

¹ **Gaps, Ambiguity, and Establishing 2 Complexity-Class Containments via Iterative 3 Constant-Setting**

⁴ **Lane A. Hemaspaandra**

⁵ Department of Computer Science, University of Rochester, Rochester, NY 14627 USA

⁶ **Mandar Juvekar**

⁷ Department of Computer Science, University of Rochester, Rochester, NY 14627 USA

⁸ **Arian Nadjimzadah**

⁹ Department of Computer Science, University of Rochester, Rochester, NY 14627 USA

¹⁰ **Patrick A. Phillips**

¹¹ Riverside Research, Arlington, VA 22202, USA

¹² **Abstract**

¹³ Cai and Hemachandra used iterative constant-setting to prove that $\text{Few} \subseteq \oplus\text{P}$ (and thus that $\text{FewP} \subseteq \oplus\text{P}$). In this paper, we note that there is a tension between the nondeterministic ambiguity of the class one is seeking to capture, and the density (or, to be more precise, the needed “nongappy”-ness) of the easy-to-find “targets” used in iterative constant-setting. In particular, we show that even less restrictive gap-size upper bounds regarding the targets allow one to capture ambiguity-limited classes. Through a flexible, metatheorem-based approach, we do so for a wide range of classes including the logarithmic-ambiguity version of Valiant’s unambiguous nondeterminism class UP . Our work lowers the bar for what advances regarding the existence of infinite, P -printable sets of primes would suffice to show that restricted counting classes based on the primes have the power to accept superconstant-ambiguity analogues of UP . As an application of our work, we prove that the Lenstra–Pomerance–Wagstaff Conjecture implies that all $\mathcal{O}(\log \log n)$ -ambiguity NP sets are in the restricted counting class $\text{RC}_{\text{PRIMES}}$.

²⁵ **2012 ACM Subject Classification** Theory of computation → Complexity classes

²⁶ **Keywords and phrases** structural complexity theory, computational complexity theory, ambiguity-limited NP , counting classes, P -printable sets

²⁸ **Digital Object Identifier** 10.4230/LIPIcs.MFCS.2022.60

²⁹ **Funding** Work supported in part by NSF Grant CCF-2006496.

³⁰ **Acknowledgements** We thank B. Carleton, H. Welles, and the anonymous referees.

³¹ **1 Introduction**

³² We show that every NP set of low ambiguity belongs to broad collections of restricted counting classes.

³⁴ We now describe the two types of complexity classes just mentioned. For any set $S \subseteq \mathbb{N}^+$, the restricted counting class RC_S [7] is defined by $\text{RC}_S = \{L \mid (\exists f \in \#P)(\forall x \in \Sigma^*)[(x \notin L \implies f(x) = 0) \wedge (x \in L \implies f(x) \in S)]\}$. That is, a set L is in RC_S exactly if there is a nondeterministic polynomial-time Turing machine (NPTM) that on each string not in L has zero accepting paths and on each string in L has a number of accepting paths that belongs to the set S . For example, though this is an extreme case, $\text{NP} = \text{RC}_{\mathbb{N}^+}$.

⁴⁰ In the 1970s, Valiant started the study of ambiguity-limited versions of NP by introducing the class UP [36], unambiguous polynomial time, which in the above notation is simply $\text{RC}_{\{1\}}$. (The ambiguity (limit) of an NPTM refers to an upper bound on how many *accepting*

© Lane A. Hemaspaandra, Mandar Juvekar, Arian Nadjimzadah, and Patrick A. Phillips;

licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).

Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 60; pp. 60:1–60:15

 Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

If $T \subseteq \mathbb{N}^+$ X , then Y

X	Y	Reference
has an $(n + \mathcal{O}(1))$ -nongappy, P-printable subset	$\text{FewP} \subseteq \text{RC}_T$	[7]
has an $\mathcal{O}(n)$ -nongappy, P-printable subset	$\text{UP}_{\leq \mathcal{O}(\log n)} \subseteq \text{RC}_T$	Thm. 4.10
has an $\mathcal{O}(n \log n)$ -nongappy, P-printable subset	$\text{UP}_{\leq \mathcal{O}(\sqrt{\log n})} \subseteq \text{RC}_T$	Thm. 4.19
for some real number $k > 1$ has an n^k -nongappy, P-printable subset	$\text{UP}_{\leq \mathcal{O}(1) + \frac{\log \log n}{2 \log k}} \subseteq \text{RC}_T$	Thm. 4.13
has an $n^{\log n}$ -nongappy, P-printable subset	$\text{UP}_{\leq \mathcal{O}(1) + \frac{1}{2} \log \log \log n} \subseteq \text{RC}_T$	Thm. 4.19
has an $n^{(\log n)^{\mathcal{O}(1)}}$ -nongappy, P-printable subset	$\text{UP}_{\leq \mathcal{O}(1) + \frac{1}{3} \log \log \log \log n} \subseteq \text{RC}_T$	Thm. 4.19
has a 2^n -nongappy, P-printable subset S	$\text{UP}_{\leq \max(1, \lfloor \frac{\log^*(n) - \log^*(\log^*(n) + 1) - 1}{\lambda} \rfloor)} \subseteq \text{RC}_T$, where $\lambda = 4 + \min_{s \in S, s \geq 2}(s)$	Thm. 4.19
is infinite	$\text{UP}_{\leq \mathcal{O}(1)} \subseteq \text{RC}_T$	Cor. 4.4

Table 1 Summary of containment results. (Theorem 4.19 also gives a slightly stronger form of the 2^n -nongappiness result than the version stated here.)

43 paths it has as a function of the input’s length. An NP language falls within a given level of
 44 ambiguity if it is accepted by some NPTM that happens to satisfy that ambiguity limit.)
 45 More generally, for each function $f : \mathbb{N} \rightarrow \mathbb{N}^+$ or $f : \mathbb{N} \rightarrow \mathbb{R}^{\geq 1}$, $\text{UP}_{\leq f(n)}$ denotes the class
 46 of languages L for which there is an NPTM N such that, for each x , if $x \notin L$ then N
 47 on input x has no accepting paths, and if $x \in L$ then $1 \leq \#\text{acc}_N(x) \leq \lfloor f(|x|) \rfloor$ (where
 48 $\#\text{acc}_N(x)$ denotes the number of accepting computation paths of N on input x). (Since, for
 49 all N and x , $\#\text{acc}_N(x) \in \mathbb{N}$, the class $\text{UP}_{\leq f(n)}$ just defined would be unchanged if $\lfloor f(|x|) \rfloor$
 50 were replaced by $f(|x|)$.) Ambiguity-limited nondeterministic classes whose ambiguity limits
 51 range from completely unambiguous ($\text{UP}_{\leq 1}$, i.e., UP) to polynomial ambiguity (Allender
 52 and Rubinstein’s class FewP [3]) have been defined and studied.

53 In this paper, we show that many ambiguity-limited counting classes—including ones based
 54 on types of logarithmic ambiguity, loglog ambiguity, logloglog ambiguity, and loglogloglog
 55 ambiguity—are contained in various collections of restricted counting classes. We do so
 56 primarily through two general theorems (Theorems 4.7 and 4.12) that help make clear how,
 57 as the size of the “holes” allowed in the sets underpinning the restricted counting classes
 58 becomes smaller (i.e., as the sets become more “nongappy”), one can handle more ambiguity.
 59 Table 1 summarizes our results about the containment of ambiguity-limited counting classes
 60 in restricted counting classes.

61 Only for polynomial ambiguity was a result of this sort previously known. In particular,
 62 Beigel, Gill, and Hertrampf [5], strengthening Cai and Hemachandra’s result $\text{FewP} \subseteq \oplus\text{P}$ [13],
 63 proved that $\text{FewP} \subseteq \text{RC}_{\{1,3,5,\dots\}}$, and Borchert, Hemaspaandra, and Rothe [7] noted that
 64 $\text{FewP} \subseteq \text{RC}_T$ for each nonempty set $T \subseteq \mathbb{N}^+$ that has an easily presented (formally, P-
 65 printable [25], whose definition will be given in Section 2) subset V that is $(n + \mathcal{O}(1))$ -nongappy
 66 (i.e., for some k the set V never has more than k adjacent, empty lengths; that is, for each
 67 collection of $k + 1$ adjacent lengths, V will always contain at least one string whose length is
 68 one of those $k + 1$ lengths).

69 Our proof approach in the present paper connects somewhat interestingly to the history
 70 just mentioned. We will describe in Section 4 the approach that we will call *the iterative*

71 *constant-setting technique.* However, briefly put, that refers to a process of sequentially
 72 setting a series of constants—first c_0 , then c_1 , then c_2, \dots , and then c_m —in such a way that,
 73 for each $0 \leq j \leq m$, the summation $\sum_{0 \leq \ell \leq j} c_\ell(j)$ falls in a certain “yes” or “no” target set,
 74 as required by the needs of the setting. For RC_S classes, the “no” target set will be $\{0\}$ and
 75 the “yes” target set will be S . In this paper, we will typically put sets into restricted counting
 76 classes by building Turing machines that guess (for each $0 \leq \ell \leq j$) cardinality- ℓ sets of
 77 accepting paths of another NPTM and then amplify each such successful accepting-path-set
 78 guess by—via splitting/cloning of the path—creating from it c_ℓ accepting paths.

79 A technically novel aspect of the proofs of the two main theorems (Theorems 4.7 and 4.12,
 80 each in effect a metatheorem) is that those proofs each provide, in a unified way for a broad
 81 class of functions, an analysis of value-growth in the context of iterated functions.

82 Cai and Hemachandra’s [13] result $\text{FewP} \subseteq \oplus\text{P}$ was proven (as was an even more general
 83 result about a class known as “Few”) by the iterative constant-setting technique. Beigel,
 84 Gill, and Hertrampf [5], while generously noting that “this result can also be obtained
 85 by a close inspection of Cai and Hemachandra’s proof,” proved the far stronger result
 86 $\text{FewP} \subseteq \text{RC}_{\{1,3,5,\dots\}}$ simply and directly rather than by iterative constant-setting. Borchert,
 87 Hemaspaandra, and Rothe’s [7] even more general result, noted above for its proof, resurrected
 88 the iterative constant-setting technique, using it to understand one particular level of
 89 ambiguity. This present paper is, in effect, an immersion into the far richer world of
 90 possibilities that the iterative constant-setting technique can offer, if one puts in the work to
 91 analyze and bound the growth rates of certain constants central to the method. In particular,
 92 as noted above we use the iterative constant-setting method to obtain a broad range of
 93 results (see Table 1) regarding how ambiguity-limited nondeterminism is not more powerful
 94 than appropriately nongappy restricted counting classes.

95 Each of our results has immediate consequences regarding the power of the primes as a
 96 restricted-counting acceptance type. Borchert, Hemaspaandra, and Rothe’s result implies that
 97 if the set of primes has an $(n + \mathcal{O}(1))$ -nongappy, P-printable subset, then $\text{FewP} \subseteq \text{RC}_{\text{PRIMES}}$.
 98 However, it is a long-open research issue whether there exists *any* infinite, P-printable subset
 99 of the primes, much less an $(n + \mathcal{O}(1))$ -nongappy one. Our results lower the bar on what
 100 one must assume about how nongappy hypothetical infinite, P-printable subsets of the
 101 primes are in order to imply that some superconstant-ambiguity-limited nondeterministic
 102 version of NP is contained in $\text{RC}_{\text{PRIMES}}$. We prove that even infinite, P-printable sets of
 103 primes with merely exponential upper bounds on the size of their gaps would yield such a
 104 result. We also prove—by exploring the relationship between density and nongappiness—that
 105 the Lenstra–Pomerance–Wagstaff Conjecture [35, 38] (regarding the asymptotic density of
 106 the Mersenne primes) implies that $\text{UP}_{\leq \mathcal{O}(\log \log n)} \subseteq \text{RC}_{\text{PRIMES}}$. The Lenstra–Pomerance–
 107 Wagstaff Conjecture is characterized in Wikipedia [41] as being “widely accepted,” the fact
 108 that it disagrees with a different conjecture (Gillies’ Conjecture [22]) notwithstanding.

109 Additional results, discussions and comments, and the omitted proofs of Theorems 4.3,
 110 4.12, 4.13, 4.14, and 4.19, Propositions 2.5, 4.9, and 4.17, and Corollary 4.15 can be found
 111 in our full technical report version [26].

112 2 Definitions

113 $\mathbb{N} = \{0, 1, 2, \dots\}$. $\mathbb{N}^+ = \{1, 2, \dots\}$. Each positive natural number, other than 1, is prime
 114 or composite. A prime number is a number that has no positive divisors other than 1
 115 and itself. $\text{PRIMES} = \{i \in \mathbb{N} \mid i \text{ is a prime}\} = \{2, 3, 5, 7, 11, \dots\}$. A composite number
 116 is one that has at least one positive divisor other than 1 and itself; $\text{COMPOSITES} =$

117 $\{i \in \mathbb{N} \mid i \text{ is a composite number}\} = \{4, 6, 8, 9, 10, 12, \dots\}$. \mathbb{R} is the set of all real numbers,
 118 $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$, and $\mathbb{R}^{\geq 1} = \{x \in \mathbb{R} \mid x \geq 1\}$. All logs in this paper (thus those
 119 involved in \log , $\log\log$, $\log\log\log$, $\log\log\log\log$, and $\log^{[i]}$, and also those called within the
 120 definitions of \log^* and our new $\log^{(*)}$) are base 2. Also, each call of the \log function in this
 121 paper, $\log(\cdot)$, is implicitly a shorthand for $\log(\max(1, \cdot))$. We do this so that formulas such
 122 as $\log\log\log(\cdot)$ do not cause domain problems on small inputs. (Admittedly, this is also
 123 distorting \log in the domain-valid open interval $(0, 1)$. However, that interval never comes
 124 into play in our paper except incidentally when iterated logs drop something into it, and also
 125 in the definitions of \log^* and $\log^{(*)}$ but in those two cases—see the discussion in Footnotes 2
 126 and 8 of [26]—the max happens not to change what those evaluate to on $(0, 1)$.)
 127

128 As mentioned earlier, for any NPTM N and any string x , $\#\text{acc}_N(x)$ will denote the
 129 number of accepting computation paths of N on input x . $\#\text{P}$ [37] is the counting version of
 130 NP: $\#\text{P} = \{f : \Sigma^* \rightarrow \mathbb{N} \mid (\exists \text{ NPTM } N)(\forall x \in \Sigma^*)[\#\text{acc}_N(x) = f(x)]\}$. $\oplus\text{P}$ (“Parity P”) is
 131 the class of sets L such that there is a function $f \in \#\text{P}$ such that, for each string x , it holds
 132 that $x \in L \iff f(x) \equiv 1 \pmod{2}$ [34, 23].
 133

134 We will use \mathcal{O} in its standard sense, namely, if f and g are functions (from whose domain
 135 negative numbers are typically excluded), then we say $f(n) = \mathcal{O}(g(n))$ exactly if there exist
 136 positive integers c and n_0 such that $(\forall n \geq n_0)[f(n) \leq cg(n)]$. We sometimes will also,
 137 interchangeably, speak of or write a \mathcal{O} expression as representing a set of functions (e.g.,
 138 writing $f(n) \in \mathcal{O}(g(n))$) [10, 11], which in fact is what the “big O” notation truly represents.
 139

140 The notions RC_S , UP, and $\text{UP}_{\leq f(n)}$ are as defined in Section 1. For each $k \geq 1$,
 141 Watanabe [39] implicitly and Beigel [4] explicitly studied the constant-ambiguity classes
 142 $\text{RC}_{\{1, 2, 3, \dots, k\}}$ which, following the notation of Lange and Rossmanith [32], we will usually
 143 denote $\text{UP}_{\leq k}$. We extend the definition of $\text{UP}_{\leq f(n)}$ to classes of functions as follows. For
 144 classes \mathcal{F} of functions mapping \mathbb{N} to \mathbb{N}^+ or \mathbb{N} to $\mathbb{R}^{\geq 1}$, we define $\text{UP}_{\leq \mathcal{F}} = \bigcup_{f \in \mathcal{F}} \text{UP}_{\leq f(n)}$. We
 145 mention that the class $\text{UP}_{\leq \mathcal{O}(1)}$ is easily seen to be equal to $\bigcup_{k \in \mathbb{N}^+} \text{UP}_{\leq k}$, which is a good
 146 thing since that latter definition of the notion is how $\text{UP}_{\leq \mathcal{O}(1)}$ was defined in the literature
 147 more than a quarter of a century ago [29]. $\text{UP}_{\leq \mathcal{O}(1)}$ can be (informally) described as the
 148 class of all sets acceptable by NPTMs with constant-bounded ambiguity. Other related
 149 classes will also be of interest to us. For example, $\text{UP}_{\leq \mathcal{O}(\log n)}$ captures the class of all sets
 150 acceptable by NPTMs with logarithmically-bounded ambiguity. Allender and Rubinstein [3]
 151 introduced and studied FewP, the polynomial-ambiguity NP languages, which can be defined
 152 by $\text{FewP} = \{L \mid (\exists \text{ polynomial } f)[L \in \text{UP}_{\leq f(n)}]\}$.
 153

154 The $\text{UP}_{\leq f(n)}$ classes, which will be central to this paper’s study, capture ambiguity-
 155 bounded versions of NP. They are also motivated by the fact that they completely characterize
 156 the existence of ambiguity-bounded (complexity-theoretic) one-way functions.¹
 157

158 **► Proposition 2.1.** *Let f be any function mapping from \mathbb{N} to \mathbb{N}^+ . $\text{P} \neq \text{UP}_{\leq f(n)}$ if and only
 159 if there exists an $f(n)$ -to-one one-way function.*

1 A (possibly nontotal) function g is said to be a one-way function exactly if (a) g is polynomial-time
 160 computable, (b) g is honest (i.e., there exists a polynomial q such that, for each y in the range of g ,
 161 there exists a string x such that $g(x) = y$ and $|x| \leq q(|y|)$; simply put, each string y mapped to by g is
 162 mapped to by some string x that is not much longer than y), and (c) g is not polynomial-time invertible
 163 (i.e., there exists no (possibly nontotal) polynomial-time function h such that for each y in the range of
 164 g , it holds that $h(y)$ is defined and $g(h(y))$ is defined and $g(h(y)) = y$) [24]. For each $f : \mathbb{N} \rightarrow \mathbb{N}^+$ and
 165 each (possibly nontotal) function $g : \Sigma^* \rightarrow \Sigma^*$, we say that g is $f(n)$ -to-one exactly if, for each $y \in \Sigma^*$,
 166 $\| \{x \mid g(x) = y\} \| \leq f(|y|)$. When g is a one-way function, the function f is sometimes referred to as an
 167 ambiguity limit on the function g , and the special case of $f(n) = 1$ is the case of unambiguous one-way
 168 functions. (This is a different notion of ambiguity than that used for NPTMs, though Proposition 2.1
 169 shows that the notions are closely connected.)
 170

155 That claim holds even if f is not nondecreasing, and holds even if f is not a computable
 156 function. To the best of our knowledge, Proposition 2.1 has not been stated before for the
 157 generic case of any function $f : \mathbb{N} \rightarrow \mathbb{N}^+$. However, many concrete special cases are well
 158 known, and the proposition follows from the same argument as is used for those (see for
 159 example [27, Proof of Theorem 2.5] for a tutorial presentation of that type of argument).
 160 In particular, the proposition's special cases are known already for UP (due to [24, 30]),
 161 $UP_{\leq k}$ (for each $k \in \mathbb{N}^+$) and $UP_{\leq \mathcal{O}(1)}$ (in [29, 6]), FewP (in [3]), and (since the following is
 162 another name for NP) $UP_{\leq 2^{\mathcal{O}(1)}}$ (folklore, see [27, Theorem 2.5, Part 1]). The proposition
 163 holds not just for single functions f , but also for classes that are collections of functions, e.g.,
 164 $UP_{\leq \mathcal{O}(\log n)}$.

165 For any function f , we use $f^{[n]}$ to denote function iteration: $f^{[0]}(\alpha) = \alpha$ and inductively,
 166 for each $n \in \mathbb{N}$, $f^{[n+1]}(\alpha) = f(f^{[n]}(\alpha))$. For each real number $\alpha \geq 0$, $\log^*(\alpha)$ (“(base 2) log
 167 star of α ”) is the smallest natural number k such that $\log^{[k]}(\alpha) \leq 1$. Although the logarithm
 168 of 0 is not defined, note that $\log^*(0)$ is well-defined, namely it is 0 since $\log^{[0]}(0) = 0$.

169 A set L is said to be P-printable [25] exactly if there is a deterministic polynomial-time
 170 Turing machine such that, for each $n \in \mathbb{N}$, the machine when given as input the string 1^n
 171 prints (in some natural coding, such as printing each of the strings of L in lexicographical
 172 order, inserting the character # after each) exactly the set of all strings in L of length less
 173 than or equal to n .

174 Notions of whether a set has large empty expanses between one element and the next
 175 will be central to our work in this paper. Borchert, Hemaspaandra, and Rothe [7] defined
 176 and used such a notion, in a way that is tightly connected to our work. We present here the
 177 notion they called “nongappy,” but here, we will call it “nongappy_{value}” to distinguish their
 178 value-centered definition from the length-centered definitions that will be our norm in this
 179 paper.

180 ► **Definition 2.2** ([7]). *A set $S \subseteq \mathbb{N}^+$ is said to be nongappy_{value} if $S \neq \emptyset$ and $(\exists k > 0)(\forall m \in S)(\exists m' \in S)[m' > m \wedge m'/m \leq k]$.*

182 This says that the gaps between one element of the set and the next greater one are, as to
 183 the *values* of the numbers, bounded by a multiplicative constant. Note that, if we view the
 184 natural numbers as naturally coded in binary, that is equivalent to saying that the gaps
 185 between one element of the set and the next greater one are, as to the *lengths* of the two
 186 strings, bounded by an additive constant. That is, a nonempty set $S \subseteq \mathbb{N}^+$ is said to be
 187 nongappy_{value} by this definition if the gaps in the lengths of elements of S are bounded by
 188 an additive constant, and thus we have the following result that clearly holds.

189 ► **Proposition 2.3.** *A set $S \subseteq \mathbb{N}^+$ is nongappy_{value} if and only if $S \neq \emptyset$ and $(\exists k > 0)(\forall m \in S)(\exists m' \in S)[m' > m \wedge |m'| \leq |m| + k]$.*

191 In Section 4 we define other notions of nongappiness that allow larger gaps than the above
 192 does. We will always focus on lengths, and so we will consistently use the term “nongappy”
 193 in our definitions to speak of gaps quantified in terms of the *lengths* of the strings involved.
 194 We now introduce a new notation for the notion nongappy_{value}, and show that our definition
 195 does in fact refer to the same notion as that of Borchert, Hemaspaandra, and Rothe.

196 ► **Definition 2.4.** *A set $S \subseteq \mathbb{N}^+$ is $(n + \mathcal{O}(1))$ -nongappy if $S \neq \emptyset$ and $(\exists f \in \mathcal{O}(1))(\forall m \in S)(\exists m' \in S)[m' > m \wedge |m'| \leq |m| + f(|m|)]$.*

198 While at first glance this might seem to be different from Borchert, Hemaspaandra, and
 199 Rothe's definition, it is easy to see that both definitions are equivalent.

200 ► **Proposition 2.5.** *A set S is $(n + \mathcal{O}(1))$ -nongappy if and only if it is nongappy_{value}.*

201 **3 Related Work**

202 The most closely related work has already largely been covered in the nonappendix part of the
 203 paper, but we now briefly mention that work and its relationship to this paper. In particular,
 204 the most closely related papers are the work of Cai and Hemachandra [13], Hemaspaandra
 205 and Rothe [28], and Borchert, Hemaspaandra, and Rothe [7], which introduced and studied
 206 the iterative constant-setting technique as a tool for exploring containments of counting
 207 classes. The former two (and also the important related work of Borchert and Stephan [8])
 208 differ from the present paper in that they are not about restricted counting classes, and
 209 unlike the present paper, Borchert, Hemaspaandra, and Rothe's paper, as to containment
 210 of ambiguity-limited classes, addresses only FewP. (It is known that FewP is contained in
 211 the class known as SPP and is indeed so-called SPP-low [31, 17, 18], however that does not
 212 make our containments in restricted counting classes uninteresting, as it seems unlikely that
 213 SPP is contained in *any* restricted counting class, since SPP's "no" case involves potentially
 214 exponential numbers of accepting paths, not zero such paths.) The interesting, recent paper of
 215 Cox and Pay [16] draws on the result of Borchert, Hemaspaandra, and Rothe [7] that appears
 216 as our Theorem 4.1 to establish that $\text{FewP} \subseteq \text{RC}_{\{2^t-1 \mid t \in \mathbb{N}^+\}}$ (note that the right-hand side
 217 is the restricted counting class defined by the Mersenne numbers), a result that itself implies
 218 $\text{FewP} \subseteq \text{RC}_{\{1,3,5,\dots\}}$.

219 "RC" (restricted counting) classes [7] are central to this paper. The literature's earlier
 220 "CP" classes [12] might at first seem similar, but they don't restrict rejection to the case of
 221 having zero accepting paths. Leaf languages [9], a different framework, do have flexibility to
 222 express "RC" classes, and so are an alternate notation one could use, though in some sense
 223 they would be overkill as a framework here due to their extreme descriptive power. The class
 224 $\text{RC}_{\{1,3,5,\dots\}}$ first appeared in the literature under the name ModZ_2P [5]. Ambiguity-limited
 225 classes are also quite central to this paper, and among those we study (see Section 2) are
 226 ones defined, or given their notation that we use, in the following papers: [36, 4, 39, 3, 32].

227 P-printability is due to Hartmanis and Yesha [25]. Allender [2] established a sufficient
 228 condition, which we will discuss later, for the existence of infinite, P-printable subsets of the
 229 primes. As discussed in the text right after Corollary 4.2 and in Footnote 2, none of the
 230 results of Ford, Maynard, Tao, and others [20, 33, 19] about "infinitely often" lower bounds
 231 on gaps in the primes, nor any possible future bounds, can possibly be strong enough to be
 232 the sole obstacle to a $\text{FewP} \subseteq \text{RC}_{\text{PRIMES}}$ construction.

233 **4 Gaps, Ambiguity, and Iterative Constant-Setting**

234 What is the power of NPTMs whose number of accepting paths is 0 for each string not in
 235 the set and is a prime for each string in the set? In particular, does that class, $\text{RC}_{\text{PRIMES}}$,
 236 contain FewP or, for that matter, any interesting ambiguity-limited nondeterministic class?
 237 That is the question that motivated this work.

238 Why might one hope that $\text{RC}_{\text{PRIMES}}$ might contain some ambiguity-limited classes? Well,
 239 we clearly have that $\text{NP} \subseteq \text{RC}_{\text{COMPOSITES}}$, so having the composites as our acceptance
 240 targets allows us to capture all of NP. Why? For any NP machine N , we can make a new
 241 machine N' that mimics N , except it clones each accepting path into four accepting paths,
 242 and so when N has zero accepting paths N' has zero accepting paths, and when N has at
 243 least one accepting path N' has a composite number of accepting paths.

244 On the other hand, why might one suspect that interesting ambiguity-limited nondeter-
 245 ministic classes such as FewP might *not* be contained in $\text{RC}_{\text{PRIMES}}$? Well, it is not even
 246 clear that FewP is contained in the class of sets that are accepted by NPTMs that accept

247 via having a prime number of accepting paths, and reject by having a nonprime number
 248 of accepting paths (rather than being restricted to rejecting only by having zero accepting
 249 paths, as is $\text{RC}_{\text{PRIMES}}$). That is, even a seemingly vastly more flexible counting class does
 250 not seem to in any obvious way contain FewP .

251 This led us to revisit the issue of identifying the sets $S \subseteq \mathbb{N}^+$ that satisfy $\text{FewP} \subseteq \text{RC}_S$,
 252 studied previously by, for example, Borchert, Hemaspaandra, and Rothe [7] and Cox and
 253 Pay [16]. In particular, Borchert, Hemaspaandra, and Rothe showed, by the iterative
 254 constant-setting technique, the following theorem. From it, we immediately have Cor. 4.2.

255 ▶ **Theorem 4.1** ([7, Theorem 3.4]). *If $T \subseteq \mathbb{N}^+$ has an $(n + \mathcal{O}(1))$ -nongappy, P-printable
 256 subset, then $\text{FewP} \subseteq \text{RC}_T$.*

257 ▶ **Corollary 4.2.** *If PRIMES contains an $(n + \mathcal{O}(1))$ -nongappy, P-printable subset, then
 258 $\text{FewP} \subseteq \text{RC}_{\text{PRIMES}}$.*

259 Does PRIMES contain an $(n + \mathcal{O}(1))$ -nongappy, P-printable subset? The Bertrand–Chebyshev
 260 Theorem [15] states that for each natural number $k > 3$, there exists a prime p such that
 261 $k < p < 2k - 2$. Thus PRIMES clearly has an $(n + \mathcal{O}(1))$ -nongappy subset.² Indeed,
 262 since—with p_i denoting the i th prime— $(\forall \epsilon > 0)(\exists N)(\forall n > N)[p_{n+1} - p_n < \epsilon p_n]$ [40], it
 263 holds that represented in binary there are primes at all but a finite number of bit-lengths.
 264 Unfortunately, to the best of our knowledge it remains an open research issue whether
 265 there exists *any* infinite, P-printable subset of the primes, much less one that in addition
 266 is $(n + \mathcal{O}(1))$ -nongappy. In fact, the best sufficient condition we know of for the existence
 267 of an infinite, P-printable set of primes is a relatively strong hypothesis of Allender [2,
 268 Corollary 32 and the comment following it] about the probabilistic complexity class R [21]
 269 and the existence of secure extenders. However, that result does not promise that the infinite,
 270 P-printable set of primes is $(n + \mathcal{O}(1))$ -nongappy—not even now, when it is known that
 271 primality is not merely in the class R but even is in the class P [1].

272 So the natural question to ask is: Can we at least lower the bar for what strength of
 273 advance—regarding the existence of P-printable sets of primes and the nongappiness of such
 274 sets—would suffice to allow $\text{RC}_{\text{PRIMES}}$ to contain some interesting ambiguity-limited class?

275 In particular, the notion of nongappiness used in Theorem 4.1 above means that our
 276 length gaps between adjacent elements of our P-printable set must be bounded by an additive
 277 constant. Can we weaken that to allow larger gaps, e.g., gaps of multiplicative constants,
 278 and still have containment for some interesting ambiguity-limited class?

279 We show that the answer is yes. More generally, we show that there is a tension and
 280 trade-off between gaps and ambiguity. As we increase the size of gaps we are willing to
 281 tolerate, we can prove containment results for restrictive counting classes, but of increasingly
 282 small levels of ambiguity. On the other hand, as we lower the size of the gaps we are willing
 283 to tolerate, we increase the amount of ambiguity we can handle.

² We mention in passing that it follows from the fact that PRIMES clearly *does* have an $(n + \mathcal{O}(1))$ -nongappy subset that none of the powerful results by Ford, Maynard, Tao, and others [20, 33, 19] about “infinitely often” lower bounds for gaps in the primes, or in fact any results purely about lower bounds on gaps in the primes, can possibly prevent there from being a set of primes whose gaps are small enough that the set could, if sufficiently accessible, be used in a Cai–Hemachandra-type iterative constant-setting construction seeking to show that $\text{FewP} \subseteq \text{RC}_{\text{PRIMES}}$. (In fact—keeping in mind that the difference between the value of a number and its coded length is exponential—the best such gaps known are almost exponentially too weak to preclude a Cai–Hemachandra-type iterative constant-setting construction.) Rather, the only obstacle will be the issue of whether there is such a set that in addition is computationally easily accessible/thin-able, i.e., whether there is such an $(n + \mathcal{O}(1))$ -nongappy subset of the primes that is P-printable.

284 It is easy to see that the case of constant-ambiguity nondeterminism is so extreme that
 285 the iterative constant-setting method works for all infinite sets regardless of how nongappy
 286 they are. (It is even true that the containment $UP_{\leq k} \subseteq RC_T$ holds for some finite sets T ,
 287 such as $\{1, 2, 3, \dots, k\}$; but our point here is that it holds for *all* infinite sets $T \subseteq \mathbb{N}^+$.)

288 ▶ **Theorem 4.3.** *For each infinite set $T \subseteq \mathbb{N}^+$ and for each natural $k \geq 1$, $UP_{\leq k} \subseteq RC_T$.*

289 Theorem 4.3 should be compared with the discussion by Hemaspaandra and Rothe [28,
 290 p. 210] of an NP-many-one-hardness result of Borchert and Stephan [8] and a $UP_{\leq k}$ -1-truth-
 291 table-hardness result. In particular, both those results are in the *unrestricted* setting, and
 292 so neither implies Theorem 4.3. The proof of Theorem 4.3 can be found as Appendix A of
 293 our [26]. However, we recommend that the reader read it, if at all, only after reading the
 294 proof of Theorem 4.7, whose proof also uses (and within this paper, is the key presentation
 295 of) iterative constant-setting, and is a more interesting use of that approach.

296 ▶ **Corollary 4.4.** *For each infinite set $T \subseteq \mathbb{N}^+$, $UP_{\leq O(1)} \subseteq RC_T$.*

297 ▶ **Corollary 4.5.** $UP_{\leq O(1)} \subseteq RC_{PRIMES}$.

298 So constant-ambiguity nondeterminism can be done by the restrictive counting class
 299 based on the primes. However, what we are truly interested in is whether we can achieve a
 300 containment for superconstant levels of ambiguity. We in fact can do so, and we now present
 301 such results for a range of cases between constant ambiguity ($UP_{\leq O(1)}$) and polynomial
 302 ambiguity (FewP). We first define a broader notion of nongappiness.

303 ▶ **Definition 4.6.** *Let F be any function mapping \mathbb{R}^+ to \mathbb{R}^+ . A set $S \subseteq \mathbb{N}^+$ is F -nongappy
 304 if $S \neq \emptyset$ and $(\forall m \in S)(\exists m' \in S)[m' > m \wedge |m'| \leq F(|m|)]$.³*

305 This definition sets F 's domain and codomain to include real numbers, despite the fact
 306 that the underlying F -nongappy set S is of the type $S \subseteq \mathbb{N}^+$. The codomain is set to
 307 include real numbers because many notions of nongappiness we examine rely on non-integer
 308 values. Since we are often iterating functions, we thus set F 's domain to be real numbers as
 309 well. Doing so does not cause problems as to computability because F is a function that
 310 is never actually computed by the Turing machines in our proofs; it is merely one that is
 311 mathematically reasoned about in the analysis of the nongappiness of sets underpinning
 312 restricted counting classes.

313 The following theorem generalizes the iterative constant-setting technique that Borchert,
 314 Hemaspaandra, and Rothe used to prove Theorem 4.1.

315 ▶ **Theorem 4.7.** *Let F be a function mapping from \mathbb{R}^+ to \mathbb{R}^+ and let n_0 be a positive natural
 316 number such that F restricted to the domain $\{t \in \mathbb{R}^+ \mid t \geq n_0\}$ is nondecreasing and for
 317 all $t \geq n_0$ we have (a) $F(t) \geq t + 2$ and (b) $(\forall c \in \mathbb{N}^+)[cF(t) \geq F(ct)]$. Let j be a function,
 318 mapping from \mathbb{N} to \mathbb{N}^+ , that is at most polynomial in the value of its input and is computable
 319 in time polynomial in the value of its input. Suppose $T \subseteq \mathbb{N}^+$ has an F -nongappy, P -printable
 320 subset S . Let $\lambda = 4 + |s|$ where s is the smallest element of S with $|s| \geq n_0$. If for some
 321 $\beta \in \mathbb{N}^+$, $F^{[j(n)]}(\lambda) = O(n^\beta)$, then $UP_{\leq j(n)} \subseteq RC_T$.*

³ In two later definitions, 4.8 and 4.18, we apply Definition 4.6 to classes of functions. In each case, we will directly define that, but in fact will do so as the natural lifting (namely, saying a set is \mathcal{F} -nongappy exactly if there is an $F \in \mathcal{F}$ such that the set is F -nongappy). The reason we do not directly define lifting as applying to all classes \mathcal{F} is in small part that we need it only in those two definitions, and in large part because doing so could cause confusion, since an earlier definition (Def. 2.4) that is connecting to earlier work is using as a syntactic notation an expression that itself would be caught up by such a lifting (though the definition given in Def. 2.4 is consistent with the lifting reading, give or take the fact that we've now broadened our focus to the reals rather than the naturals).

322 This theorem has a nice interpretation: a sufficient condition for an ambiguity-limited
 323 class $UP_{\leq j(n)}$ to be contained in a particular restricted counting class is for there to be at
 324 least $j(n)$ elements that are reachable in polynomial time in an F -nongappy subset of the
 325 set that defines the counting class, assuming that the nongappiness of the counting class and
 326 the ambiguity of the $UP_{\leq j(n)}$ class satisfy the above conditions.

327 **Proof of Theorem 4.7.** Let F , j , n_0 , T , and S be as per the theorem statement. Suppose
 328 $(\exists \beta' \in \mathbb{N}^+)[F^{[j(n)]}(\lambda) = \mathcal{O}(n^{\beta'})]$, and fix a value $\beta \in \mathbb{N}^+$ such that $F^{[j(n)]}(\lambda) = \mathcal{O}(n^\beta)$.

329 We start our proof by defining three sequences of constants that will be central in our
 330 iterative constant-setting argument, and giving bounds on their growth. Set c_1 to be the
 331 least element of S with $|c_1| \geq n_0$. For $n \in \{2, 3, \dots\}$, given c_1, c_2, \dots, c_{n-1} , we set

$$332 \quad b_n = \sum_{1 \leq \ell \leq n-1} c_\ell \binom{n}{\ell}. \quad (1)$$

333 With b_n set, we define a_n to be the least element of S such that $a_n \geq b_n$. Finally, we
 334 set $c_n = a_n - b_n$. We now show that $\max_{1 \leq \ell \leq j(n)} |a_\ell|$ and $\max_{1 \leq \ell \leq j(n)} |c_\ell|$ are both at
 335 most polynomial in n . Take any $i \in \{2, 3, \dots\}$. By the construction above and since S is
 336 F -nongappy, we have $|c_i| \leq |a_i| \leq F(|b_i|)$. Using our definition of b_i from Eq. 1 we get
 337 $b_i = \sum_{1 \leq k \leq i-1} c_k \binom{i}{k} \leq (i-1)(\max_{1 \leq k \leq i-1} c_k) \binom{i}{\lceil \frac{i}{2} \rceil} \leq (\max_{1 \leq k \leq i-1} c_k)(2^{2i})$. Thus we can
 338 bound the length of b_i by $|b_i| \leq 2i + \max_{1 \leq k \leq i-1} |c_k| \leq 2i + \max_{1 \leq k \leq i} |c_k|$. Since this is
 339 true for all $i \in \{2, 3, \dots\}$, it follows that if $\max_{1 \leq \ell \leq j(n)} |c_\ell|$ is at most polynomial in n , then
 340 $\max_{1 \leq \ell \leq j(n)} |b_\ell|$ is at most polynomial in n , and since for all i , $a_i = b_i + c_i$, $\max_{1 \leq \ell \leq j(n)} |a_\ell|$
 341 is at most polynomial in n . We now show that $\max_{1 \leq \ell \leq j(n)} |c_\ell|$ is in fact polynomial in n .

342 Let $n \in \{2, 3, \dots\}$ be arbitrary. For each $i \in \{2, 3, \dots, j(n)\}$, we have that $|b_i| \geq |c_1| \geq n_0$.
 343 Since F restricted to $\{t \in \mathbb{R}^+ \mid t \geq n_0\}$ is nondecreasing,

$$344 \quad |c_i| \leq F(|b_i|) \leq F(2i + \max_{1 \leq k \leq i-1} |c_k|). \quad (2)$$

345 Since Eq. 2 holds for $2 \leq i \leq j(n)$ we can repeatedly apply it inside the max to get

$$346 \quad |c_i| \leq F(2i + F(2(i-1) + F(\dots 2 \cdot 4 + F(2 \cdot 3 + F(2 \cdot 2 + |c_1|)) \dots))). \quad (3)$$

347 Recall that $\lambda = 4 + |c_1|$. From condition (a) of the theorem statement and since $|c_1| \geq n_0$,
 348 we have $F(\lambda) \geq 2 + \lambda = 2 + 4 + |c_1| \geq 6$, and thus $|c_i| \leq F(2i + F(2(i-1) + F(\dots 2 \cdot
 349 4 + F(2F(\lambda)) \dots)))$. Since it follows from our theorem's assumptions that $(\forall t \geq \lambda)(\forall c \in
 350 \mathbb{N}^+)[cF(t) \geq F(ct)]$, we have $|c_i| \leq F(2i + F(2(i-1) + F(\dots 2 \cdot 4 + 2F(F(\lambda)) \dots)))$. Continuing
 351 to use the inequalities $(\forall k \geq 3)[2 \cdot k \leq F^{[k-2]}(\lambda)]$ and $(\forall t \geq \lambda)(\forall c \in \mathbb{N}^+)[cF(t) \geq F(ct)]$
 352 we get $|c_i| \leq (i-1)(F^{[i-1]}(\lambda))$. Since $(\forall t \geq \lambda)[F(t) \geq t]$ and $i \leq j(n)$, we have that
 353 $|c_i| \leq (i-1)(F^{[i-1]}(\lambda)) \leq j(n)F^{[j(n)]}(\lambda)$. Since this bound holds for all $i \in \{2, 3, \dots, j(n)\}$,
 354 it follows that $\max_{2 \leq \ell \leq n} |c_\ell| \leq j(n)F^{[j(n)]}(\lambda)$, and thus $\max_{1 \leq \ell \leq n} |c_\ell| \leq j(n)F^{[j(n)]}(\lambda) + |c_1|$.
 355 By supposition, $F^{[j(n)]}(\lambda) = \mathcal{O}(n^\beta)$. Also, from our theorem's assumptions, $j(n)$ is polynomial
 356 in the value n , which means we can find some β'' such that $j(n) = \mathcal{O}(n^{\beta''})$. Hence we have
 357 $j(n)F^{[j(n)]}(\lambda) = \mathcal{O}(n^{\beta+\beta''})$. Since $|c_1|$ is a finite constant, this means $j(n)F^{[j(n)]}(\lambda) + |c_1|$ is
 358 polynomially bounded, and so $\max_{1 \leq \ell \leq j(n)} |c_\ell|$ is at most polynomial in n . By the argument
 359 in the preceding paragraph, $\max_{1 \leq \ell \leq j(n)} |a_\ell|$ is at most polynomial in n .

360 We now show that $UP_{\leq j(n)} \subseteq RC_T$. Let L be in $UP_{\leq j(n)}$, witnessed by an NPTM \hat{N} .
 361 To show $L \in RC_T$ we describe an NPTM N that, on each input x , has 0 accepting paths if
 362 $x \notin L$, and has $\#\text{acc}_N(x) \in T$ if $x \in L$. On input x , our machine N computes $j(|x|)$ and then
 363 computes the constants $c_1, c_2, \dots, c_{j(|x|)}$ as described above. Then N nondeterministically

60:10 Establishing Complexity-Class Containments via Iterative Constant-Setting

364 guesses an integer $i \in \{1, 2, \dots, j(|x|)\}$, and nondeterministically guesses a cardinality- i set
 365 of paths of $\hat{N}(x)$. If all the paths guessed in a cardinality- i set are accepting paths, then N
 366 branches into c_i accepting paths; otherwise, that branch of N rejects. If $\hat{N}(x)$ has fewer than
 367 i paths, then the subtree of N that guessed i will have 0 accepting paths, since we cannot
 368 guess i distinct paths of $\hat{N}(x)$. We claim that N shows $L \in \text{RC}_T$.

369 Consider any input x . If $x \notin L$, then clearly for all $i \in \{1, 2, \dots, j(|x|)\}$ each cardinality- i
 370 set of paths of \hat{N} guessed will have at least one rejecting path, and so N will have no
 371 accepting path. Suppose $x \in L$. Then \hat{N} must have some number of accepting paths k .
 372 Since \hat{N} witnesses $L \in \text{UP}_{\leq j(n)}$, we must have $1 \leq k \leq j(|x|)$. Our machine N will have c_1
 373 accepting paths for each accepting path of \hat{N} , c_2 additional accepting paths for each pair
 374 of accepting paths of \hat{N} , c_3 additional accepting paths for each triple of accepting paths of
 375 \hat{N} , and so on. Of course, for any cardinality- i set where $i > k$, at least one of the paths
 376 must be rejecting, and so N will have no accepting paths from guessing each $i > k$. Thus we
 377 have $\#\text{acc}_N(x) = \sum_{1 \leq \ell \leq k} c_\ell \binom{k}{\ell}$. If $k = 1$, we have $\#\text{acc}_N(x) = c_1$. If $2 \leq k \leq j(|x|)$, then
 378 $\#\text{acc}_N(x) = c_k + \sum_{1 \leq \ell \leq k-1} c_\ell \binom{k}{\ell} = c_k + b_k = a_k$. In either case, $\#\text{acc}_N(x) \in S$, and hence
 379 $\#\text{acc}_N(x) \in T$. To complete our proof for $L \in \text{RC}_T$ we need to check that N is an NPTM.

380 Note that, by assumption, $j(|x|)$ can be computed in time polynomial in $|x|$. Furthermore,
 381 the value $j(|x|)$ is at most polynomial in $|x|$, and so N 's simulation of each cardinality- i set of
 382 paths of \hat{N} can be done in time polynomial in $|x|$. Since S is P-printable and $\max_{1 \leq i \leq j(|x|)} |a_i|$
 383 is at most polynomial in $|x|$, finding the constants a_i can be done in time polynomial in $|x|$.
 384 Also, since $\max_{1 \leq i \leq j(|x|)} |c_i|$ is at most polynomial in $|x|$, the addition and multiplication to
 385 compute each c_i can be done in time polynomial in $|x|$. All other operations done by N are
 386 also polynomial-time, and so N is an NPTM. \blacktriangleleft

387 It is worth noting that in general iterative constant-setting proofs it is sometimes useful
 388 to have a nonzero constant c_0 in order to add a constant number $c_0 \binom{i}{0} = c_0$ of accepting
 389 paths. However, when trying to show containment in a restricted counting class (as is the
 390 case here), we set $c_0 = 0$ to ensure that $\#\text{acc}_N(x) = 0$ if $x \notin L$, and so we do not even have
 391 a c_0 but rather start iterative constant-setting and its sums with the c_1 case (as in Eq. 1).

392 Theorem 4.7 can be applied to get complexity-class containments. In particular, we now
 393 define a notion of nongappiness based on a multiplicative-constant increase in lengths, and
 394 we show—as Theorem 4.10—that this notion of nongappiness allows us to accept all sets of
 395 logarithmic ambiguity.

396 **► Definition 4.8.** A set $S \subseteq \mathbb{N}^+$ is $\mathcal{O}(n)$ -nongappy if $S \neq \emptyset$ and $(\exists f \in \mathcal{O}(n))(\forall m \in S)(\exists m' \in S)[m' > m \wedge |m'| \leq f(|m|)]$.

398 The following proposition notes that one can view this definition in a form similar to
 399 Borchert, Hemaspaandra, and Rothe's definition to see that $\mathcal{O}(n)$ -nongappy sets are, as to
 400 the increase in the lengths of consecutive elements, bounded by a multiplicative constant.
 401 (In terms of values, this means that the gaps between the values of one element of the set
 402 and the next are bounded by a polynomial increase.)

403 **► Proposition 4.9.** A set $S \subseteq \mathbb{N}^+$ is $\mathcal{O}(n)$ -nongappy if and only if there exists $k \in \mathbb{N}^+$ such
 404 that S is kn -nongappy.

405 **► Theorem 4.10.** If $T \subseteq \mathbb{N}^+$ has an $\mathcal{O}(n)$ -nongappy, P-printable subset, then $\text{UP}_{\leq \mathcal{O}(\log n)} \subseteq$
 406 RC_T .

407 **Proof.** By the “only if” direction of Proposition 4.9, there exists a $k \in \mathbb{N}^+$ such that T has
 408 a kn -nongappy, P-printable subset. We can assume $k \geq 2$ since if a set has a $1n$ -nongappy,

409 P-printable subset then it also has a $2n$ -nongappy, P-printable subset. Let $F : \mathbb{R}^+ \rightarrow \mathbb{R}^+$
 410 be the function $F(t) = kt$. The function F satisfies the conditions from Theorem 4.7 since
 411 for all $t \geq 2$, $F(t) = kt \geq t + 2$, $(\forall c)[cF(n) = ckn = F(cn)]$, and F is nondecreasing on \mathbb{R}^+ .
 412 Let $\lambda = 4 + |s|$ where s is the smallest element of the kn -nongappy, P-printable subset of T
 413 such that the conditions on F hold for all $t \geq |s|$, i.e., s is the smallest element of the kn -
 414 nongappy, P-printable subset of T such that $|s| \geq 2$. For any function $g : \mathbb{N} \rightarrow \mathbb{R}^{\geq 1}$ satisfying
 415 $g(n) = \mathcal{O}(\log n)$ it is not hard to see (since for each natural n it holds that $\log(n + 2) \geq 1$)
 416 that there must exist some $d \in \mathbb{N}^+$ such that $(\forall n \in \mathbb{N}^+)[g(n) \leq d \log(n + 2)]$, and hence
 417 $\text{UP}_{\leq g(n)} \subseteq \text{UP}_{\leq d \log(n+2)} = \text{UP}_{\leq \lfloor d \log(n+2) \rfloor}$. Additionally, $j(n) = \lfloor d \log(n + 2) \rfloor$ satisfies the
 418 conditions from Theorem 4.7 since $j(n)$ can be computed in time polynomial in n and has
 419 value at most polynomial in n . Applying Theorem 4.7, to prove that $\text{UP}_{\leq j(n)} \subseteq \text{RC}_T$ it
 420 suffices to show that there is some $\beta \in \mathbb{N}^+$ such that $F^{[j(n)]}(\lambda) = \mathcal{O}(n^\beta)$ where λ is given
 421 by the statement of the theorem. So it suffices to show that for some $\beta \in \mathbb{N}^+$ and for all
 422 but finitely many n , $F^{[j(n)]}(\lambda) \leq n^\beta$. Note that $F^{[j(n)]}(\lambda) = k^{j(n)}\lambda$. So it is enough to show
 423 that for all but finitely many n , $k^{j(n)}\lambda \leq n^\beta$, or (taking logs) equivalently that for all but
 424 finitely many n , $\lfloor d \log(n + 2) \rfloor \log k + \log \lambda \leq \beta \log n$. Set β to be the least integer greater
 425 than $2d \log k + \log \lambda$. Then for all $n \geq 2$ we have $\beta \log n \geq 2d \log k \log n + \log \lambda \log n \geq$
 426 $d \log k \log(n^2) + \log \lambda \log n \geq d \log k \log(n + 2) + \log \lambda \geq \lfloor d \log(n + 2) \rfloor \log k + \log \lambda$, which is
 427 what we needed. Thus for any function $g : \mathbb{N} \rightarrow \mathbb{R}^{\geq 1}$ satisfying $g(n) = \mathcal{O}(\log n)$ we have that
 428 there exists a function j such that $\text{UP}_{\leq g(n)} \subseteq \text{UP}_{\leq j(n)} \subseteq \text{RC}_T$. \blacktriangleleft

429 **► Corollary 4.11.** *If PRIMES has an $\mathcal{O}(n)$ -nongappy, P-printable subset, then $\text{UP}_{\leq \mathcal{O}(\log n)} \subseteq$
 430 $\text{RC}_{\text{PRIMES}}$.*

431 In order for the iterative constant-setting approach used in Theorem 4.7 to be applicable,
 432 it is clear that we need to consider UP classes that have at most polynomial ambiguity,
 433 because otherwise the constructed NPTMs could not guess large enough collections of paths
 434 within polynomial time. Since in the statement of Theorem 4.7 we use the function j to
 435 denote the ambiguity of a particular UP class, this requires j to be at most polynomial in
 436 the value of its input. Furthermore, since our iterative constant-setting requires having a
 437 bound on the number of accepting paths the UP machine could have had on a particular
 438 string, we also need to be able to compute the function j in time polynomial in the value of
 439 its input. Thus the limitations on the function j are natural and seem difficult to remove.
 440 Theorem 4.7 is flexible enough to, by a proof similar to that of Theorem 4.10, imply Borchert,
 441 Hemaspaandra, and Rothe's result stated in Theorem 4.1 where j reaches its polynomial
 442 bound. Another limitation of Theorem 4.7 is that it requires that for all t greater than or
 443 equal to a fixed constant n_0 , $(\forall c \in \mathbb{N}^+)[cF(t) \geq F(ct)]$. It is possible to prove a similar result
 444 where for all t greater than or equal to a fixed constant n_0 , $(\forall c \in \mathbb{N}^+)[cF(t) \leq F(ct)]$, which
 445 we now do as Theorem 4.12.

446 **► Theorem 4.12.** *Let F be a function mapping from \mathbb{R}^+ to \mathbb{R}^+ and let n_0 be a positive
 447 natural number such that F restricted to the domain $\{t \in \mathbb{R}^+ \mid t \geq n_0\}$ is nondecreasing
 448 and for all $t \geq n_0$ we have (a) $F(t) \geq t + 2$ and (b) $(\forall c \in \mathbb{N}^+)[cF(t) \leq F(ct)]$. Let j be a
 449 function mapping from \mathbb{N} to \mathbb{N}^+ that is computable in time polynomial in the value of its
 450 input and whose output is at most polynomial in the value of its input. Suppose $T \subseteq \mathbb{N}^+$ has
 451 an F -nongappy, P-printable subset S . Let $\lambda = 4 + |s|$ where s is the smallest element of S
 452 with $|s| \geq n_0$. If for some β , $F^{[j(n)]}(j(n)\lambda) = \mathcal{O}(n^\beta)$, then $\text{UP}_{\leq j(n)} \subseteq \text{RC}_T$.*

453 How does this theorem compare with our other metatheorem, Theorem 4.7? Since in
 454 both metatheorems F is nondecreasing after a prefix, speaking informally and broadly, the

60:12 Establishing Complexity-Class Containments via Iterative Constant-Setting

455 functions F where (after a prefix) $(\forall c \in \mathbb{N}^+)[cF(t) \leq F(ct)]$ holds grow faster than the
 456 functions F where (after a prefix) $(\forall c \in \mathbb{N}^+)[cF(t) \geq F(ct)]$ holds. (The examples we give of
 457 applying the two theorems reflect this.) So, this second metatheorem is accommodating larger
 458 gaps in the sets of integers that define our restricted counting class, but is also assuming a
 459 slightly stronger condition for the containment of an ambiguity-limited class to follow. More
 460 specifically, since we have the extra factor of $j(n)$ inside of the iterated application of F , we
 461 may need even more than $j(|x|)$ elements to be reachable in polynomial time (exactly how
 462 many more will depend on the particular function F).

463 We now discuss some other notions of nongappiness and obtain complexity-class contain-
 464 ments regarding them using Theorem 4.12.

465 ▶ **Theorem 4.13.** *If there exists a real number $k > 1$ such that $T \subseteq \mathbb{N}^+$ has an n^k -nongappy,
 466 P -printable subset, then $\text{UP}_{\leq \mathcal{O}(1) + \frac{\log \log n}{2 \log k}} \subseteq \text{RC}_T$.*

467 Theorem 4.13 has an interesting consequence when applied to the Mersenne primes. In
 468 particular, as we now show, it can be used to prove that the Lenstra–Pomerance–Wagstaff
 469 Conjecture implies that the $\mathcal{O}(\log \log n)$ -ambiguity sets in NP each belong to $\text{RC}_{\text{PRIMES}}$.

470 A Mersenne prime is a prime of the form $2^k - 1$. We will use the Mersenne prime counting
 471 function $\mu(n)$ to denote the number of Mersenne primes with length less than or equal
 472 to n (when represented in binary). The Lenstra–Pomerance–Wagstaff Conjecture [35, 38]
 473 (see also [14]) asserts that there are infinitely many Mersenne primes, and that $\mu(n)$ grows
 474 asymptotically as $e^\gamma \log n$ where $\gamma \approx 0.577$ is the Euler–Mascheroni constant. (Note: We
 475 say that $f(n)$ grows asymptotically as $g(n)$ when $\lim_{n \rightarrow \infty} f(n)/g(n) = 1$.) Having infinitely
 476 many Mersenne primes immediately yields an infinite, P -printable subset of the primes. In
 477 particular, on input 1^n we can print all Mersenne primes of length less than or equal to n in
 478 polynomial time by just checking (using a deterministic polynomial-time primality test [1])
 479 each number of the form $2^k - 1$ whose length is less than or equal to n , and if it is prime
 480 then printing it. If the Lenstra–Pomerance–Wagstaff Conjecture holds, what can we also say
 481 about the gaps in the Mersenne primes? We address that with the following result.

482 ▶ **Theorem 4.14.** *If the Lenstra–Pomerance–Wagstaff Conjecture holds, then for each $\epsilon > 0$
 483 the primes (indeed, even the Mersenne primes) have an $n^{1+\epsilon}$ -nongappy, P -printable subset.*

484 ▶ **Corollary 4.15.** *If the Lenstra–Pomerance–Wagstaff Conjecture holds, then
 485 $\text{UP}_{\leq \mathcal{O}(\log \log n)} \subseteq \text{RC}_{\text{PRIMES}}$ (indeed, $\text{UP}_{\leq \mathcal{O}(\log \log n)} \subseteq \text{RC}_{\text{MersennePRIMES}}$).*

486 We will soon turn to discussing more notions of nongappiness and what containment
 487 theorems hold regarding them. However, to support one of those notions, we first define a
 488 function that will arise naturally in Theorem 4.19.

489 ▶ **Definition 4.16.** *For any $\alpha \in \mathbb{R}$, $\alpha > 0$, $\log^*(\alpha)$ is the largest natural number k such that
 490 $\log^{[k]}(\alpha) \geq k$. We define $\log^*(0)$ to be 0.*

491 For $\alpha > 1$, taking $k = 0$ satisfies $\log^{[k]}(\alpha) \geq k$. Also, for all $\ell \geq \log^*(\alpha)$, $\log^{[\ell]}(\alpha) \leq$
 492 $\log^{[\log^*(\alpha)]}(\alpha) \leq 1 \leq \ell$, and so no $\ell \geq \log^*(\alpha)$ can be used as the k in the definition above.
 493 So there is at least one, but only finitely many k such that $\log^{[k]}(\alpha) \geq k$, which means that
 494 $\log^*(\alpha)$ is well-defined. Using the def. of $\log^*(\alpha)$ and the above, we get $\log^*(\alpha) \leq \log^*(\alpha)$
 495 when $\alpha > 1$. For $\alpha \leq 1$, 0 is the only natural number for which the condition from the
 496 def. holds, and so $\log^*(\alpha) = 0$ if $\alpha \leq 1$. Thus for $\alpha \leq 1$, $\log^*(\alpha) = \log^*(\alpha)$. As to the
 497 relationship of its values to those of \log^* , we have the following proposition.

498 ▶ **Proposition 4.17.** *For all $\alpha \geq 0$, $\log^*(\alpha) - \log^*(\log^*(\alpha) + 1) - 1 \leq \log^*(\alpha) \leq \log^*(\alpha)$.*

499 ► **Definition 4.18.** A nonempty set $S \subseteq \mathbb{N}^+$ is

500 1. $\mathcal{O}(n \log n)$ -nongappy if $(\exists f \in \mathcal{O}(n \log n))(\forall m \in S)(\exists m' \in S)[m' > m \wedge |m'| \leq f(|m|)]$,
501 and

502 2. $n^{(\log n)^{\mathcal{O}(1)}}$ -nongappy if $(\exists f \in \mathcal{O}(1))(\forall m \in S)(\exists m' \in S)[m' > m \wedge |m'| \leq$
503 $|m|^{(\log |m|)^{f(|m|)}}]$.

504 Definitions of $n^{\log n}$ -nongappy and 2^n -nongappy are provided via Definition 4.6, since
505 $n^{\log n}$ and 2^n are each a single function, not a collection of functions. Those two notions,
506 along with the two notions of Definition 4.18, will be the focus of Theorem 4.19. That
507 theorem obtains the containments related to those four notions of nongappiness. As one
508 would expect, as the allowed gaps become larger the corresponding UP classes become more
509 restrictive in their ambiguity bounds. Theorem 4.19 also gives a corollary about primes.

510 ► **Theorem 4.19.** Let T be a subset of \mathbb{N}^+ .

511 1. If T has an $\mathcal{O}(n \log n)$ -nongappy, P-printable subset, then $\text{UP}_{\leq \mathcal{O}(\sqrt{\log n})} \subseteq \text{RC}_T$.

512 2. If T has an $n^{\log n}$ -nongappy, P-printable subset, then $\text{UP}_{\leq \mathcal{O}(1) + \frac{1}{2} \log \log \log n} \subseteq \text{RC}_T$.

513 3. If T has an $n^{(\log n)^{\mathcal{O}(1)}}$ -nongappy, P-printable subset, then $\text{UP}_{\leq \mathcal{O}(1) + \frac{1}{3} \log \log \log \log n} \subseteq$
514 RC_T .

515 4. If T has a 2^n -nongappy, P-printable subset S , then $\text{UP}_{\leq \max(1, \lfloor \frac{\log^* n}{\lambda} \rfloor)} \subseteq \text{RC}_T$ (and so
516 certainly also $\text{UP}_{\leq \max(1, \lfloor \frac{\log^*(n) - \log^*(\log^*(n) + 1) - 1}{\lambda} \rfloor)} \subseteq \text{RC}_T$), where $\lambda = 4 + \min_{s \in S, |s| \geq 2}(|s|)$.

517 ► **Corollary 4.20.** 1. If PRIMES has an $\mathcal{O}(n \log n)$ -nongappy, P-printable subset, then

518 $\text{UP}_{\leq \mathcal{O}(\sqrt{\log n})} \subseteq \text{RC}_{\text{PRIMES}}$.

519 2. If PRIMES has an $n^{\log n}$ -nongappy, P-printable subset, then $\text{UP}_{\leq \mathcal{O}(1) + \frac{1}{2} \log \log \log n} \subseteq$
520 $\text{RC}_{\text{PRIMES}}$.

521 3. If PRIMES has an $n^{(\log n)^{\mathcal{O}(1)}}$ -nongappy, P-printable subset, then
522 $\text{UP}_{\leq \mathcal{O}(1) + \frac{1}{3} \log \log \log \log n} \subseteq \text{RC}_{\text{PRIMES}}$.

523 4. If PRIMES has a 2^n -nongappy, P-printable subset S , then $\text{UP}_{\leq \max(1, \lfloor \frac{\log^* n}{\lambda} \rfloor)} \subseteq$
524 $\text{RC}_{\text{PRIMES}}$ (and so certainly also $\text{UP}_{\leq \max(1, \lfloor \frac{\log^*(n) - \log^*(\log^*(n) + 1) - 1}{\lambda} \rfloor)} \subseteq \text{RC}_{\text{PRIMES}}$), where
525 $\lambda = 4 + \min_{s \in S, |s| \geq 2}(|s|)$.

526 5 Conclusions and Open Problems

527 We proved two flexible metatheorems that can be used to obtain containments of ambiguity-
528 limited classes in restricted counting classes, and applied those theorems to prove containments
529 for some of the most natural ambiguity-limited classes. Beyond the containments we derived
530 based on Theorems 4.7 and 4.12, those two metatheorems themselves seem to reflect a
531 trade-off between the ambiguity allowed in an ambiguity-limited class and the smallness of
532 gaps in a set of natural numbers defining a restricted counting class. One open problem is to
533 make explicit, in a smooth and complete fashion, this trade-off between gaps and ambiguity.
534 Another challenge is to capture the relationship between \log^* and \log^* more tightly than
535 Proposition 4.17 does (see Section 4 of [26]). Finally, though it would be a major advance
536 since not even any infinite, P-printable subsets of the primes are currently known, in light
537 of Corollaries 4.11 and 4.20, a natural goal would be to prove that the primes have infinite,
538 P-printable subsets that satisfy some, or all, of our nongappiness properties.

539 ————— **References** —————

540 1 M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. *Annals of Mathematics*, 160(2):781–793,
541 2004.

542 2 E. Allender. Some consequences of the existence of pseudorandom generators. *Journal of
543 Computer and System Sciences*, 39(1):101–124, 1989.

544 3 E. Allender and R. Rubinstein. P-printable sets. *SIAM Journal on Computing*, 17(6):1193–1202,
545 1988.

546 4 R. Beigel. On the relativized power of additional accepting paths. In *Proceedings of the 4th
547 Structure in Complexity Theory Conference*, pages 216–224. IEEE Computer Society Press,
548 June 1989.

549 5 R. Beigel, J. Gill, and U. Hertrampf. Counting classes: Thresholds, parity, mods, and fewness.
550 In *Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science*,
551 pages 49–57. Springer-Verlag Lecture Notes in Computer Science #415, February 1990.

552 6 L. Berman. *Polynomial Reducibilities and Complete Sets*. PhD thesis, Cornell University,
553 Ithaca, NY, 1977.

554 7 B. Borchert, L. Hemaspaandra, and J. Rothe. Restrictive acceptance suffices for equivalence
555 problems. *London Mathematical Society Journal of Computation and Mathematics*, 3:86–95,
556 2000.

557 8 B. Borchert and F. Stephan. Looking for an analogue of Rice’s Theorem in circuit complexity
558 theory. *Mathematical Logic Quarterly*, 46(4):489–504, 2000.

559 9 D. Bovet, P. Crescenzi, and R. Silvestri. Complexity classes and sparse oracles. *Journal of
560 Computer and System Sciences*, 50(3):382–390, 1995.

561 10 G. Brassard. Crusade for a better notation. *SIGACT News*, 17(1):60–64, 1985.

562 11 G. Brassard and P. Bratley. *Algorithmics: Theory & Practice*. Prentice Hall, 1988.

563 12 J.-Y. Cai, T. Gundersmann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
564 G. Wechsung. The boolean hierarchy II: Applications. *SIAM Journal on Computing*, 18(1):95–
565 111, 1989.

566 13 J.-Y. Cai and L. Hemachandra. On the power of parity polynomial time. *Mathematical
567 Systems Theory*, 23(2):95–106, 1990.

568 14 C. Caldwell. Heuristics model for the distribution of Mersennes. The PrimePages,
569 primes.utm.edu/mersenne/heuristic.html, 2021. URL verified 2022/6/22.

570 15 P. Chebyshev. Mémoire sur les nombres premiers. *Journal de Mathématiques Pures et
571 Appliquées. Série 1*, 17:366–390, 1852.

572 16 J. Cox and T. Pay. An overview of some semantic and syntactic complexity classes. Technical
573 Report arXiv:1806.03501 [cs.CC], Computing Research Repository, arXiv.org/corr/, June
574 2018.

575 17 S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. *Journal of Computer
576 and System Sciences*, 48(1):116–148, 1994.

577 18 S. Fenner, L. Fortnow, and L. Li. Gap-definability as a closure property. *Information and
578 Computation*, 130(1):1–17, 1996.

579 19 K. Ford, B. Green, S. Konyagin, J. Maynard, and T. Tao. Long gaps between primes. *Journal
580 of the American Mathematical Society*, 31(1):65–105, 2018.

581 20 K. Ford, B. Green, S. Konyagin, and T. Tao. Large gaps between consecutive prime numbers.
582 *Annals of Mathematics. Second Series*, 183(3):935–974, 2016.

583 21 J. Gill. Computational complexity of probabilistic Turing machines. *SIAM Journal on
584 Computing*, 6(4):675–695, 1977.

585 22 D. Gillies. Three new Mersenne primes and a statistical theory. *Mathematics of Computation*,
586 18(85):93–97, 1964. Corrigendum 31(140):1051, 1977.

587 23 L. Goldschlager and I. Parberry. On the construction of parallel computers from various bases
588 of boolean functions. *Theoretical Computer Science*, 43(1):43–58, 1986.

589 24 J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. *SIAM
590 Journal on Computing*, 17(2):309–335, 1988. doi:10.1137/0217018.

591 25 J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities. *Theoretical*
592 *Computer Science*, 34(1–2):17–32, 1984.

593 26 L. Hemaspaandra, M. Juvekar, A. Nadjimzadah, and P. Phillips. Gaps, ambiguity, and
594 establishing complexity-class containments via iterative constant-setting. Technical Report
595 arXiv:2109.147648 [cs.CC], Computing Research Repository, arXiv.org/corr/, September 2021.
596 Revised, June 2022.

597 27 L. Hemaspaandra and M. Ogihara. *The Complexity Theory Companion*. Springer-Verlag,
598 2002.

599 28 L. Hemaspaandra and J. Rothe. A second step towards complexity-theoretic analogs of Rice’s
600 Theorem. *Theoretical Computer Science*, 244(1–2):205–217, 2000.

601 29 L. Hemaspaandra and M. Zimand. Strong forms of balanced immunity. Technical Report
602 TR-480, Department of Computer Science, University of Rochester, Rochester, NY, December
603 1993. Revised, May 1994.

604 30 K. Ko. On some natural complete operators. *Theoretical Computer Science*, 37(1):1–30, 1985.

605 31 J. Köbler, U. Schöning, S. Toda, and J. Torán. Turing machines with few accepting com-
606 putations and low sets for PP. *Journal of Computer and System Sciences*, 44(2):272–286,
607 1992.

608 32 K.-J. Lange and P. Rossmanith. Unambiguous polynomial hierarchies and exponential size.
609 In *Proceedings of the 9th Structure in Complexity Theory Conference*, pages 106–115. IEEE
610 Computer Society Press, June/July 1994.

611 33 J. Maynard. Large gaps between primes. *Annals of Mathematics, Second Series*, 183(3):915–933,
612 2016.

613 34 C. Papadimitriou and S. Zachos. Two remarks on the power of counting. In *Proceedings of the*
614 *6th GI Conference on Theoretical Computer Science*, pages 269–276. Springer-Verlag Lecture
615 Notes in Computer Science #145, January 1983.

616 35 C. Pomerance. Recent developments in primality testing. *The Mathematical Intelligencer*,
617 3(3):97–105, 1981.

618 36 L. Valiant. The relative complexity of checking and evaluating. *Information Processing Letters*,
619 5(1):20–23, 1976.

620 37 L. Valiant. The complexity of computing the permanent. *Theoretical Computer Science*,
621 8(2):189–201, 1979.

622 38 S. Wagstaff, Jr. Divisors of Mersenne numbers. *Mathematics of Computation*, 40(161):385–397,
623 1983.

624 39 O. Watanabe. On hardness of one-way functions. *Information Processing Letters*, 27(3):151–157,
625 1988.

626 40 Wikipedia. Prime gap. en.wikipedia.org/wiki/Prime_gap, 2021. URL verified 2022/6/22.

627 41 Wikipedia. Gillies’ conjecture. en.wikipedia.org/wiki/Gillies%27_conjecture, 2022. URL
628 verified 2022/6/22.