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Cai and Hemachandra used iterative constant-setting to prove that Few ⊆ ⊕P (and thus that13

FewP ⊆ ⊕P). In this paper, we note that there is a tension between the nondeterministic ambiguity14

of the class one is seeking to capture, and the density (or, to be more precise, the needed “nongappy”-15

ness) of the easy-to-find “targets” used in iterative constant-setting. In particular, we show that even16

less restrictive gap-size upper bounds regarding the targets allow one to capture ambiguity-limited17

classes. Through a flexible, metatheorem-based approach, we do so for a wide range of classes18

including the logarithmic-ambiguity version of Valiant’s unambiguous nondeterminism class UP.19

Our work lowers the bar for what advances regarding the existence of infinite, P-printable sets of20

primes would suffice to show that restricted counting classes based on the primes have the power to21

accept superconstant-ambiguity analogues of UP. As an application of our work, we prove that the22

Lenstra–Pomerance–Wagstaff Conjecture implies that all O(log log n)-ambiguity NP sets are in the23

restricted counting class RCPRIMES.24
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1 Introduction31

We show that every NP set of low ambiguity belongs to broad collections of restricted32

counting classes.33

We now describe the two types of complexity classes just mentioned. For any set S ⊆ N
+,34

the restricted counting class RCS [7] is defined by RCS = {L | (∃f ∈ #P)(∀x ∈ Σ∗)[(x 6∈35

L =⇒ f(x) = 0) ∧ (x ∈ L =⇒ f(x) ∈ S)]}. That is, a set L is in RCS exactly if there is a36

nondeterministic polynomial-time Turing machine (NPTM) that on each string not in L has37

zero accepting paths and on each string in L has a number of accepting paths that belongs38

to the set S. For example, though this is an extreme case, NP = RCN+ .39

In the 1970s, Valiant started the study of ambiguity-limited versions of NP by introducing40

the class UP [36], unambiguous polynomial time, which in the above notation is simply41

RC{1}. (The ambiguity (limit) of an NPTM refers to an upper bound on how many accepting42
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60:2 Establishing Complexity-Class Containments via Iterative Constant-Setting

If T ⊆ N
+ X, then Y

X Y Reference

has an (n + O(1))-nongappy, P-printable subset FewP ⊆ RCT [7]

has an O(n)-nongappy, P-printable subset UP≤O(log n) ⊆ RCT Thm. 4.10

has an O(n log n)-nongappy, P-printable subset UP
≤O(

√
log n)

⊆ RCT Thm. 4.19

for some real number k > 1 has an nk-

nongappy, P-printable subset
UP

≤O(1)+
log log n

2 log k

⊆ RCT Thm. 4.13

has an nlog n-nongappy, P-printable subset UP≤O(1)+ 1
2

log log log n ⊆ RCT Thm. 4.19

has an n(log n)O(1)

-nongappy, P-printable subset UP≤O(1)+ 1
3

log log log log n ⊆ RCT Thm. 4.19

has a 2n-nongappy, P-printable subset S

UP
≤max(1,b

log∗(n)−log∗(log∗(n)+1)−1
λ

c)

⊆ RCT , where

λ = 4 + mins∈S,|s|≥2(|s|)
Thm. 4.19

is infinite UP≤O(1) ⊆ RCT Cor. 4.4

Table 1 Summary of containment results. (Theorem 4.19 also gives a slightly stronger form of

the 2n-nongappiness result than the version stated here.)

paths it has as a function of the input’s length. An NP language falls within a given level of43

ambiguity if it is accepted by some NPTM that happens to satisfy that ambiguity limit.)44

More generally, for each function f : N → N
+ or f : N → R

≥1, UP≤f(n) denotes the class45

of languages L for which there is an NPTM N such that, for each x, if x 6∈ L then N46

on input x has no accepting paths, and if x ∈ L then 1 ≤ #accN (x) ≤ bf(|x|)c (where47

#accN (x) denotes the number of accepting computation paths of N on input x). (Since, for48

all N and x, #accN (x) ∈ N, the class UP≤f(n) just defined would be unchanged if bf(|x|)c49

were replaced by f(|x|).) Ambiguity-limited nondeterministic classes whose ambiguity limits50

range from completely unambiguous (UP≤1, i.e., UP) to polynomial ambiguity (Allender51

and Rubinstein’s class FewP [3]) have been defined and studied.52

In this paper, we show that many ambiguity-limited counting classes—including ones based53

on types of logarithmic ambiguity, loglog ambiguity, logloglog ambiguity, and loglogloglog54

ambiguity—are contained in various collections of restricted counting classes. We do so55

primarily through two general theorems (Theorems 4.7 and 4.12) that help make clear how,56

as the size of the “holes” allowed in the sets underpinning the restricted counting classes57

becomes smaller (i.e., as the sets become more “nongappy”), one can handle more ambiguity.58

Table 1 summarizes our results about the containment of ambiguity-limited counting classes59

in restricted counting classes.60

Only for polynomial ambiguity was a result of this sort previously known. In particular,61

Beigel, Gill, and Hertrampf [5], strengthening Cai and Hemachandra’s result FewP ⊆ ⊕P [13],62

proved that FewP ⊆ RC{1,3,5,...}, and Borchert, Hemaspaandra, and Rothe [7] noted that63

FewP ⊆ RCT for each nonempty set T ⊆ N
+ that has an easily presented (formally, P-64

printable [25], whose definition will be given in Section 2) subset V that is (n+O(1))-nongappy65

(i.e., for some k the set V never has more than k adjacent, empty lengths; that is, for each66

collection of k + 1 adjacent lengths, V will always contain at least one string whose length is67

one of those k + 1 lengths).68

Our proof approach in the present paper connects somewhat interestingly to the history69

just mentioned. We will describe in Section 4 the approach that we will call the iterative70
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constant-setting technique. However, briefly put, that refers to a process of sequentially71

setting a series of constants—first c0, then c1, then c2, . . . , and then cm—in such a way that,72

for each 0 ≤ j ≤ m, the summation
∑

0≤`≤j c`

(

j
`

)

falls in a certain “yes” or “no” target set,73

as required by the needs of the setting. For RCS classes, the “no” target set will be {0} and74

the “yes” target set will be S. In this paper, we will typically put sets into restricted counting75

classes by building Turing machines that guess (for each 0 ≤ ` ≤ j) cardinality-` sets of76

accepting paths of another NPTM and then amplify each such successful accepting-path-set77

guess by—via splitting/cloning of the path—creating from it c` accepting paths.78

A technically novel aspect of the proofs of the two main theorems (Theorems 4.7 and 4.12,79

each in effect a metatheorem) is that those proofs each provide, in a unified way for a broad80

class of functions, an analysis of value-growth in the context of iterated functions.81

Cai and Hemachandra’s [13] result FewP ⊆ ⊕P was proven (as was an even more general82

result about a class known as “Few”) by the iterative constant-setting technique. Beigel,83

Gill, and Hertrampf [5], while generously noting that “this result can also be obtained84

by a close inspection of Cai and Hemachandra’s proof,” proved the far stronger result85

FewP ⊆ RC{1,3,5,...} simply and directly rather than by iterative constant-setting. Borchert,86

Hemaspaandra, and Rothe’s [7] even more general result, noted above for its proof, resurrected87

the iterative constant-setting technique, using it to understand one particular level of88

ambiguity. This present paper is, in effect, an immersion into the far richer world of89

possibilities that the iterative constant-setting technique can offer, if one puts in the work to90

analyze and bound the growth rates of certain constants central to the method. In particular,91

as noted above we use the iterative constant-setting method to obtain a broad range of92

results (see Table 1) regarding how ambiguity-limited nondeterminism is not more powerful93

than appropriately nongappy restricted counting classes.94

Each of our results has immediate consequences regarding the power of the primes as a95

restricted-counting acceptance type. Borchert, Hemaspaandra, and Rothe’s result implies that96

if the set of primes has an (n + O(1))-nongappy, P-printable subset, then FewP ⊆ RCPRIMES.97

However, it is a long-open research issue whether there exists any infinite, P-printable subset98

of the primes, much less an (n + O(1))-nongappy one. Our results lower the bar on what99

one must assume about how nongappy hypothetical infinite, P-printable subsets of the100

primes are in order to imply that some superconstant-ambiguity-limited nondeterministic101

version of NP is contained in RCPRIMES. We prove that even infinite, P-printable sets of102

primes with merely exponential upper bounds on the size of their gaps would yield such a103

result. We also prove—by exploring the relationship between density and nongappiness—that104

the Lenstra–Pomerance–Wagstaff Conjecture [35, 38] (regarding the asymptotic density of105

the Mersenne primes) implies that UP≤O(log log n) ⊆ RCPRIMES. The Lenstra–Pomerance–106

Wagstaff Conjecture is characterized in Wikipedia [41] as being “widely accepted,” the fact107

that it disagrees with a different conjecture (Gillies’ Conjecture [22]) notwithstanding.108

Additional results, discussions and comments, and the omitted proofs of Theorems 4.3,109

4.12, 4.13, 4.14, and 4.19, Propositions 2.5, 4.9, and 4.17, and Corollary 4.15 can be found110

our full technical report version [26].111

2 Definitions112

N = {0, 1, 2, . . . }. N
+ = {1, 2, . . . }. Each positive natural number, other than 1, is prime113

or composite. A prime number is a number that has no positive divisors other than 1114

and itself. PRIMES = {i ∈ N | i is a prime} = {2, 3, 5, 7, 11, . . . }. A composite number115

is one that has at least one positive divisor other than 1 and itself; COMPOSITES =116

MFCS 2022



60:4 Establishing Complexity-Class Containments via Iterative Constant-Setting

{i ∈ N | i is a composite number} = {4, 6, 8, 9, 10, 12, . . . }. R is the set of all real numbers,117

R
+ = {x ∈ R | x > 0}, and R

≥1 = {x ∈ R | x ≥ 1}. All logs in this paper (thus those118

involved in log, loglog, logloglog, loglogloglog, and log[i], and also those called within the119

definitions of log∗ and our new log~) are base 2. Also, each call of the log function in this120

paper, log(·), is implicitly a shorthand for log(max(1, ·)). We do this so that formulas such121

as log log log(·) do not cause domain problems on small inputs. (Admittedly, this is also122

distorting log in the domain-valid open interval (0,1). However, that interval never comes123

into play in our paper except incidentally when iterated logs drop something into it, and also124

in the definitions of log∗ and log~ but in those two cases—see the discussion in Footnotes 2125

and 8 of [26]—the max happens not to change what those evaluate to on (0,1).)126

As mentioned earlier, for any NPTM N and any string x, #accN (x) will denote the127

number of accepting computation paths of N on input x. #P [37] is the counting version of128

NP: #P = {f : Σ∗ → N | (∃ NPTM N)(∀x ∈ Σ∗)[#accN (x) = f(x)]}. ⊕P (“Parity P”) is129

the class of sets L such that there is a function f ∈ #P such that, for each string x, it holds130

that x ∈ L ⇐⇒ f(x) ≡ 1 (mod 2) [34, 23].131

We will use O in its standard sense, namely, if f and g are functions (from whose domain132

negative numbers are typically excluded), then we say f(n) = O(g(n)) exactly if there exist133

positive integers c and n0 such that (∀n ≥ n0)[f(n) ≤ cg(n)]. We sometimes will also,134

interchangeably, speak of or write a O expression as representing a set of functions (e.g.,135

writing f(n) ∈ O(g(n))) [10, 11], which in fact is what the “big O” notation truly represents.136

The notions RCS , UP, and UP≤f(n) are as defined in Section 1. For each k ≥ 1,137

Watanabe [39] implicitly and Beigel [4] explicitly studied the constant-ambiguity classes138

RC{1,2,3,...,k} which, following the notation of Lange and Rossmanith [32], we will usually139

denote UP≤k. We extend the definition of UP≤f(n) to classes of functions as follows. For140

classes F of functions mapping N to N
+ or N to R

≥1, we define UP≤F =
⋃

f∈F UP≤f(n). We141

mention that the class UP≤O(1) is easily seen to be equal to
⋃

k∈N+ UP≤k, which is a good142

thing since that latter definition of the notion is how UP≤O(1) was defined in the literature143

more than a quarter of a century ago [29]. UP≤O(1) can be (informally) described as the144

class of all sets acceptable by NPTMs with constant-bounded ambiguity. Other related145

classes will also be of interest to us. For example, UP≤O(log n) captures the class of all sets146

acceptable by NPTMs with logarithmically-bounded ambiguity. Allender and Rubinstein [3]147

introduced and studied FewP, the polynomial-ambiguity NP languages, which can be defined148

by FewP = {L | (∃ polynomial f)[L ∈ UP≤f(n)]}.149

The UP≤f(n) classes, which will be central to this paper’s study, capture ambiguity-150

bounded versions of NP. They are also motivated by the fact that they completely characterize151

the existence of ambiguity-bounded (complexity-theoretic) one-way functions.1152

I Proposition 2.1. Let f be any function mapping from N to N
+. P 6= UP≤f(n) if and only153

if there exists an f(n)-to-one one-way function.154

1 A (possibly nontotal) function g is said to be a one-way function exactly if (a) g is polynomial-time
computable, (b) g is honest (i.e., there exists a polynomial q such that, for each y in the range of g,
there exists a string x such that g(x) = y and |x| ≤ q(|y|); simply put, each string y mapped to by g is
mapped to by some string x that is not much longer than y), and (c) g is not polynomial-time invertible
(i.e., there exists no (possibly nontotal) polynomial-time function h such that for each y in the range of
g, it holds that h(y) is defined and g(h(y)) is defined and g(h(y)) = y) [24]. For each f : N → N

+ and
each (possibly nontotal) function g : Σ∗ → Σ∗, we say that g is f(n)-to-one exactly if, for each y ∈ Σ∗,
‖{x | g(x) = y}‖ ≤ f(|y|). When g is a one-way function, the function f is sometimes referred to as an
ambiguity limit on the function g, and the special case of f(n) = 1 is the case of unambiguous one-way
functions. (This is a different notion of ambiguity than that used for NPTMs, though Proposition 2.1
shows that the notions are closely connected.)
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That claim holds even if f is not nondecreasing, and holds even if f is not a computable155

function. To the best of our knowledge, Proposition 2.1 has not been stated before for the156

generic case of any function f : N → N
+. However, many concrete special cases are well157

known, and the proposition follows from the same argument as is used for those (see for158

example [27, Proof of Theorem 2.5] for a tutorial presentation of that type of argument).159

In particular, the proposition’s special cases are known already for UP (due to [24, 30]),160

UP≤k (for each k ∈ N
+) and UP≤O(1) (in [29, 6]), FewP (in [3]), and (since the following is161

another name for NP) UP
≤2nO(1) (folklore, see [27, Theorem 2.5, Part 1]). The proposition162

holds not just for single functions f , but also for classes that are collections of functions, e.g.,163

UP≤O(log n).164

For any function f , we use f [n] to denote function iteration: f [0](α) = α and inductively,165

for each n ∈ N, f [n+1](α) = f(f [n](α)). For each real number α ≥ 0, log∗(α) (“(base 2) log166

star of α”) is the smallest natural number k such that log[k](α) ≤ 1. Although the logarithm167

of 0 is not defined, note that log∗(0) is well-defined, namely it is 0 since log[0](0) = 0.168

A set L is said to be P-printable [25] exactly if there is a deterministic polynomial-time169

Turing machine such that, for each n ∈ N, the machine when given as input the string 1n
170

prints (in some natural coding, such as printing each of the strings of L in lexicographical171

order, inserting the character # after each) exactly the set of all strings in L of length less172

than or equal to n.173

Notions of whether a set has large empty expanses between one element and the next174

will be central to our work in this paper. Borchert, Hemaspaandra, and Rothe [7] defined175

and used such a notion, in a way that is tightly connected to our work. We present here the176

notion they called “nongappy,” but here, we will call it “nongappyvalue” to distinguish their177

value-centered definition from the length-centered definitions that will be our norm in this178

paper.179

I Definition 2.2 ([7]). A set S ⊆ N
+ is said to be nongappyvalue if S 6= ∅ and (∃k > 0)(∀m ∈180

S)(∃m′ ∈ S)[m′ > m ∧ m′/m ≤ k].181

This says that the gaps between one element of the set and the next greater one are, as to182

the values of the numbers, bounded by a multiplicative constant. Note that, if we view the183

natural numbers as naturally coded in binary, that is equivalent to saying that the gaps184

between one element of the set and the next greater one are, as to the lengths of the two185

strings, bounded by an additive constant. That is, a nonempty set S ⊆ N
+ is said to be186

nongappyvalue by this definition if the gaps in the lengths of elements of S are bounded by187

an additive constant, and thus we have the following result that clearly holds.188

I Proposition 2.3. A set S ⊆ N
+ is nongappyvalue if and only if S 6= ∅ and (∃k > 0)(∀m ∈189

S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤ |m| + k].190

In Section 4 we define other notions of nongappiness that allow larger gaps than the above191

does. We will always focus on lengths, and so we will consistently use the term “nongappy”192

in our definitions to speak of gaps quantified in terms of the lengths of the strings involved.193

We now introduce a new notation for the notion nongappyvalue, and show that our definition194

does in fact refer to the same notion as that of Borchert, Hemaspaandra, and Rothe.195

I Definition 2.4. A set S ⊆ N
+ is (n + O(1))-nongappy if S 6= ∅ and (∃f ∈ O(1))(∀m ∈196

S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤ |m| + f(|m|)].197

While at first glance this might seem to be different from Borchert, Hemaspaandra, and198

Rothe’s definition, it is easy to see that both definitions are equivalent.199

I Proposition 2.5. A set S is (n + O(1))-nongappy if and only if it is nongappyvalue.200

MFCS 2022
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3 Related Work201

The most closely related work has already largely been covered in the nonappendix part of the202

paper, but we now briefly mention that work and its relationship to this paper. In particular,203

the most closely related papers are the work of Cai and Hemachandra [13], Hemaspaandra204

and Rothe [28], and Borchert, Hemaspaandra, and Rothe [7], which introduced and studied205

the iterative constant-setting technique as a tool for exploring containments of counting206

classes. The former two (and also the important related work of Borchert and Stephan [8])207

differ from the present paper in that they are not about restricted counting classes, and208

unlike the present paper, Borchert, Hemaspaandra, and Rothe’s paper, as to containment209

of ambiguity-limited classes, addresses only FewP. (It is known that FewP is contained in210

the class known as SPP and is indeed so-called SPP-low [31, 17, 18], however that does not211

make our containments in restricted counting classes uninteresting, as it seems unlikely that212

SPP is contained in any restricted counting class, since SPP’s “no” case involves potentially213

exponential numbers of accepting paths, not zero such paths.) The interesting, recent paper of214

Cox and Pay [16] draws on the result of Borchert, Hemaspaandra, and Rothe [7] that appears215

as our Theorem 4.1 to establish that FewP ⊆ RC{2t−1 | t∈N+} (note that the right-hand side216

is the restricted counting class defined by the Mersenne numbers), a result that itself implies217

FewP ⊆ RC{1,3,5,...}.218

“RC” (restricted counting) classes [7] are central to this paper. The literature’s earlier219

“CP” classes [12] might at first seem similar, but they don’t restrict rejection to the case of220

having zero accepting paths. Leaf languages [9], a different framework, do have flexibility to221

express “RC” classes, and so are an alternate notation one could use, though in some sense222

they would be overkill as a framework here due to their extreme descriptive power. The class223

RC{1,3,5,...} first appeared in the literature under the name ModZ2P [5]. Ambiguity-limited224

classes are also quite central to this paper, and among those we study (see Section 2) are225

ones defined, or given their notation that we use, in the following papers: [36, 4, 39, 3, 32].226

P-printability is due to Hartmanis and Yesha [25]. Allender [2] established a sufficient227

condition, which we will discuss later, for the existence of infinite, P-printable subsets of the228

primes. As discussed in the text right after Corollary 4.2 and in Footnote 2, none of the229

results of Ford, Maynard, Tao, and others [20, 33, 19] about “infinitely often” lower bounds230

on gaps in the primes, nor any possible future bounds, can possibly be strong enough to be231

the sole obstacle to a FewP ⊆ RCPRIMES construction.232

4 Gaps, Ambiguity, and Iterative Constant-Setting233

What is the power of NPTMs whose number of accepting paths is 0 for each string not in234

the set and is a prime for each string in the set? In particular, does that class, RCPRIMES,235

contain FewP or, for that matter, any interesting ambiguity-limited nondeterministic class?236

That is the question that motivated this work.237

Why might one hope that RCPRIMES might contain some ambiguity-limited classes? Well,238

we clearly have that NP ⊆ RCCOMPOSITES, so having the composites as our acceptance239

targets allows us to capture all of NP. Why? For any NP machine N , we can make a new240

machine N ′ that mimics N , except it clones each accepting path into four accepting paths,241

and so when N has zero accepting paths N ′ has zero accepting paths, and when N has at242

least one accepting path N ′ has a composite number of accepting paths.243

On the other hand, why might one suspect that interesting ambiguity-limited nondeter-244

ministic classes such as FewP might not be contained in RCPRIMES? Well, it is not even245

clear that FewP is contained in the class of sets that are accepted by NPTMs that accept246
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via having a prime number of accepting paths, and reject by having a nonprime number247

of accepting paths (rather than being restricted to rejecting only by having zero accepting248

paths, as is RCPRIMES). That is, even a seemingly vastly more flexible counting class does249

not seem to in any obvious way contain FewP.250

This led us to revisit the issue of identifying the sets S ⊆ N
+ that satisfy FewP ⊆ RCS ,251

studied previously by, for example, Borchert, Hemaspaandra, and Rothe [7] and Cox and252

Pay [16]. In particular, Borchert, Hemaspaandra, and Rothe showed, by the iterative253

constant-setting technique, the following theorem. From it, we immediately have Cor. 4.2.254

I Theorem 4.1 ([7, Theorem 3.4]). If T ⊆ N
+ has an (n + O(1))-nongappy, P-printable255

subset, then FewP ⊆ RCT .256

I Corollary 4.2. If PRIMES contains an (n + O(1))-nongappy, P-printable subset, then257

FewP ⊆ RCPRIMES.258

Does PRIMES contain an (n+O(1))-nongappy, P-printable subset? The Bertrand–Chebyshev259

Theorem [15] states that for each natural number k > 3, there exists a prime p such that260

k < p < 2k − 2. Thus PRIMES clearly has an (n + O(1))-nongappy subset.2 Indeed,261

since—with pi denoting the ith prime—(∀ε > 0)(∃N)(∀n > N)[pn+1 − pn < εpn] [40], it262

holds that represented in binary there are primes at all but a finite number of bit-lengths.263

Unfortunately, to the best of our knowledge it remains an open research issue whether264

there exists any infinite, P-printable subset of the primes, much less one that in addition265

is (n + O(1))-nongappy. In fact, the best sufficient condition we know of for the existence266

of an infinite, P-printable set of primes is a relatively strong hypothesis of Allender [2,267

Corollary 32 and the comment following it] about the probabilistic complexity class R [21]268

and the existence of secure extenders. However, that result does not promise that the infinite,269

P-printable set of primes is (n + O(1))-nongappy—not even now, when it is known that270

primality is not merely in the class R but even is in the class P [1].271

So the natural question to ask is: Can we at least lower the bar for what strength of272

advance—regarding the existence of P-printable sets of primes and the nongappiness of such273

sets—would suffice to allow RCPRIMES to contain some interesting ambiguity-limited class?274

In particular, the notion of nongappiness used in Theorem 4.1 above means that our275

length gaps between adjacent elements of our P-printable set must be bounded by an additive276

constant. Can we weaken that to allow larger gaps, e.g., gaps of multiplicative constants,277

and still have containment for some interesting ambiguity-limited class?278

We show that the answer is yes. More generally, we show that there is a tension and279

trade-off between gaps and ambiguity. As we increase the size of gaps we are willing to280

tolerate, we can prove containment results for restrictive counting classes, but of increasingly281

small levels of ambiguity. On the other hand, as we lower the size of the gaps we are willing282

to tolerate, we increase the amount of ambiguity we can handle.283

2 We mention in passing that it follows from the fact that PRIMES clearly does have an (n + O(1))-
nongappy subset that none of the powerful results by Ford, Maynard, Tao, and others [20, 33, 19]
about “infinitely often” lower bounds for gaps in the primes, or in fact any results purely about lower
bounds on gaps in the primes, can possibly prevent there from being a set of primes whose gaps are
small enough that the set could, if sufficiently accessible, be used in a Cai–Hemachandra-type iterative
constant-setting construction seeking to show that FewP ⊆ RCPRIMES. (In fact—keeping in mind that
the difference between the value of a number and its coded length is exponential—the best such gaps
known are almost exponentially too weak to preclude a Cai–Hemachandra-type iterative constant-setting
construction.) Rather, the only obstacle will be the issue of whether there is such a set that in addition
is computationally easily accessible/thin-able, i.e., whether there is such an (n + O(1))-nongappy subset
of the primes that is P-printable.
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It is easy to see that the case of constant-ambiguity nondeterminism is so extreme that284

the iterative constant-setting method works for all infinite sets regardless of how nongappy285

they are. (It is even true that the containment UP≤k ⊆ RCT holds for some finite sets T ,286

such as {1, 2, 3, . . . , k}; but our point here is that it holds for all infinite sets T ⊆ N
+.)287

I Theorem 4.3. For each infinite set T ⊆ N
+ and for each natural k ≥ 1, UP≤k ⊆ RCT .288

Theorem 4.3 should be compared with the discussion by Hemaspaandra and Rothe [28,289

p. 210] of an NP-many-one-hardness result of Borchert and Stephan [8] and a UP≤k-1-truth-290

table-hardness result. In particular, both those results are in the unrestricted setting, and291

so neither implies Theorem 4.3. The proof of Theorem 4.3 can be found as Appendix A of292

our [26]. However, we recommend that the reader read it, if at all, only after reading the293

proof of Theorem 4.7, whose proof also uses (and within this paper, is the key presentation294

of) iterative constant-setting, and is a more interesting use of that approach.295

I Corollary 4.4. For each infinite set T ⊆ N
+, UP≤O(1) ⊆ RCT .296

I Corollary 4.5. UP≤O(1) ⊆ RCPRIMES.297

So constant-ambiguity nondeterminism can be done by the restrictive counting class298

based on the primes. However, what we are truly interested in is whether we can achieve a299

containment for superconstant levels of ambiguity. We in fact can do so, and we now present300

such results for a range of cases between constant ambiguity (UP≤O(1)) and polynomial301

ambiguity (FewP). We first define a broader notion of nongappiness.302

I Definition 4.6. Let F be any function mapping R
+ to R

+. A set S ⊆ N
+ is F -nongappy303

if S 6= ∅ and (∀m ∈ S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤ F (|m|)].3304

This definition sets F ’s domain and codomain to include real numbers, despite the fact305

that the underlying F -nongappy set S is of the type S ⊆ N
+. The codomain is set to306

include real numbers because many notions of nongappiness we examine rely on non-integer307

values. Since we are often iterating functions, we thus set F ’s domain to be real numbers as308

well. Doing so does not cause problems as to computability because F is a function that309

is never actually computed by the Turing machines in our proofs; it is merely one that is310

mathematically reasoned about in the analysis of the nongappiness of sets underpinning311

restricted counting classes.312

The following theorem generalizes the iterative constant-setting technique that Borchert,313

Hemaspaandra, and Rothe used to prove Theorem 4.1.314

I Theorem 4.7. Let F be a function mapping from R
+ to R

+ and let n0 be a positive natural315

number such that F restricted to the domain {t ∈ R
+ | t ≥ n0} is nondecreasing and for316

all t ≥ n0 we have (a) F (t) ≥ t + 2 and (b) (∀c ∈ N
+)[cF (t) ≥ F (ct)]. Let j be a function,317

mapping from N to N
+, that is at most polynomial in the value of its input and is computable318

in time polynomial in the value of its input. Suppose T ⊆ N
+ has an F -nongappy, P-printable319

subset S. Let λ = 4 + |s| where s is the smallest element of S with |s| ≥ n0. If for some320

β ∈ N
+, F [j(n)](λ) = O(nβ), then UP≤j(n) ⊆ RCT .321

3 In two later definitions, 4.8 and 4.18, we apply Definition 4.6 to classes of functions. In each case, we
will directly define that, but in fact will do so as the natural lifting (namely, saying a set is F-nongappy
exactly if there is an F ∈ F such that the set is F -nongappy). The reason we do not directly define
lifting as applying to all classes F is in small part that we need it only in those two definitions, and in
large part because doing so could cause confusion, since an earlier definition (Def. 2.4) that is connecting
to earlier work is using as a syntactic notation an expression that itself would be caught up by such a
lifting (though the definition given in Def. 2.4 is consistent with the lifting reading, give or take the fact
that we’ve now broadened our focus to the reals rather than the naturals).
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This theorem has a nice interpretation: a sufficient condition for an ambiguity-limited322

class UP≤j(n) to be contained in a particular restricted counting class is for there to be at323

least j(n) elements that are reachable in polynomial time in an F -nongappy subset of the324

set that defines the counting class, assuming that the nongappiness of the counting class and325

the ambiguity of the UP≤j(n) class satisfy the above conditions.326

Proof of Theorem 4.7. Let F , j, n0, T , and S be as per the theorem statement. Suppose327

(∃β′ ∈ N
+)[F [j(n)](λ) = O(nβ′

)], and fix a value β ∈ N
+ such that F [j(n)](λ) = O(nβ).328

We start our proof by defining three sequences of constants that will be central in our329

iterative constant-setting argument, and giving bounds on their growth. Set c1 to be the330

least element of S with |c1| ≥ n0. For n ∈ {2, 3, . . .}, given c1, c2, . . . , cn−1, we set331

bn =
∑

1≤`≤n−1

c`

(

n

`

)

. (1)332

With bn set, we define an to be the least element of S such that an ≥ bn. Finally, we333

set cn = an − bn. We now show that max1≤`≤j(n) |a`| and max1≤`≤j(n) |c`| are both at334

most polynomial in n. Take any i ∈ {2, 3, . . .}. By the construction above and since S is335

F -nongappy, we have |ci| ≤ |ai| ≤ F (|bi|). Using our definition of bi from Eq. 1 we get336

bi =
∑

1≤k≤i−1 ck

(

i
k

)

≤ (i − 1)(max1≤k≤i−1 ck)
(

i
d i

2 e

)

≤ (max1≤k≤i−1 ck)(22i). Thus we can337

bound the length of bi by |bi| ≤ 2i + max1≤k≤i−1 |ck| ≤ 2i + max1≤k≤i |ck|. Since this is338

true for all i ∈ {2, 3, . . .}, it follows that if max1≤`≤j(n) |c`| is at most polynomial in n, then339

max1≤`≤j(n) |b`| is at most polynomial in n, and since for all i, ai = bi + ci, max1≤`≤j(n) |a`|340

is at most polynomial in n. We now show that max1≤`≤j(n) |c`| is in fact polynomial in n.341

Let n ∈ {2, 3, . . .} be arbitrary. For each i ∈ {2, 3, . . . , j(n)}, we have that |bi| ≥ |c1| ≥ n0.342

Since F restricted to {t ∈ R
+ | t ≥ n0} is nondecreasing,343

|ci| ≤ F (|bi|) ≤ F (2i + max
1≤k≤i−1

|ck|). (2)344

Since Eq. 2 holds for 2 ≤ i ≤ j(n) we can repeatedly apply it inside the max to get345

|ci| ≤ F (2i + F (2(i − 1) + F (· · · 2 · 4 + F (2 · 3 + F (2 · 2 + |c1|)) · · · ))). (3)346

Recall that λ = 4 + |c1|. From condition (a) of the theorem statement and since |c1| ≥ n0,347

we have F (λ) ≥ 2 + λ = 2 + 4 + |c1| ≥ 6, and thus |ci| ≤ F (2i + F (2(i − 1) + F (· · · 2 ·348

4 + F (2F (λ)) · · · ))). Since it follows from our theorem’s assumptions that (∀t ≥ λ)(∀c ∈349

N
+)[cF (t) ≥ F (ct)], we have |ci| ≤ F (2i+F (2(i−1)+F (· · · 2·4+2F (F (λ)) · · · ))). Continuing350

to use the inequalities (∀k ≥ 3)[2 · k ≤ F [k−2](λ)] and (∀t ≥ λ)(∀c ∈ N
+)[cF (t) ≥ F (ct)]351

we get |ci| ≤ (i − 1)(F [i−1](λ)). Since (∀t ≥ λ)[F (t) ≥ t] and i ≤ j(n), we have that352

|ci| ≤ (i − 1)(F [i−1](λ)) ≤ j(n)F [j(n)](λ). Since this bound holds for all i ∈ {2, 3, . . . , j(n)},353

it follows that max2≤`≤n |c`| ≤ j(n)F [j(n)](λ), and thus max1≤`≤n |c`| ≤ j(n)F [j(n)](λ) + |c1|.354

By supposition, F [j(n)](λ) = O(nβ). Also, from our theorem’s assumptions, j(n) is polynomial355

in the value n, which means we can find some β′′ such that j(n) = O(nβ′′

). Hence we have356

j(n)F [j(n)](λ) = O(nβ+β′′

). Since |c1| is a finite constant, this means j(n)F [j(n)](λ) + |c1| is357

polynomially bounded, and so max1≤`≤j(n) |c`| is at most polynomial in n. By the argument358

in the preceding paragraph, max1≤`≤j(n) |a`| is at most polynomial in n.359

We now show that UP≤j(n) ⊆ RCT . Let L be in UP≤j(n), witnessed by an NPTM N̂ .360

To show L ∈ RCT we describe an NPTM N that, on each input x, has 0 accepting paths if361

x /∈ L, and has #accN (x) ∈ T if x ∈ L. On input x, our machine N computes j(|x|) and then362

computes the constants c1, c2, . . . , cj(|x|) as described above. Then N nondeterministically363
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guesses an integer i ∈ {1, 2, . . . , j(|x|)}, and nondeterministically guesses a cardinality-i set364

of paths of N̂(x). If all the paths guessed in a cardinality-i set are accepting paths, then N365

branches into ci accepting paths; otherwise, that branch of N rejects. If N̂(x) has fewer than366

i paths, then the subtree of N that guessed i will have 0 accepting paths, since we cannot367

guess i distinct paths of N̂(x). We claim that N shows L ∈ RCT .368

Consider any input x. If x /∈ L, then clearly for all i ∈ {1, 2, . . . , j(|x|)} each cardinality-i369

set of paths of N̂ guessed will have at least one rejecting path, and so N will have no370

accepting path. Suppose x ∈ L. Then N̂ must have some number of accepting paths k.371

Since N̂ witnesses L ∈ UP≤j(n), we must have 1 ≤ k ≤ j(|x|). Our machine N will have c1372

accepting paths for each accepting path of N̂ , c2 additional accepting paths for each pair373

of accepting paths of N̂ , c3 additional accepting paths for each triple of accepting paths of374

N̂ , and so on. Of course, for any cardinality-i set where i > k, at least one of the paths375

must be rejecting, and so N will have no accepting paths from guessing each i > k. Thus we376

have #accN (x) =
∑

1≤`≤k c`

(

k
`

)

. If k = 1, we have #accN (x) = c1. If 2 ≤ k ≤ j(|x|), then377

#accN (x) = ck +
∑

1≤`≤k−1 c`

(

k
`

)

= ck + bk = ak. In either case, #accN (x) ∈ S, and hence378

#accN (x) ∈ T . To complete our proof for L ∈ RCT we need to check that N is an NPTM.379

Note that, by assumption, j(|x|) can be computed in time polynomial in |x|. Furthermore,380

the value j(|x|) is at most polynomial in |x|, and so N ’s simulation of each cardinality-i set of381

paths of N̂ can be done in time polynomial in |x|. Since S is P-printable and max1≤i≤j(|x|) |ai|382

is at most polynomial in |x|, finding the constants ai can be done in time polynomial in |x|.383

Also, since max1≤i≤j(|x|) |ci| is at most polynomial in |x|, the addition and multiplication to384

compute each ci can be done in time polynomial in |x|. All other operations done by N are385

also polynomial-time, and so N is an NPTM. J386

It is worth noting that in general iterative constant-setting proofs it is sometimes useful387

to have a nonzero constant c0 in order to add a constant number c0

(

i
0

)

= c0 of accepting388

paths. However, when trying to show containment in a restricted counting class (as is the389

case here), we set c0 = 0 to ensure that #accN (x) = 0 if x /∈ L, and so we do not even have390

a c0 but rather start iterative constant-setting and its sums with the c1 case (as in Eq. 1).391

Theorem 4.7 can be applied to get complexity-class containments. In particular, we now392

define a notion of nongappiness based on a multiplicative-constant increase in lengths, and393

we show—as Theorem 4.10—that this notion of nongappiness allows us to accept all sets of394

logarithmic ambiguity.395

I Definition 4.8. A set S ⊆ N
+ is O(n)-nongappy if S 6= ∅ and (∃f ∈ O(n))(∀m ∈ S)(∃m′ ∈396

S)[m′ > m ∧ |m′| ≤ f(|m|)].397

The following proposition notes that one can view this definition in a form similar to398

Borchert, Hemaspaandra, and Rothe’s definition to see that O(n)-nongappy sets are, as to399

the increase in the lengths of consecutive elements, bounded by a multiplicative constant.400

(In terms of values, this means that the gaps between the values of one element of the set401

and the next are bounded by a polynomial increase.)402

I Proposition 4.9. A set S ⊆ N
+ is O(n)-nongappy if and only if there exists k ∈ N

+ such403

that S is kn-nongappy.404

I Theorem 4.10. If T ⊆ N
+ has an O(n)-nongappy, P-printable subset, then UP≤O(log n) ⊆405

RCT .406

Proof. By the “only if” direction of Proposition 4.9, there exists a k ∈ N
+ such that T has407

a kn-nongappy, P-printable subset. We can assume k ≥ 2 since if a set has a 1n-nongappy,408
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P-printable subset then it also has a 2n-nongappy, P-printable subset. Let F : R+ → R
+

409

be the function F (t) = kt. The function F satisfies the conditions from Theorem 4.7 since410

for all t ≥ 2, F (t) = kt ≥ t + 2, (∀c)[cF (n) = ckn = F (cn)], and F is nondecreasing on R
+.411

Let λ = 4 + |s| where s is the smallest element of the kn-nongappy, P-printable subset of T412

such that the conditions on F hold for all t ≥ |s|, i.e., s is the smallest element of the kn-413

nongappy, P-printable subset of T such that |s| ≥ 2. For any function g : N → R
≥1 satisfying414

g(n) = O(log n) it is not hard to see (since for each natural n it holds that log(n + 2) ≥ 1)415

that there must exist some d ∈ N
+ such that (∀n ∈ N

+)[g(n) ≤ d log(n + 2)], and hence416

UP≤g(n) ⊆ UP≤d log(n+2) = UP≤bd log(n+2)c. Additionally, j(n) = bd log(n + 2)c satisfies the417

conditions from Theorem 4.7 since j(n) can be computed in time polynomial in n and has418

value at most polynomial in n. Applying Theorem 4.7, to prove that UP≤j(n) ⊆ RCT it419

suffices to show that there is some β ∈ N
+ such that F [j(n)](λ) = O(nβ) where λ is given420

by the statement of the theorem. So it suffices to show that for some β ∈ N
+ and for all421

but finitely many n, F [j(n)](λ) ≤ nβ . Note that F [j(n)](λ) = kj(n)λ. So it is enough to show422

that for all but finitely many n, kj(n)λ ≤ nβ , or (taking logs) equivalently that for all but423

finitely many n, bd log(n + 2)c log k + log λ ≤ β log n. Set β to be the least integer greater424

than 2d log k + log λ. Then for all n ≥ 2 we have β log n ≥ 2d log k log n + log λ log n ≥425

d log k log(n2) + log λ log n ≥ d log k log(n + 2) + log λ ≥ bd log(n + 2)c log k + log λ, which is426

what we needed. Thus for any function g : N → R
≥1 satisfying g(n) = O(log n) we have that427

there exists a function j such that UP≤g(n) ⊆ UP≤j(n) ⊆ RCT . J428

I Corollary 4.11. If PRIMES has an O(n)-nongappy, P-printable subset, then UP≤O(log n) ⊆429

RCPRIMES.430

In order for the iterative constant-setting approach used in Theorem 4.7 to be applicable,431

it is clear that we need to consider UP classes that have at most polynomial ambiguity,432

because otherwise the constructed NPTMs could not guess large enough collections of paths433

within polynomial time. Since in the statement of Theorem 4.7 we use the function j to434

denote the ambiguity of a particular UP class, this requires j to be at most polynomial in435

the value of its input. Furthermore, since our iterative constant-setting requires having a436

bound on the number of accepting paths the UP machine could have had on a particular437

string, we also need to be able to compute the function j in time polynomial in the value of438

its input. Thus the limitations on the function j are natural and seem difficult to remove.439

Theorem 4.7 is flexible enough to, by a proof similar to that of Theorem 4.10, imply Borchert,440

Hemaspaandra, and Rothe’s result stated in Theorem 4.1 where j reaches its polynomial441

bound. Another limitation of Theorem 4.7 is that it requires that for all t greater than or442

equal to a fixed constant n0, (∀c ∈ N
+)[cF (t) ≥ F (ct)]. It is possible to prove a similar result443

where for all t greater than or equal to a fixed constant n0, (∀c ∈ N
+)[cF (t) ≤ F (ct)], which444

we now do as Theorem 4.12.445

I Theorem 4.12. Let F be a function mapping from R
+ to R

+ and let n0 be a positive446

natural number such that F restricted to the domain {t ∈ R
+ | t ≥ n0} is nondecreasing447

and for all t ≥ n0 we have (a) F (t) ≥ t + 2 and (b) (∀c ∈ N
+)[cF (t) ≤ F (ct)]. Let j be a448

function mapping from N to N
+ that is computable in time polynomial in the value of its449

input and whose output is at most polynomial in the value of its input. Suppose T ⊆ N
+ has450

an F -nongappy, P-printable subset S. Let λ = 4 + |s| where s is the smallest element of S451

with |s| ≥ n0. If for some β, F [j(n)](j(n)λ) = O(nβ), then UP≤j(n) ⊆ RCT .452

How does this theorem compare with our other metatheorem, Theorem 4.7? Since in453

both metatheorems F is nondecreasing after a prefix, speaking informally and broadly, the454
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functions F where (after a prefix) (∀c ∈ N
+)[cF (t) ≤ F (ct)] holds grow faster than the455

functions F where (after a prefix) (∀c ∈ N
+)[cF (t) ≥ F (ct)] holds. (The examples we give of456

applying the two theorems reflect this.) So, this second metatheorem is accommodating larger457

gaps in the sets of integers that define our restricted counting class, but is also assuming a458

slightly stronger condition for the containment of an ambiguity-limited class to follow. More459

specifically, since we have the extra factor of j(n) inside of the iterated application of F , we460

may need even more than j(|x|) elements to be reachable in polynomial time (exactly how461

many more will depend on the particular function F ).462

We now discuss some other notions of nongappiness and obtain complexity-class contain-463

ments regarding them using Theorem 4.12.464

I Theorem 4.13. If there exists a real number k > 1 such that T ⊆ N
+ has an nk-nongappy,465

P-printable subset, then UP≤O(1)+ log log n

2 log k

⊆ RCT .466

Theorem 4.13 has an interesting consequence when applied to the Mersenne primes. In467

particular, as we now show, it can be used to prove that the Lenstra–Pomerance–Wagstaff468

Conjecture implies that the O(log log n)-ambiguity sets in NP each belong to RCPRIMES.469

A Mersenne prime is a prime of the form 2k −1. We will use the Mersenne prime counting470

function µ(n) to denote the number of Mersenne primes with length less than or equal471

to n (when represented in binary). The Lenstra–Pomerance–Wagstaff Conjecture [35, 38]472

(see also [14]) asserts that there are infinitely many Mersenne primes, and that µ(n) grows473

asymptotically as eγ log n where γ ≈ 0.577 is the Euler–Mascheroni constant. (Note: We474

say that f(n) grows asymptotically as g(n) when limn→∞ f(n)/g(n) = 1.) Having infinitely475

many Mersenne primes immediately yields an infinite, P-printable subset of the primes. In476

particular, on input 1n we can print all Mersenne primes of length less than or equal to n in477

polynomial time by just checking (using a deterministic polynomial-time primality test [1])478

each number of the form 2k − 1 whose length is less than or equal to n, and if it is prime479

then printing it. If the Lenstra–Pomerance–Wagstaff Conjecture holds, what can we also say480

about the gaps in the Mersenne primes? We address that with the following result.481

I Theorem 4.14. If the Lenstra–Pomerance–Wagstaff Conjecture holds, then for each ε > 0482

the primes (indeed, even the Mersenne primes) have an n1+ε-nongappy, P-printable subset.483

I Corollary 4.15. If the Lenstra–Pomerance–Wagstaff Conjecture holds, then484

UP≤O(log log n) ⊆ RCPRIMES (indeed, UP≤O(log log n) ⊆ RCMersennePRIMES).485

We will soon turn to discussing more notions of nongappiness and what containment486

theorems hold regarding them. However, to support one of those notions, we first define a487

function that will arise naturally in Theorem 4.19.488

I Definition 4.16. For any α ∈ R, α > 0, log~(α) is the largest natural number k such that489

log[k](α) ≥ k. We define log~(0) to be 0.490

For α > 1, taking k = 0 satisfies log[k](α) ≥ k. Also, for all ` ≥ log∗(α), log[`](α) ≤491

log[log∗(α)](α) ≤ 1 ≤ `, and so no ` ≥ log∗(α) can be used as the k in the definition above.492

So there is at least one, but only finitely many k such that log[k](α) ≥ k, which means that493

log~(α) is well-defined. Using the def. of log~(α) and the above, we get log~(α) ≤ log∗(α)494

when α > 1. For α ≤ 1, 0 is the only natural number for which the condition from the495

def. holds, and so log~(α) = 0 if α ≤ 1. Thus for α ≤ 1, log~(α) = log∗(α). As to the496

relationship of its values to those of log∗, we have the following proposition.497

I Proposition 4.17. For all α ≥ 0, log∗(α) − log∗(log∗(α) + 1) − 1 ≤ log~(α) ≤ log∗(α).498
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I Definition 4.18. A nonempty set S ⊆ N
+ is499

1. O(n log n)-nongappy if (∃f ∈ O(n log n))(∀m ∈ S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤ f(|m|)],500

and501

2. n(log n)O(1)

-nongappy if (∃f ∈ O(1))(∀m ∈ S)(∃m′ ∈ S)[m′ > m ∧ |m′| ≤502

|m|(log |m|)f(|m|)

].503

Definitions of nlog n-nongappy and 2n-nongappy are provided via Definition 4.6, since504

nlog n and 2n are each a single function, not a collection of functions. Those two notions,505

along with the two notions of Definition 4.18, will be the focus of Theorem 4.19. That506

theorem obtains the containments related to those four notions of nongappiness. As one507

would expect, as the allowed gaps become larger the corresponding UP classes become more508

restrictive in their ambiguity bounds. Theorem 4.19 also gives a corollary about primes.509

I Theorem 4.19. Let T be a subset of N+.510

1. If T has an O(n log n)-nongappy, P-printable subset, then UP
≤O(

√
log n)

⊆ RCT .511

2. If T has an nlog n-nongappy, P-printable subset, then UP≤O(1)+ 1
2 log log log n ⊆ RCT .512

3. If T has an n(log n)O(1)

-nongappy, P-printable subset, then UP≤O(1)+ 1
3 log log log log n ⊆513

RCT .514

4. If T has a 2n-nongappy, P-printable subset S, then UP
≤max(1,b log~ n

λ
c)

⊆ RCT (and so515

certainly also UP
≤max(1,b

log∗(n)−log∗(log∗(n)+1)−1)
λ

c)
⊆ RCT ), where λ = 4+mins∈S,|s|≥2(|s|).516

I Corollary 4.20. 1. If PRIMES has an O(n log n)-nongappy, P-printable subset, then517

UP
≤O(

√
log n)

⊆ RCPRIMES.518

2. If PRIMES has an nlog n-nongappy, P-printable subset, then UP≤O(1)+ 1
2 log log log n ⊆519

RCPRIMES.520

3. If PRIMES has an n(log n)O(1)

-nongappy, P-printable subset, then521

UP≤O(1)+ 1
3 log log log log n ⊆ RCPRIMES.522

4. If PRIMES has a 2n-nongappy, P-printable subset S, then UP
≤max(1,b log~ n

λ
c)

⊆523

RCPRIMES (and so certainly also UP
≤max(1,b

log∗(n)−log∗(log∗(n)+1)−1)
λ

c)
⊆ RCPRIMES), where524

λ = 4 + mins∈S,|s|≥2(|s|).525

5 Conclusions and Open Problems526

We proved two flexible metatheorems that can be used to obtain containments of ambiguity-527

limited classes in restricted counting classes, and applied those theorems to prove containments528

for some of the most natural ambiguity-limited classes. Beyond the containments we derived529

based on Theorems 4.7 and 4.12, those two metatheorems themselves seem to reflect a530

trade-off between the ambiguity allowed in an ambiguity-limited class and the smallness of531

gaps in a set of natural numbers defining a restricted counting class. One open problem is to532

make explicit, in a smooth and complete fashion, this trade-off between gaps and ambiguity.533

Another challenge is to capture the relationship between log~ and log∗ more tightly than534

Proposition 4.17 does (see Section 4 of [26]). Finally, though it would be a major advance535

since not even any infinite, P-printable subsets of the primes are currently known, in light536

of Corollaries 4.11 and 4.20, a natural goal would be to prove that the primes have infinite,537

P-printable subsets that satisfy some, or all, of our nongappiness properties.538
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