet likely

produces incorrect results.

• Soft dependency denotes a relaxed dependence relationship,

and placing instructions together produces correct results;

however, the resulted execution performance is likely

degraded to a certain degree. An example of the soft

dependency in our target architecture is the one between a

scalar addition operation and a consumer of the result of

such an addition.

To further illustrate the nuances associated with soft

dependencies, we show two examples of packing instructions

with soft dependencies in Figure 4. Figure 4 (a) shows a

dependency between a load operation and an arithmetic

operation that consumes the loaded value. Each of these

two instructions takes 3 clock cycles4 individually, however,

if they are packed in the same packet, they can execute

correctly by taking 4 cycles in total5. This example shows

that packing instructions with soft dependencies together

takes less clock cycles than not packing them together at

all (i.e., treating the soft dependency as a hard dependency).

However, if sufficient number of instructions are available

without any dependencies between them, we will prefer

to not pack instructions with soft dependencies together.

Figure 4 (b) shows a similar example with a soft dependency

between an arithmetic operator and a store operation. Which

3This classification is independent of the traditional classification of
dependencies into flow/RAW, output/WAW, and anti/WAR, though soft
dependencies can only be RAW or WAR.

4According to the target microarchitecture design, each VLIW pipeline
execution comprises three stages, read from Register File (RF), execute,
and write to RF, though some of these stage can be be empty. Our
explanations will assume that each stage is 1 clock cycle [58].

5Mobile DSP processors (e.g., Hexagon DSPs) execute instructions within
each VLIW packet in parallel, but without overlap between packets.

517

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

E

1 2

Entry

Soft dependency aware
instruction packing

All hard dependency
instruction packing

Instruction dependency DAG (IDG) VLIW packets

P2
P3
P4
P5

P1
P2
P3

1 2 N N
3 N N N
4 N N N
5 6 N N
7 8 N N

1 2 3 N
4 5 6 N
7 8 N N

3

4

6 75

8

P1…
v2 = vmem(r2++)
v4:3 = vzxt(v3)
v2:1 = vadd(v1, v2)
v2:1 = vadd(v2:1, v4:3)
vmem(r4++) = v1
v3 = vmem(r3++)
vmem(r5++) = v2
v1 = vmem(r1++)
…

Pseudo assembly

1

2

3

4

5

6

7

8

Critical
path

Figure 5: An Instruction Packing Example. The left part

shows part of the pseudo assembly code for the innermost

nested loop performing 2D Element-wise Addition: R = A
+ B + C, where A, B, and C are two-dimensional uint8

arrays and R is a two-dimensional int16 array. v2:1 denotes

a 16-bit register combining 2 8-bit registers v2 and v1. The

middle part shows an IDG, in which, solid edges denote hard

dependency, dot edges denote soft, and critical path is colored

in red. Right shows the packing results from our solution

and an sub-optimal solution that treats all soft dependencies

as hard (soft to hard). N denotes an empty instruction slot.

dependencies are soft and which ones are hard depends upon

the microarchitecture. This information needs to be obtained

from the details of processor implementation (e.g., [58])

and made available to the instruction packing algorithm.

Soft Dependencies Aware (SDA) VLIW Packing Algo-
rithm. Because of the notion of soft dependencies, we have

developed a new VLIW instruction packing algorithm. Be-

sides handling the distinction between soft/hard dependencies,

the algorithm is cognizant of other constraints. While a packet

can have up to 4 instructions, there can be a limited number

of slots for each type of instruction. As an example, packing

two shift operations together is not allowed. This instruction

packing is implemented as an additional optimization step

of LLVM’s assembly code generation.

Like much of the previous work, the packing algorithm

uses the notion of a critical path [59]. and its overall goal

of minimizing execution time as two sub-goals: 1) reducing

the total number of instruction packets, and 2) packing

instructions with identical or similar latency together to

minimize VLIW pipeline stalls. The work also has many

similarities with algorithms for code generation targeting

superscalars, in the sense the goal is to minimize intra-bundle

RAW stalls [60].

Our presentation of the algorithm (as shown in Algo-

rithm 1) is supported by the running example from Figure

5. Its left hand side shows the pseudo assembly code for a

part of an innermost nested loop of a frequently occurring

Add operator in deep neural networks (R = A + B + C),

where A, B, and C are two-dimensional uint8 arrays and

R is a two-dimensional int16 array. Take the instruction of

v2 : 1 = vadd(v1,v2) in this pseudo assembly code as an

example. v1 and v2 are two 8-bit registers. v2:1 denotes a

Algorithm 1: Soft-dependency-aware VLIW Packing

Func packing: instructions ← [Packet]
1 cfg ← build cfg(instructions)
2 all packets ← Stack()
3 foreach block in cfg.block do
4 idg ← build IDG(block)
5 free insts ← Set()
6 find free instruction(idg, free insts)
7 while free insts is not empty do

/* Build critical path from IDG */
8 critical path ← get critical path(idg)
9 cur packet ← critical path[-1]

/* Iterate all the free instruction */
10 while len(cur packet) ¡ 4 do

/* Select the most profitable
instruction */

11 inst ← select instruction(free insts, cur packet)
12 find free instruction(idg, free insts)
13 if inst is None then
14 break
15 else
16 cur packet.add(inst)
17 idg.remove(inst)

18 all packet.add(cur packet)

19 return all packets

Func select instruction: free insts, packet ← Instruction
20 all insts ← resource constraint(free insts, packet)
21 if all insts is empty then
22 return NULL

23 hi lat ← highest latency(packet)
24 best ← NULL
25 foreach i in all insts do

/* The criteria of profitability */
26 i.score ← (i.order + i.pred) ×w - abs(hi lat - i.lat) ×(1−w)
27 if soft dependency(i, packet) then
28 i.score ← i.score - p(i, packet)

29 if best is NULL or best.score ¡ i.score then
30 best ← i

31 return best

16-bit register combining 2 8-bit registers (v2 and v1) to

store the addition result.

Returning to our algorithm, it first builds a Control-Flow

Graph (CFG) on assembly for each operator, and finds

the basic block corresponding to the computation kernel

of each operator (usually the largest basic block). Next, it

builds an instruction dependency DAG (called IDG) based on

the hard/soft dependency information, and finds the critical

path with the longest execution latency. The middle part

of Figure 5 shows the IDG – here, a vertex represents an

instruction, and an edge represents the dependence between

two instructions. A solid edge represents a hard dependency

and a dotted edge represents a soft dependency. Take the

instructions (or vertices) 4, 5, 6, and 7 in this figure as an

example. The dependencies between the instructions 4 and

5, 4 and 6, and 4 and 7 are all soft dependencies. IDG also

contains an artificial entry vertex. The number shown with

the vertex corresponds to the assembly instruction in the left.

The critical path is colored in red. The vertices with identical

518

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

colors have the same rank (distance to the entry).

Based on the IDG and the critical path, the algorithm

now packs instructions. When creating a new packet, the

algorithm always uses the last (unpacked) instruction in the

critical path as a seed (line 9). Next, such an instruction is

packed with other instructions that either do not have any

outgoing edges or have only soft-dependence edges to an

instruction to be packed (all of these instructions are called

free instructions). This step consists of three major sub-steps:

i) iterating through all free instructions (line 7), 2) finding a

candidate instruction from the set of free instructions (line

11), and 3) grouping the candidate instruction into the current

packet. Particularly, the key second sub-step (i.e., finding a

candidate instruction) comprises of two steps: first, for the

current working packet, the algorithm finds all instructions

that can be packed while meeting the hardware constraints

(line 20), and also determines the highest latency (hi lat)
among the instructions that are already in the current packet;

second, it iterates these available instructions to pick up the

best instruction and returns it (lines 25 to 30). Note that, the

best instruction selection is based on this instruction’s score
(i.score) that is calculated as follows:

i.score = (i.order+ i.pred)×w−abs(hi lat − i.lat)× (1−w) (4)

According to Equation 4, the score of an instruction is

decided by its three attributes, its distance from the entry

node (i.order), its predecessor instruction count (i.pred), and

its latency (i.lat). The first two have positive impacts on the

score, while the absolute difference between this instruction’s

latency (i.lat) and the latency of the longest instruction

already in the current packet (hi lat) has a negative impact

on the score. The former is because it is desirable to include

instructions that have a longer chain of dependencies and/or

a total large number of instructions that it is dependent

on. The latter, on the other hand, wants to create more

efficiency by packing instructions of the same (or very

similar) latency values together. This algorithm introduces

two new parameters (w is short of weight, and p is short for

penalty) that are empirically decided. w aims to control the

weight of the three factors’ impact (line 26), while p aims to

control the impact of soft dependency on this packing (line

28). Specifically, the value p depends both on the instruction

i under consideration and the instructions already placed in

the packet, and captures the stall that the soft dependence will

cause. For comparison in our experiments, we also create a

version of our algorithm that reduces all soft dependencies to

‘none’ or no dependence – this version of the algorithm will

ignore the calculation of this penalty. Next, to complete the

description of our algorithm, after one packet is created, the

algorithm repeats by finding the critical path of the remaining

sub-graph.

Returning to Figure 5, the right part shows the packets after

scheduling (N denotes an empty slot). This example compares

our Soft Dependencies Aware (SDA) packing algorithm

Computational
graph

Local layout enumeration

LLVM + VLIW
packing

Post-training
quantized model, e.g.,

TF, PyTorch

Other
optimizations

C code
generationGlobal layout selection

SIMD global optimization

Figure 6: System Workflow of GCD2.

(bottom) with a sub-optimal algorithm (called soft to hard)

that treats all soft dependencies as hard ones (top). Taking

the first seed (vertex 8, i.e., the last instruction in the critical

path) as an example. 8 and 6 cannot be packed together

(because of hardware constraints) and 8 can be packed with

7. Our packing algorithm can continue to explore the packing

opportunity between 4 and 5/6 because 5 and 6 only have

soft dependencies to 4, and the soft dependencies allow the

packing for 1, 2, and 3; however, these opportunities do not

exist in soft to hard version of the algorithm. In summary, our

algorithm delivers a schedule with only three packets, while

the sub-optimal soft to hard version generates a schedule

with two additional packets. Evaluation results in Section V

further validate our algorithm’s efficacy.

Impact of Unrolling. Loop unrolling plays an important

role in the schedule quality by affecting the scheduling scope

and the register pressure. Different from previous work like

[61], GCD2 employs a low-cost heuristic solution specifically

designed for DNN operators. The basic idea is to perform a

fast adaptive unrolling setting selection according to the shape

of output tensors, for example, for GEMM, different unrolling

settings are designed for varied output shapes (skinny, near-

square, and fat). Our empirical study in Section V proves

that this approach outperforms some simple selections while

also yielding comparable performance gains to a much more

expensive exhaustive search.

D. Putting Everything Together

GCD2 is implemented on top of an existing end-to-end

DNN execution framework, PatDNN [62], [63], [64] to

support efficient mobile DSP execution. Figure 6 shows the

system workflow of GCD2. First, it converts the post-training

quantized model to a computational graph (and optimizes it

with various techniques, e.g., constant folding) by leveraging

the existing framework. Second, it feeds the (optimized)

computational graph to the SIMD global optimization module

to conduct the local layout (instruction) enumeration and

the global layout (instruction) selection. The result here is

an optimized SIMD code generation plan including the data

layout for each operator and corresponding SIMD instructions

to use. This is followed by a pass where other optimizations

are applied, e.g., replacing an expensive division operation

with a database lookup operation. As the next step, the

existing framework and the optimized SIMD code generation

plan lead to a “low-level” C code with input/output tensor

519

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

storage details and optimized SIMD intrinsics. Finally, it

employs LLVM [65] with our VLIW packing optimization to

generate the optimized executable code on the mobile DSP.

V. EVALUATION

This section evaluates the performance of GCD2 by com-

paring it with five state-of-the-art frameworks, TFLite [14]

(V2.6.0), SNPE [37] (V1.55), Halide [38] (V12.0.1), TVM [5]

(V0.8.0), and RAKE [4] (V1f99df1). More specifically,

TFLite, SNPE, and TVM are the state-of-the-art production-

level DNN execution frameworks that can support (or

partially support) our target mobile DSP. Both TFLite and

SNPE call Hexagon NN, an expert-written hand-tuned library

designed by Qualcomm. However, as end-to-end DNN exe-

cution frameworks, their computational graph optimizations

(graph rewriting, operator fusion, etc.) are different, thus

resulting in very different execution performance (as shown

in Table IV). Halide, TVM, and RAKE use LLVM as

their back-end to generate DSP instructions. They perform

packet generation without distinguishing between soft and

hard dependencies (i.e., they treat each soft dependency as

a hard dependency). It should be noted that Halide, TVM,

and RAKE are tensor compilers, while GCD2 comprises

both tensor compiler optimizations (e.g., global data layout

optimization) and language compiler optimization (instruction

packing). We introduce a version of GCD2 to facilitate a

comparison of tensor compiler aspect of our work with

these systems, as we will describe later. Our evaluation

has four main objectives: 1) to demonstrate that GCD2

outperforms all of these state-of-the-art frameworks on

mobile DSP (Section V-B); 2) to identify the benefits of

specific optimizations and the choices made in our algorithms

(Section V-C); 3) to study the power consumption and energy

efficiency of GCD2 against alternative implementations on

the same chip (Section V-D); 4) to compare the inference

speed and energy efficiency of our mobile DSP-based solution

with other embedded DNN accelerators (Section V-E).

A. Evaluation Setup

Models and Datasets. GCD2 is evaluated on 10 state-of-the-

art neural networks (see Table IV) that are categorized

into seven groups according to the tasks they perform.

Particularly, they include 1) three image classification two-

dimensional CNNs (MobileNet-V3 [66], EfficientNet-b0

[33], and ResNet-50 [34]); 2) one image style transfer

two-dimensional CNN (FST [67]); 3) one image-to-image

translation GAN (CycleGAN [36]); 4) one super resolution

two-dimensional CNN (WDSR-b [68]); 5) two object

detection two-dimensional CNNs (EfficientDet-d0 [69], and

PixOr [35]); 6) one trans-former-based NLP model (Tiny-

BERT [53]); and finally, 7) one transformer-based speech

recognition model (Conformer [70]). All the evaluated

models in this section are quantized by a standard approach

used by well-known TFlite [71](with identical post-training

quantization across all frameworks) with 8-bit integers being

used for weights and feature maps (activations).

It should be noted that the choice of datasets has a

negligible impact on the final inference latency or relative

execution speeds, which are the primary metrics in our

evaluation. Therefore, and also because of space limita-

tions, we report results from one dataset for each model.

MobileNet-V3, EfficientNet-B0, ResNet-50, and CycleGAN

are trained on the ImageNet dataset [72], WDSR-b is trained

on DIV2K [73], EfficientDet-d0 and FST are trained on

COCO [74], PixOr is trained on KITTI [75], TinyBERT is

trained on BooksCorpus [46] and English Wikipedia [46], and

Conformer is trained on [76]. Because all frameworks employ

the identical model quantization approach, they achieve the

same accuracy on all models and datasets, and thus accuracy

is not reported.

Test Bed. Most of the experiments described in this section

are conducted on a Samsung Galaxy S20 (with Snapdragon

865 SoC [39]) that consists of an octa-core Kryo 585 CPU,

Adreno 650 GPU, and Hexagon 698 DSP (with Vector

eXtensions support). We also tested our framework on

older series Snapdragon platforms, which show the similar

performance gains against other baseline frameworks. We

omit the results due to the space constraints. We note that

our optimization designs are general, potentially applicable

to other mobile DSP architectures (e.g., Cadence DSPs with

increasingly complex SIMD and VLIW supports). All models

are executed with their best configurations while the same

parameters are used for all execution platforms. Each data

involves inferences on 50 different inputs. After excluding

the highest/lowest time, an average is taken and reported. As

the variation is negligible, ranges are not reported.

B. Comparison with Other Frameworks

This part evaluates the overall performance of GCD2

by comparing it against five state-of-the-art frameworks,

TFLite, SNPE, Halide, TVM, and RAKE. We compare

the performance of GCD2 with TFLite and SNPE over 10

models. While Halide, TVM, and RAKE have the capability

to generate code for the DSP chip, they currently cannot

execute full DNN models on this platform. Thus, a Conv2d
kernel is used for comparison against Halide, TVM, and

RAKE.

Execution Latency. Table IV shows the overall performance

comparison for all 10 models. TFLite and SNPE do not

support Transformer-based models. For the other 8 models,

GCD2 achieves 1.5× to 6.0×, and 1.5× to 4.1× speedup

over TFLite and SNPE, respectively. Table IV shows that

GCD2 outperforms TFLite and SNPE mainly because

of 1) optimized SIMD instruction selection and layout

transformation, and 2) optimized SDA VLIW packing by

taking soft dependencies into account. TFLite and SNPE

employ a uniform SIMD implementation for each operator

type to support mobile DSP execution, and their VLIW

520

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

Table IV: Overall Performance Comparison among TFLite, SNPE, and GCD2 on Mobile DSP. “-” means this model

is not supported by the framework yet. OverT and OverS are the speedup of GCD2 over TFLite, and SNPE, respectively.

GCD2’s overall compilation time for these models ranges from 5 minutes (WDSR-b) to 25 minutes (EfficientDet-d0).

Model Type Task #MACS #Params #Operators TFLite (ms) SNPE (ms) GCD2 (ms) OverT OverS
MobileNet-V3 2D CNN Classification 0.22G 5.5M 193 7.5 6.2 4.0 1.9 1.6
EfficientNet-b0 2D CNN Classification 0.40G 4M 254 9.1 9.2 6.0 1.5 1.5
ResNet-50 2D CNN Classification 4.1G 25.5M 140 13.9 11.6 7.1 2.0 1.6
FST 2D CNN Style transfer 161G 1.7M 64 935 870 211 4.4 4.1
CycleGAN GAN Image translation 186G 11M 84 450 366 181 2.5 2.0
WDSR-b 2D CNN Super resolution 11.5G 22.2K 32 400 137 66.7 6.0 2.1
EfficientDet-d0 2D CNN 2D object detection 2.6G 4.3M 822 62.8 - 26 2.4 -
PixOr 2D CNN 3D object detection 8.8G 2.1M 150 43 26.4 11.7 3.7 2.3
TinyBERT Transformer NLP 1.4G 4.7M 211 - - 12.2 - -
Conformer Transformer Speech recognition 5.6G 1.2M 675 - - 65 - -

Speedup (geometric mean) 2.8 2.1

C0 C1 C2 C3 C4 C5 C6 C7

1

3

5

Sp
ee
du
p

Halide TVM
GCD2

RAKE
GCDb

(a) Speedup.

C0 C1 C2 C3 C4 C5 C6 C7

0.50

0.75

1.00

Pa
ck

et
 c

ou
nt

(b) Packet count.

Figure 7: Performance Comparison of GCD2, Halide,
TVM, and RAKE with Individual Kernels. Left shows the

speedup and right shows the packet counts, both normalizing

Halide as 1. Conv2D operators (from ResNet-50) are used.

GCDb is a sub-optimal version of GCD2 that contains tensor

optimizations only without VLIW packing.

packing does not consider soft dependencies as GCD2. It

turns out that GCD2 achieves the most speedup (6.0× over

TFLite) on WDSR-b. The reason is that feature map shapes in

WDSR vary significantly among different operators, and our

instruction selection and layout transformation optimizations

deliver much better performance over others.

We also note that GCD2for the first time enables mobile

DSP execution of two DNNs (TinyBERT and Conformer)

because it supports more operators than TFLite and SNPE,

e.g., more variants of MatMul, and Pow. It also the first
time supports real-time mobile DSP execution of another

(EfficientDet-d0).

Next, we compare several individual convolutional compu-

tation kernels with Halide, TVM, and RAKE. Because our

native compiler optimizations (SDA VLIW instruction pack-

ing) built on LLVM can be applied to all other frameworks as

well to further improve their performance, we separate tensor

compiler optimizations (e.g., our data layout and instruction

selection) and native/language compiler optimizations (e.g.,

SDA VLIW instruction packing) in this comparison by

introducing a new version of GCD2 called GCDb. GCDb

only contains tensor compiler optimizations, and can be

viewed as a more fair comparison against these three tensor

compilers. In this comparison, the first 8 unique Conv2D
operators in ResNet-50 are used. Figure 7 (a) and (b) show

ENT-B0 RNT-50 FST WDSR PixOr
80

90

100

D
SP

 u
til

iz
at

io
n TFLiteSNPE GCD2

(a) DSP utilization.

ENT-B0 RNT-50 FST WDSR PixOr
80

90

100

M
em

or
y

ba
nd

w
id

th

(b) Memory bandwidth.

Figure 8: DSP Utilization and Memory Bandwidth
Comparison. These results are as reported by Snapdragon

Profiler [77], and normalized with GCD2.

the speedup and the packet count for these 8 Conv2D kernels,

respectively, and all results are normalized by Halide. It turns

out that GCD2 outperforms Halide, TVM, and RAKE with

significant speedups due to both its layout optimizations and

VLIW instruction packing. In comparing GCDb with other

tensor compilers, GCDb achieves up to 3.8×, 2.7×, and

3.3× over Halide, TVM, and RAKE due to tensor compiler

optimizations like layout and instruction selection. In addition,

our instruction packing algorithm results in fewer numbers

of packets (25% < Halide, 19% < TVM, and 21% < RAKE

on average, respectively). Please also refer to Section V-C

for a more detailed performance breakdown study.
Overall Performance Analysis. To further understand the

performance difference among above frameworks, Figure

8 compares DSP utilization and memory bandwidth. This

experiment uses 5 representative models out of 8 supported by

both TFLite and SNPE, including EfficientNet-B0 (ENT-B0),

ResNet-50 (RNT-50), FST, WDSR, and PixOr. Experiments

on other models show similar trends and are excluded because

of space limits. The data is collected from Snapdragon

Profiler [77]. For DSP utilization, TFLite and SNPE can only

achieve 88% to 93%, and 89% to 95% of GCD2’s utilization,

respectively. For memory bandwidth, TFLite and SNPE

can only utilize 86% to 93% and 90% to 94% of GCD2’s,

respectively. These results show GCD2 better utilizes mobile

DSP’s computing and memory resources with better VLIW

instruction pipeline execution and higher SIMD parallelism.
It should be noted that the theoretical peak performance

of Hexagon 698 reported by Qualcomm is 15 TOPS [41].

521

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

RNT-50 FST CycleGAN PixOr TinyBERT

1

3

5

Sp
ee

du
p

br
ea

kd
ow

n No opt. Layout + SDA + OtherLayout Layout + SDA

(a) Speedup over the baseline (No opt.)

RNT-50 FST CycleGAN PixOr TinyBERT
60

80

100

D
SP

 U
til

iz
at

io
n

(b) DSP utilization.

RNT-50 FST CycleGAN PixOr TinyBERT
60

80

100

M
em

or
y

ba
nd

w
id

th

(c) Memory bandwidth.

Figure 9: Performance Breakdown Analysis. Speedup over

the baseline (normalized with the no-opt version). DSP

utilization and memory bandwidth analysis (both normalized

with the GCD2 optimal version as 100%). The results are

collected from Snapdragon Profiler [77].

However, this number includes its Neural Processing Unit

that is not publicly programmable yet. To get the peak

performance of the publicly available vector processing unit

(HVX), we test the highly optimized matrix multiplication

kernel in the Qualcomm Hexagon SDK with small inputs that

can fit into the L-1 cache, and achieve the performance of 3.7

TOPS. Our evaluation shows GCD2 achieves up to 1.51 TOPS

for an individual layer in DNN inference. Considering the

necessary data loading and memory latency costs involved,

this value shows effective practical use of the hardware.

C. Impact of Opt. and Algorithmic Features

Impact of Different Optimizations. To understand how

different optimizations (instruction and layout selection,

VLIW packing, and other optimizations) contribute towards

performance speedups, Figure 9 (a) studies the impact of

these optimizations with 5 representative models that cover

2D CNN, GAN, and Transformer (EfficientNet-B0 (ENT-B0),

ResNet-50 (RNT-50), FST, WDSR, and PixOr). We evaluate

each compiler-based optimization speedup incrementally over

our baseline (w/o proposed optimizations). Compared with

No opt, instruction and layout selection brings 1.4× to

2.9× gains, VLIW scheduling achieves additional 1.2× to

2.0× speedup, and finally, other optimizations (e.g., replacing

an expensive division operation with a database lookup) add

1.1× to 1.4× speedup. Figure 9 (b) and Figure 9 (c) further

reveal that instruction and layout selection also has the largest

impact on DSP utilization and memory bandwidth.

Instruction (and Layout) Selection Analysis. This section

justifies the choice we have made in performing global

layout selection. Specifically, we compare the algorithm

used in GCD2 with two baselines - local optimal
and exhaustive search based global optimal solutions.

The local optimal solution selects the layout with the best

performance independently for each operator, whereas the

10 15 20 25

1.0

1.5

2.0

Sp
ee

du
p

Local Global
GCD2 (13) GCD2 (17)

(a) Speedup.

10 15 20 25

2-10

20

210

220

Se
ar

ch
 ti

m
e

(s
)

47

1

(b) Search time.

Figure 10: Layout Optimization Analysis. X-axis denotes

the number of operators in the computational graph. The left

figure shows the speedup over local optimal with different

numbers of operators. The right figure shows the search time,

and its y-axis is logarithmically scaled.

global optimal always conducts an (expensive) exhaustive

search on the entire computational graph to find the optimal

solution.

For the purpose of these experiments, partial computational

graphs are extracted from ResNet-50 using contiguous

operators. Figure 10 (a) compares the model execution

performance among local optimal, global optimal, and our

two versions – GCD2 (13) and GCD2 (17) mean the

maximum number of operators within each sub-graph is 13,

and 17, respectively. Compared with local optimal, GCD2

brings 1.55× to 1.7× speedup, while global optimal brings

1.56× to 1.72× speedup. This validates the design choice we

have made – specifically, the performance of GCD2 (13) is

almost identical to global optimal. At the same time, it is clear

that local-only decisions impose large data transformation

overheads and do not achieve good performance.

Figure 10 (b) compares the search time for the four

solutions. Obviously, the search time in global optimal

solution increases exponentially, making it impracticable even

when there are 25 operators (complete models have more

operators, see Table IV). The search time is over 80 hours

with only 25 operators in the graph, while GCD2 (13)
and GCD2 (17) need less than 2 seconds and 1 minute,

respectively.

VLIW Packing Analysis. One of the unique aspects of our

SDA VLIW instruction packing is the treatment of soft
dependencies. We evaluate this by comparing our method

against two versions: 1) all soft dependencies are treated as

hard dependencies, i.e., separating all instructions with soft

dependencies into different packets (soft to hard; 2) all

soft dependencies are treated as no dependencies soft to
none (i.e., removing lines 27, 28 in Algorithm 1 and thus

not associating with penalty with packing an instruction with

a soft dependency). Figure 11 reports the effectiveness of

our optimization using 5 models and establishes our current

algorithm does better than either of these choices. GCD2

achieves up to 2.1×, and 1.4× speedup compared with soft
to hard and soft to none, respectively because of

better packing efficiency as compared to soft to hard
and fewer runtime stalls as compared to soft to none.

Unrolling Analysis. Figure 12 (a) shows the performance

522

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

RNT-50 FST CycleGAN PixOr TinyBERT

1

2

Sp
ee

du
p

Soft to hard dependency Soft to none dependency GCD2

Figure 11: VLIW Scheduling Analysis. The version treating

all soft dependencies as hard ones is used as the baseline.

1 2 4 8 12 16 20

1.0

1.5

2.0

Sp
ee

du
p

Out Mid GCD2

No unrolling

2-1

1-1

2-2
4-2 4-3 4-4 4-5

Exhastive

(a) On a single kernel.

O1 O2 O3 O4 O5 O6 O7 O8

1.0

1.5

2.0
Sp

ee
du

p
Out MidNo unrolling
GCD2Exhaustive

(b) On multiple kernels.

Figure 12: Unrolling Factor Analysis on a Single MatMul
Kernel and on Multiple MatMul Kernels. The x-axis in

the left figure denotes the unrolling factors. The right figure

shows the performance comparison among the best settings

of three unrolling strategies (Out, Mid, and GCD2) on 8

operators (from O1 to O8). For comparison, it also shows

versions w/o unrolling and w/ exhaustive search.

comparison of different unrolling strategies for a matrix

multiplication kernel (three loop-levels): Out (only unroll

the outer-most-level loop), Mid (only unroll the mid-level

loop), and Exhaustive (unroll the loops by an exhaustive

search). We omit the inner-most-level loop as a possibility as

vectorization is performed at that level. The x-axis denotes

the unrolling factor, while the speedup is normalized by no

unrolling, i.e., when the unrolling factor is 1. The unrolling

settings of GCD2 for both loop levels are also labeled in this

figure. The best configuration by exhaustive search is 4−4.

GCD2 achieves higher performance compared with the other

two options. For all options, we see the expected result that

the performance drops if unrolling factor is too large due

to increasing register spilling. Figure 12 (b) compares the

performance of Out, Mid, Exhaustive search, and GCD2

under different matrix multiplication kernels – here again

the y-axis is normalized by No unrolling in each kernel.

Unrolling factor in No unrolling is 1, while Out and

Mid both use the best unrolling factor obtained from Figure

12 (a). Compared with exhaustive search (Exhaustive
that searches the best unroll plan for a loop structure in

some common unrolling configurations), GCD2 achieves very

comparable performance while saving significant search time

(exhaustive search generally takes over 3 minutes for each

kernel). GCD2 unrolling achieves much higher performance

compared with the other two strategies across all kernels.

D. Power Consumption and Energy Efficiency

Figure 13 compares the total power consumption and

energy efficiency of GCD2 against TFLite and SNPE also

ENT-B0 RNT-50 PixOr CycleGAN

1

3

5

Po
w

er
 c

on
su

m
pt

io
n

(W
)

TFLite - GPU TFLite - DSP
SNPE - DSP GCD2 - DSP

(a) Power consumption.

ENT-B0 RNT-50 PixOr CycleGAN0

30

60

90

Fr
am

e
pe

r W
at

t

0.55
0.72

0.86
1.63

(b) Energy efficiency: infer.
frames/W.

Figure 13: Comparison of Total Power Consumption (left)
and Energy Efficiency in Inference Frames/Watt (right).
Three DSP frameworks and TFLite with GPU back-end on

4 representative DNNs.

Table V: Inference Speed and Energy Efficiency Com-
parison with ResNet-50 on EdgeTPU [78] and NVIDIA
Jetson Xavier [79]. FPS is short for frames per second,

and FPW represents for inference frames per Watt.

Platform Device FPS Power FPW
EdgeTPU [78] Edge TPU (int8) 17.8 2 W 8.9

Jetson Xavier [79] GPU + DLA (fp16) 291 ≈30 W 9.7
Jetson Xavier [79] GPU + DLA (int8) 1100 ≈30 W 36.7

GCD2 DSP (int8) 141 2.6 W 54.2

executed on DSP (*-DSP) on four representative DNN

models (EfficientNet-b0, ResNet-50, PixOr, and Cycle-

GAN). As additional baseline, TFLite on a mobile GPU,

Qualcomm Adreno 650 GPU on the same Snapdragon 865

SoC (TFlite-GPU) is also included. Figure 13 (a) shows

the total power consumption of each solution, where we

see that TFLite-GPU consumes the most power (rang-

ing from 2.1 Watt to 3.8 Watt), and three DSP-based

solutions consume less power. GCD2-DSP consumes less

power than TFLite-GPU (by around 3.6% on average)

while consuming slightly higher power than TFLite-DSP
and SNPE-DSP (7.2% and 6.7% on average, respectively).

GCD2-DSP consumes more power than other DSP solutions

mainly because of its better DSP and memory utilization. As

this results in reduced execution times, GCD2-DSP achieves

much better energy efficiency as measured in inference

frames per Watt – specifically improving on TFLite-DSP
and SNPE-DSP by around 1.7× and 1.5× on average,

respectively (Figure 13). Figure 13 also shows that all mobile

DSP-based solutions result in better energy efficiency than the

state-of-the-art mobile GPU-based solution, TFLite-GPU.

Specifically, GCD2 outperforms it by 2.9× in energy effi-

ciency.

E. Comparison with Other DNN Accelerators

To better understand the inference speed and energy

efficiency of mobile DSP, we also compare GCD2 with

two popular embedded DNN accelerator-based solutions,

EdgeTPU [78] and Jetson Xavier [79] using a representative

DNN (ResNet-50). EdgeTPU is a low-power embedded

platform with an edge TPU aiming to accelerate integer

523

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

computations. Jetson Xavier utilizes both a GPU and DLA

(deep learning accelerator), with operators not supported by

DLA executed by the GPU. In this evaluation, EdgeTPU

and Jetson Xavier use TFLite, and TensorRT, respectively, as

their inference engine. The evaluation results are presented

in Table V. Jetson Xavier with int8 results in the highest FPS

(frames per second) though with more power consumption.

Our mobile DSP solution, GCD2 achieves 6.1× and 1.48×
better energy efficiency (FPW) with the same data type (int8)

over EdgeTPU and Jetson Xavier, respectively.

VI. RELATED WORK

This section discusses efforts related to DNN acceleration

and compilation, SIMD optimizations, VLIW instruction

packing, and other compilation work targeting DSP chips.

DNN Acceleration and ML/DL Compilers. There are many

recent efforts on accelerating DNN inference on edge and

mobile devices including DeepX [13], TFLite [14], TVM [5],

MNN [15], DeepCache [16], DeepMon [17], DeepSense [18],

MCDNN [19], and MobiSR [45]. Some of them (e.g., TVM,

and TFLite) rely extensively on compiler techniques, and

hence are called ML or DL compilers. Most of these efforts

do not target DSP, except TVM, TFLite, and MobiSR that

offer options to call certain versions of Hexagon NN [44].

They do not focus on SIMD/VLIW optimizations as GCD2.

TASO [9] and AccPar [80] are two recent DNN acceleration

efforts with some similarities to GCD2. TASO’s computation-

graph-level optimization is restricted to a sub-graph with a

limited number of operators, aiming to assist in their proposed

effective operator substitution; while GCD2 focuses on a

global optimization aiming to find a data layout solution

that can result in the optimized execution of the entire

DNN. The partitioning problems considered by AccPar have

similarities with the data layout (and instruction) selection

problem GCD2 considered. However, AccPar’s formulation is

different and can always be solved by dynamic programming,

while GCD2’s problem maps to an NP-complete problem,

PBQP [54], and thus requires a different solution.

Compiling for DSP Chips. Digital Signal Processing chips

have been around for several decades and there have been

multiple systems developed for compiling for them [81], [82],

[83], [84], including considering SIMD features [85] and

exploring VLIW instructions [86], [87]. However, the DSP

chip instructions set targeted in this earlier work do not have

much correspondence to a modern mobile DSP chip like the

one considered in this work. The techniques presented in

this work are all related to advances in SIMD instruction

sets and properties of VLIW instruction execution. Recently,

Ahmad et al. [4] have reported a system that does instruction

selection and code generation for the same instruction set

as the one we have targeted. Their work is more general

in considering arbitrary loop nests but does not address the

global optimization problem. Moreover, their approach has

a high compilation cost, and they report results on small

kernels only – our experimental comparison shows better

results for our system even on individual operators. The work

from Vanhattum et al. [3], [52] also has similar focus (and

limitations) but their target backend is different, making a

direct experimental comparison infeasible. Next, Yang et al.
have mapped a vision-related DNN to a chip that comprises

several DSP processors, performing effective mapping to

their vector instruction [2]. However, their work has been

applied to a single model and does not include a general

compiler-based optimization framework. Prior to that, another

system (based on Halide system) was extended to support

DSP chips [1], but this work did not emphasize data layout

issues.

SIMD Optimizations. Compiler-driven code optimization

and generation for SIMD [88], [89], [90] goes back several

decades. Earlier work was heavily driven by the fact that Intel

SIMD extensions required operands of vector instructions to

be contiguous [88], [91], [92]. More advanced techniques in

this area used polyhedral models to map arbitrary loop nests

for SIMD execution [29], [30] or even consider irregular

applications [93]. Because of our target workloads, where

there are relatively fewer options for the computations within

one operator, but there can be a very long chain of operators,

the challenges we address are related to global optimization,

and not dealing with arbitrary loop nests. Previous work on

global optimizations for SIMD [94], [95] did not consider

a comparable instruction set as ours, and therefore, SIMD

instruction selection and associated data layout optimizations

were not their focus. Recently, Chen et al. have developed

VeGen [31] that targets the growing diversity in available

SIMD and vector instructions. The VeGen compiler extracts

what they term as lane-level parallelism by finding the

instruction most suitable for a loop (nest). This work,

however, does not consider the possibility (and costs) of data

transformation to use specific instructions, does not target

instructions as complicated as the one we have handled, and

there are no global optimizations in their work. In another

recent work, a JIT compilation system was presented to

use Intel SIMD advances for convolution operations [32] –

this work, however, does not consider any layout or global

optimizations.

VLIW Instruction Packing. VLIW instruction scheduling

with timing and resource constraints is a long-standing issue,

and many solutions have been proposed for various DSP

architectures (that are different from modern mobile DSPs),

including advanced software pipelining [96], [97], [98], [99].

Closely related to this work, Six et al. [59] discussed a

critical path based approach based on a variant of Coffman-

Graham list scheduling [100]. This approach is top-down

by leveraging the heuristic that instructions with the longest

latency path to the exit have priority. However, our scheduling

is bottom-up by considering a heuristic of assigning higher

priority to instructions that are on a critical path and can

enable more instructions packing if they are packed early.

524

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

More importantly, compared with all existing efforts, GCD2

categorizes data dependencies and tolerates soft dependencies

with advanced hardware support, and focuses on a more

domain-specific design for DNN accelerations on mobile

DSP.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a compilation system, GCD2, for

efficiently mapping real-world complex DNN workloads on

modern mobile DSP architectures. GCD2 consists of three

major optimizations including the development of matrix

layout formats to support novel advanced SIMD instructions

in the mobile DSP, a global SIMD optimization procedure

that selects optimal SIMD instructions and associated layouts,

and an SDA VLIW instruction packing that considers the

effect of soft dependencies. GCD2 is extensively evaluated

with ten real-world complex DNNs on popular mobile DSPs.

The results show that GCD2 outperforms two cutting-edge

end-to-end DNN execution frameworks supporting mobile

DSPs by up to 6.0× and outperforms three established

compilers that support efficient computation kernels execution

on mobile DSPs by up to 4.5× because of the improved

SIMD execution and optimized VLIW instruction scheduling.

For certain DNNs, GCD2 is unique in supporting the real-

time execution of the model. For two of these ten models,

GCD2 implementation has, for the first, enabled execution on

mobile DSPs. The overall compilation time is also justified.

In the future, we plan to design and integrate a more advanced

(or customized) Quantization approach [42] to GCD2, and

explore DSP-friendly operator fusion [63] to further improve

the performance.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their constructive comments and helpful suggestions.

This work was supported in part by National Science Foun-

dation (NSF) under the awards of CCF-2047516 (CAREER),

CCF-2146873, CCF-2232813, CCF-2146852, CCF-2131509,

CCF-2034850, and CCF-2007793, and Army Research

Office/Army Research Laboratory via grant W911-NF-20-1-

0167 to Northeastern University. Any errors and opinions are

not those of the NSF, Army Research Office, or Department

of Defense, and are attributable solely to the author(s).

REFERENCES

[1] S. Vocke, H. Corporaal, R. Jordans, R. Corvino, and R. Nas,
“Extending halide to improve software development for
imaging dsps,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 14, no. 3, pp. 1–25, 2017.

[2] C. Yang, S. Chen, Y. Wang, and J. Zhang, “The evaluation of
dcnn on vector-simd dsp,” IEEE Access, vol. 7, pp. 22 301–
22 309, 2019.

[3] A. VanHattum, R. Nigam, V. T. Lee, J. Bornholt, and
A. Sampson, “Vectorization for digital signal processors via
equality saturation,” in Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 874–886.

[4] M. B. S. Ahmad, A. J. Root, A. Adams, S. Kamil, and
A. Cheung, “Vector instruction selection for digital signal
processors using program synthesis,” in Proceedings of
the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1004–1016. [Online].
Available: https://doi.org/10.1145/3503222.3507714

[5] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Kr-
ishnamurthy, “Tvm: An automated end-to-end optimizing
compiler for deep learning,” in OSDI 2018, 2018, pp. 578–
594.

[6] S. G. Bhaskaracharya, J. Demouth, and V. Grover, “Automatic
kernel generation for volta tensor cores,” arXiv preprint
arXiv:2006.12645, 2020.

[7] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Co-
hen, “Tensor comprehensions: Framework-agnostic high-
performance machine learning abstractions,” arXiv preprint
arXiv:1802.04730, 2018.

[8] A. Venkat, T. Rusira, R. Barik, M. Hall, and L. Truong,
“Swirl: High-performance many-core cpu code generation for
deep neural networks,” The International Journal of High
Performance Computing Applications, vol. 33, no. 6, pp.
1275–1289, 2019.

[9] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and
A. Aiken, “Taso: optimizing deep learning computation with
automatic generation of graph substitutions,” in Proceedings
of the 27th ACM Symposium on Operating Systems Principles,
2019, pp. 47–62.

[10] Y. Ding, L. Zhu, Z. Jia, G. Pekhimenko, and S. Han, “Ios:
Inter-operator scheduler for cnn acceleration,” Proceedings
of Machine Learning and Systems, vol. 3, 2021.

[11] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A.
Laurenzano, S. Mahlke, L. Tang, and J. Mars, “Deftnn:
Addressing bottlenecks for dnn execution on gpus via
synapse vector elimination and near-compute data fission,”
in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017, pp. 786–799.

[12] P. M. Phothilimthana, A. Sabne, N. Sarda, K. S. Murthy,
Y. Zhou, C. Angermueller, M. Burrows, S. Roy, K. Mandke,
R. Farahani et al., “A flexible approach to autotuning multi-
pass machine learning compilers,” in 2021 30th International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT). IEEE, 2021, pp. 1–16.

[13] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi,
L. Jiao, L. Qendro, and F. Kawsar, “Deepx: A software
accelerator for low-power deep learning inference on mobile
devices,” in 2016 15th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), 2016,
pp. 1–12.

525

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale machine
learning,” in OSDI 2016. USA: USENIX Association, 2016,
pp. 265–283.

[15] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou,
Y. Yang, Z. Cui, Y. Cai, T. Yu, C. Lyu, and Z. Wu, “Mnn: A
universal and efficient inference engine,” in Proceedings of
Machine Learning and Systems, I. Dhillon, D. Papailiopoulos,
and V. Sze, Eds., 2020, vol. 2, pp. 1–13.

[16] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache:
Principled cache for mobile deep vision,” in Proceedings
of the 24th Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p.
129–144.

[17] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile
gpu-based deep learning framework for continuous vision
applications,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services
(MobiSys). ACM, 2017, pp. 82–95.

[18] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher,
“Deepsense: A unified deep learning framework for time-
series mobile sensing data processing,” in Proceedings of
the 26th International Conference on World Wide Web, ser.
WWW ’17. Republic and Canton of Geneva, CHE: Inter-
national World Wide Web Conferences Steering Committee,
2017, p. 351–360.

[19] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman,
and A. Krishnamurthy, “Mcdnn: An approximation-based
execution framework for deep stream processing under
resource constraints,” in Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications,
and Services (MobiSys). ACM, 2016, pp. 123–136.

[20] S. Jiang, L. Ran, T. Cao, Y. Xu, and Y. Liu, “Profiling
and optimizing deep learning inference on mobile gpus,” in
Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop
on Systems, 2020, pp. 75–81.

[21] M. Wang, S. Ding, T. Cao, Y. Liu, and F. Xu, “Asymo:
scalable and efficient deep-learning inference on asymmetric
mobile cpus,” in Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, 2021, pp.
215–228.

[22] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang,
and Y. Liu, “nn-meter: towards accurate latency prediction
of deep-learning model inference on diverse edge devices,”
in Proceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services, 2021, pp.
81–93.

[23] P. Gibson, J. Cano, J. Turner, E. J. Crowley, M. O’Boyle,
and A. Storkey, “Optimizing grouped convolutions on edge
devices,” in 2020 IEEE 31st International Conference on
Application-specific Systems, Architectures and Processors
(ASAP). IEEE, 2020, pp. 189–196.

[24] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: robust
smartphone audio sensing in unconstrained acoustic environ-
ments using deep learning,” in Proceedings of the 2015 ACM
international joint conference on pervasive and ubiquitous
computing, 2015, pp. 283–294.

[25] K. Hegde, R. Agrawal, Y. Yao, and C. W. Fletcher, “Morph:
Flexible acceleration for 3d cnn-based video understanding,”
in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 933–946.

[26] S. Kaufman, P. Phothilimthana, Y. Zhou, C. Mendis, S. Roy,
A. Sabne, and M. Burrows, “A learned performance model for
tensor processing units,” Proceedings of Machine Learning
and Systems, vol. 3, 2021.

[27] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and
C. Zhang, “Towards a uniform template-based architecture
for accelerating 2d and 3d cnns on fpga,” in Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2018, pp. 97–106.

[28] J. Zhao, B. Li, W. Nie, Z. Geng, R. Zhang, X. Gao, B. Cheng,
C. Wu, Y. Cheng, Z. Li, P. Di, K. Zhang, and X. Jin, “Akg:
Automatic kernel generation for neural processing units using
polyhedral transformations,” in Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming
Language Design and Implementation, ser. PLDI 2021.
New York, NY, USA: Association for Computing Machinery,
2021, p. 1233–1248. [Online]. Available: https://doi-
org.proxy.wm.edu/10.1145/3453483.3454106

[29] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen,
“Polyhedral-model guided loop-nest auto-vectorization,” in
2009 18th International Conference on Parallel Architectures
and Compilation Techniques. IEEE, 2009, pp. 327–337.

[30] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet,
and P. Sadayappan, “When polyhedral transformations meet
simd code generation,” in Proceedings of the 34th ACM
SIGPLAN conference on Programming language design and
implementation, 2013, pp. 127–138.

[31] Y. Chen, C. Mendis, M. Carbin, and S. Amarasinghe, “Vegen:
a vectorizer generator for simd and beyond,” in Proceedings
of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
2021, pp. 902–914.

[32] E. Georganas, S. Avancha, K. Banerjee, D. Kalamkar,
G. Henry, H. Pabst, and A. Heinecke, “Anatomy of high-
performance deep learning convolutions on simd architec-
tures,” in SC18: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE,
2018, pp. 830–841.

[33] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in International Conference
on Machine Learning. PMLR, 2019, pp. 6105–6114.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016,
pp. 770–778.

526

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

[35] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object
detection from point clouds,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition,
2018, pp. 7652–7660.

[36] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
image-to-image translation using cycle-consistent adversarial
networks,” in Proceedings of the IEEE international confer-
ence on computer vision, 2017, pp. 2223–2232.

[37] Qualcomm, “Snpe,” 2017. [Online]. Avail-
able: https://developer.qualcomm.com/software/qualcomm-
neural-processing-sdk

[38] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines,” in PLDI 2013. New York, NY, USA:
Association for Computing Machinery, 2013, p. 519–530.

[39] Qualcomm, “Snapdragon 865,” 2019. [Online]. Avail-
able: https://www.qualcomm.com/products/snapdragon-865-
5g-mobile-platform

[40] ——, “Snapdragon 820,” 2016. [Online]. Avail-
able: https://www.qualcomm.com/products/snapdragon-820-
mobile-platform

[41] ——, “Theoretical speed of hexagon dsp,” 2021. [Online].
Available: https://en.wikipedia.org/wiki/Qualcomm Hexagon

[42] M. Cowan, T. Moreau, T. Chen, J. Bornholt, and L. Ceze, “Au-
tomatic generation of high-performance quantized machine
learning kernels,” in Proceedings of the 18th ACM/IEEE
International Symposium on Code Generation and Optimiza-
tion, 2020, pp. 305–316.

[43] H. Qin, Z. Cai, M. Zhang, Y. Ding, H. Zhao, S. Yi, X. Liu,
and H. Su, “Bipointnet: Binary neural network for point
clouds,” arXiv preprint arXiv:2010.05501, 2020.

[44] Qualcomm, “Hexagon nn library,” 2019. [Online]. Available:
https://developer.qualcomm.com/software/hexagon-dsp-sdk

[45] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and
N. D. Lane, “Mobisr: Efficient on-device super-resolution
through heterogeneous mobile processors,” in The 25th
Annual International Conference on Mobile Computing and
Networking, 2019, pp. 1–16.

[46] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[47] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and training
of neural networks for efficient integer-arithmetic-only infer-
ence,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 2704–2713.

[48] A. Jain, S. Bhattacharya, M. Masuda, V. Sharma, and
Y. Wang, “Efficient execution of quantized deep learning mod-
els: A compiler approach,” arXiv preprint arXiv:2006.10226,
2020.

[49] Q. Jin, L. Yang, and Z. Liao, “Adabits: Neural network
quantization with adaptive bit-widths,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2146–2156.

[50] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and
K. Keutzer, “I-bert: Integer-only bert quantization,” arXiv
preprint arXiv:2101.01321, 2021.

[51] H. Xie, Y. Song, L. Cai, and M. Li, “Overflow aware
quantization: Accelerating neural network inference by low-
bit multiply-accumulate operations.” in IJCAI, 2020, pp. 868–
875.

[52] A. VanHattum, R. Nigam, V. T. Lee, J. Bornholt, and
A. Sampson, “A synthesis-aided compiler for dsp architec-
tures (wip paper),” in The 21st ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embed-
ded Systems, 2020, pp. 131–135.

[53] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang,
and Q. Liu, “Tinybert: Distilling bert for natural language
understanding,” arXiv preprint arXiv:1909.10351, 2019.

[54] A. Anderson and D. Gregg, “Optimal dnn primitive selec-
tion with partitioned boolean quadratic programming,” in
Proceedings of the 2018 International Symposium on Code
Generation and Optimization, 2018, pp. 340–351.

[55] L. Hames and B. Scholz, “Nearly optimal register alloca-
tion with pbqp,” in Joint Modular Languages Conference.
Springer, 2006, pp. 346–361.

[56] C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai, “Compiler
optimization on vliw instruction scheduling for low power,”
ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 8, no. 2, pp. 252–268, 2003.

[57] G. Wang, W. Gong, and R. Kastner, “Instruction scheduling
using max-min ant system optimization,” in Proceedings of
the 15th ACM Great Lakes symposium on VLSI, 2005, pp.
44–49.

[58] Qualcomm, “Hexagon v66 manual,” 2017. [Online]. Avail-
able: QualcommHexagonV66Programmer’sReferenceManual

[59] C. Six, S. Boulmé, and D. Monniaux, “Certified and
efficient instruction scheduling: application to interlocked
vliw processors,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–29, 2020.

[60] D. Bernstein and M. Rodeh, “Global instruction scheduling
for superscalar machines,” in Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design
and implementation, 1991, pp. 241–255.

[61] R. C. Rocha, V. Porpodas, P. Petoumenos, L. F. Góes,
Z. Wang, M. Cole, and H. Leather, “Vectorization-aware
loop unrolling with seed forwarding,” in Proceedings of the
29th International Conference on Compiler Construction,
2020, pp. 1–13.

527

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

[62] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang,
and B. Ren, “Patdnn: Achieving real-time dnn execution
on mobile devices with pattern-based weight pruning,” in
Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 907–922.

[63] W. Niu, J. Guan, Y. Wang, G. Agrawal, and B. Ren,
“Dnnfusion: accelerating deep neural networks execution
with advanced operator fusion,” in Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming
Language Design and Implementation, 2021, pp. 883–898.

[64] H. Guan, S. Liu, X. Ma, W. Niu, B. Ren, X. Shen, Y. Wang,
and P. Zhao, “Cocopie: enabling real-time ai on off-the-
shelf mobile devices via compression-compilation co-design,”
Communications of the ACM, vol. 64, no. 6, pp. 62–68, 2021.

[65] LLVM, “Llvm,” 2021. [Online]. Available: https://llvm.org/

[66] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for
mobilenetv3,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 1314–1324.

[67] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for
real-time style transfer and super-resolution,” in European
conference on computer vision. Springer, 2016, pp. 694–711.

[68] J. Yu, Y. Fan, J. Yang, N. Xu, X. Wang, and T. S. Huang,
“Wide activation for efficient and accurate image super-
resolution,” arXiv preprint arXiv:1808.08718, 2018.

[69] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and
efficient object detection,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020,
pp. 10 781–10 790.

[70] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu et al., “Conformer:
Convolution-augmented transformer for speech recognition,”
arXiv preprint arXiv:2005.08100, 2020.

[71] TensorFlow, “Post-training quantization,” 2021. [Online].
Available: https://www.tensorflow.org/lite/performance/post
training quantization

[72] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in
CVPR 2009, 2009, pp. 248–255.

[73] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single
image super-resolution: Dataset and study,” in The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, July 2017.

[74] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco:
Common objects in context,” in European conference on
computer vision. Springer, 2014, pp. 740–755.

[75] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets
robotics: The kitti dataset,” International Journal of Robotics
Research (IJRR), 2013.

[76] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur,
“Librispeech: An asr corpus based on public domain audio
books,” in 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015, pp. 5206–
5210.

[77] Qualcomm, “Snapdragon profiler,” 2016. [Online]. Avail-
able: https://developer.qualcomm.com/software/snapdragon-
profiler

[78] Google, “Snapdragon 820,” 2020. [Online]. Available:
https://coral.ai/docs/edgetpu/benchmarks/

[79] P. Torelli and M. Bangale, “Measuring inference perfor-
mance of machine-learning frameworks on edge-class devices
with the mlmark benchmark,” Techincal Report. Available
online: https://www. eembc. org/techlit/articles/MLMARK-
WHITEPAPERFINAL-1. pdf (accessed on 5 April 2021),
2021.

[80] L. Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen,
“Accpar: Tensor partitioning for heterogeneous deep learning
accelerators,” in 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE,
2020, pp. 342–355.

[81] W. Lin, C. G. Lee, and P. Chow, “an optimizing compiler
for the tms320c25 dsp chip,” in Proc. Int. Conf. Signal
Processing Applicat. Technol., no. 5. Citeseer, 1994, pp.
I–689.

[82] H. De Man, J. Rabaey, P. Six, and L. Claesen, “Cathedral-
ii: A silicon compiler for digital signal processing,” IEEE
Design & Test of Computers, vol. 3, no. 6, pp. 13–25, 1986.

[83] V. Zivojnovic, S. Pees, C. Schlager, M. Willems, R. Schoe-
nen, and H. Meyr, “Dsp processor/compiler co-design: a
quantitative approach,” in Proceedings of 9th International
Symposium on Systems Synthesis. IEEE, 1996, pp. 108–113.

[84] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “Spl: A
language and compiler for dsp algorithms,” ACM SIGPLAN
Notices, vol. 36, no. 5, pp. 298–308, 2001.

[85] M. Lorenz, P. Marwedel, T. Drager, G. Fettweis, and
R. Leupers, “Compiler based exploration of dsp energy
savings by simd operations,” in ASP-DAC 2004: Asia and
South Pacific Design Automation Conference 2004 (IEEE
Cat. No. 04EX753). IEEE, 2004, pp. 839–842.

[86] S. Rajagopalan, S. P. Rajan, S. Malik, S. Rigo, G. Araujo, and
K. Takayama, “A retargetable vliw compiler framework for
dsps with instruction-level parallelism,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 20, no. 11, pp. 1319–1328, 2001.

[87] C.-K. Chen, L.-H. Tseng, S.-C. Chen, Y.-J. Lin, Y.-P. You,
C.-H. Lu, and J.-K. Lee, “Enabling compiler flow for
embedded vliw dsp processors with distributed register
files,” in Proceedings of the 2007 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded
systems, 2007, pp. 146–148.

[88] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of
interleaved data for simd,” ACM SIGPLAN Notices, vol. 41,
no. 6, pp. 132–143, 2006.

528

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

[89] G. Mainland, R. Leshchinskiy, and S. P. Jones, “Exploiting
vector instructions with generalized stream fusion,” Commu-
nications of the ACM, vol. 60, no. 5, pp. 83–91, 2017.

[90] D. G. Spampinato, D. Fabregat-Traver, P. Bientinesi, and
M. Püschel, “Program generation for small-scale linear alge-
bra applications,” in Proceedings of the 2018 International
Symposium on Code Generation and Optimization, 2018, pp.
327–339.

[91] F. Franchetti, S. Kral, J. Lorenz, and C. W. Ueberhuber,
“Efficient utilization of simd extensions,” Proceedings of the
IEEE, vol. 93, no. 2, pp. 409–425, 2005.

[92] G. Ren, P. Wu, and D. Padua, “Optimizing data permutations
for simd devices,” ACM SIGPLAN Notices, vol. 41, no. 6,
pp. 118–131, 2006.

[93] L. Chen, P. Jiang, and G. Agrawal, “Exploiting recent simd
architectural advances for irregular applications,” in 2016
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 2016, pp. 47–58.

[94] C. Mendis and S. Amarasinghe, “Goslp: Globally optimized
superword level parallelism framework,” Proceedings of the
ACM on Programming Languages, vol. 2, no. OOPSLA, pp.
1–28, 2018.

[95] J. Huh and J. Tuck, “Improving the effectiveness of searching
for isomorphic chains in superword level parallelism,” in
2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2017, pp. 718–729.

[96] G. De Micheli, Synthesis and optimization of digital circuits.
McGraw Hill, 1994, no. BOOK.

[97] R. Leupers, “Instruction scheduling for clustered vliw dsps,”
in Proceedings 2000 International Conference on Parallel Ar-
chitectures and Compilation Techniques (Cat. No. PR00622).
IEEE, 2000, pp. 291–300.

[98] J.-B. Tristan and X. Leroy, “Formal verification of translation
validators: a case study on instruction scheduling optimiza-
tions,” in Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
2008, pp. 17–27.

[99] ——, “A simple, verified validator for software pipelining,”
ACM Sigplan Notices, vol. 45, no. 1, pp. 83–92, 2010.

[100] B. D. De Dinechin, “From machine scheduling to vliw
instruction scheduling,” ST Journal of Research, vol. 1, no. 2,
pp. 1–35, 2004.

529

Authorized licensed use limited to: Augusta University. Downloaded on June 16,2023 at 15:16:51 UTC from IEEE Xplore. Restrictions apply.

