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Abstract

The goal of this note is to present a modification of the popular median of means estimator that
achieves sub-Gaussian deviation bounds with nearly optimal constants under minimal assumptions
on the underlying distribution. We build on the recent work on the topic and prove that desired
guarantees can be attained under weaker requirements.
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1. Introduction.

Let X be a random variable with mean y and variance 0. A sub-Gaussian estimator of 1 based
on a sample X = {X1,..., Xy} of i.i.d. copies of X is a measurable function i := p(X’;¢) such

that P(\ﬁ —ul > Coy/ %) < ce™! for a absolute constants ¢, C' > 0 and all ¢ € [1, tpax(N)]. It

is known (for instance, see the work by Catoni (2012)) that C' > V2. A natural question, posed
previously by Devroye et al. (2016), is whether sub-Gaussian estimators with C' = /2 + o(1),
where o(1) is a function that goes to 0 as IV (and possibly ¢) tend to infinity, exist.

Several authors showed that such estimators can indeed be constructed under various additional
assumptions. In one of the earliest works on the topic, Catoni (2012) presented the first known
example of sharp sub-Gaussian estimators for distributions with finite fourth moment and a known
upper bound on the kurtosis, as well as for distributions with known variance. Construction by
Devroye et al. (2016) similarly required the fourth moment to be finite. One of the strongest results
is the one by Lee and Valiant (2020): their estimator attains required guarantees uniformly over
the class of distributions with finite variance, assuming just the finite second moment, albeit with
C = /2 only in the limit as ¢ — co. Minsker (2023) proposed a permutation-invariant version of
the well known median of means (MOM) estimator (Nemirovski and Yudin, 1983; Jerrum et al.,
1986; Alon et al., 1996) and proved that it achieves desired guarantees for the class of distributions
with more than 3+—2‘/3 finite moments and “sufficiently regular” probability density functions.

The main goal of this essay is to present a modification of the “permutation-invariant” MOM
estimator that attains sub-Gaussian guarantees with asymptotically optimal constants for distribu-
tions possessing 2 + ¢ moments for some £ > (. This result could yield improvements for a variety
of robust algorithms (e.g., see the survey by Lugosi and Mendelson (2019)) that rely on the classical
MOM estimator serves as a subroutine.

1.1. Notation.

For a positive integer N, [IV] will denote the set {1, ..., N}. We employ standard big-O and small-
o notation for asymptotic relations between functions and sequences; it will be implicitly assumed
that o(1) and O(1) may denote different functions from line to line. Moreover, given two sequences
{an}n>1 and {by, }n,>1 where b,, # 0 for all n, we will write that a,, < by, if ‘g—: =o(1) asn — oo.
Additional notation will be introduced in the main text whenever necessary.
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2. Main results.

Let us recall the definition of the classical median of means estimator. Given an i.i.d. sample
X = {X1,..., Xy} from distribution P with mean y and variance 0%, let Gy U ... U G} C [N]
be a co}lection (3f k disjoint subsets of cardinality | N/k| each, X, := ﬁ ZieGj X; and fipvjom =
med (X 1.0, X k) , where med (+) stands for the “median.” It is known that finjon satisfies the

inequality P(|ﬁMOM —pl > C’m/%) < 2e~t with C = /7 + o(1), where o(1) goes to 0 as

k,N/k — oo. Minsker (2023) proved that allowing the overlapping subsets of data improves
the constant: given J C [N] of cardinality |J| = |N/k], set X := ﬁ >_jes X; and define
fiv = med (X, |J| = [N/k]), where {X;, |J| = | N/k]} denotes the set of sample averages
computed over all possible subsets of [N] of cardinality | N/k|. Then fi attains sub-Gaussian
deviations with C' = v/2 + o(1) under the assumptions described in section 1. Essentially, 7iys is a
function of the order statistics which are complete and sufficient for the family of all distributions
with finite variance.

Our construction, presented below, shows that it is not necessary to use all possible sample
means, and that a much smaller collection of averages suffices: not only this makes computation
easier, but the theoretical guarantees for the resulting estimator hold under weaker assumptions.
The main idea is to split the data into subsets of size smaller than | N/k |, and construct all possible
sample means using these subsets as “building blocks”. The size of the overlap is then naturally
proportional to the size of the block. For instance, the estimator fiy; corresponds to the blocks of
size 1, resulting in the sample means over all possible subsets of a given size. Our results show
that allowing the block size to be slowly growing with the the sample size could be beneficial.
Formally, let k, [ be positive integers such that % € N. Assume that Gy U ... U Gy, C [N] are
disjoint subsets of cardinality L%J each, and Z; := X; = ﬁ EieGJ_ X;, j=1,...,lk. It will be
convenient to set n = lk, m = L%j, and to view Z1, ..., Z, is a new i.i.d. sample; clearly, Z; has
jed Z;; note that
Z is an average of m observations from the original sample X, same as in the definition of the
standard MOM estimator. Define A = {JC[n]: |J]=1}and

mean g and variance é—jl Given J C [n] of cardinality |J| = [, set Z; := 73

pn = med (ZJ, Je Ag)) ’

where {X' J, J € Agf )} denotes the set of sample averages computed over all possible subsets of [n]

of cardinality . In other words, jiy is the median of means computed over overlapping subsets of
data, where the size of the overlap is proportional to | N/lk], the size of the block G;. We remark
here that all explicit, non-asymptotic deviations guarantees that are valid for the classical MOM
estimator finjon automatically extend to iy in view of the so-called “Hoeffding representation”
of U-statistics (Lee, 2019) as the average of averages of independent random variables; pursuit of
optimal constant however appears to require the bounds that include asymptotic terms. Everywhere
below, it is assumed that k, m, [ and functions of the sample size N. We proceed with the statement

of our main result. Denote
X, —n\? X — —
g g
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Feller (1968) proved that g(m) controls the rate of convergence in the central limit theorem, namely

that sup;cp |Prm (t) — ®(t)| < g(m) where ®,,, and ® are the distribution functions of 2317\/%_#

and the standard normal law respectively. It is well known that g(m) — 0 as m — oo for
distributions with finite variance. Moreover, g(m) admits an upper bound of the form g(m) <

2+e
CE ‘%‘ m~¢/2 whenever E|X| — u|?*¢ < oo for some ¢ € (0,1]. In the context of the

median of mean estimation, the role of g(m) is to control the difference between the mean and the
median corresponding to the distribution of % Z;”:l Xj, which can be seen as the main contribution
to the the bias of fiy.

Theorem 1 Assume that E| X1 — pu|?>™® < oo for some € > 0. Suppose that | = o(m®) and let

L(n,1) and M(n,l) be any sequences such that L(n,1) > %g¢*(m) and M(n,l) < 7. Then for
all L(n,l) <t < M(n,l),

where o(1) — 0 as I, k — oo uniformly over all t € [L(n,l), M(n,l)].

Remark 2
(a) A possible choice of parameters is | = log(m), L(n,l) = %lofn& and M(n,l) = @.
By varying k, the deviation guarantees can be attained in the desired range of the confidence
parameter.

(b) The question of uniformity of the bounds with respect to the underlying distribution is not ex-
plicitly addressed in this note. In particular, the o(1) quantities appearing in the inequalities
are distribution-dependent. With additional effort, it should be possible to prove uniformity
with respect to the classes of distributions Py of X satisfying moment conditions of the form

2+¢
E ‘%’ < an for a sequence ay that grows sufficiently slow.

(¢) Exact computation of iy is still prohibitively expensive from a numerical standpoint, as the

naive upper bound for evaluating the estimator exactly is O ((n/1)! log(n/l)). Instead, one

may select a collection of T subsets among J € Aﬁf) uniformly at random and compute the
median of the corresponding sample means: in view of Theorem 1 in section 4.3.3 of the book
by (Lee, 2019) implies that the asymptotic distribution of the estimator constructed in this way
coincides with the asymptotic distribution N (0,02) of fix as soon as T > n/l. However,
this asymptotic equivalence does not automatically imply sharp non-asymptotic bounds of the
estimator computed from subsampled blocks any more: results of such nature are currently
unknown to us and require further investigation.

Proof As Jiy is scale-invariant, we can and will assume that 02 = 1. Set p(z) = |z
the equivalent characterization of /i as an M-estimator is

[ € argmin Z p(Vm(Z;—=2)).

zeR JEAS)

, and note that



MINSKER

The necessary conditions for the minimum of F(z) := 3= _ o) p (vm (Zj — z)) imply that 0 €
OF (jin), hence the left derivative F” (fiy) < 0. Therefore, if /N (fix — ) > +/t for some ¢ > 0,
then fiy > p+ +/t/N and, due to F” being nondecreasing, F” (,u + wt/N) < 0. It implies that

P(/ iy - u>\f)<IP>(Zp( 7 (2 W))>o)

JeAD

P(\/E Z (p’, (ﬁ(Z;—,u—Jt/W))—Ep’,) >\/EEp')

9 JeAd

where we used the shortcut Ep’ in place of

EPQ(W@J—M W)) { m(Zy —p) < \/Z}—I{\/E(ZJ—M)>\/E}
:1—21{@(21—%\/?}.

Note that

s (V8 (22 T)) = V(12 (2 ) <0))

:2\/%<c1>< 2)_(@(0))_2\/%(@( 2>—P<m(zj_ﬂ)§ 2)

Since

it (cp (\\/9 — <1>(0)> =2Vt (¢(o> - 0(\/75/7)) =Vt <\/§+ 0(\/75/7)>

where ¢(t) = ®'(t), we see that
_ 2
—VEEp_ (\/% (ZJ — - \/t/N>> > —2Vk - g(m) + V1t <\/;+ O( t/k;))
which is v/ f 1+ o(1)) whenever t < k and t > k g?(m). It remains to analyze the U-statistic

VI Un (l) Z (p,( (ZJ §— \/tTN))—EpL). )

JeAY
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As the expression above is invariant with respect to the shift Z; — Z; — u, we can assume that
pu=0.Fori e [N], let

-1
W(Z)=VIE |p | vm %ZZ]-%—%—\/t/N | Z;| - VIEp.,
j=1

where (Z1,...,Z;) is an independent copy of (Z1, ..., Z;) based on a sample Xy that is an inde-
pendent copy of Xy. Our goal is to determine the size of Var(h() (X1)).

Remark 3 The quantity h") (Z) is related to the so-called Hdjek projection that can be viewed as
the best (in mean squared sense) approximation of the U-statistic Uy, ;(p’_) in terms of the sums of
i.i.d. random variables. For related background on U-statistics, we refer the reader to an excellent
monograph by Lee (2019).

Lemma 4 [n the framework of Theorem 1,
2
Var (hV (7 z
ar (n(2)) - 2
as l, k — oo, uniformly over all t € [L(n,1), M (n,l)].

The proof of the lemma is given in section 3. The following result, a deviation inequality for
U-statistics of order that grows with the sample size, is the second key technical tool required to
complete the argument.

Theorem 5 Let h : Rl — R be a function that is invariant with respect to permutations of its ar-
guments, and let Uy, ;(h) = (%) ZJEA(Z) (h(Xj, jeJ)—Eh(Xy,...,X;)) be the corresponding
l n

U-statistic with kernel h evaluated on a sample X1, ..., X,. Assume that | is an increasing function
of n, and that

(a) h is uniformly bounded;
(b) liminf,_, o Var (\ﬁ h<1>(X1)) > 0, where RV(X) = E[h(X1, Xo, . .., X)) | X1].

Let q(n, 1) be increasing in n, decreasing in I, and such that q(n,1) = o (). Then forall 2 <t <
q(n, 1),

t

tl
; h > — < 0] ex -
IP><|U 1(h)] > \/;) < (2+o(1)) exp 2(1 + o(1))Var <\ﬁh(1)(X1)>

where o(1) — 0 as l,n/l — oo uniformly over 2 < t < q(n,1).

The proof of this result is outlined in section 4 !. To get the desired inequality for the estimator
11N, it remains to apply Theorem 5 and Lemma 4 to the U-statistic defined in (1): specifically, we

deduce that
(V| = 2 o)) < 2o ()

1. We note that closely related results for U-statistics were obtained by Maurer (2019), and it may be possible to use
Maurer’s inequality in place of Theorem 5.
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uniformly over %¢?(m) < ¢ < 7, and the final result follows.

3. Proof of Lemma 4.

Note that we can rewrite h()(Z;) as

m—m/l
hV(z1) = VIE |:p (\F (; 3 Zj+\/%l (Zm/m/z) \/t/N)) Zi] —VIE/..

Given an integer r > 1, let ®,.(¢) be the cumulative distribution function of > =1 X;. Then

W(2y) = Vi <2cf>mm/l <m\/§ SN m/z)> . 1) _ViE
Vi (@nm/l <m\/§ i (zlm)> CE&, <m\/g Vi (2 m)))
—ovi [ (@nm/l <m\/§ i (zlm>>
A <m\/§ . xm» 1P, o),

with P, N being the law of Z;1/m/l. Feller’s version of Berry-Esseen theorem implies that

sup |®,, my(x) — @(x/\/m —m/ ’<Gg m —m/l)

z€eR

where @ is the distribution function of standard normal law. Therefore,

-2t | (‘I’ (W’%ﬂﬁ m <Zl“”7l>>

by assumption. At the same time,

((W[ m21 ) (W[ m»

C’le m/l
— e (a(a)/2) o= /) [ SO o g

< 12\ﬂg(m —mJ/l) =0
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2
where ¢(z) = <\/mm7m/l\/g - x,/mT/ni/l> is such that ¢(z) — 0 as ! — oo and C(x, Z1)

is a bounded function. Therefore, h(V)(Z;) — \/gZM/ m/l — 0 almost surely, assuming that
V/1g(m) = o(1). Finally, note that

e 5 ) o )

m—m/l

< sup VIP ije(z,z+)m(x_zlm)u go\x_zlm
: P

)

where the last inequality follows from the well known bound for the concentration function (The-
orem 2.20 in the book by Petrov (1995)); here, C = C'(P) > 0 is a constant that may depend on

2
the distribution of X;. We therefore conclude that the sequence <h(1)(Zl) — \/%le/m/ l) is
uniformly integrable (as Z1+/m/l is), hence the claim follows.

4. Proof of Theorem 5.

The union bound together with Hoeffding’s decomposition entails that forany t > 0and 0 < e < 1
(to be chosen later as a decreasing sequence £(1)),

P(!Un,xhn > \/;7)

n l l
<P iZh“)(zj) > (1—e)Vt % +P Z(j) > w9z, ie ) zg\/i\/z :

JeAy)

where h(9), 2 = 1,...,1 are the degenerate kernels corresponding to the higher-order terms of
Hoeffding’s decomposition (not to be confused with the derivatives!). Specifically,

D (g1, y5) = (8, — Py) x ... x (8, — Py) x Py 7h,

where §, is the point measure concentrated at y; in particular, §,(h) = h(y). It is known that h(7)
can be viewed geometrically as orthogonal projections of & onto a particular subspace of Lo(Py").
We refer the reader to the book by Lee (2019) for futher details related to the background material
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on U-statistics and the Hoeffding’s decomposition. Bernstein’s inequality yields that

| — l
Pl [=> 2W(Z)|> 1 —-e)Viy/—

< 2exp (1—e)?t/2
_— X -
Var (VIAW(Z1)) + (1~ )3/t /2
1— 2
=2exp | — ( &)t

2Var (VIR (Z1)) (1 +o(1)

where o(1) — 0 as n/l — oo uniformly over ¢. It remains to control the expression involving
higher order Hoeffding decomposition terms. To this end, we will show that it is bounded from

above by exp _2Var(\ﬁth(1>(xl)) - 0(1) where o(1) — 0 uniformly over the range of t. To

this end, we will need concentration inequality for the U-statistics of growing order established in

N2
Minsker (2023, Theorem 4.1). Set t;. = (53/22 (%) ]2) , and note that, in view of the union

bound,
: (;) () . l
PID 25 > w(Z,ie )| =evty/—
G) JeAy) !
: (;)

<S"p (;T) S W9z, i€ ) thT\/z

7=2 7 ey

J
2\1/5 (T = te? \ 7 nj i
< . n nj
< ! max exp | —emin | (t7) (z> ’(nhnzo) <l> ’

where the last inequality follows from the first bound of Theorem 4.1 in Minsker (2023). Whenever
log?(l) < kand € > log~'/%(1), the last expression is at most

izt 2 N\ T /i \ 7T
ovin (e (BYT (2T (i
52?2%6@( Cl“““(“” (7) ’(nhnzo) P |

cot
In turn, it is bounded by e~ whenever t < %54. Desired conclusion follows.
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