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ABSTRACT

Cloud data centers are evolving fast. At the same time, today’s large-
scale data analytics applications require non-trivial performance
tuning that is often specific to the applications, workloads, and data
center infrastructure. We propose TeShu, which makes network
shuffling an extensible unified service layer common to all data ana-
lytics. Since an optimal shuffle depends on a myriad of factors, TeShu
introduces parameterized shuffle templates, instantiated by accurate
and efficient sampling that enables TeShu to dynamically adapt to
different application workloads and data center layouts. Our pre-
liminary experimental results show that TeShu efficiently enables
shuffling optimizations that improve performance and adapt to a
variety of data center network scenarios.

1 INTRODUCTION

Large-scale data analytics systems [7, 10, 13, 15, 16, 24, 36, 47] are
a key application class in modern data centers. Universal to these
platforms is the need to transfer data between blocks of compute.
Broadly defined, processing typically occurs in a few key phases
(Figure 1): (i) compute, in which workers independently process
theirlocal shard of data, (ii) combine, optional, in which preliminary
results are locally processed to reduce the data that passes through
(iii) shuffle, the process of resharding and transmitting data to the
next phase of compute.

Of particular note in this pipeline is the shuffle phase. Compres-
sion, serialization, message processing, and transmission all con-
tribute to the CPU, bandwidth, and latency overhead of this phase.
More so than the other two phases, shuffles, if planned poorly, can be-
come a significant throughput and latency bottleneck of the system.
Application performance is often gated on tail completion time of the
shuffle. Because of that, there is a rich history of work in tuning the
behavior of this phase [15, 21, 28, 29, 48]. More recently, shuffle has
been shown to be a major performance bottleneck in data analytics
on emerging cloud platforms [27, 32, 34].

Unfortunately, this tuning process is non-trivial as performance
characteristics are not only highly dependent on the workloads,
but also on the underlying data center architecture. To make mat-
ters worse, more and more big data systems opt for disaggregated
in-memory and virtual disk storage that cross a network where inter-
actions are complex [4, 14, 33], the topology is constantly changing
due to failures [6, 9, 17, 22], and next-generation designs are increas-
ingly sophisticated [3, 37, 44, 45]. Prior work has resulted in complex
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Figure 1: The general structure of most data analytics systems:
computation, combination, and shuffling. This process can be
applied to various systems like MapReduce, graph processing, and
cloud-based analytics systems.

solutions that either fail to provide portable performance [20, 23, 29-
31] or are difficult to reason about [5].

This paper proposes a novel solution: a templated shuffle (TeShu)
layer that can adapt to application data and data center infrastructure,
on top of which existing and future systems can be implemented.

The design of TeShu centers around parameterized shuffle tem-
plates, which provide a set of shuffle primitives that can greatly sim-
plify the job of writing performant data analytics software. TeShu
engineers can write a wide array of shuffle templates. As they may
not know the characteristics of the infrastructure or workload a
priori, they instead leave various parameters undefined. At runtime,
TeShu instantiates the shuffle template by populating the parameters
using knowledge of the underlying topology and data achieved via
sampling.

TeShu enables infrastructure-aware optimizations that provide
the illusion of hand-tuned performance, but in a portable fashion
where a programmer could deploy graph systems, e.g., Pregel or
Spark jobs, without worrying about how shuffling (and hence overall
performance) is impacted by the workload characteristics, network
topologies, and failure scenarios. Our contributions follow.

e Customizable shuffle with templates. We present the de-
sign of TeShu and demonstrate how its shuffle templates are
expressive enough to support a wide range of big data analytics
systems and shuffle optimizations.

o Network-aware shuffling. We demonstrate how infrastructure-
level optimizations are made possible by instantiating shuffle
templates at runtime. In particular, we present an adaptive opti-
mization that dynamically chooses the best shuffling strategy
for a given data center network topology.

o Evaluation. Our evaluations on real-world graph workloads
show that TeShu can enable adaptive optimizations that signifi-
cantly improve application performance. Our proposed sampling-
based parameter tuning can achieve high accuracy with low
sampling cost.
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Figure 2: The architecture of TeShu. When shuffle is invoked, a
shuffle manager ships shuffle templates to the application.

2 TESHU OVERVIEW

TeShu is centered around three core ideas: a common shuffle layer
customizable via templates, shuffle optimizations adaptive to work-
loads and networks, and a sampling mechanism that enables adap-
tation. Details follow.

Customizable, templated shuffle as a common layer. Despite their
simplicity, compute, combine, and shuffle can support use cases from
graph processing (e.g., Pregel, Giraph) to SQL queries (e.g., SparkSQL
and Hive). At its core, shuffle simply transfers data across nodes.
The source/destination, transfer rate, and mode of synchrony can
vary between systems, but in every case, the interface is consistent.
TeShu supports this design by enabling a cleaner layering between
applications and infrastructure. Rather than spend time tuning each
application, users of TeShu template the shuffle layer that is common
to all upper-layer systems.

Adaptive shuffle. TeShu can take into account the workload, com-
biner logic, shuffle pattern of the application, and network topology
to adapt the shuffle to the environment. At runtime, TeShu instanti-
ates execution plans and directs the shuffle data for higher layers. We
envision that TeShu runs as a service that many big data platforms
can invoke.

Sampling-based adaption. Finally, we allow shuffles to dynamically
adapt to the query workload and network by sampling data that most
efficiently tests the efficacy of optimizations. Our application-centric
sampling avoids classic constraints that come with the statistical es-
timation of population parameters such as knowing the distribution.
Empirically, we find that testing a small fraction of the data (as low
as 0.01% in real-world workloads) already leads to high accuracy.

3 CUSTOMIZABLE SHUFFLE

In TeShu (Figure 2), a Shuffle Manager is deployed as a service by the
infrastructure provider along with shuffle templates. During job ex-
ecution, the application will invoke the shuffle API, which results in
an RPC to the Shuffle Manager, which and application workers coop-
erate to instantiate the template to form a full shuffle plan. Workers
execute the plan to shuffle their data.

3.1 Shuffle API

In TeShu, shuffle operations are defined as instances of concurrent
communication between a fixed set of sources and destinations. Pro-
grams invoke shuffles for a variety of reasons and in a variety of
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Parameter Type Description

Worker identifier.
Shuffle template identifier.
Shuffle invocation identifier.

wIld i
templateld i
shuffleld i

srcs {s1,--Sn } The set of identifiers for workers
where data resides.

dsts {d1,...dm} The set of identifiers for workers to
which data is moved.

bufs {D1,....Dg } Buffers for sent or received data.

partFunc f:(D,{d})—di  Datapartition function (optional).

combFunc f:(Dy,Dy) > D Message combiner function (op-

tional).

Table 1: Parameters to the shuffle call.

different contexts. These include loading data from network stor-
age to workers, distributing intermediate values between iterations,
and aggregating results. All of these uses can be specified using the
following abstraction:
shuffle(wId, templateld, shuffleld,

srcs, dsts, bufs, partFunc, combFunc)

In the base case, the RPC of a shuffle invocation requires a worker
identifier, a shuffle template identifier specifying which template
to use, a shuffle identifier, a list of sources, and a list of destinations
of the shuffle operation. For example, in Hadoop, the sources and
destinations will be the list of Map and Reduce workers.

Other types of shuffles can be specified using optional parameters.
For instance, communication patterns for reduction and aggregation
can be implemented with a partition function. The function takes
each piece of data and maps it to a destination worker. A simple
example of a hash-based partition function (the default partition
function) is the following:
partFunc(D, dsts):

return hash(D) % dsts.size

Finally, the shuffle call can include a commutative and associative
combiner function. For example, the combiner function for wordcount
takes a set of (word, count) tuples and performs aggregation as
follows:
combFunc((w, n1), (w, n2)):

return (w, n1+n2)

TeShu is agnostic to the type of analytics job. Modifying existing

code bases to run shuffling with TeShu is natural.

3.2 Shuffle Templates

The result of shuffle calls are specialized shuffle plans that define the
communication and processing to be done at each node to execute
the larger shuffle operation. System operators do not define shuffle
plansdirectly; instead, they define Python-like shuffle templates with
parameters to be filled in, automatically, locally on workers later.

Table 2 lists these parameters (functions). Five of them act as
primitives for basic communications (SEND, RECV and FETCH), data
partition (PART), and message combine (COMB). Those primitives are
easily translated to the language of each system. In addition, SAMP is
the sampling function for estimating a particular shuffle cost. These
parameters suffice to express a variety of shuffle algorithms including
those in Table 3.
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Template Param- Description
eter

Shuffle Algo- Description Pattern LoC

rithm

SEND(dst, msg) Send msg to dst.

RECV(src) Return the data received from src.

FETCH(src) Return the data fetched from src.

PART(msgs,  dsts, Partition msgs into dsts according to
partFunc) partFunc.

COMB(msgs, Combine msgs according to combFunc.
combFunc)

SAMP (msgs, rate, Sample msgs based on rate and partition
partFunc) function partFunc.

Table 2: Shuffle template parameters that are automatically
instantiated when the template is received by workers.

We note that these functions as well as the shuffle call are syn-

chronous, meaning that they run to completion in the invocation to
ensure that the shuffle logic is executed and the data is delivered. We
leave adding asynchronous communication to support overlapping
computation and communication as future work.
Push/pull communication. To support both pull (e.g., MapReduce
systems) and push (e.g., Pregel-like systems) shuffle patterns, TeShu
separates the sender template and receiver template in a shuffle. SEND
and RECV are designed for a push model where senders send messages,
and FETCH is designed for a pull model where receivers proactively
request messages.

Consider the simple ‘vanilla shuffling’, as in MapReduce, where
sources send messages to a list of destinations. The pull-mode tem-
plate for this is (sender template: call PART (bufs, dsts, partFunc) to
partition messages; receiver template: for each n in srcs, call bufs[n]
= FETCH(n) to fetch messages). More examples are in next section.
Adaptive optimization. To support adaptive shuffle optimiza-
tion, TeShu allows applications to sample messages. The SAMP func-
tion takes a set of messages msgs and sampling rate rate, performs
partition-aware sampling (detailed in the next section) based on
partFunc, and returns the sampled messages. Those samples can
be used to run small, yet accurate, shuffle experiments to estimate
parameters. The use of SAMP includes testing the efficiency of a par-
ticular shuffle, and estimating the reduction ratio if a combiner is
applied on a set of messages.

3.3 Shuffle Management

The shuffle manager serves as a central controller to coordinate
template instantiation and execution by application workers. Cur-
rently, the primary functionality of the manager is to store and serve
templates. System operators first install optimized shuffle templates
according to their data center network topology to the shuffle man-
ager. From an application’s perspective, the shuffle API looks very
similar to today’s big data execution model: individual workers will
call the shuffle function described above. Senders and receivers
can arrive at the shuffle at different times and the data can finish
transferring to different destinations.

Specifically, when a worker invokes the shuffle call, and if the
requested shuffle template is not cached locally, an RPC operation is
issued to the shuffle manager to request the template. Upon receiving
an RPC request, the shuffle manager allocates a record in memory for

Vanillashuffling Send messages from Push/Pull 5
sources to destinations.

Coordinated Optimize shuffle band- Pull 9

shuffling [21] width on NUMA nodes.

Bruck shuf- Schedule flows to avoid Push 11

fling [38] single process bottleneck.

Two-level  ex- Group small shuffles to Push 18

change [27] reduce cost in the cloud.
Network-aware  Adaptively shuffle data at Push/Pull 48
shuffling data center scale.

Table 3: Examples of shuffling algorithms and optimizations. LoC
indicates the number of lines of TeShu template code.

the request with necessary information, e.g., the worker identifier,
the shuffle identifier, the template identifier, and current timestamp,
to indicate the start of a shuffle at a particular worker. Then it ships
the template back to the worker. Once the worker receives the re-
sponse from the shuffle manager, it continues by (1) populating the
template with the arguments of the shuffle invocation, i.e., the pa-
rameters in Table 1, (2) compiling the template into a physical shuffle
plan, which is an executable for the system, e.g., a native library, (3)
caching the template and the plan locally, and finally (4) executing
the shuffle plan. Later invocations to the same template directly
utilize the cached executable, with an asynchronous RPC request
sent to the shuffle manager to record the shuffle.

When the shuffle plan is finished by a worker, before shuffle
returns, an RPC request indicating the completion of the shuffle is
sent to the shuffle manager. The shuffle manager allocates another
record to indicate the end of the shuffle. It can leverage these records
to track the progress of each worker for a shuffle operation to handle
stragglers or log the records to facilitate fault tolerance. The shuffle
manager can also be replicated and sharded for fault tolerance and
scalability. We leave these investigations to future work.

4 EXPRESSIVENESS

The parameterized shuffle templates in TeShu can support a wide
range of shuffle algorithms. We now describe several optimized algo-
rithms that are proposed recently, and briefly show how they can be
expressed in TeShu. We focus on an optimization for data center in-
frastructure, which we term network-aware shuffling, that can signif-
icantly improve shuffle performance. We further describe how SAMP
ensures that our optimization never does worse than the baseline.
Table 3 lists three existing shuffle optimizations: coordinated shuf-
fling [21], Bruck all-to-all shuffling [38], and two-level exchange [27]
that we implemented using TeShu templates. Coordinated shuffling
pairs senders and receivers with two rings and rotates the rings
clockwise to maximize the bandwidth for a NUMA machine; Bruck
all-to-all shuffling schedules flows in an all-to-all pattern to make
sure that the shuffle is never blocked in a single process; Two-level
exchange optimizes data shuffling between serverless cloud func-
tions. It reduces the complexity of all-to-all shuffle on file requests to
the cloud storage (quadratic in the number of workers) by grouping
workers so that the requests from the workers in the same group
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1 COMB (bufs, combFunc)
sNbrs = $FIND_NBRS_PER_SERVER(wId, srcs)
s sSampMsgs = SAMP(bufs, $RATE, partFunc)

(S_EFF, S_COST) = $COMPUTE_EFF_COST (sSampMsgs)

s if S_EFF > S_COST:

» rSampMsgs = SAMP (bufs,

sPartMsgs = PART (bufs,
for n in sNbrs:
SEND(n, sPartMsgs[nl])
sPartMsgs[n] = RECV(n)
bufs = COMB(sPartMsgs, combFunc)
rNbrs = $FIND_NBRS_PER_RACK(wId, srcs)
$RATE, partFunc)

sNbrs, partFunc)

; (R_LEFF, R_COST) = $COMPUTE_EFF_COST(rSampMsgs)
if R_EFF > R_COST:
rPartMsgs = PART (bufs, rNbrs, partFunc)
for n in rNbrs:
SEND(n, rPartMsgs[nl)
rPartMsgs[n] = RECV(n)
bufs = COMB(rPartMsgs, combFunc)
partMsgs = PART (bufs, dsts, partFunc)
for d in dsts:
SEND(d, partMsgs[dl)

Figure 3: Network-aware shuffling template in TeShu.

can be merged. These three optimizations can be implemented with
9, 11, 18 lines of TeShu template code respectively. We now detail
network-aware shuffling, an adaptive optimization enabled by TeShu.

4.1 Adaptive Shuffling

Network-aware shuffling optimizes for multi-layer data center net-
works, starting from worker-level, then server-level, rack-level, and
finally global shuffling. At each layer, it combines messages to reduce
communication in the over-subscribed data center network, and it
leverages sampling to control the potential overhead. We describe
its implementation below.

Figure 3 shows the sender template for this strategy in a leaf-spine
data center topology, where servers are connected by ToR or ‘leaf’
switches, and leaves are then connected by a second layer of switches
called the ‘spine’. Our approach also applies to larger networks.

There are three potential stages to hierarchical shuffling in these
types of networks. Before the shuffling begins, each worker performs
alocal combine operation to reduce the number of messages involved
in the shuffling (line 1). The first stage is a server-local shuffle in
which workers running on the same physical machine perform local
shuffle and combine. Specifically, lines 2 finds the source workers
that reside on the same server ($FIND_NBRS_PER_SERVER abbreviates
the actual code). Line 3 calls SAMP to sample a $RATE of bufs, which is
sSampMsgs, and then we run a shuffle between sNbrs on the sampled
messages and applies combFunc to merge the shuffled messages to
estimate the data reduction, based on which we estimate S_EFF, the
time saved by the reduced data, and S_COST, the time of performing
the server-level shuffle ($COMPUTE_EFF_COST abbreviates the actual
code). Line 6 partitions the messages for the shuffle between sNbrs.
partFunc denotes the partitioning function. Lines 7-9 shuffle the mes-
sages, and line 10 applies combFunc to merge messages and replaces
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Figure 4: Partition-aware sampling,.

bufs with new messages. By this step, all messages that have the
same keys in the same server are guaranteed to be combined. This
strategy significantly decreases network traffic when there is at least
one co-located worker and the combiner is effective on the dataset.

The second step is done at a rack level (lines 11-19). Particularly
for data centers with high degrees of over-subscription, inter-rack
communication can be more costly than communication within a
rack. In those situations, reducing the number of messages that are
sent across racks can significantly speed up the communication and
improve system performance. Finally, the normal global shuffle is
performed with the remaining pre-combined data (lines 20-22). The
receiver template simply receives data from sources as (for each n
in srcs, call bufs[n] = RECV(n) to receive messages)).
Partition-aware Sampling. Offsetting the performance benefits
of hierarchical shuffling is the overhead of the local combination
steps. Network-aware shuffling adaptively applies the local com-
bines based on runtime decisions. It compares the efficiency and
the cost (e.g., S_EFF and S_COST at server level). The actual shuffle is
executed only if the efficiency is greater. We now describe how the
sampling in SAMP works.

A naive approach is to sample uniformly at random. Unfortu-
nately, we find that random sampling does not work well in practice
(see Section 5). Instead, TeShu uses partition-aware sampling, which
uses consistent hashing to sample the dataset more efficiently. To
illustrate this technique, imagine a ‘letter count’ application that
counts the frequency of letters (a-z) in a document. Rather than testa
tuple-combiner on a random selection of tuples from random nodes
(e.g., (h,1), (v,1), (z,1),...), amuch more efficient method would be
to sample the frequency of tuples by the letter (destination). More
formally, we use a number S, derived from sampling rate, to divide
the message destination space into groups from 0 to S — 1. Each
message on each worker is classified into the S groups using the
shuffle’s partitioning method so that messages for the same destina-
tion are in the same group, as shown in Figure 4 (@ denotes message
destination). Finally, we sample messages from a random group j
by sending that group from each worker to a worker that acts as the
sampling server for evaluation.

5 EVALUATION

Our testbed has two racks of 10 servers with both the inter- and intra-
rack bandwidths of 10 Gbps. Each server has an Intel E5-2660 CPU
with 16 cores at 2.6 GHz, 128 GB RAM, a 10 Gbps network interface
card, and 64-bit Ubuntu 16.04 OS. As a preliminary evaluation, we
adopted an open-source version of Pregel [2] to test the feasibility
and efficiency of shuffle optimizations enabled by TeShu. We use
PageRank (PR), and single source shortest path (SSSP), over two
real-world graphs with billions of edges: a web graph UK-Web (UK,
3.7B), and a social graph Friendster (FR, 3.6B). We evaluate TeShu’s
sampling effectiveness, the benefits of network-aware shuffling, and
its generality over network and workload variations.
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5.1 Sampling Performance

The performance of TeShu depends critically on SAMP because high
sampling rates can incur significant overhead to shuffle plan exe-
cution. Therefore, we first evaluate the accuracy and efficiency of
TeShu’s sampling algorithm with duplication estimation, which then
determines the data reduction rate.

Table 5 compares the effectiveness of a) random sampling and b)
partition-aware sampling for data reduction ratio estimation over
a typical workload. Random sampling is close to the true ratio only
when the sampling rate is as high as 90%. The overhead of this level
of sampling overwhelms any potential improvements. By contrast,
partition-aware sampling can achieve very high accuracy even when
workers only send 0.01% of their messages for the sample run.

Figure 6 shows the tradeoff between sampling accuracy and over-
head, where we vary the sampling rate (from 0.1 to 0.0001) across all
applications and datasets. When sampling rate is larger than 5%, the
overhead is large—a sampling rate of 10% causes 3X performance
slowdown, prohibitively high in practice. As the sampling rate de-
creases, the overhead drops significantly. Partition-aware sampling
achieves excellent accuracy. With a rate of 0.01%, the accuracy is still
as high as 80%. Therefore, the rate we have used in the evaluations
is between 1% — 0.01%, which achieves 90%+ accuracy with only
8%- overhead. The takeaway is that the SAMP procedure in TeShu is
effective and efficient across scenarios.

5.2 Adaptive Shuffling Performance

Table 4 shows the execution time speedup achieved by network-
aware shuffling across all workloads compared to vanilla shuffling
baseline. We note that this optimization can directly benefit any
system that is integrated with TeShu, without repeated efforts on
optimizing each system.

We observe that when the network is highly oversubscribed (10:1,
where inter-rack bandwidth is at a premium), network-aware shuf-
fling can save 80%+ communication cost, and achieve execution
speedup from 6.1X to 14.7X. In less oversubscribed environments,
it still reduces communication by 66.8-85.9%, and improves perfor-
mance by 3.9-9.4X.

Table 4 also shows the shuffle strategies decided by network-
aware shuffling according to its sampled runs. We observe that when
the network is oversubscribed (e.g., 10:1 and 4:1), all three levels of
shuffles are performed in the hierarchical shuffling: server level first,
then rack level, and finally global shuffling (S, R, Gin the table). In
contrast, when the network is not oversubscribed (1:1), the rack-level
shuffling introduces additional overhead. The best strategy is thus
server-level, and then global shuffling. The accuracy of SAMP enables
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PR-UK PR-FR SSSP-UK SSSP-FR

Oversubscription Ratio = 10:1

Execution Speedup 14.7x 9.4X 6.1x 7.1x
Communication Saving ~ 87.7% 89.8% 84.6% 84.3%
Shuffle Decision S,R,G S,R,G S,R,G S,R,G
Oversubscription Ratio = 4:1
Execution Speedup 9.4X 5.6X 5.2X 6.2%
Communication Saving 85.5% 85.9% 81.6% 79.3%
Shuffle Decision S.,R.G S.,R.G S.,R.G S,R.G
Owersubscription Ratio = 1:1
Execution Speedup 7.7% 3.9% 4.8% 4.8%
Communication Saving ~ 80.7% 76.4% 75% 66.8%
Shuffle Decision S,.G S,.G S,.G S,G

Table 4: Evaluation with oversubscription ratios. S: server-level
shuffle, R: rack-level shuffle, G: global shuffle.

this detection, and network-aware shuffling chooses the optimal
plan: S, G that achieves shorter completion times.

Robustness to network dynamics. We additionally evaluated
network-aware shuffling with dynamic network scenarios. We in-
jected three random link failures (between ToR and spine switches)
for each scenario, and we emulated 100 random failure scenarios. We
observe that network-aware shuffling reduces completion times by
5%~8.2X.Infact, with network-aware shuffling, the completion times
under failure are very close to those without failures. This shows
that network-aware shuffling can dynamically find better strategies
and its benefit can be generalized to different network conditions.

6 FUTURE DIRECTIONS

Co-scheduling shuffles. Currently TeShu schedules individual
shuffle invocations for each system. This allows every system to
optimize shuffles for their own performance based on the metrics
of interest. However, when multiple systems or multiple instances
of the same system use TeShu in the same cluster, global scheduling
decisions can be important for both performance and fairness. For
example, TeShu can identify coflows [14] between shuffle invoca-
tions. Scheduling such shuffles together can significantly improve
the shuffling performance at application level. Co-scheduling the
shuffle calls between multiple systems can also ensure the fair use of
the network resources. Enabling flexible shuffle scheduling and iden-
tifying the right set of scheduling policies for a specific deployment
are the main challenges.

Handling failures and stragglers. TeShu currently relies on upper-
layer systems to identify failures and stragglers and to restart a shuffle
operation. Handling failures of the shuffle manager is relatively easy:
we can replicate the management states and shuffle templates in-
stalled on the manager. Handling failures of shuffles is challenging as
the amounts of data involved in shuffles are often massive. Systems
like Spark [47] provide fault tolerance for shuffles by materializing
the shuffled data into persistent files. These additional disk activities
work fine for shuffles in traditional networks but incur high per-
formance penalty for both large (bottlenecked by bandwidth) and
small (bottlenecked by latency) shuffles in emerging fast data center
networks. Providing fault-tolerant shuffles with minimal perfor-
mance overhead for emerging and next-generation cloud networks
and making them general for various shuffle templates are worth
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investigation. Handling stragglers is also challenging. It requires
TeShu to have the abilities of tracking the progresses of all shuffle
participants and restarting the tasks of a subset of the participants.
The shuffle records in the shuffle manager can facilitate these tasks
as we discussed in Section 3.3.

Integrating with in-network techniques. TeShu currently exe-
cutes the compute and combine operations in CPUs. Recent years
have witnessed many innovations on in-network processing, such
as programmable data plane [11, 40] and SmartNICs [26, 41]. TeShu
can use these techniques to enable new shuffle optimizations. For
example, the COMB and SAMP functions can be pushed into the network
to release the loads from host servers and to gain higher efficiency.
How to leverage new network techniques for shuffles and expose
them to TeShu’s users is another open question.

Templating shuffles for future cloud data centers. Data cen-
ters evolve fast. Shuffle optimizations that are effective for today’s
networks may not work for future data centers. For example, hi-
erarchical shuffles [27, 32] for serverless functions that leverage a
disaggregated storage backend will be unnecessary if functions can
directly communicate [43]. Recent trends on the design of cloud data
centers indicate more radical changes. In particular, memory disag-
gregation [50, 51] separates the computation and main memory for
data processing. It translates memory accesses into network commu-
nications. Examining the interface of TeShu and developing shuffle
templates for this new type of “shuffles” between disaggregated
resource pools are a promising direction for future exploration.

7 RELATED WORK

Data analytics optimizations. Many data analytics systems have been
developed [13, 16, 18, 19, 24, 35, 42, 46, 47, 49, 52]. Some also consider
optimizing shuffles; but TeShu has a different goal of providing cus-
tomizability and portability. Recent work has considered ways of
understanding the performance of big data systems [29]. Our work
instead seeks to abstract away as much as possible to present the
simplest possible interface. Prior work has also looked at automatic
profiling and adaptation [5]; however, these are typically done across
repeated invocations, rather than within a communication round.

Shuffle optimizations. A line of recent research investigates the op-
portunities of optimizing the shuffle layer for improving overall
system performance. Camdoop [15] proposes to use direct-connect
topologies and in-network aggregation for reducing network traffic
for data-intensive applications, while others optimize shuffling for
different scenarios, including NUMA [12, 21] and serverless com-
puting [27, 32, 34].

Network-aware Optimization. GraphRex [49] proposes data center
network-centric optimizations for relational operators in large-scale
graph processing. DFI [39] presents a data-flow library that is op-
timized for RDMA networks. [8] also discusses the importance of
modeling the network in parallel data processing. TeShu’s position
is a general shuffle layer for all big data systems (emphasizing its
general shuffle AP, shuffle templates and efficient parameter estima-
tion), and therefore existing network-centric shuffle optimizations
can be seen as specific applications of TeShu.

Q. Zhang, ). Wu, A. Chen, V. Liu, B. Loo

Shuffle service. Facebook proposes an optimized shuffle service for
Spark [48], and Google also offers shuffle service [1]. Compared to
TeShu, those shuffle services lack the generality for various data
processing systems and shuffle optimizations.

Execution template [25] improves job scheduling in big data systems.
In contrast, TeShu focuses on shuffles.

8 CONCLUSION

TeShu is a system whose goal is to ensure high shuffle performance
without requiring complex performance tuning, and to expose a
common shuffle API layer to all big data systems. It does this by pop-
ulating a pre-defined execution template with efficiently sampled
data points in order to find the best shuffle strategy. Our initial re-
sults demonstrated that TeShu is promising to enable portability and
adaptive shuffle optimizations. Many research challenges associated
with TeShu and network shuffles in general remain to be explored.
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