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Abstract
The goal of this note is to present a modification of the popular median of means estimator that
achieves sub-Gaussian deviation bounds with nearly optimal constants under minimal assumptions
on the underlying distribution. We build on the recent work on the topic and prove that desired
guarantees can be attained under weaker requirements.
Keywords: Median of means estimator; U-statistics; heavy tails; robustness.

1. Introduction.

Let X be a random variable with mean µ and variance σ2. A sub-Gaussian estimator of µ based
on a sample X = {X1, . . . , XN} of i.i.d. copies of X is a measurable function µ̃ := µ̃(X ; t) such

that P
(
|µ̃− µ| ≥ Cσ

√
t
N

)
≤ ce−t for a absolute constants c, C > 0 and all t ∈ [1, tmax(N)]. It

is known (for instance, see the work by Catoni (2012)) that C ≥
√

2. A natural question, posed
previously by Devroye et al. (2016), is whether sub-Gaussian estimators with C =

√
2 + o(1),

where o(1) is a function that goes to 0 as N (and possibly t) tend to infinity, exist.
Several authors showed that such estimators can indeed be constructed under various additional

assumptions. In one of the earliest works on the topic, Catoni (2012) presented the first known
example of sharp sub-Gaussian estimators for distributions with finite fourth moment and a known
upper bound on the kurtosis, as well as for distributions with known variance. Construction by
Devroye et al. (2016) similarly required the fourth moment to be finite. One of the strongest results
is the one by Lee and Valiant (2020): their estimator attains required guarantees uniformly over
the class of distributions with finite variance, assuming just the finite second moment, albeit with
C =

√
2 only in the limit as t → ∞. Minsker (2023) proposed a permutation-invariant version of

the well known median of means (MOM) estimator (Nemirovski and Yudin, 1983; Jerrum et al.,
1986; Alon et al., 1996) and proved that it achieves desired guarantees for the class of distributions
with more than 3+

√
5

2 finite moments and “sufficiently regular” probability density functions.
The main goal of this essay is to present a modification of the “permutation-invariant” MOM

estimator that attains sub-Gaussian guarantees with asymptotically optimal constants for distribu-
tions possessing 2 + ε moments for some ε > 0. This result could yield improvements for a variety
of robust algorithms (e.g., see the survey by Lugosi and Mendelson (2019)) that rely on the classical
MOM estimator serves as a subroutine.

1.1. Notation.

For a positive integer N , [N ] will denote the set {1, . . . , N}. We employ standard big-O and small-
o notation for asymptotic relations between functions and sequences; it will be implicitly assumed
that o(1) and O(1) may denote different functions from line to line. Moreover, given two sequences
{an}n≥1 and {bn}n≥1 where bn 6= 0 for all n, we will write that an � bn if anbn = o(1) as n→∞.
Additional notation will be introduced in the main text whenever necessary.

c© 2023 S. Minsker.
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2. Main results.

Let us recall the definition of the classical median of means estimator. Given an i.i.d. sample
X = {X1, . . . , XN} from distribution P with mean µ and variance σ2, let G1 ∪ . . . ∪ Gk ⊆ [N ]
be a collection of k disjoint subsets of cardinality bN/kc each, X̄j := 1

|Gj |
∑

i∈Gj
Xi and µ̂MOM =

med
(
X̄1, . . . , X̄k

)
, where med (·) stands for the “median.” It is known that µ̂MOM satisfies the

inequality P
(
|µ̂MOM − µ| ≥ Cσ

√
t
N

)
≤ 2e−t with C =

√
π + o(1), where o(1) goes to 0 as

k,N/k → ∞. Minsker (2023) proved that allowing the overlapping subsets of data improves
the constant: given J ⊆ [N ] of cardinality |J | = bN/kc, set X̄J := 1

|J |
∑

j∈J Xj and define
µ̂U = med

(
X̄J , |J | = bN/kc

)
, where

{
X̄J , |J | = bN/kc

}
denotes the set of sample averages

computed over all possible subsets of [N ] of cardinality bN/kc. Then µ̂U attains sub-Gaussian
deviations with C =

√
2 + o(1) under the assumptions described in section 1. Essentially, µ̂U is a

function of the order statistics which are complete and sufficient for the family of all distributions
with finite variance.

Our construction, presented below, shows that it is not necessary to use all possible sample
means, and that a much smaller collection of averages suffices: not only this makes computation
easier, but the theoretical guarantees for the resulting estimator hold under weaker assumptions.
The main idea is to split the data into subsets of size smaller than bN/kc, and construct all possible
sample means using these subsets as “building blocks”. The size of the overlap is then naturally
proportional to the size of the block. For instance, the estimator µ̂U corresponds to the blocks of
size 1, resulting in the sample means over all possible subsets of a given size. Our results show
that allowing the block size to be slowly growing with the the sample size could be beneficial.
Formally, let k, l be positive integers such that bN/kcl ∈ N. Assume that G1 ∪ . . . ∪ Glk ⊆ [N ] are
disjoint subsets of cardinality bNlk c each, and Zj := X̄j = 1

|Gj |
∑

i∈Gj
Xi, j = 1, . . . , lk. It will be

convenient to set n = lk, m = bNk c, and to view Z1, . . . , Zn is a new i.i.d. sample; clearly, Z1 has
mean µ and variance σ2

m/l . Given J ⊆ [n] of cardinality |J | = l, set Z̄J := 1
l

∑
j∈J Zj ; note that

Z̄J is an average of m observations from the original sample XN , same as in the definition of the
standard MOM estimator. Define A(l)

n = {J ⊂ [n] : |J | = l} and

µ̂N := med
(
Z̄J , J ∈ A(l)

n

)
,

where
{
X̄J , J ∈ A(l)

n

}
denotes the set of sample averages computed over all possible subsets of [n]

of cardinality l. In other words, µ̂N is the median of means computed over overlapping subsets of
data, where the size of the overlap is proportional to bN/lkc, the size of the block G1. We remark
here that all explicit, non-asymptotic deviations guarantees that are valid for the classical MOM
estimator µ̂MOM automatically extend to µ̂N in view of the so-called “Hoeffding representation”
of U-statistics (Lee, 2019) as the average of averages of independent random variables; pursuit of
optimal constant however appears to require the bounds that include asymptotic terms. Everywhere
below, it is assumed that k,m, l and functions of the sample size N . We proceed with the statement
of our main result. Denote

g(m) :=
6√
m
E

[(
X1 − µ
σ

)2

min

(∣∣∣∣X1 − µ
σ

∣∣∣∣ ,√m)
]
.

2
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Feller (1968) proved that g(m) controls the rate of convergence in the central limit theorem, namely

that supt∈R |Φm(t)− Φ(t)| ≤ g(m) where Φm and Φ are the distribution functions of
∑m

j=1Xj−µ
σ
√
m

and the standard normal law respectively. It is well known that g(m) → 0 as m → ∞ for
distributions with finite variance. Moreover, g(m) admits an upper bound of the form g(m) ≤
CE

∣∣∣X1−µ
σ

∣∣∣2+εm−ε/2 whenever E|X1 − µ|2+ε < ∞ for some ε ∈ (0, 1]. In the context of the
median of mean estimation, the role of g(m) is to control the difference between the mean and the
median corresponding to the distribution of 1

m

∑m
j=1Xj , which can be seen as the main contribution

to the the bias of µ̂N .

Theorem 1 Assume that E|X1 − µ|2+ε < ∞ for some ε > 0. Suppose that l = o(mε) and let
L(n, l) and M(n, l) be any sequences such that L(n, l) � n

l g
2(m) and M(n, l) � n

l2
. Then for

all L(n, l) ≤ t ≤M(n, l),

P

(
|µ̂N − µ| ≥ σ

√
t

N

)
≤ 3 exp

(
− t

2(1 + o(1))

)
,

where o(1)→ 0 as l, k →∞ uniformly over all t ∈ [L(n, l),M(n, l)].

Remark 2

(a) A possible choice of parameters is l = log(m), L(n, l) = n
l
log(m)
mε and M(n, l) = n

l2 log(l)
.

By varying k, the deviation guarantees can be attained in the desired range of the confidence
parameter.

(b) The question of uniformity of the bounds with respect to the underlying distribution is not ex-
plicitly addressed in this note. In particular, the o(1) quantities appearing in the inequalities
are distribution-dependent. With additional effort, it should be possible to prove uniformity
with respect to the classes of distributions PN of X satisfying moment conditions of the form

E
∣∣∣X−µσ ∣∣∣2+ε ≤ aN for a sequence aN that grows sufficiently slow.

(c) Exact computation of µ̂N is still prohibitively expensive from a numerical standpoint, as the
naive upper bound for evaluating the estimator exactly is O

(
(n/l)l log(n/l)

)
. Instead, one

may select a collection of T subsets among J ∈ A(l)
n uniformly at random and compute the

median of the corresponding sample means: in view of Theorem 1 in section 4.3.3 of the book
by (Lee, 2019) implies that the asymptotic distribution of the estimator constructed in this way
coincides with the asymptotic distribution N(0, σ2) of µ̂N as soon as T � n/l. However,
this asymptotic equivalence does not automatically imply sharp non-asymptotic bounds of the
estimator computed from subsampled blocks any more: results of such nature are currently
unknown to us and require further investigation.

Proof As µ̂N is scale-invariant, we can and will assume that σ2 = 1. Set ρ(x) = |x|, and note that
the equivalent characterization of µ̂ as an M-estimator is

µ̂ ∈ argmin
z∈R

∑
J∈A(l)

n

ρ
(√
m
(
Z̄J − z

))
.

3
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The necessary conditions for the minimum of F (z) :=
∑

J∈A(l)
n
ρ
(√
m
(
Z̄J − z

))
imply that 0 ∈

∂F (µ̂N ), hence the left derivative F ′−(µ̂N ) ≤ 0. Therefore, if
√
N (µ̂N − µ) ≥

√
t for some t > 0,

then µ̂N ≥ µ+
√
t/N and, due to F ′− being nondecreasing, F ′−

(
µ+

√
t/N

)
≤ 0. It implies that

P
(√

N(µ̂N − µ) ≥
√
t
)
≤ P

 ∑
J∈A(l)

n

ρ′−

(√
m
(
Z̄J − µ−

√
t/N

))
≥ 0


= P

√k(
n
l

) ∑
J∈A(l)

n

(
ρ′−

(√
m
(
Z̄J − µ−

√
t/N

))
− Eρ′−

)
≥ −
√
kEρ′−


where we used the shortcut Eρ′− in place of

Eρ′−
(√

m
(
Z̄J − µ−

√
t/N

))
= I

{
√
m(Z̄J − µ) ≤

√
t

k

}
− I

{
√
m(Z̄J − µ) >

√
t

k

}

= 1− 2I

{
√
m(Z̄J − µ) ≤

√
t

k

}
.

Note that

−
√
kEρ′−

(√
m
(
Z̄J − µ−

√
t/N

))
= −
√
k
(

1− 2P
(√

m
(
Z̄J − µ−

√
t/N

)
≤ 0
))

= 2
√
k

(
Φ

(√
t

k

)
− Φ(0)

)
− 2
√
k

(
Φ

(√
t

k

)
− P

(
√
m
(
Z̄J − µ

)
≤
√
t

k

))

≥ −2
√
k · g(m) + 2

√
t

1
√
t/
√
k

(
Φ

(√
t√
k

)
− Φ(0)

)
.

Since

2
√
t

1
√
t/
√
k

(
Φ

(√
t√
k

)
− Φ(0)

)
= 2
√
t
(
φ(0) +O(

√
t/k)

)
=
√
t

(√
2

π
+O(

√
t/k)

)
where φ(t) = Φ′(t), we see that

−
√
kEρ′−

(√
m
(
Z̄J − µ−

√
t/N

))
≥ −2

√
k · g(m) +

√
t

(√
2

π
+O(

√
t/k)

)

which is
√
t
√

2
π (1 + o(1)) whenever t� k and t� k g2(m). It remains to analyze the U-statistic

√
k Un,l(ρ

′
−) =

√
k(
n
l

) ∑
J∈A(l)

n

(
ρ′−

(√
m
(
Z̄J − µ−

√
t/N

))
− Eρ′−

)
. (1)

4
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As the expression above is invariant with respect to the shift Zj 7→ Zj − µ, we can assume that
µ = 0. For i ∈ [N ], let

h(1)(Zi) =
√
lE

ρ′−
√m

1

l

l−1∑
j=1

Z̃j +
Zi
l
−
√
t/N

 ∣∣Zi
−√lEρ′−,

where (Z̃1, . . . , Z̃l) is an independent copy of (Z1, . . . , Zl) based on a sample X̃N that is an inde-
pendent copy of XN . Our goal is to determine the size of Var(h(1)(X1)).

Remark 3 The quantity h(1)(Z) is related to the so-called Hájek projection that can be viewed as
the best (in mean squared sense) approximation of the U-statistic Un,l(ρ′−) in terms of the sums of
i.i.d. random variables. For related background on U-statistics, we refer the reader to an excellent
monograph by Lee (2019).

Lemma 4 In the framework of Theorem 1,

Var
(
h(1)(Z1)

)
→ 2

π

as l, k →∞, uniformly over all t ∈ [L(n, l),M(n, l)].

The proof of the lemma is given in section 3. The following result, a deviation inequality for
U-statistics of order that grows with the sample size, is the second key technical tool required to
complete the argument.

Theorem 5 Let h : Rl 7→ R be a function that is invariant with respect to permutations of its ar-
guments, and let Un,l(h) = 1

(nl)

∑
J∈A(l)

n
(h (Xj , j ∈ J)− Eh (X1, . . . , Xl)) be the corresponding

U-statistic with kernel h evaluated on a sampleX1, . . . , Xn. Assume that l is an increasing function
of n, and that

(a) h is uniformly bounded;

(b) lim inf l→∞ Var
(√

l h(1)(X1)
)
> 0, where h(1)(X1) = E [h(X1, X2, . . . , Xl)|X1].

Let q(n, l) be increasing in n, decreasing in l, and such that q(n, l) = o
(
n
l2

)
. Then for all 2 ≤ t ≤

q(n, l),

P

(
|Un,l(h)| ≥

√
tl

n

)
≤ (2 + o(1)) exp

− t

2(1 + o(1))Var
(√

l h(1)(X1)
)
 ,

where o(1)→ 0 as l, n/l→∞ uniformly over 2 ≤ t ≤ q(n, l).

The proof of this result is outlined in section 4 1. To get the desired inequality for the estimator
µ̂N , it remains to apply Theorem 5 and Lemma 4 to the U-statistic defined in (1): specifically, we
deduce that

P

(∣∣∣√k Un,l(ρ′−)
∣∣∣ ≥ √t√ 2

π
(1 + o(1))

)
≤ 2 exp

(
− t

2(1 + o(1))

)
,

1. We note that closely related results for U-statistics were obtained by Maurer (2019), and it may be possible to use
Maurer’s inequality in place of Theorem 5.
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uniformly over nl g
2(m)� t� n

l2
, and the final result follows.

3. Proof of Lemma 4.

Note that we can rewrite h(1)(Z1) as

h(1)(Z1) =
√
lE

ρ′−
√m

 1

m

m−m/l∑
j=1

Z̃j +
1√
ml

(
Z1

√
m/l

)
−
√
t/N

 ∣∣Zi
−√lEρ′−.

Given an integer r ≥ 1, let Φ̃r(t) be the cumulative distribution function of
∑r

j=1 X̃j . Then

h(1)(Z1) =
√
l

(
2Φ̃m−m/l

(
m

√
t

N
−
√
m/l

(
Z1

√
m/l

))
− 1

)
−
√
lE ρ′−

= 2
√
l

(
Φ̃m−m/l

(
m

√
t

N
−
√
m/l

(
Z1

√
m/l

))
− EΦ̃m−m/l

(
m

√
t

N
−
√
m/l

(
Z1

√
m/l

)))

= 2
√
l

∫
R

(
Φ̃m−m/l

(
m

√
t

N
−
√
m/l

(
Z1

√
m/l

))

−Φ̃m−m/l

(
m

√
t

N
− x
√
m/l

))
dP

Z1

√
m/l

(x),

with P
Z1

√
m/l

being the law of Z1

√
m/l. Feller’s version of Berry-Esseen theorem implies that

sup
x∈R

∣∣∣Φ̃m−m/l(x)− Φ(x/
√
m−m/l)

∣∣∣ ≤ 6g(m−m/l)

where Φ is the distribution function of standard normal law. Therefore,∣∣∣∣∣h(1)(Z1)− 2
√
l

∫
R

(
Φ

(
m√

m−m/l

√
t

N
−

√
m/l

m−m/l

(
Z1

√
m/l

))

−Φ

(
m√

m−m/l

√
t

N
− x

√
m/l

m−m/l

))
dP

Z1

√
m/l

(x)

∣∣∣∣∣ ≤ 12
√
l g(m−m/l)→ 0

by assumption. At the same time,

√
l

(
Φ

(
m√

m−m/l

√
t

N
−

√
m/l

m−m/l

(
Z1

√
m/l

))
− Φ

(
m√

m−m/l

√
t

N
− x

√
m/l

m−m/l

))

=
1√
2π

exp (−q(x)/2) (x− Z1

√
m/l)

√
m

m−m/l
+
C(x, Z1)√

l
(x− Z1

√
m/l)2

m/l

m−m/l

6
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where q(x) :=

(
m√

m−m/l

√
t
N − x

√
m/l

m−m/l

)2

is such that q(x) → 0 as l → ∞ and C(x, Z1)

is a bounded function. Therefore, h(1)(Z1) −
√

2
πZ1

√
m/l → 0 almost surely, assuming that

√
lg(m) = o(1). Finally, note that

√
l

(
Φ̃m−m/l

(
m

√
t

N
−
√
m/l

(
Z1

√
m/l

))
− Φ̃m−m/l

(
m

√
t

N
− x
√
m/l

))

≤ sup
z

√
l P

m−m/l∑
j=1

X̃j ∈
(
z, z +

∣∣∣√m/l (x− Z1

√
m/l

)∣∣∣ ]
 ≤ C ∣∣∣x− Z1

√
m/l

∣∣∣ ,
where the last inequality follows from the well known bound for the concentration function (The-
orem 2.20 in the book by Petrov (1995)); here, C = C(P ) > 0 is a constant that may depend on

the distribution of X1. We therefore conclude that the sequence
(
h(1)(Z1)−

√
2
πZ1

√
m/l

)2
is

uniformly integrable (as Z1

√
m/l is), hence the claim follows.

4. Proof of Theorem 5.

The union bound together with Hoeffding’s decomposition entails that for any t > 0 and 0 < ε < 1
(to be chosen later as a decreasing sequence ε(l)),

P

(
|Un,l(h)| ≥

√
tl

n

)

≤ P

∣∣∣∣∣∣ ln
n∑
j=1

h(1)(Zj)

∣∣∣∣∣∣ ≥ (1− ε)
√
t

√
l

n

+P

∣∣∣∣∣∣
l∑

j=2

(
l
j

)(
n
j

) ∑
J∈A(j)

n

h(j)(Zi, i ∈ J)

∣∣∣∣∣∣ ≥ ε√t
√
l

n

,

where h(j), 2 = 1, . . . , l are the degenerate kernels corresponding to the higher-order terms of
Hoeffding’s decomposition (not to be confused with the derivatives!). Specifically,

h(j)(y1, . . . , yj) = (δy1 − PY )× . . .× (δyj − PY )× Pm−jY h,

where δy is the point measure concentrated at y; in particular, δy(h) = h(y). It is known that h(j)

can be viewed geometrically as orthogonal projections of h onto a particular subspace of L2(P
m
Y ).

We refer the reader to the book by Lee (2019) for futher details related to the background material

7
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on U-statistics and the Hoeffding’s decomposition. Bernstein’s inequality yields that

P

∣∣∣∣∣∣ ln
n∑
j=1

h(1)(Zj)

∣∣∣∣∣∣ ≥ (1− ε)
√
t

√
l

n


≤ 2 exp

− (1− ε)2 t/2

Var
(√

l h(1)(Z1)
)

+ (1− ε)13
√

l
n‖h‖∞t1/2


= 2 exp

− (1− ε)2 t

2 Var
(√

l h(1)(Z1)
)

(1 + o(1))


where o(1) → 0 as n/l → ∞ uniformly over t. It remains to control the expression involving
higher order Hoeffding decomposition terms. To this end, we will show that it is bounded from

above by exp

(
− t

2Var(
√
l h(1)(X1))

)
· o(1) where o(1) → 0 uniformly over the range of t. To

this end, we will need concentration inequality for the U-statistics of growing order established in

Minsker (2023, Theorem 4.1). Set tj,ε =

(
ε
√
t

j2

(
n
l

) j−1
2

)2

, and note that, in view of the union

bound,

P

∣∣∣∣∣∣
l∑

j=2

(
l
j

)(
n
j

) ∑
J∈A(j)

n

h(j)(Zi, i ∈ J)

∣∣∣∣∣∣ ≥ ε√t
√
l

n


≤

l∑
j=2

P

∣∣∣∣∣∣
(
l
j

)(
n
j

) ∑
J∈A(j)

n

h(j)(Zi, i ∈ J)

∣∣∣∣∣∣ ≥√tj,ε
√
l

n


≤ l max

2≤j≤l
exp

(
−cmin

(
(tε2)1/j

(n
l

) j−1
j
,

(
tε2

‖h‖2∞

) 1
j+1
(
nj

l2

) j
j+1

))
,

where the last inequality follows from the first bound of Theorem 4.1 in Minsker (2023). Whenever
l log2(l)� k and ε� log−1/2(l), the last expression is at most

max
2≤j≤l

exp

(
−c1 min

(
(tε2)1/j

(n
l

) j−1
j
,

(
tε2

‖h‖2∞

) 1
j+1
(
nj

l2

) j
j+1

))
.

In turn, it is bounded by e−
c2t
ε whenever t < n

l2
ε4. Desired conclusion follows.
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