
1

An Artificial Neural Network Processor with a

Custom Instruction Set Architecture for Embedded Applications

Daniel Valencia, Saeed F. Fard, and Amir Alimohammad
Department of Electrical and Computer Engineering

San Diego State University, San Diego, U.S.A.

Abstract—This article presents the design and implementa-
tion of an embedded programmable processor with a custom
instruction set architecture for efficient realization of artificial
neural networks (ANNs). The ANN processor architecture is
scalable, supporting an arbitrary number of layers and number
of artificial neurons (ANs) per layer. Moreover, the processor sup-
ports ANNs with arbitrary interconnect structures among ANs to
realize both feed-forward and dynamic recurrent networks. The
processor architecture is customizable in which the numerical
representation of inputs, outputs, and signals among ANs can
be parameterized to an arbitrary fixed-point format. An ASIC
implementation of the designed programmable ANN processor
for networks with up to 512 ANs and 262,000 interconnects is
presented and is estimated to occupy 2.23 mm2 of silicon area
and consume 1.25 mW of power from a 1.6 V supply while
operating at 74 MHz in a standard 32-nm CMOS technology.
In order to assess and compare the efficiency of the designed
ANN processor, we have designed and implemented a dedicated
reconfigurable hardware architecture for the direct realization of
ANNs. Characteristics and implementation results of the designed
programmable ANN processor and the dedicated ANN hardware
on a Xilinx Artix-7 field-programmable gate array (FPGA) are
presented and compared using two benchmarks, the MNIST
benchmark using a feed-forward ANN and a movie review
sentiment analysis benchmark using a recurrent neural network.

I. INTRODUCTION

A biological brain consists of billions of relatively slow ele-

ments called neurons, each of which is connected to thousands

of other neurons with which they communicate by sending

messages in the form of voltage spikes [1]. An artificial

neural network (ANN) is an information processing paradigm

that is inspired by the way a biological brain processes

information. An ANN is composed of interconnected process-

ing elements referred to as artificial neurons (ANs), which

loosely model the neurons in a biological brain. In an ANN

structure, the interconnected ANs are organized among input,

hidden, and output layers. An ANN stores representations in

the interconnections between ANs (like the synapses in the

biological brain), each of which contains a value known as

the weight. Similarly to biological brains, ANNs learn by

example. An ANN is configured for a specific application

through the learning process. The learning mechanism involves

adjustments to the weights of the interconnects based on the

input patterns. Therefore, instead of being programmed as in

microprocessors, ANNs learn what weights to use through

a process called training. After observing enough examples,

neural networks can categorize new objects they have never

The authors have made their design description publicly available at:
https://github.com/dlvalencia/ANN-Processor.

experienced before, or at least offer a prediction. During

operation, a pattern is applied to the input layer. Each AN

reacts to the input data. Using a set of weighted interconnects,

particular ANs in the network react the strongest when they

sense a matching pattern. The response is broadcasted to the

other ANs in the hidden layers and finally, the prediction is

produced at the output layer.

The application domain of ANNs is broad and diverse,

including pattern recognition, image classification [2], au-

tonomous vehicles [3], and language translation with recurrent

neural networks [4]. Some recent research has been focusing

on the digital hardware implementation of relatively large

network models for high-performance and accelerated com-

puting, such as AlexNet [2], VGG-16 [5], and GoogLeNet [6].

Also, hardware realizations of convolutional neural networks

(CNNs) have received interest [7]–[9]. Various processor-

based architectures for the realization of deep neural networks

(DNNs) have also been reported [10]–[16]. For example,

Google’s neural network processor, the Tensor Processing Unit

(TPU) [17], was designed to process computationally-intensive

workloads of DNNs on server farms. There has also been

work presenting custom instruction set architectures for neural

network processors [18]–[20].

Recent advances in memristor technology has shown

promising analog implementation of ANNs [21]. Memristors

can exhibit a range of programmable resistance values and are

the basis for multiply-accumulate (MAC) operations employed

in ANNs. The weights are encoded as memristor resistance

values and the dot-products are performed automatically as

currents flow through the memristor-crossbar. While more

area and energy-efficient than their digital counterparts, the

memristor technology is not yet mature compared to the

standard CMOS, precluding their applications in practical

implementations [22].

While high-performance general-purpose processors or

application-specific processors for high-throughput realization

of large neural networks have received considerable attention,

our focus in this work is on designing a compact and pro-

grammable processor architecture with a custom instruction

set architecture for area- and power-constrained embedded

applications utilizing moderately-sized ANNs. Moderately-

sized neural networks consist of a relatively small number

of neurons, in the order of hundreds to thousands, requiring

a relatively small number of parameters (in the order of a

few hundred thousand) compared to large network models

with hundreds of thousands to millions of parameters. The

designed processor architecture supports arbitrary intercon-

nect structures among ANs to realize both feed-forward and

Digital Object Identifier: 10.1109/TCSI.2020.3003769

1558-0806 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

2

dynamic recurrent neural networks (RNNs) and is scalable,

i.e., supporting ANNs with arbitrary number of layers and

number of ANs per layer, limited by the number of available

configurable resources on the device. Moreover, the processor

architecture is customizable in which the numerical repre-

sentation of inputs, outputs, and signals among ANs can be

parameterized to an arbitrary fixed-point format.

One of the applications of ANN models is in brain-computer

interfaces (BCIs) [23], [24]. In [25], an ANN is utilized for

mapping neural activities from one region of the brain and pro-

duce neural stimulation to another region of the brain, in which

the ANN behaves as an artificial pathway for restoring and

augmenting functions. ANNs have been utilized for training

spiking neural networks (SNNs) [26], which closely resemble

the spiking dynamics of biological neurons, and decoding of

neural signals for prosthesis control [27], [28]. SNNs pass

information among neurons by emitting action potentials,

or spikes. Because SNNs simulate the voltages found in

biological neurons, they are considered a prime candidate for

modeling biological neurons. There have been advances in

both the computational models [29], [30] as well as hardware

implementation of SNNs [31], [32]. Compared to ANNs in

which the precise timing of spiking activity is not inherently

part of the model [33], the timing resolution of spiking neurons

greatly increases the computational complexity of SNNs. The

computational complexity of the SNNs can be reduced using

an event-driven methodology [31], in which a global clock

signal is not required and the input and output behavior of

the neurons are emulated without being strictly bio-physically

accurate.

Recently published neuromorphic processors implemented

in analog [34] and digital [35] are based on SNNs. These

processors are not tuned to one specific application and often

employ online learning methods, such as spike time-dependent

plasticity [36]. Compared to the mature field of ANN training,

the training algorithms for SNNs are still an active area of

research [37], [38]. While neuromorphic processors may be

ideal for systems where real-time learning or adaptation to

signal changes is required, certain applications may not be

well-suited for SNNs, such as classifications of frame-based

data (i.e., data that is not inherently time-dependent) [39]. The

widely-employed gradient descent-based learning schemes for

training ANNs make them an attractive model when pre-

processing is required.

This work focuses on the design and implements of a

programmable processor architecture for realizing various

ANN topologies and network specifications. The rest of this

article is organized as follows: The design and implementation

of the programmable ANN processor is presented in Section

II. Section III details the design of a dedicated reconfigurable

hardware architecture for the direct implementations of ANNs.

The dedicated hardware architecture is used to assess and

compare the efficiency of the designed ANN processor. In

Section IV, two ANN benchmarks are employed, MNIST

digit recognition [40] and epileptic seizure detection [41], to

quantify and compare the implementation characteristics of

the designed programmable ANN processor and the dedicated

reconfigurable ANN hardware on a Xilinx Artix-7 field-

(a)

AN

f(yn)
inputs

x0

x1

xn

w0

w1

wn

output
Ʃwixi + b

i = 1

(b)

Input

Layer

Hidden

Layer

Output

Layeri1

i2

w11

w12

wij

w11

w21

w31

ba3

ba2

ba1

bo1

yn =

Fig. 1. (a) An artificial neuron and (b) a three-layer ANN.

programmable gate array (FPGA). Finally, Section V makes

some concluding remarks.

II. THE EMBEDDED PROGRAMMABLE ANN PROCESSOR

An ANN is based on a collection of interconnected ANs.

Each connection can transmit a signal from one AN to another.

Typically, ANs are aggregated into layers and signals traverse

from the first (input) layer to the last (output) layer, possibly

through some middle (hidden) layers. The model of the AN

and an example three-layer neural network consisting of an

input layer, a hidden layer, and an output layer with 2, 3, and

1 ANs, are shown in Figs. 1(a) and 1(b), respectively. The

number of hidden layers, the number of ANs in each layer,

and the interconnect structure among ANs can vary greatly

among various ANN models. The output zn of the n–th AN

is computed by some non-linear activation function f(yn) of

the sum of the weighted inputs and a bias as:

yn =

Mn
∑

i=1

[

winxi

]

+ bn, (1)

where xi denotes the i-th input, win denotes the interconnec-

tion weight between the i–th AN of the previous layer and the

n–th AN of the current layer, Mn denotes the number of inputs

to the n–th AN, and bn denotes the bias for the n–th AN.

Activation functions are used to model the excitation prop-

erties of biological brain neurons. By shifting the activation

function to the left or right by a bias bn, an ANN can fine tune

how easy (or difficult) it is for particular ANs to exhibit an

excited output state. Non-linear activation functions have been

widely used in ANNs [42]. Two commonly used sigmoidal

activation functions (SAFs) are the logistic sigmoid and the

hyperbolic tangent (tanh) functions [43], which are defined as

fl(yn) = (1+e−yn)−1 and ft(yn) =
(

2×(1+e−2yn)−1
)

−1,

respectively. The sigmoid and the tanh functions have bounded

outputs within [0, 1] and [-1, 1], respectively. The rectified

linear unit (ReLU) activation function

fr(yn) =

{

0 if yn ≤ 0

yn if yn > 0

has also received applications in the hardware implementation

of ANNs as it only requires a comparator and lookup tables

(LUTs). However, because of the fixed wordlength of signals

and the unbounded nature of ReLU, the output of fr(yn) may

overflow, causing erroneous values to propagate to subsequent

layers of the network.

3

0

k

inputs

weights

LPU Bank

ACF_Sel

LPU_Out

Instr.

Decoder

Register

File

Weight

Mem

Input

Mem

AN

Mem

ALU

EQ

MEM_SEL

0

k

Parameters

Network Inputs

imm

Instr.

Mem

PC

jumpTarget

1

Offset

+

ANN

Program

bias

1

Fig. 2. The top-level microarchitecture of the proposed programmable ANN processor.

The top-level microarchitecture of the designed pro-

grammable ANN processor is shown in Fig. 2. It consists of

memory units, an instruction decoder, a register file, and a

layer processing unit (LPU) bank, which consists of k LPUs

to perform the computation of ANs in a layer. The LPU’s

datapath is shown in Fig. 3, which consists of a LUT RAM to

store weight values, a MAC unit, and an activation function

ACF unit. The end-user first loads a set of instructions, weights,

biases, and network inputs to the Instr Mem, Weight Mem, and

Input Mem, respectively, after which the processor can begin

executing instructions. The artificial neuron memory AN Mem is

used to store the output of each AN in the ANN. The depth of

the AN Mem is directly defined by the total number of ANs. The

instructions, which are addressed by the program counter (PC)

register, are decoded by the Decoder to generate the appropriate

control signals for the multiplexers and registers. The ACF unit

is realized by implementing two sigmoidal functions, sigmoid

and tanh functions, and the ReLU function. For the two SAFs,

we have utilized the piecewise linear approximation (PLA)

technique [44]. The work in [45] has also employed PLA for

approximating the non-linear activation functions, however,

it utilizes a fixed activation function and a fixed number of

segments and hence, used a direct transformation of yn to

f(yn) by shifting and adding constants to the values. Since

for relatively accurate approximation, the number of uniform

segments varies among applications and different ANN mod-

els, we design and implement a generalized realization of the

PLA by parameterizing the activation functions and ranges

of uniform segments. In our approach, the two SAFs are

uniformly segmented within yn ∈ [−5, 5]. As the functions

are symmetric, the coefficients of the piecewise linear approx-

imation are calculated for the input range [0, 5]. For an input

yn < 0, the output for the sigmoid and tanh functions are

given as fl(yn) = 1 − fl(|yn|) and ft(yn) = −ft(|yn|),
respectively. The logtanh function can be derived from the

logistic sigmoid function by first squaring the exponential

term e−yn , then scaling by two, and finally subtracting one

from the scaled and squared quotient. However, this approach

would require two approximations, one for e−x and one for
1

x
, as opposed to only one. Moreover, because the hyperbolic

MAC

× + R +

bias

ACF LPU_Outinputs

weights
LUT

RAM

R1

ACF_Sel

R2

Fig. 3. The LPU datapath.

2 4 6 8 10

Number of Segments

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r
(M

S
E

)

logsig

logtanh

Fig. 4. The mean squared error of the piecewise linear approximation of the
logistic sigmoid and hyperbolic tangent functions over varying numbers of
uniform segments.

tangent requires squaring the exponential term, the piecewise

approximation would require more LUTs for relatively accu-

rate representation of the coefficients. Fig. 4 shows the mean

squared error (MSE) of the PLA for the logsig and logtanh

functions compared to their real-valued functions over various

number of uniform segments. Since the MSE decreases as the

number of segments approaches eight, we choose to implement

the PLA of the logsig and logtanh functions utilizing eight

uniform segments. The number of chosen segments may differ

for other applications.

Fig. 5 shows the ACF’s datapath. The module Abs passes the

two’s complement of input yn if yn < 0. The output of the

4

TABLE I
INSTRUCTION SET OF THE DESIGNED ANN PROCESSOR

Instruction Assembly format Description Instruction type

Add add $s1 $s2 $dst $dst = $s1 + $s2 V-type

Add immediate addi $s1 $dst imm $dst = $s1 + imm V-type

Subtract sub $s1 $s2 $dst $dst = $s1 - $s2 V-type

Subtract immediate subi $s1 $dst imm $dst = $s1 - imm V-type

Set source source code MEM_SEL = code N-type

Set function sfunc code ACF_SEL = code N-type

Load weights lw $raddr $node LPU_Bank[$node].weights = WeightMem[$raddr] N-type

Load all la $raddr LPU_Bank.inputs = Mem[$raddr] N-type

Load all except lax $raddr $LPU LPU_Bank[!$LPU].inputs = Mem[$raddr] N-type

Load single ls $raddr $LPU LPU_Bank[$LPU].inputs = Mem[$raddr] N-type

Write to memory wm $LPU $waddr NodeMem[$waddr] = LPU_Bank[$LPU].LPU_Out N-type

Write to register file wrf $LPU $waddr RegFile[$waddr] = LPU_Bank[$LPU].LPU_Out N-type

Branch on equal beq $s1 $s2 offset If $s1 == $s2, PC = PC + offset, else PC = PC + 1 C-type

Jump jump jumpTarget PC = jumpTarget C-type

No operation nop No Operation C-type

yn
+

0

1

yn[MSB]

Abs

Seg

Dec

× +
8 8

16

0

11

1

==

NS-1

−

0

1
z(yn)

CROML

CROMT

TC 0

1

0

1

ACF_SEL

M3

M2
M1

0

1

M4

ReLU
yn

Fig. 5. The ACF datapath.

module Abs is then passed to the segment decoder module

SegDec, which uses a series of comparators to determine

in which segment the input signal’s value |yn| lies. The

output of the segment decoder is then used as an address

for the read-only memories CROMT and CROML, which store

the coefficients of the piecewise linear approximations of

the tanh and sigmoid activation functions for each segment,

respectively. Because both SAFs are symmetric, only the

coefficients within [0, 5] are stored in the read-only memories

(ROMs). Due to the relatively small number of coefficients, the

ROMs are implemented using LUTs. The multiplexer on the

output of the ROMs is used to select which SAF to compute,

with the input select line ACF SEL. If ACF SEL is determined

to be fixed during run-time, the synthesis tool will remove the

unused ROM. The multiplier and adder compute the linear

approximation a|yn| + b, where the a and b coefficients are

obtained using the PLA of the activation functions. If the

input |yn| lies outside the range of the selected number of

segments NS, then the function has reached saturation, either

at 1 or −1 for tanh, or at 0 or 1 for sigmoid. Thus, the

output of the segment decoder is compared to NS. If the

saturation condition is not true, the saturation multiplexer M1

passes a|yn| + b. Note that for an input yn < 0 for tanh,

the output is −f(|yn|). Thus, the output of the saturation

multiplexer is passed to the two’s complement module TC,

which is implemented using an inverter and an adder, as shown

in the Abs block. For the sigmoid function, the output fl(yn)
for yn < 0 is 1 − fl(|yn|). The output of the saturation

multiplexer is thus passed to a subtractor. The output of the TC

module or the subtractor is selected using the multiplexer M2.

For both sigmoidal activation functions, the output depends on

the sign bit of the original input yn, which is used as the select

line for multiplexer M3. Ultimately the input ACF SEL is used

to select which of the activation functions’ outputs should be

passed as the output.

We define a set of instruction types and formats, as shown

in Fig. 6 for executing ANN operations using our application-

specific programmable processor architecture. Each instruction

is 28 bits: 4 bits are reserved for the operation code (opcode),

and the remaining 24 bits are reserved for different fields,

depending on the instruction type. The processor supports

three different instruction types: variable instructions (V-type),

network instructions (N-type), and control instructions (C-

type instructions). The V-type instructions are used to add

or subtract variables. The N-type instructions can be used to

interact with the LPU bank, such as providing input data to

LPUs and/or storing the output of the LPU bank into the AN

Mem. Finally, the C-type instructions support conditional and

unconditional branches. Table I gives the list of defined custom

instructions along with their assembly formats. The $R symbol

denotes the value stored in register R in the register file. The

immediate values are encoded in the instructions.

The programs for the processor use the instruction set

for loading weights into LPUs, applying inputs to LPUs

simultaneously, and writing the LPUs’ outputs into the AN

memory. Conditional and unconditional branches are used to

iteratively compute and store the AN outputs of each layer.

The ISA also supports RNNs. The key difference is that the

hidden layer outputs of the previous time step are applied to

the input of the hidden layer during the current time step.

As seen in Program 1, weight values are first loaded into the

LPUs. For the first time step, there are no previous hidden

layer outputs and the current hidden layer outputs are stored

in the AN Mem. For the second time step and beyond, the input

source is switched with the AN Mem after the network inputs

have been loaded into the LPUs. The LPU Bank accumulates the

weighted hidden layer outputs of the previous time step. For

the example RNN in Program 1, the output layer of the RNN is

only computed for the final time step, but this can be done for

every time step if required. Because RNNs require values from

the previous time steps, the total number of neurons that can

be implemented is half of those for feed-forward ANNs. While

5

LPUs store the current time step values into the AN Mem, the

previous values must also be maintained. Note that the ANNs

that can be implemented on a single FPGA are limited by the

amount of configurable resources, including on-chip memory

blocks and the operations supported by the LPUs.

Program 1. An example RNN program using our custom-developed ISA.
addi $0, $a0, 3 #0 -> 3 time steps

add $0, $0, $a1 #time step counter

addi $0, $c0, 1 #increment var.

sfunc 2 #use ReLU

addi $0, $b0, 10 #output neuron

addi $0, $b1, 9 #HL size

rnnStart:

source 0 #source is input mem.

add $0, $0, $b2 #HL counter

HLWL:

lw $b2, $b2 #WeightMem.b2 -> LPUBank.b2

beq $b2, $b1, loadIMem

add $c0, $b2, $b2 #inc. b2

jump HLWL

loadIMem:

la $a1 #InMem.a1 -> LPUBank.all

add $0, $0, $b2 #HL counter

beq $a1, $0, writeHL

source 1 #Prev. HL outputs

loadPrevHL:

la $b2 #ANMem.b2 -> LPUBank.all

beq $b2, $b1, zeroHL

add $c0, $b2, $b2 #inc. b2

jump loadPrevHL

zeroHL:

add $0, $0, $b2 #HL counter

writeHL:

wm $b2, $b2 #LPUBank.b2 -> ANMem.b2

beq $b2, $b1, OLCheck

add $c0, $b2, $b2 #inc. b2

jump writeHL

OLCheck:

beq $a1, $a0, OL

add $c0, $a1, $a1 #inc. a1

jump rnnStart

OL:

add $0, $0, $b2 #HL counter

lw $b0, $0 #WeightMem.b0 -> LPUBank.0

OLInputs:

ls $b2, $0 #ANMem.b2 -> LPUBank.0

beq $b2, $b1, writeOL

add $c0, $b2, $b2 #inc. b2

jump OLInputs

writeOL:

wm $0, $b0 #LPUBank.0 -> ANMem.b0

Implementation of programmable processors with custom

ISAs for neural network applications have been reported

previously in [15], [18]–[20]. The work in [18] presents a

16-bit reduced instruction set (RISC) processor. The processor

operates using a linear array of an undisclosed number of pro-

cessing units (PUs). Depending on the available memory, each

PU can support a number of PEs, with each PE supporting up

to 64K of virtual interconnects. The defined 16 instructions

provide the processing required by ANN algorithms. All

instructions are one-word long with the same format consisting

of a 4-bit operation code field and a 12-bit immediate/address

field. Each of the supported 16 instructions require a different

number of memory accesses and hence, cannot maintain

single-cycle execution of instructions. To maintain single-cycle

execution for most of the instructions, the authors have adopted

a dual-phase, non-overlapping clocking scheme with mem-

N-type source/

sfunc
opcode xx code

4-bit 22-bit 2-bit

laopcode src1 xx

4-bit 8-bit 16-bit

laxopcode src1 excl xx

4-bit 8-bit 8-bit 8-bit

lsopcode src1 dst xx

4-bit 8-bit 8-bit 8-bit

wm/

wrf
opcode src1 dst xx

4-bit 8-bit 8-bit 8-bit

C-type beq

jump

opcode src1 src2 offset

4-bit 8-bit 8-bit 8-bit

opcode jumpTarget

4-bit 24-bit

opcode src1 src2 dst

4-bit 8-bit 8-bit 8-bit

V-type add/

sub

addi/

subi
opcode src1 src2 imm

4-bit 8-bit 8-bit 8-bit

Fig. 6. Instruction types and their formats for the designed ANN processor.

ory accesses occurring at each clock phase. Our processor,

however, does not need to leverage dual-phase clocking to

maintain a single-cycle execution of instructions. Moreover,

while our target application places an upper bound on the

number of PEs supported, the bound with regards to the

number of interconnects is limited by the available memory

space, not the number of employed PEs. Unfortunately, the

authors in [18] have not implemented their design on an actual

device, so we cannot compare our implementation results. The

ISA in [19] supports similar instructions as in our designed

ISA, however, more complex instructions are supported for

performing convolution layers, pooling layers, and activation

functions required for acceleration of DNNs, which makes

their processor architecture more complex. Note that the target

application of [19] is FPGA acceleration of DNNs, whereas

our ANN processor utilizes a simpler ISA for area and power-

constrained embedded system applications.

The applicability of ANNs toward area- and power-

constrained embedded applications thus leads to the need

for such application-specific integrated processors (ASIPs) for

ANN computation. The two previously reported ASIPs in [15],

[20] utilize dedicated custom instruction set architectures for

ANN operations. In [20], the authors utilize an architectural

description language (ADL) to automate the generation of

synthesizable descriptions of their hardware architectures and

the required software tools (assembler, linker, and compiler)

for their designed ASIP. Their ASIP is a 4-stage pipelined

processor and their main processing elements are 32 multiply-

and-accumulate units. Their design focuses on the implemen-

tation of multi-layer perceptrons on a Zynq FPGA using a

user-defined non-linear activation function. The ANN ASIP

presented in [15] contains a central processing unit for fetching

and decoding the instructions from the memory. The supported

activation functions are implemented using non-uniform linear

approximation. A 16-word register file is utilized for both

6

TABLE II
THE ASIC CHARACTERISTICS AND IMPLEMENTATION RESULTS OF VARIOUS NEURAL NETWORK PROCESSORS

Clock Power Power

Work Network Technology Voltage (V) (MHz) Area (mm2) Throughput (mW) Density

[10] DNN 65–nm 1.2 200 4.4 51.2 GOPS 141.4 32 mW/mm2

[11] DNN 65–nm 1.2 200 3.52 51.2 GOPS 126 35 mW/mm2

[12] DNN 28–nm 0.6 ∼ 0.9 20 ∼ 400 4.8 410 ∼ 3270 GOPS 3.4 ∼ 20.8 0.66 ∼ 4.33 mW/mm2

[13] CNN/RNN 65–nm 0.77 ∼ 1.1 50 ∼ 400 16 - 34.6 ∼ 279 2.16 ∼ 17 mW/mm2

[15] FF 130–nm – 4 0.000384 5.665 kOPS 0.153 398 mW/mm2

Ours FF/RNN 32–nm 1.6 74 2.23 74 MOPS 1.25 0.56 mW/mm2

general purpose registers as well as control registers.

We have implemented our designed ANN processor for

moderately-sized ANNs (up to 512 ANs with 262,000 in-

terconnections) using the ASIC design flow. The ASIC has

been implemented using the Synopsys design kit for a 32-nm

CMOS process with a 1.6V supply voltage. Synthesis is per-

formed using Synopsys Design Compiler and place-and-route

is done with Synopsys IC Compiler. The memory units are

implemented using the SRAM standard cells available in the

Synopsys design kit. For supporting an arbitrary interconnect

structure, the potential fanout of a neuron can be relatively

large and hence, increasing the maximum number of supported

ANs would directly increase the memory requirement and

thus, the silicon area of the ANN ASIC. The chip layout of the

designed ANN processor is shown in Fig. 7. The ANN proces-

sor ASIC layout is estimated to occupy an area of 2.23 mm2

and consume 1.25 mW of power while operating at 74 MHz.

Even though the maximum number of neurons and synapses,

the activation functions, and the neural network operations are

fixed after the chip fabrication, the ANN machine program that

is loaded into the instruction memory of the processor can be

readily updated to realize various neural networks. As can be

seen in Fig. 7, the weight memories consume a significant

portion of the silicon area, due to the processor’s support for

arbitrary interconnect structures. Comparing our ASIC imple-

mentation results with recently implemented neural recording

and/or stimulation brain implants [46]–[48] suggests that the

designed ANN processor architecture can be used for in-vivo

processing of brain neural signals, such as decoding motor

signals to control a prosthesis [49]. The brain-implantable

recording system presented in [46] was implemented using

180-nm CMOS technology. It consumes 10.57 mm2 of silicon

area and 1.45 mW of power while the internal digital controller

is operated at 60 MHz. Another neural recording system is

presented in [47], and it was implemented using 130-nm

CMOS technology. It consumes 45.7 mm2 of silicon area and

13.54 mW of power while the internal digital controller is

operated at 93.6 MHz. Finally, the recording and stimulation

neural interface presented in [48] was implemented in 350-

nm CMOS. It performs optogenetic stimulation and consumes

4.21 mm2 of silicon area and 13.4 mW of power while

operating the digital control unit at 12 MHz. It can be seen that

our implemented design fits within the safe brain-implantable

margins in regards to power consumption and die area. While

strict power dissipation constraints limit the amount of in-

vivo processing, our designed ASIC meets the tissue-safe

requirements with a power density of 0.56 mW/mm2 [50].

Weight

Memory

Weight

Memory

Weight

Memory

Input

Memory

Instr.

Mem.

Node

Mem.

Bias

Mem.

Datapath

mm
1.49

1
.4
9

Fig. 7. ASIC layout of the designed ANN processor.

Table II gives the ASIC characteristics and implementation

results of various state-of-the-art programmable neural net-

work processors. The work in [10] presents a DNN training

processor for real-time object tracking. The processor was

specifically designed for high-throughput applications. The

work in [11] also presents a DNN processor for object

tracking with on-chip learning. Their design was optimized for

processing convolutional layers and their processing elements

perform MAC operations using matrix-vector multipliers and

adder trees. The work in [12] implemented a reconfigurable

processor for a DNN using binary and ternary weights so

the architecture does not require any multipliers. The work

in [13] presents a processor-implementation for CNNs and

RNNs for high performance computation. The processor in

[13] has been optimized for hardware acceleration of large

ANNs. The work in [14] presents a DNN processor for

datacenter-based applications. The DNN processor, named

Project Brainwave (BW) utilizes a neural processing unit

(NPU) to perform vector- and matrix-based operations. One

of the key features of the BW NPU is what the authors refer

to as instruction chaining, i.e., most instructions expect (and

produce) input (and output) arguments. This allows a sequence

of instructions in which the output of the current instruction

is passed to the next instruction. This enables the micro-

architecture to avoid costly memory read and write operations,

thus optimizing their design for high-performance computing.

7

Their target platform was the Intel Stratix 10 280 FPGA,

which consumes 125 W of power with a peak throughput

of 35.875 TFLOPS. While these processors focused on high-

throughput applications utilizing relatively large neural net-

works, such as CNNs and DNNs, our focus is on the design

of an efficient programmable ANN processor for realizing

moderately-sized ANNs used in area- and power-constrained

embedded applications. The ASIP presented in [15] was also

implemented in a standard 130-nm CMOS technology. Their

power consumption is directly related to a significantly lower

operating frequency of 4 MHz compared to our 74 MHz

operating frequency. Moreover, their reported throughput is

significantly less than our design’s throughput. As given in

Table II, our designed and implemented programmable ANN

processor is ideal for relatively small to moderately-sized

neural networks, commonly employed in the area- and power-

constrained embedded applications, such as battery-powered

wearable devices and mobile handsets. We presented one such

application for the in-vivo real-time processing of the brain’s

neural signals in [51]. Because the designed ANN processor

meets the brain tissue’s stringent limitations of the silicon area

and power consumption for implantable devices, it can be

utilized for the in-vivo real-time processing of neural signals,

which can then be used to control a prosthetic arm [52]. While

the other ANN realizations given in Table II offer greater com-

putational throughputs, their high power consumptions make

them infeasible for power-constrained embedded applications.

III. DEDICATED RECONFIGURABLE ANN HARDWARE

In order to verify and assess the efficiency of the designed

programmable ANN processor, we have designed and imple-

mented a dedicated hardware architecture for the direct imple-

mentation of ANNs. Using our custom-developed MATLAB

interpreter, a given ANN specification is directly converted

into its equivalent Verilog HDL description. This allows a

dedicated hardware architecture to be readily developed for

an arbitrary ANN topology. While the generated Verilog

description is for the realization of the specified ANN only,

the designed and implemented programmable processor can

be utilized for realizing an arbitrary ANN specification by

updating a new ANN program and a new set of values for

the weight and activation function parameters. The dedicated

hardware architecture can be reconfigured to support an arbi-

trary ANN configuration by specifying the number of layers,

the number of ANs per layer, the interconnect structure, and

the fixed-point format of signals. The principal processing

elements (PEs) of an ANN are the ANs. An AN calculates

the sum of the weighted inputs according to Equation (1) and

computes the activation function value based on the calculated

weighted sum. Because the number of inputs to a particular

AN may vary among applications, we have designed a fully-

parameterizable datapath for the AN. Since the target embed-

ded devices typically have limited computational resources, for

a compact implementation of the ANs, we employ the resource

sharing technique, as shown in Fig. 8, to greatly reduce the

number of PEs required to compute the sum of weighted

inputs. Two shift registers, which support parameterizable

MAC

× + D +

Bias

D

MR

f(y)

SAF
Output

CU Ready

Input

Bus

Weight

D
OR

Start

0 1 2 ... n

D

RAM

f(y)

RELU

0

1

M1

Fig. 8. Datapath of an artificial neuron utilizing resource-sharing for compact
implementation.

TABLE III
CHARACTERISTICS AND IMPLEMENTATION RESULTS OF A 20-INPUT

ARTIFICIAL NEURON USING 20-BIT INPUTS, 12-BIT WEIGHTS, AND A

32-BIT ACCUMULATOR ON A XILINX ARTIX-7 FPGA

ACF Regs. (%) LUTs. (%) DSP48s. (%) Freq. (MHz)

Sigmoidal 240 (0.09) 198 (0.15) 3 (0.71) 173

ReLU 104 (0.04) 80 (0.06) 1 (0.14) 394

depths, receive the inputs and pass an input-weight pair to

the registered multiply-and-accumulate MAC unit serially. The

control unit CU is implemented using a finite state machine

(FSM) and counts the number of inputs that have been given to

MAC. Once all of the weighted inputs have been accumulated,

the register MR is enabled to pass the weighted inputs to the

bias adder. Finally, the biased and weighted sum is passed as

an input to the activation function module ACF , which can be

configured to support the ReLU, sigmoid, or tanh activation

functions, and its output is written into the output register

OR. Utilizing resource sharing for a compact realization of

ANNs, the output will be ready after a latency of Mn + 2
clock cycles, where Mn denotes the number of inputs to the

n–th AN. The control unit CU asserts the hand-shaking signal

Ready , which informs the main controller that the output of an

AN is available. The control unit also receives a control signal

start from the main controller, which initializes the process

of accumulating the weighted inputs, as well as resetting the

output register of the MAC unit.

Table III gives the characteristics and implementation results

of a 20-input AN using 20-bit inputs, 12-bit weights, and a 32-

bit accumulator when utilizing either a SAF or the ReLU on

a Xilinx Artix-7 FPGA. Each of the SAFs is implemented

using 8 segments. The coefficients of the piecewise linear

approximations are stored in the (WI, WF) = (1, 7) fixed-point

format using one sign bit for the integer part and 7 bits for

the fractional part. The output of the multiplier uses the larger

number of the WI and WF bits to avoid overflow errors. For

example, if the input format is (6, 14) and the coefficients are

stored in the (1, 7) format, the intermediate signals would be

represented in the (6, 14) format. For the sigmoidal activation

functions, the output signal is always bounded between -1 and

1 and thus, the output’s WI can be represented by using only

two bits.

Fig. 9 shows the block diagram of the designed dedicated

ANN hardware, which supports a parameterizable number

of ANs in the input and output layers, variable number of

hidden layers, and variable number of ANs per hidden layer.

The number of network inputs and network outputs is also

parameterizable and can be specified by the user. The fixed-

8

Input/Hidden

Layers

n1

n2

nj

n1

n2

nj

n1

n2

nj

AN1

AN2

ANj

AN1

AN2

ANj

Output Layer

ANN

Output

Configurable Interconnect

ANN

Input

Fig. 9. Block diagram of the dedicated reconfigurable ANN architecture.

point numerical representation of input, intermediate, and

output signals of an ANN and also its weight and bias values

can be parameterized. The dedicated ANN hardware can be

reconfigured to support an arbitrary interconnect structure

among ANs, which allows modeling both classical feed-

forward neural networks as well as dynamic recurrent net-

works. The values of weights and biases are stored in a register

bank. The activation function of each individual layer can be

chosen from the three designed activation functions. While our

dedicated ANN hardware architecture is fully parameterizable,

after synthesizing the design and implementing the ANN

hardware on a target device, the architecture cannot be altered

to realize a different ANN and is hence referred to as a

dedicated hardware. Note that in our dedicated ANN hardware,

the ANN parameters, i.e., weight and bias values, are stored

in on-chip memory units (i.e., using BRAMs and LUTs on

FPGA devices and SRAM macro cells on ASICs) rather than

in off-chip memory modules. Therefore, the size of ANNs that

can be realized is directly proportional to the total number

of configurable resources and storage elements available on

the target device. Utilizing on-chip storage elements, however,

removes the need for off-chip memory and eliminates the

memory bandwidth bottleneck.

IV. DESIGN VERIFICATION AND

BENCHMARK RESULTS

The design flow for the implementation of the pro-

grammable ANN processor is as follows: (1) The instruction

set architecture, which includes the required operations, the

register set, and the assembly and machine instruction sets, is

defined; (2) The microarchitecture of the processor is designed

and described in Verilog HDL. The functional verification of

the custom microarchitecture is performed using the Xilinx

Vivado design suite; (3) For a given ANN, an assembly

program is written and translated into its equivalent machine-

level instructions using a custom developed interpreter. For

fully-connected feed-forward ANNs, an interpreter is devel-

oped to translate the ANN description into its equivalent

assembly code and subsequently, its machine-level instruc-

tions; (4) Functional verification is performed by simulating

the programmable ANN processor on a Xilinx Artix-7 FPGA

using the Vivado design suite. The ANN outputs are verified

using a custom-developed graphical user interface for various

benchmarks; (5) After functional verification, the ASIC flow

begins with synthesizing the ANN processor description in

Fig. 10. The laboratory setting for testing the programmable ANN processor
and the dedicated reconfigurable ANN architecture.

Verilog HDL using Synopsys Design Compiler; (6) Synopsys

IC Compiler is then used to perform placement and routing of

the synthesized netlist; (7) After static timing analysis of the

post-placed and routed design, the netlist is again simulated

using Synopsys VCS for verification. To verify the designed

programmable ANN processor and the dedicated reconfig-

urable ANN hardware and compare their characteristics and

implementation results on a Xilinx Artix-7 FPGA, we utilize

two ANN benchmarks.

We implemented the handwritten digit recognition bench-

mark using the MNIST dataset [40]. Fig. 10 shows the labora-

tory setup for verifying the functionality of the designed ANN

architectures. The dataset is provided as 28×28 pixel grayscale

images and the target outputs are provided as digits denoting

the number shown in the image. To provide the network with

the entire image, the rows of the image are concatenated to

form a 1×784 image vector. The target data matrix included in

the dataset provides the correct digit, represented in decimal,

for each corresponding column test vector. However, due to

the nature of the bounded ACFs, we have redefined the target

data as 10-row column vectors. Rows 1 through 9 of the

target matrix columns refer to a recognized digit 1 through 9,

respectively, and the tenth row refers to a recognized digit 0.

Thus, the columns of the target data matrix have a single 1 and

the rest are 0s. For the network implemented using the tanh

SAF, the 0s are mapped to -1 to match the lower bound of the

activation function output. Some pre-processing on the input

data is also performed, such as mapping the input test vectors

to values between 0 and 1 for the sigmoid, and between -1 and

1 for the tanh activation function, to reduce input wordlengths

and avoid using overly large weight and bias values. We have

chosen a four layer model given as 784–20–15–10, where

784 is the number of inputs, and 20, 15, and 10 are the

number of ANs per layer, respectively. To obtain the optimal

values of weights and biases, we use MATLAB’s neural

network toolbox [53] to train the handwritten digit recognition

ANN. Since the ANN training for calculating the values of

weights and biases is performed offline, one can utilize various

training algorithms or machine learning frameworks, such as

Caffe [54], TensorFlow [55], and PyTorch [56]. There have

been considerable improvements in neural network training

methodologies, from reducing the memory requirements of

learned parameters via binarization [57], [58] to normalization

approaches that significantly reduce the convergence time

9

TABLE IV
CHARACTERISTICS AND IMPLEMENTATION RESULTS OF THE DESIGNED ANN ARCHITECTURES ON A XILINX ARTIX-7 FPGA

Design Benchmark/ LUTs. (%) Regs. (%) BRAMs. (%) DSP48s. (%) Frequency Latency
Network topology (MHz) (Clock cycles)

Dedicated ANN MNIST 62695 (46.58) 206405 (76.67) 10 (2.74) 135 (18.24) 133 819
Hardware 784–20–15–10

Dedicated RNN Sentiment analysis (SA) 17547 (12.97) 35894 (13.33) 1.5 (0.41) 122 (16.49) 156 2800
Hardware 16–40–1 (50 time steps)

ANN Processor General-purpose 5064 (3.76) 553 (0.21) 20 (5.34) 30 (4.05) 62 MNIST – 1728
FF/RNN (1024 ANs) SA – 17285

2 4 6 8 10 12

Number of Segments

80

85

90

95

100

T
e

s
ti

n
g

 A
c

c
u

ra
c

y
 (

%
) logsig

logtanh

Fig. 11. The testing accuracy of the MNIST ANN using the logsig activation
function and tanh activation functions over various number of SAF segments.

for training [59]. The weights are represented in the (5,11)

fixed-point format. The processor’s instruction memory is

loaded with an 82-instruction program to execute the MNIST

operations. Fig. 11 shows the testing accuracy of the MNIST

ANN over various number of SAF segments. One can see that

using the logsig SAF results in a greater testing accuracy. As

stated in Section II, the preferred activation function can vary

among applications. Nevertheless, the designed programmable

ANN processor supports the logsig, logtanh, and the ReLU

activation functions.

We have also implemented a RNN for sentiment analysis

of reviews from the internet movie database [60]. The RNN

attempts to predict whether a review was positive or negative

for a particular movie. We utilized a three-layer RNN model

with 40 recurrent ANs with tanh activation functions and one

output AN with the sigmoid activation function. The input to

the RNN is a word vector of 16 elements and each review

consists of 50 word vectors. After processing the last word

vector, the sentiment is predicted by the output layer neuron.

The network parameters, such as the word embeddings, which

are numerical vectors that encode each word in the dataset

vocabulary, the weights, and the bias values, were obtained

using Tensorflow and Python and then converted into the

fixed-point numerical representation. The assembly program to

execute the sentiment analysis RNN consists of 79 instructions

to predict the sentiment of each review. Despite a relatively

small RNN of only 41 neurons, the network correctly predicts

80.66% of the 25,000 testing reviews.

Table IV gives the characteristics and implementation re-

sults of the dedicated reconfigurable ANN and RNN hardware

and the processor architecture on a Xilinx Artix-7 FPGA.

Because the dedicated hardware architecture is tied to a

specific ANN/RNN, we have listed the benchmark network

as well as the network topologies. The designed ANN pro-

cessor supports up to 1024 arbitrarily connected ANs and

has an LPU Bank with 10 LPUs. The latency in Table IV

refers to the number of clock cycles required to execute the

given benchmark. Dedicated hardware architectures for the

MNIST and sentiment analysis (SA) benchmarks compute

the network outputs in 6.1 µs and 17.9 µs, respectively. For

our ANN processor, the latency is directly related to the

number of operations executed in the program. For a fully

connected feed-forward ANN, the number of operations can

be given as
∑η

i=2

[

Si−1(⌈(Si/k)⌉)+2(Si)+ ⌈(Si/k)⌉
]

+Sη ,

where η denotes the number of layers in the network, Si

denotes the number of inputs or ANs in the i-th layer, k
denotes the number of LPUs being used, and ⌈·⌉ denotes

the ceiling operator. For RNNs, the latency can be given

as
∑τ

i=2

[

Ni−1(⌈(Si/k)⌉) + 2(Si) + ⌈(Si/k)⌉
]

+ Sη , where

N denotes the number of inputs to the recurrent layer at

a particular time step i, and τ denotes the number of time

steps. The ANN processor computes the MNIST and SA

network outputs after 27.8 µs and 270 µs, respectively. For a

fair comparison between the MNIST and SA dedicated ANN

hardware architectures, we compare their power and energy

consumptions while running at 100 MHz. The MNIST and

SA dedicated architectures consume 806 mW and 225 mW of

power, respectively. Given their execution times, the MNIST

and SA architectures have energy consumption rates of 6.6 µJ
and 6.3 µJ, respectively. The processor consumes 235 mW of

power while running at 62 MHz, and has energy consumption

rates of 6.53 µJ and 65.5 µJ for the MNIST and SA programs,

respectively. While the dedicated ANN hardware architectures

can execute their respective benchmarks considerably faster,

the processor architecture can support arbitrary ANNs by

changing their programs, while using significantly smaller sil-

icon area. For very small ANNs, the dedicated ANN hardware

may be more energy efficient, however, this requires a larger

silicon area for a dedicated hardware that is fixed for a specific

network after implementation.

Recent research has also focused on the FPGA implemen-

tation of SNNs [61], [62]. While the flexibility of SNNs make

them an attractive design choice for realization on FPGAs,

the employed neuron models, depending on their level of

10

biophysical accuracy, can result in a greater reconfigurable

resource utilization. For example, [61] and [62] both present

SNN hardware architectures supporting 1024 and 1440 neu-

rons, respectively, on Virtex FPGAs. However, their recon-

figurable resource utilization is significantly larger than that

of our proposed ANN processor. The design in [61] consumes

19397 (9%) LUTs, 32420 (15%) registers, 264 (81%) BRAMs,

and 16 (8%) DSP48s. The design in [62] consumes 55884

(37%) LUTs, 48502 (16%) registers, 392 (91%) BRAMs, and

408 (53%) DSP48s. While some applications, which require

time-insensitive processing, may employ SNNs, tasks such as

classification or pattern recognition can be efficiently realized

using the designed ANN processor with significantly fewer

resources.

V. CONCLUSION

This article presented a programmable processor with a cus-

tom instruction set architecture for the efficient realization of

artificial neural networks (ANNs). A dedicated reconfigurable

hardware for the direct implementation of ANNs was also pre-

sented. The ANN processor and the dedicated ANN hardware

both support various ANNs with an arbitrary number of layers,

number of artificial neurons (ANs) per layer, and arbitrary

interconnect structures, including feed-forward and recurrent

networks. The functionality and implementation results of both

designs on a Xilinx field-programmable gate array (FPGA)

were assessed and compared using two ANN benchmarks. The

ASIC implementation results of the designed ANN processor

confirms that our processor occupies smaller silicon area

compared to the other state-of-the-art processors and consumes

significantly less power. The designed programmable proces-

sor can be effectively used in area- and power-constrained

embedded applications utilizing moderately-sized ANNs.

ACKNOWLEDGMENT

This work was supported by the Center for Neurotechnology

(CNT), a National Science Foundation Engineering Research

Center (EEC-1028725).

REFERENCES

[1] S. Herculano-Houzel, “The human brain in numbers: a linearly scaled-up
primate brain,” Frontiers in Human Neuroscience, vol. 3, p. 31, 2009.

[2] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Advances in Neural Information

Processing Systems, vol. 25, pp. 1097–1105, 2012.

[3] M. Bojarski, et al., “End to end learning for self-driving cars,” Comput-

ing Research Repository, 2016.

[4] I. Sutskever, O. Vinyals, Q. V. Le, “Sequence to sequence learning with
neural networks,” in Neural Information Processing Systems, 2014, pp.
3104–3112.

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the devil in the details: Delving deep into convolutional nets,” arXiv

preprint arXiv:1405.3531, 2014.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 1 – 9.

[7] L. Huimin, X. Fan, L. Jiao, W. Cao, X. Zhou, L. Wang, “A high per-
formance FPGA-based accelerator for large-scale convolutional neural
networks,” in International Conference on Field Programmable Logic

and Applications, 2016, pp. 1 – 9.

[8] S. Venieris, C. Bouganis, “FPGAconvnet: A framework for mapping
convolutional neural networks on FPGAs,” in International Symposium

on Field-Programmable Custom Computing Machines, 2016, pp. 40 –
47.

[9] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, and S. Song, “Going deeper with embedded FPGA platform for
convolutional neural network,” in ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, 2016, pp. 26 – 35.

[10] D. Han, J. Lee, J. Lee, S. Choi, and H.-J. Yoo, “A 141.4 mw low-
power online deep neural network training processor for real-time object
tracking in mobile devices,” in Proceedings of International Symposium

on Circuits and Systems, 2018.

[11] D. Han, J. Lee, J. Lee, and H. Yoo, “A low-power deep neural network
online learning processor for real-time object tracking application,” IEEE

Transactions on Circuits and Systems I: Regular Papers, pp. 1–11, 2018.

[12] S. Yin, P. Ouyang, J. Yang, T. Lu, X. Li, L. Liu, and S. Wei, “An
energy-efficient reconfigurable processor for binary- and ternary-weight
neural networks with flexible data bit width,” IEEE Journal of Solid-

State Circuits, pp. 1–17, 2018.

[13] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 DNPU: An 8.1 TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” in IEEE International Solid-State Circuits Conference, 2017,
pp. 240–241.

[14] J. Fowers et al, “A configurable cloud-scale dnn processor for real-time
AI,” in International Symposium on Computer Architecture, 2018, pp.
1–14.

[15] J. Rust and S. Paul, “Design and implementation of a neurocomputing
ASIP for environmental monitoring in WSN,” in IEEE International

Conference on Electronics, Circuits, and Systems, 2012, pp. 129–132.

[16] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–138,
2016.

[17] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and
evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,
pp. 10–19, 2018.

[18] P. Treleaven, M. Pacheco, and M. Vellasco, “VLSI architectures for
neural networks,” IEEE Micro, vol. 9, no. 6, pp. 8–27, 1989.

[19] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to FPGAs,” in ACM/IEEE International Symposium on Microarchitec-

ture, 2016, pp. 1 – 12.

[20] D. Rakanovic and R. Struharik, “Implementation of application specific
instruction-set processor for the artificial neural network acceleration
using LISA ADL,” in IEEE East-West Design & Test Symposium, 2017,
pp. 1–6.

[21] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[22] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi,
H. M. Elsayed, H. Corporaal, and K. Bertels, “Memristor for computing:
Myth or reality?” in Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2017. IEEE, 2017, pp. 722–731.

[23] C. Pandarinath et al., “High performance communication by people with
paralysis using an intracortical brain-computer interface,” eLife, vol. 6,
pp. 1–27, 2017.

[24] J. R. Wolpaw and D. J. McFarland, “Control of a two-dimensional
movement signal by a noninvasive brain-computer interface in humans,”
in Proceedings of the National Academy of Sciences, 2004, pp. 17 849–
17 854.

[25] R. P. Rao, “Towards neural co-processors for the brain: combining
decoding and encoding in brain-computer interfaces,” Current Opinion

in Neurobiology, vol. 55, pp. 142 – 151, 2019.

[26] E. Fetz, “Dynamic neural network models of sensorimotor behavior,” in
The Neurobiology of Neural Networks. MIT Press, 1993, ch. 7, pp.
165–190.

[27] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B.
Schwartz, “Cortical control of a prosthetic arm for self-feeding,” Nature,
vol. 453, no. 7198, p. 1098, 2008.

[28] L. R. Hochberg et al., “Reach and grasp by people with tetraplegia using
a neurally controlled robotic arm,” Nature, vol. 485, no. 7398, p. 372,
2012.

[29] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions

on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

11

[30] ——, “Which model to use for cortical spiking neurons?” IEEE Trans-

actions on neural networks, vol. 15, no. 5, pp. 1063–1070, 2004.

[31] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, vol. 345, no.
6197, pp. 668–673, 2014.

[32] C. Frenkel, M. Lefebvre, J. Legat, and D. Bol, “A 0.086-mm2 12.7-
pj/sop 64k-synapse 256-neuron online-learning digital spiking neuro-
morphic processor in 28-nm CMOS,” IEEE Transactions on Biomedical

Circuits and Systems, vol. 13, no. 1, p. 145, 2019.

[33] R. Brette et al., “Simulation of networks of spiking neurons: A review of
tools and strategies,” Journal of Computational Neuroscience, vol. 23,
no. 3, pp. 349–398, 2007.

[34] G. Indiveri, F. Corradi, and N. Qiao, “Neuromorphic architectures for
spiking deep neural networks,” in 2015 IEEE International Electron

Devices Meeting (IEDM). IEEE, 2015, pp. 4–2.

[35] C. Frenkel, J.-D. Legat, and D. Bol, “Morphic: A 65-nm 738k-
synapse/mm2 quad-core binary-weight digital neuromorphic processor
with stochastic spike-driven online learning,” IEEE Transactions on

Biomedical Circuits and Systems, vol. 13, no. 5, pp. 999–1010, 2019.

[36] G.-q. Bi and M.-m. Poo, “Synaptic modification by correlated activity:
Hebb’s postulate revisited,” Annual review of neuroscience, vol. 24,
no. 1, pp. 139–166, 2001.

[37] S. R. Kheradpisheh and T. Masquelier, “S4nn: temporal backpropagation
for spiking neural networks with one spike per neuron,” arXiv preprint

arXiv:1910.09495, 2019.

[38] J. Göltz, A. Baumbach, S. Billaudelle, O. Breitwieser, D. Dold,
L. Kriener, A. F. Kungl, W. Senn, J. Schemmel, K. Meier et al., “Fast
and deep neuromorphic learning with time-to-first-spike coding,” arXiv

preprint arXiv:1912.11443, 2019.

[39] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: opportu-
nities and challenges,” Frontiers in neuroscience, vol. 12, p. 774, 2018.

[40] Y. Lecun, C. Cortes, C. Burges, The MNIST Database, available at
yann.lecun.com/exdb/mnist/.

[41] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E.
Elger, “Indications of nonlinear deterministic and finite-dimensional
structures in time series of brain electrical activity: Dependence on
recording region and brain state,” Physical Review E, vol. 64, no. 6,
pp. 1–8, 2001.

[42] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and Systems, vol. 2, pp. 303–314, 1989.

[43] N. Gershenfeld, The Nature of Mathematical Modeling. Cambridge
University Press, 1999.

[44] J. M. Muller, Elementary Functions: Algorithms and Implementation.
Birkhauser, 2006.

[45] H. Amin, K. M. Curtis, B. R. Hayes-Gill, “Piecewise linear approxima-
tion applied to nonlinear function of a neural network,” in Proceedings

of IEEE Circuits, Devices, and Systems, 1997, pp. 313 – 317.

[46] C. M. Lopez et al., “An implantable 455-active-electrode 52-channel
CMOS neural probe,” IEEE Journal of Solid State Circuits, vol. 49,
no. 1, pp. 248–261, 2014.

[47] ——, “A neural probe with up to 966 electrodes and up to 384
configurable channels in 0.13-µm SOI CMOS,” IEEE Transactions on

Biomedical Circuits and Systems, vol. 11, no. 3, pp. 510–522, 2017.

[48] R. Ramezani et al., “On-probe neural interface ASIC for combined
electrical recording and optogenetic stimulation,” IEEE Transactions on

Biomedical Circuits and Systems, vol. 12, no. 3, pp. 576–588, 2018.

[49] S. Micera et al., “Decoding of grasping information from neural
signals recorded using peripheral intrafascicular interfaces,” Journal of

NeuroEngineering and Rehabilitation, vol. 8, no. 1, pp. 1–10, 2011.

[50] S. Kim, P. Tathireddy, R. A. Normann, and F. Solzbacher, “Thermal
impact of an active 3-D microelectrode array implanted in the brain,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 15, no. 4, pp. 493–501, 2007.

[51] D. Valencia, J. Thies, and A. Alimohammad, “Frameworks for efficient
brain-computer interfacing,” IEEE Transactions on Biomedical Circuits

and Systems, vol. 13, no. 6, pp. 1714–1722, 2019.

[52] M. Kocaturk, H. O. Gulcur, and R. Canbeyli, “Toward building hybrid
biological/in silico neural networks for motor neuroprosthetic control,”
Frontiers in Neurorobotics, vol. 9, p. 8, 2015.

[53] M. Beale, M. Hagan, H. Demuth, Neural Network Toolbox User’s Guide,
MathWorks, 2017.

[54] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the ACM international

conference on Multimedia, 2014, pp. 675–678.

[55] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, and M. Isard, “Tensorflow: a system for large-
scale machine learning.” in Symposium on Operating Systems Design

and Implementation, vol. 16, 2016, pp. 265–283.
[56] N. Ketkar, “Introduction to pytorch,” in Deep learning with python.

Springer, 2017, pp. 195–208.
[57] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-

gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or -1,” arXiv preprint

arXiv:1602.02830, 2016.
[58] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-

narized neural networks,” in Advances in Neural Information Processing

Systems, 2016, pp. 4107–4115.
[59] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.
[60] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,

“Learning word vectors for sentiment analysis,” in Proceedings of the

49th annual meeting of the association for computational linguistics:

Human language technologies-volume 1. Association for Computa-
tional Linguistics, 2011, pp. 142–150.

[61] W. Luk, D. Thomas, “FPGA accelerated simulation of biologically
plausible spiking neural networks,” in IEEE Symposium on Field Pro-

grammable Custom Computing Machines, 2009, pp. 45–52.
[62] D. Pani et al., “An FPGA platform for real-time simulation of spiking

neuronal networks,” Frontiers in Neuroscience, vol. 11, no. 90, pp. 1–13,
2017.

Daniel Valencia is a Research Assistant working
in the VLSI Design and Test Laboratory in the
Department of Electrical and Computer Engineering
at the San Diego State University. He is currently
pursuing the Ph.D. degree in Electrical and Com-
puter Engineering at the University of California,
San Diego, and the San Diego State University.
His research interests include field-programmable
gate arrays, brain-computer interfacing, and VLSI
architectures for neural signal processing.

Saeed Fouladi Fard received the M.Sc. degree
in Electrical Engineering from the University of
Tehran, Iran, in 2003, and the Ph.D. degree in
Electrical and Computer Engineering from the Uni-
versity of Alberta, Canada, in 2009. Currently he is a
Principal Engineer at Eidetic Communications Inc.,
a company that he co-founded in 2016. Since 2008,
he has been working as a digital design engineer
at Ukalta Engineering Inc., Rad3 Communications,
PMC-Sierra (now Microchip) and Eidetic Commu-
nications Inc. His work on SerDes and error control

codes are parts of several VLSI chipsets used by major Internet companies. His
research interests include data compression and encryption, machine learning,
high-performance computing, error control coding, high-speed SerDes, digital
communications, and efficient hardware computation techniques.

Amir Alimohammad is an Associate Professor in
the Electrical and Computer Engineering Depart-
ment at the San Diego State University. He was
the Co-Founder and Chief Technology Officer of
Ukalta Engineering in Edmonton, Canada, from
2009-2011. He obtained a Ph.D. degree in Electrical
and Computer Engineering from the University of
Alberta in Canada. His research interests include
digital VLSI design, brain-computer interfacing, and
wireless communication.

