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Abstract. This paper is devoted to the statistical and numerical properties of the geometric median, and its
applications to the problem of robust mean estimation via the median of means principle. Our main
theoretical results include (a) an upper bound for the distance between the mean and the median for
general absolutely continuous distributions in R

d, and examples of specific classes of distributions for
which these bounds do not depend on the ambient dimension d; (b) exponential deviation inequalities
for the distance between the sample and the population versions of the geometric median, which again
depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we
deduce improved bounds for the (geometric) median of means estimator that hold for large classes
of heavy-tailed distributions. Finally, we address the error of numerical approximation, which is
an important practical aspect of any statistical estimation procedure. We demonstrate that the
objective function minimized by the geometric median satisfies a “local quadratic growth” condition
that allows one to translate suboptimality bounds for the objective function to the corresponding
bounds for the numerical approximation to the median itself, and propose a simple stopping rule
applicable to any optimization method which yields explicit error guarantees. We conclude with the
numerical experiments including the application to estimation of mean values of log-returns for S&P
500 data.
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1. Introduction. The geometric median, also referred to as the spatial median and the
L1 median, is one of the oldest and most popular robust estimators of location. Its roots
go back to the Fermat, Toricelli and Weber [49] under the name of “Fermat-Weber” point,
and to the work [19] under the name of Haldane’s median; other notable early references
include the paper by Gini and Galvani [17]. The geometric median is an element of a more
general family of spatial quantiles that was introduced and studied in detail by Koltchinskii
and Chaudhuri [26, 27, 9]: in particular, existence, uniqueness, and the asymptotic properties
of spatial quantiles are well-understood. Extensions of the geometric median to the general
Banach spaces were analyzed by Kempreman [25] and, more recently, by Romon [46]. Deep
connections between the probability distributions and the corresponding spatial quantiles have
been investigated by Konen [28].

Renewed interest in the properties of the geometric median was sparked with the re-
introduction of the so-called “median of means” (MOM) estimator into high-dimensional
statistics and machine learning literature. Originally appearing in the works of Nemirovski
and Yudin [39, 22, 2] in a different context, the MOM estimator was shown to be a powerful
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tool for the analysis of corrupted and heavy-tailed data by Lerasle and Oliveira [30]. The work
by Hsu and Sabato [21] demonstrated multiple novel applications of the original estimator by
Nemirovski and Yudin in general metric spaces, while Minsker [37] introduced a version of the
median of means principle based on the geometric median. On a high level, the median of
means estimator can be viewed as a “majority vote” among several independent estimators of
the mean. Its popularity can be attributed to the fact that it is widely applicable, efficiently
computable even in high dimensions, requires minimal tuning, and admits strong theoretical
guarantees in many circumstances. However, as was pointed out by several authors, for
instance by Lugosi and Mendelson [31], the geometric median of means estimator fails to
attain optimal deviation bounds for the fundamental problem of multivariate mean estimation.
Specifically, let Y1, . . . , YN be i.i.d. copies of a random vector Y ∈ R

d with mean EY = µ and
covariance E(Y − µ)(Y − µ)T = ΣY . Then, as shown by Minsker [37], for any 1 ≤ t ≤ N/2,
there exists a version µ̂N = µ̂N (Y1, . . . , YN ; t) of the geometric MOM estimator, formally
defined in display (1.4) below, such that

(1.1) ‖µ̂N − µ‖ ≤ C

√
tr (ΣY )t

N

with probability at least 1 − e−t; here, C > 0 is an absolute constant, ‖ · ‖ stands for the
Euclidean norm of a vector and the spectral norm of a matrix, and tr (·) denotes the trace
of an operator. At the same time, a sub-Gaussian estimator µ̃N should satisfy an inequality
akin to the sample mean of a Gaussian distribution, namely,

(1.2) ‖µ̃N − µ‖ ≤ C

(√
tr (ΣY )

N
+
√
‖ΣY ‖

√
t

N

)

with probability at least 1 − e−t, where C > 0 is an absolute constant; the advantage of
the latter inequality over (1.1) is the fact that the deviation parameter t and the dimension-
dependent quantity tr (ΣY ) appear in separate additive terms. It immediately implies that
the radii of the confidence balls for the true mean µ derived from the inequality (1.2) are
much smaller compared to their counterpart obtained from (1.1). Lugosi and Mendelson [31]
proposed an alternative to the standard median of means principle based on the notion of tour-
naments and showed that the resulting estimator achieves the desired sub-Gaussian deviation
guarantees for distributions possessing only the finite second moment. Many improvements,
extensions and refinements of sub-Gaussian estimators have been suggesteed in the mathe-
matical statistics and theoretical computer science literature since: we refer the reader to
the excellent surveys by Lugosi and Mendelson [32] and Diakonikolas and Kane [14]. While
the original estimator by Lugosi and Mendelson [31] is difficult to compute, several closely
related numerically feasible alternatives have been proposed by Hopkins [20], Cherapanamjeri
[11], Depersin and Lecué [13], Bateni et al. [3], among others. However, to the best of our
knowledge, none of these methods admit practical implementations comparable to the best
algorithms for evaluating the geometric median, as those in the works by Cohen et al. [12],
Beck and Sabach [4] and Cardot et al. [7]. Due to the computational advantages offered by
the geometric median of means, it has become a popular tool for designing robust versions
of distributed optimization methods such as Federated Learning [1, 6, 10, 44]. Therefore,
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improved guarantees for the geometric MOM estimator have immediate implications for a
variety of algorithms that use MOM principle as a subroutine.

1.1. Statistical error bounds. In this paper, we revisit the original geometric median of
means construction and show that the inequality (1.1) can be improved for large classes of
absolutely continuous, heavy-tailed distributions with sufficiently large effective rank

r(ΣY ) :=
tr (ΣY )

‖ΣY ‖
.

Indeed, if r(ΣY ) is bounded by a constant, then (1.1) readily provides sub-Gaussian guar-
antees. Specifically, we show that µ̂N satisfies the bound of sub-exponential type: for all
t .
√
N (where . denotes the inequality up to an absolute multiplicative constant), there

exists a version of the MOM estimator µ̂N such that

(1.3) ‖µ̂N − µ‖ ≤ C

(√
tr (ΣY )

N
+
√
‖ΣY ‖

t√
N

)

with probability at least 1 − e−t. While this bound succeeds in separating the trace and
the confidence parameter t into different additive terms as in (1.2), thus making a significant
improvement over the previously known bound (1.1), it fails to achieve optimal sub-Gaussian
behavior. A remaining open question is whether there exists an easily described class of
heavy-tailed distributions for which the geometric median admits truly sub-Gaussian deviation
bounds.

While the proof of the inequality (1.1) is based on a simple “majority vote-type” argument,
the present analysis leading to (1.3) blends accurate estimates for the bias and the stochastic
error of the geometric median of means. The upper bound for the bias (Theorem 3.3 and
section 3.3) is shown to be controlled by ratios of the negative moments of the norm that in
turn depend on the “small ball” probability estimates. Control of the stochastic error relies
on the deviation bounds for the geometric median (Theorem 3.9) that, to the best of our
knowledge, are new. In particular, our bounds depend only on trace-type quantities and not
on the dimension of the ambient space, and yield sub-Gaussian type guarantees for a wide
range of confidence levels.

1.2. Numerical error bounds. Recall that the geometric median associated with the dis-
tribution PY of a random vector Y ∈ R

d is defined as

m(PY ) := argmin
z∈Rd

E (‖z − Y ‖ − ‖Y ‖) .

Its empirical version based on an i.i.d. sample Y1, . . . , YN is

(1.4) m̂ = med (Y1, . . . , YN ) := argmin
z∈Rd

1

N

N∑

j=1

‖z − Yj‖.

In the sequel, we will frequently write F (z) = F (z;Y1, . . . , YN ) in place of 1
N

∑N
j=1 ‖z − Yj‖.

It is well-known that m and m̂ are well-defined and are unique unless PY (or its empirical
counterpart P̂N = 1

N

∑N
j=1 δYj ) is supported on a straight line.
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Theoretical guarantees usually describe the performance of the “ideal” estimator m̂ that
is never known exactly. In practical applications, the ability to quantify numerical error of
the algorithms used to approximate m̂ gives one a litmus test for the overall performance of
the estimator. However, most known results focus on suboptimality bounds for the objective
function F (z), while explicit error bounds for the approximation to the median itself are
not available, to the best of our knowledge. More specifically, convex optimization theory
usually asks questions about the computational complexity of finding a point zε such that
F (zε) ≤ F (m̂) + ε for a given threshold ε > 0. Existing results are fully quantitative, but
for statistical applications we require the bounds for ‖z − m̂‖ instead. To bridge this gap, we
prove (in Theorem 2.3) a quadratic growth condition of the form

F (z)− F (m̂) ≥ C1
‖z − m̂‖2
‖z − m̂‖+ C2

,

where C1 and C2 are explicit functions of the data Y1, . . . , Yk. This inequality immediately
promotes any sub-optimality bound for the objective function to an error bound for approxi-
mating the median. As a corollary, we deduce a practical stopping criteria for any algorithm
designed to find the geometric median, and propose a simple numerical procedure with fully
explicit error bounds.

The problem of minimizing F (z) is a classical one, and has a long history. The most
well-known numerical method is perhaps the celebrated Weiszfeld’s algorithm [50]. Various
improvements, refinements and accelerated versions of Weiszfeld’s algorithm have been pro-
posed and analyzed over the years. For example, results in this direction have been obtained
in [42, 43, 24, 48], among others; an excellent review of the state of the art along with several
new advances is given by Beck and Sabach [4]. The work by Cardot et al. [8] develops an
online stochastic descent algorithm for minimizing F (z) and provide its asymptotic conver-
gence rate. The interior point method with the best-to-date convergence guarantees has been
developed by Cohen et al. [12]; this work also provides a thorough comparison of existing
alternatives.

1.3. Organization. The rest of the content is organized as follows: in Section 2, we in-
troduce key notation and state our main results. Section 3 is devoted to the non-asymptotic
analysis of the statistical properties of the geometric median, and culminates in the proof of
Theorem 2.1. In section 4, we discuss numerical algorithms for computing the geometric me-
dian that admit quantifiable error bounds, and prove a so-called quadratic growth condition.
Section 5 concludes the paper with the numerical experiments.

2. Main results. Let us recall the definition of the median of means estimator based on
a sample Y1, . . . , YN . Let G1 ∪ . . . ∪ Gk ⊆ {1, . . . , N} be an arbitrary collection of k ≤ N/2
disjoint subsets (“blocks”) of cardinality n = bN/kc each, Ȳj := 1

|Gj |
∑

i∈Gj
Yi and

(2.1) µ̂N := med
(
Ȳ1, . . . , Ȳk

)
.

The main goal of this work is to understand when the random variable ‖µ̂N − µ‖ admits
good deviation bounds under minimal assumptions on the distribution of Y , and what is the
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typical computational complexity of approximating µ̂N . We will now define the classes of
distributions for which such “good bounds” can be established.

Everywhere below, it will be assumed that the distribution of a random vector Y is
absolutely continuous with respect to the volume measure on a linear subspace of Rd (the
linear span of the support of PY ), and M(Y ) will stand for the sup-norm of the corresponding
density pY . Similarly, if X ∈ R is a random variable with absolutely continuous distribution,
M(X) will denote the sup-norm of its density. The classes of distributions we are interested
in are defined next.

1. Linear transformations of the independent factors: let Y ∈ R
d be given by a

linear transformation Y = AX where X = (X1, . . . , Xk) ∈ R
k is a centered random

vector with independent coordinates such that ΣX is the identity matrix Ik and M0 :=
maxj=1,...,k M(Xj) < ∞. Moreover, assume that maxj=1,...,k E|Xj − EXj |q = K(q) <
∞ for some q > 2. The class of corresponding distributions PY will be denoted
P1 := P1(M0,K).

2. Distributions with well-conditioned covariance matrices: let Y ∈ R
d be a

random vector with support contained in a k-dimensional subspace L such that its
distribution is absolutely continuous with respect to the volume measure on L. Assume
that 1

(a) M1/k
(
Σ
−1/2
Y Y

)
≤M0;

(b) tr (ΣY )

k·det1/k(ΣY )
≤ R;

(c) For some q > 2 and all unit vectors u,

E
2/q |〈Y, u〉|q ≤ K 〈ΣY u, u〉 .

The class of all such distributions will be denoted P2 := P2(k,M0,K,R).
3. Signal plus noise: let Y = X+ξ ∈ R

d where PX ∈ P2(k,M0,K,R), ξ is independent
from X and is such that tr (Σξ) ≤ h tr (ΣX). This class of distributions is a natural
generalization of P2(k,M0,K,R) and will be denoted P3 := P3(k,M0,K,R, h). Dis-
tributions from the class P3 can naturally be viewed as perturbations of the elements
of the class P2.

The first main result of the paper is the following high-probability bound for the estimator
µ̂N .

Theorem 2.1. Assume that the distribution of Y belongs to the class Pj , j ∈ {1, 2, 3}.
Then for all k0 ≤ k ≤ N/2, the median of means estimator µ̂N defined in (2.1) satisfies the

inequality

(2.2) ‖µ̂N − µ‖ ≤ C

(√
tr (ΣY )

N
+
√
‖ΣY ‖

√
k

N

)

with probability at least 1 − e−
√
k, where k0 and C depend only on the parameters of the

corresponding class Pj.
1Here, we implicitly view ΣY as an operator ΣY : L 7→L.
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Remark 2.2. Let us discuss the main assumptions of the theorem.
1. Note that tr (ΣY )

k·det1/k(ΣY )
is the ratio of the arithmetic and the geometric means of the

eigenvalues λ1 ≥ . . . ≥ λk of ΣY : this quantity behaves well when the eigenvalues are
of “similar” magnitude. For example, if λj = C

jα for α < 1, then it is easy to check
that ∑k

j=1 λj

k
(∏k

i=1 λi

)1/k ≤ C(α).

In fact, it is known [18] that for most (with respect to the uniform distribution on a
sphere) sequences, the ratio of arithmetic and geometric means is well-behaved.

2. Moment equivalence conditions similar to (2c) are well known in the literature - for
example, it has been employed in [36, 33, 52, 41], among others, in the contexts of
robust estimation and random matrix theory. It is known to hold (Lemma 4.2 in [35])
for random vectors of the form Y = AX where X is either a vector with independent
coordinates, or an unconditional vector with coordinates possessing finite moments of
order q (recall that a random vector has unconditional distribution when the distribu-
tion of (ε1X1, . . . , εdXd) is the same as the distribution of X = (X1, . . . , Xd) for any
sequence ε1, . . . , εd ∈ {±1}d. Many elliptically symmetric distributions, for example
multivariate Student’s t-distribution, also satisfy (2c) under appropriate restrictions
on the number of degrees of freedom.
Define the spatial sign covariance matrix via

(2.3) DY := E

[
(Y −m)

‖Y −m‖
(Y −m)T

‖Y −m‖

]
,

where m = m(PY ) is the geometric median of Y . The role of assumption (2c) is in
showing that ∆ := ‖DY ‖ ≤ C

r(ΣY ) . When (2c) does not hold, inequality (2.2) is still

valid with
√
‖ΣY ‖ replaced by max

(√
‖ΣY ‖,

√
tr (ΣY )∆√

k

)
.

In the following sections, we develop the technical tools needed to prove Theorem 2.1 and
discuss the numerical methods used to approximate the estimator µ̂N . The proof of Theorem
2.1 is based on the error decomposition

(2.4) ‖µ̂N − µ‖ ≤ ‖mn − µ‖+ ‖µ̂N −mn‖

where mn is the geometric median of the distribution P (n) of the average 1
n

∑n
j=1 Yj (recall

that n = bN/kc). The term ‖mn − µ‖ is the main contribution to the bias of the estimator
µ̂N and is controlled by the size of the block n, while ‖µ̂N − mn‖ is the stochastic error
that depends on the number of blocks k. We show that under various conditions encoded
by the classes Pj , j ∈ {1, 2, 3}, the “bias” admits a dimension-free upper bound of the form
√
‖ΣY ‖

√
k
N while

(2.5) ‖µ̂N −mn‖ .
√

tr (ΣY )

N
+
√

∆tr (ΣY )

√
s

N
+

√
tr (ΣY )

N

s√
k
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with probability at least 1− 4e−s for all s . k. The combination of (2.4) and (2.5) yields the
desired inequality.

Our second main result, stated below, is a quadratic growth condition which ensures that
any sub-optimality guarantees for the objective function F (z; y1, . . . , yk) translate into the
corresponding bounds for the numerical approximation to the geometric median.
Given a collection of points y1, . . . , yk ∈ R

d and a positive integer p, set νp =
1
k

∑k
j=1 ‖yj‖p.

Theorem 2.3. Let y1, . . . , yk ∈ R
d be such that

∑k
j=1 yj = 0. Moreover, assume that the

matrix Σ̂ = 1
k

∑k
j=1 yjy

T
j satisfies the condition

a :=

d∑

j=2

λj(Σ̂) > 0

where λj(Σ̂) are the eigenvalues of Σ̂ listed in non-increasing order. Then for all z ∈ R
d,

F (z)− F (m̂) ≥ 1

2

a‖z − m̂‖2
b2(‖z − m̂‖+ b)

where m̂ is the geometric median of y1, . . . , yk and

b =
20ν31 + 6ν1ν2 + ν3

a
.

Note that we do not make any assumptions on the nature of the points y1, . . . , yk.

Remark 2.4. Observe that whenever ‖z−m̂‖ is small, the leading term in the lower bound
is a

2b3
‖z − m̂‖2. If the points are drawn from the uniform distribution on a sphere of radius√

d, the factor a
2b3

scales like d−1/2. Numerical experiments in Section 5 verify that this rate
of dimensional dependence is asymptotically sharp. To see that the bound is of correct form
in general, consider the collection of points in R2 given by

(
1
0

)
,

(
−1
0

)
,

(
0
1

)
,

(
0
−1

)

The geometric median of these data is the origin, but the function F (z) restricted to the x
axis is

F ((x, 0)) = 4 + 2
x2√

x2 + 1 + 1
,

indicating that local quadratic growth bound is optimal in general.

Theorem 2.3 immediately implies the following global error bound.

Corollary 2.5. Under the assumptions of Theorem 2.3, for all z ∈ R
d,

‖∇F (z)‖ ≥ 1

2

a‖z − m̂‖
b2(‖z − m̂‖+ b)

.
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This bound provides a test for early termination given any iterative method. In particular,
the right-hand side is monotone increasing, hence

‖∇F (z)‖ < 1

2

aε

b2(ε+ b)
,

is a sufficient condition for the inequality ‖z − m̂‖ < ε to hold.

3. Statistical error bounds. In this section, we develop the technical background needed
prove Theorem 2.1. The theorem itself is proved in subsection 3.5.

3.1. Preliminaries: small ball probabilities. Recall that, given a centered random vector
Z ∈ R

d with a distribution that is absolutely continuous with respect to the Lebesgue measure,
the sup-norm of the density pZ of Z is denoted M(Z). The following “small-ball” inequality
is immediate: for any z ∈ R

d and R > 0,

P(‖Z − z‖ ≤ R) ≤M(Z)Vd(R)

where Vd(R) =
(
√
πR)

d

Γ(d/2+1) is the volume of a ball B(R) of radius R in R
d. Assuming that the

covariance matrix ΣZ = E(Z−EZ)(Z−EZ)T exists (note that it must be non-degenerate for
the density pZ to be well-defined), it is easy to see using the change-of-variables formula that

M(Z) =
M

(
Σ

−1/2
Z Z

)

√
det(ΣZ)

, hence

(3.1) P(‖Z − z‖ ≤ R) ≤M
(
Σ
−1/2
Z Z

) Vd(R)√
det(ΣZ)

.

The advantage of the latter expression is that the quantity M
(
Σ
−1/2
Z Z

)
is invariant with

respect to the affine transformations of Z. Let us also recall that Vd(R) satisfies the following
inequalities for some absolute positive constants c1 and c2:

(3.2)
c1√
d

(√
2πeR√
d

)d

≤ Vd(R) ≤ c2√
d

(√
2πeR√
d

)d

.

For special classes of distributions, better estimates for the small ball probabilities are avail-
able. Next, we will recall several results in this direction.

Theorem 3.1 (Theorem 4 in [29]). Let Z have multivariate normal distribution N(0,Σ)
and let m(‖Z‖) be the median corresponding to the distribution of ‖Z‖. Then for all x ∈ R

d,

P(‖Z − x‖ ≤ tm(‖Z‖)) ≤ 1

2
(2t)

m2(‖Z‖)
4‖Σ‖ .

It is helpful to recall that c1
√

tr (Σ) ≤ m(‖Z‖) ≤ c2
√

tr (Σ) for absolute constants 0 < c1 <
c2 < ∞, implying that the size of small balls is essentially controlled by the effective rank
r(Σ). A more general result, stated below, is due to Rudelson and Vershynin [47].
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Theorem 3.2 (Theorem 1.5 in [47]). Assume that Z ∈ R
d is given by a linear transforma-

tion Z = AX where X = (X1, . . . , Xk) ∈ R
k is a centered random vector with independent

coordinates such that the covariance matrix ΣX = Ik and M0 := maxj=1,...,k M(Xj) < ∞.

Then for any ε > 0, there exists a positive constant Cε such that for all x ∈ R
d and t > 0,

P

(
‖Z − x‖ ≤ t

√
tr (ΣZ)

)
≤ (CεM0t)

(1−ε)r̃(ΣZ) ,

where ΣZ = AAT and r̃(ΣZ) =
⌊
tr (ΣZ)
‖ΣZ‖

⌋
= br(ΣZ)c.

In the following sections, we will be especially interested in the small ball probabilities
associated with Zn = 1√

n

∑n
j=1(Yj−EYj) where Y1, . . . , Yn are i.i.d. copies of a random vector

Y with covariance matrix ΣY . To make the inequality (3.1) useful, we need a non-asymptotic

estimate for M
(
Σ
−1/2
Y Zn

)
.

To this end, we will rely on two facts. The first is the generalization of Rogozin’s inequality
proved by Juvskevivcius and Lee [23]: let U1, . . . , Un be i.i.d. copies of a random vector U
with uniform distribution over a ball centered at the origin and with radius RU such that

M(U) = M
(
Σ
−1/2
Y Y

)
. Then

(3.3) M
(
Σ
−1/2
Y Zn

)
≤M


 1√

n

n∑

j=1

Uj


 .

The second estimate, established by Madiman et al. [34], page 17, states that

M


 1√

n

n∑

j=1

Ũj


 ≤ c(d) :=

(1 + d/2)d/2

Γ(1 + d/2)

where Ũ1, . . . , Ũn are i.i.d. with uniform distribution over a ball in R
d of unit volume. The

definition of RU yields that vol
(
B
(
RU ·M1/d

(
Σ−1/2X

)))
= 1, hence

M



M1/d

(
Σ
−1/2
Y Y

)

√
n

n∑

j=1

Uj


 ≤ c(d).

As M(cY ) = c−dM(Y ) for any random vector Y ∈ R
d, we conclude using (3.3) that

M
(
Σ
−1/2
Y Zn

)
≤M

(
Σ
−1/2
Y X

) (1 + d/2)d/2

Γ(1 + d/2)
.

Employing the inequality Γ(1 + d/2) ≥
√

2πd/2
(

d
2e

)d/2
, we get a simple bound

(3.4) M
(
Σ
−1/2
Y Zn

)
≤M

(
Σ
−1/2
Y Y

)
(2e)d/2

and a small ball estimate

(3.5) P(‖Zn − z‖ ≤ R) ≤ c2
M
(
Σ
−1/2
Y Y

)

√
det(ΣY )

(
2e
√
π R√
d

)d

.
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3.2. Upper bounds for the difference between the mean and the median. In this
section, for the ease of notation we will assume that Y ∈ R

d is centered and that m is the
geometric median of PY . Our goal is to estimate the distance between the mean and the
median (which equals ‖m‖ under our assumptions), hence we will exclude the trivial case
m = 0. We are especially interested in the situation when the size of ‖m‖ is independent of
or is weakly dependent on the ambient dimension d.

Theorem 3.3. Assume that the distribution of Y is absolutely continuous with respect to

Lebesgue measure on some linear subspace of Rd. Then m := m(PY ) satisfies the inequality

‖m‖ ≤ min

(
√

tr (ΣY ),
√
‖ΣY ‖

E
1/2‖Y −m‖−2

E‖Y −m‖−1

)
.

Proof. The first part of the bound is straightforward: indeed, since m minimizes the
function z 7→ E‖Y − z‖,

‖m‖ = ‖m− EY ‖ ≤ E‖Y −m‖ ≤ E‖Y ‖ ≤ E
1/2‖Y ‖2.

To deduce the second inequality, note that under the stated assumptions the medianm satisfies

the equation E

[
Y−m

‖Y−m‖

]
= 0, which implies that m =

(
E

1
‖Y−m‖

)−1
E

Y
‖Y−m‖ . Therefore, for

any unit vector u,

〈m,u〉 =
(
E

1

‖Y −m‖

)−1

E

[ 〈Y, u〉
‖Y −m‖

]
≤ E

1/2‖Y −m‖−2

E‖Y −m‖−1
E
1/2 〈Y, u〉2 ,

implying that ‖m‖ ≤
√
‖ΣY ‖ · E

1/2‖Y−m‖−2

E‖Y−m‖−1 .

The inequality ‖m‖ ≤
√
tr (ΣY ) is useful when the effective rank r (ΣY ) is small. When r(ΣY )

is large, it is often possible to find a bound for the ratio of negative moments. This problem
will be discussed in the following section.

3.3. Equivalence of the negative moments of the norm. In view of the inequality stated

in Theorem 3.3, it is interesting to understand when the ratio E
1/2‖Y−m‖−2

E‖Y−m‖−1 of negative moments

is “small,” in particular, when it does not depend on the ambient dimension. We will present
several sufficient conditions in this section that cover many typical situations. We state the
examples in the order of increasing generality: (a) the case of Gaussian random vectors; (b) the
case of linear transformations of a vector with absolutely continuous independent coordinates
and (c) the case of absolutely continuous distributions with bounded density.

Lemma 3.4. Assume that Y has normal distribution N(0,ΣY ) such that the effective rank

of the covariance matrix r(ΣY ) > 10. Then
E
1/2‖Y−m‖−2

E‖Y−m‖−1 ≤ C for an absolute constant C.

Proof. The claim follows from Theorem 3.1 (see Corollary 1 in [29]) once we notice
that the median m(‖Y ‖) of ‖Y ‖ satisfies m(‖Y ‖) ≥ 0.08

√
tr (ΣY ). Indeed, recall that

Y = Σ1/2Z where Z has standard normal distribution. Therefore, E‖Y ‖ = E

√
ZTΣY Z =
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E

√∑d
j=1 λj(ΣY )Z2

j =: f(λ1, . . . , λd). Observe that the function f is concave, hence its mini-

mum in the set 

(λ1, . . . , λd) : λj ≥ 0 ∀j,

d∑

j=1

λj = tr (ΣY )





is achieved at an extreme point (tr (ΣY ), 0, . . . , 0), implying that E‖Y ‖ ≥
√
tr (ΣY )

√
2
π . It

remains to apply Paley-Zygmund inequality to deduce that

P

(
‖Y ‖ ≥ t

√
2

π

√
tr (ΣY )

)
≥ P(‖Y ‖ ≥ tE‖Y ‖) ≥ (1− t)2

(E‖Y ‖)2
E‖Y ‖2 ≥ (1− t)2

2

π

which equals 0.5 for t = 1 − √π/2 > 0.11, and the claim follows. To apply Corollary 1

in [29], we require that m2(‖Y ‖)
4‖ΣY ‖ > 2, which holds in view of the previous bound whenever

r(ΣY ) > 10.

Next, we show that the equivalence of negative moments holds for a larger class of distri-
butions given by linear transformations of a vector with independent coordinates. This class,
denoted P1, was formally defined in section 2. Since any multivariate normal vector is a linear
transformation of the standard normal distribution, Lemma 3.5 below also implies a version
of Lemma 3.4. Recall that M(Y ) stands for the sup-norm of the probability density function
of a random vector Y .

Lemma 3.5. Assume that Y ∈ R
d has distribution PY that belongs to the class P1(M0,K).

Moreover, suppose that the effective rank r(AAT ) ≥ 4. Then

E
1/2‖Y −m‖−2

E‖Y −m‖−1
≤ CM0

for an absolute constant C > 0.

Proof. Note that ΣY = AAT . Therefore,

(
E‖Y −m‖−1

)−1 ≤ E‖Y −m‖ ≤ E‖Y ‖ ≤
√

tr (ΣY )

in view of Jensen’s and Cauchy-Schwarz inequalities. Next, we will prove a general upper
bound for E‖Y − x‖−q. To this end, we will use Theorem 1.5 from the work by Rudelson
and Vershynin [47] which states that for any ε > 0, there exists a positive constant Cε

such that for all x ∈ R
d and t > 0, P

(
‖Y − x‖ ≤ t

√
tr (ΣY )

)
≤ (CεM0t)

(1−ε)r̃(ΣY ), where

r̃(ΣY ) =
⌊
tr (ΣY )
‖ΣY ‖

⌋
= br(ΣY )c. Employing this “small ball” bound and letting r := r̃(ΣY ) for

brevity, we deduce that for any δ > 0 and q < r,

E‖Y − x‖−q =

∫ ∞

0
P
(
‖Y − x‖−q ≤ z

)
dz =

∫ ∞

0
P

(
‖Y − x‖ ≤ t1/q

)dt
t2
,
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where we made a change of variables t = z−1. Making another change of variables t =(
s
√
tr (ΣY )

)q
, we deduce that

E‖Y − x‖−q =
q

(tr (ΣY ))
q/2

∫ ∞

0
P

(
‖Y − x‖ ≤ s

√
tr (ΣY )

) ds

sq+1

≤ q

(tr (ΣY ))
q/2

(∫ ∞

1/δ

ds

sq+1
+

∫ 1/δ

0
(CεM0s)

r(1−ε) ds

sq+1

)
.

Choosing δ to make the sum above small (e.g. δ = CεM0

(
q

r(1−ε)−q

)1/r(1−ε)
), it is easy to

deduce the inequality

E‖Y − x‖−q ≤ 2(CεM0)
q

(tr (ΣY ))
q/2

(
q

r(1− ε)− q

)q/r(1−ε)

.

If ε = r−q−1/2
r , then q

r(1−ε)−q = 2q and q
r(1−ε) ≤ 1. For small values of q, say, q ≤ r/2, this

choice of ε entails the inequality ε > r−1
2r ≥ 3

8 for r ≥ 4, so that Cε can be treated as an
absolute constant. The claim of the lemma corresponds to the case q = 2.

Finally, we discuss the most general situation of absolutely continuous distributions.

Lemma 3.6. Assume Y ∈ R
d has distribution PY that belongs to the class P2(k,M0,K,R).

Then for any x in the range L of ΣY and q < k = dim(L),

E‖Y − x‖−q ≤ c(q)
M
(
Σ
−1/2
Y Y

)q/k

(
k · det1/k(ΣY )

)q/2

for some constant c(q) > 0.

Proof. The proof is similar to the argument behind Lemma 3.5. Note that for any δ > 0

E‖Y − x‖−q =

∫ ∞

0
P(‖Y − x‖ ≤ t1/q)t−2 dt

≤
∫ ∞

1/δ
t−2 dt+

∫ 1/δ

0
P(‖Y − x‖ ≤ t1/q)

dt

t2

= δ +

∫ 1/δ

0
P(‖Y − x‖ ≤ t1/q)t−2 dt

≤ δ + c2
M
(
Σ−1/2Y

)
√
det(ΣY )

∫ 1/δ

0

(√
2πe t1/q√

d

)k
dt

t2

in view of (3.5). For the choice of δ = c3(q)
M

(
Σ

−1/2
Y Y

)q/k

(k det1/k(ΣY ))
q/2 , the latter is bounded by

c4(q)
M

(
Σ

−1/2
Y Y

)q/k

(k·det1/k(ΣY ))
q/2 for some constant c4 > 0 that depends only on q.
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Since
(
E‖Y −m‖−1

)−1 ≤
√

tr (ΣY ), we immediately get from the previous result that
whenever k ≥ 3, then for some absolute constant C > 0

(3.6)
E
1/2‖Y −m‖−2

E‖Y −m‖−1
≤ CM1/k

(
Σ
−1/2
Y Y

)√ tr (ΣY )

k · det1/k(ΣY )
.

Lemma 3.6 is robust to small perturbations: for example, assume that ΣY = λ
∑k

j=1 eje
T
j +

δId where d · δ ≤ Ck · λ. In this case, tr (ΣY )

d·det1/d(ΣY )
can be very large, and direct application of

Lemma 3.6 yields a suboptimal bound. The following simple observation often yields a better
result: for any linear subspace H of Rd,

(3.7) E‖Y − x‖−q ≤ E‖ΠH(Y − x)‖−q,

where ΠH(·) stands for the orthogonal projection onto H. We formalize this observation in
the following statement.

Lemma 3.7. Assume that Y = X + ξ ∈ R
d has distribution PY that belongs to the class

P3(k,M0,K,R, h) and that k ≥ 3. Then for any x ∈ R
d,

E
1/2‖Y − x‖−2

E‖Y − x‖−1
≤ C(1 + h)M1/k

(
Σ
−1/2
X X

)√ tr (ΣX)

k det1/k(ΣX)
.

Proof. Let H be the range of ΣX , where, according to the definition of the class P3,
Y = X + ξ. The dimension of H equals k by assumption. Employing the previously stated
observation (3.7), we deduce that

E‖Y − x‖−2 ≤ E‖ΠH(Y − x)‖−2 = E‖(X +ΠHξ)−ΠHx‖−2

≤ c
M2/k(Ỹ )

k
,

where Ỹ = X + ΠHξ. It remains to note that M(Ỹ ) ≤ M(X) by the elementary properties

of the convolution operator, and that M(X) =
M

(
Σ

−1/2
X X

)

√
det(ΣX)

.

In the case when ΣX = λ
∑k

j=1 eje
T
j , Σξ = δId and d · δ ≤ Ck · λ, the previous result yields

that the ratio of moments is at most O(1)M1/k
(
Σ
−1/2
X X

)
.

Remark 3.8. It should be noted that there exist examples where estimates based on the
ratios of the arithmetic and geometric means provide only crude bounds: for instance, if

λj(ΣY ) =
1

m+j , j = 1, . . . , d for some positive integer m, then
∑d

j=1 λj

maxj≥1 j(
∏j

i=1 λi)
1/j can be made

arbitrary large by varying m and d (more specifically, it is large when m/d is large). However,
under additional assumptions on the distribution (e.g. in the framework of Lemmas 3.5 - 3.7),
better bounds become possible.
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3.4. The geometric median: bounds for the stochastic error. Our goal in this section is
to establish high-confidence deviation bounds for the distance between the empirical geometric
median and its population counterpart. Recall that

DY = E

[
(Y −m)

‖Y −m‖
(Y −m)T

‖Y −m‖

]
, ∆ = ‖DY ‖ .

Note that tr
(
E

[
(Y−m)
‖Y−m‖

(Y−m)T

‖Y−m‖

])
= 1. Therefore, if the random vector Y is sufficiently

“spread out,” we expect that ∆ will be small. To get a rigorous bound supporting this
intuition, we will assume that Y satisfies the following conditions:

(a) Condition (2c) is satisfied. We are especially interested in the situation when K is a
constant that does not depend on the ambient dimension d.

(b) E
(q−2)/q‖Y −m‖−

q
2(q−2) ≤ C(q)

tr (ΣY ) .

When (a) and (b) hold, Hölder’s inequality implies that

∆ = sup
‖u‖=1

E

[
〈Y −m,u〉2
‖Y −m‖2

]
≤ sup

‖u‖=1
E
2/q |〈Y −m,u〉|q E(q−2)/q‖Y −m‖−

q
2(q−2)(3.8)

≤ K C(q)
‖ΣY ‖
tr (ΣY )

=
K C(q)

r(ΣY )
.(3.9)

Moment equivalence condition (a) has been discussed in detail in section in remark 2.2. Con-
dition (b) holds for the classes of distributions discussed in section 3.3 when the effective rank
of ΣY is sufficiently large relative to q

q−2 . For instance, it holds for linear transformations
of random vectors with independent coordinates as well as for random vectors with “well-
conditioned” covariance matrices, in a sense that the geometric mean of their eigenvalues
is equivalent to the arithmetic mean. We conclude that for large classes of distributions,
tr (ΣY )∆ � ‖ΣY ‖: indeed, if r(ΣY ) is small, then it follows since ∆ ≤ 1, and if r(ΣY ) is large,
it follows from the previous discussion. We are ready to state the main result of this section.

Theorem 3.9. Let m := m(PY ) be the geometric median associated with the distribution

PY and m̂ - its empirical counterpart based on an i.i.d. sample Y1, . . . , Yk from PY . Assume

that ∆ < 1. Then there exist constants c1(∆), c2(∆) that depend only on ∆ such that, if

(3.10) E
1/2 1

‖Y −m‖2

(√
tr (ΣY )

k
+
√
∆tr (ΣY )

√
s

k
+
√

tr (ΣY )
s

k

)
< c1(∆),

then

‖m̂−m‖ ≤ K(∆)

(√
tr (ΣY )

k
+
√

∆tr (ΣY )

√
s

k
+
√

tr (ΣY )
s

k

)

that holds with probability at least 1− 2e−s − 2e−k/4 for all s ≤ c2(∆)k.

Remark 3.10. ˙
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1. In view of the discussion preceding the theorem, we are mainly interested in the
situation when r(ΣY ) is bounded from below by a sufficiently large absolute constant
and when ∆ is not too close to 1, e.g. ∆ ≤ 1/2.

2. Assumption (3.10) is rather mild: indeed, we showed in section 3.3 that in many
common situations, E1/2 1

‖Y−m‖2 �
1√

tr (ΣY )
.

When the confidence parameter s is not too large (s .
√
k), Theorem 3.9 implies the deviation

guarantees of sub-Gaussian type. This fact is formally stated below.

Corollary 3.11. Assume that assumption (3.10) is satisfied. If s ≤ min
(√

k, c2(∆)k
)
, then

‖m̂−m‖ ≤ K(∆)

(√
tr (ΣY )

k
+
√

∆tr (ΣY )

√
s

k

)

with probability at least 1− 2e−s − 2e−k/4.

Proof of the theorem. Recall that, in view of Theorem 3.1 in [37], ‖m̂−m‖ ≤ 2
√

tr (ΣY )
on event E of probability at least 1 − e−k/4 (it suffices to take p = 1/8 and α = 5/12 in
the aforementioned result). In what follows, we will assume that event E occurs. Define
û := m−m̂

‖m−m̂‖ (for absolutely continuous distributions, m̂ 6= m with probability 1, so û is

well-defined) and

Gk(s) :=
1

k

k∑

j=1

‖m+ sû− Yj‖.

Then Gk(s) is convex, achieves its minimum at ŝ = ‖m̂ − m‖, and its derivative G′
k(s) is

non-decreasing and satisfies G′
k(s) ≤ 0 for s ∈ [0, ŝ]. It implies that ‖m̂−m‖ ≥ t is true only

if G′
k(t) ≤ 0. In view of convexity of Gk,

0 ≥ G′
k(t) ≥ G′

k(0) + inf
0≤z≤t

G′′
k(z) · t,

where G′′
k(z) =

1
k

∑k
j=1

1
‖m+zû−Yj‖

(
1−

〈
m+zû−Yj

‖m+zû−Yj‖ , û
〉2)

. Therefore, a necessary condition

for the inequality ‖m̂−m‖ ≥ t to hold is

1

k

k∑

j=1

〈
m− Yj
‖m− Yj‖

, û

〉
≥ t inf

0≤z≤t

1

k

k∑

j=1

1

‖m+ zû− Yj‖

(
1−

〈
m+ zû− Yj
‖m+ zû− Yj‖

, û

〉2
)
,

which is possible only if

∥∥∥∥∥∥
1

k

k∑

j=1

m− Yj
‖m− Yj‖

∥∥∥∥∥∥
≥ t inf

0≤z≤t

1

k

k∑

j=1

1

‖m+ zû− Yj‖

(
1−

〈
m+ zû− Yj
‖m+ zû− Yj‖

, û

〉2
)
.

Next, we will find high confidence bounds for both sides of the inequality above. Note that
we can assume that t ≤ 2

√
tr (ΣY ) on event E .
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Lemma 3.12. With probability at least 1− e−s,

(3.11)

∥∥∥∥∥∥
1

k

k∑

j=1

Yj −m

‖Yj −m‖

∥∥∥∥∥∥
≤ 2√

k
+
√
∆

√
2s

k
+

4s

3k
.

Moreover, if that random vector Y−m
‖Y−m‖ has sub-Gaussian distribution, then

(3.12)

∥∥∥∥∥∥
1

k

k∑

j=1

Yj −m

‖Yj −m‖

∥∥∥∥∥∥
≤ C

(
1√
k
+
√
∆

√
s

k

)

for an absolute constant C > 0 and with probability at least 1− e−s.

Proof. Let Xk(u) =
1
k

∑k
j=1

〈
Yj−m

‖Yj−m‖ , u
〉
and note that EXk(u) = 0 for all u. Next, write

the norm as

sup
‖u‖=1

Xk(u) = sup
‖u‖=1

1

k

k∑

j=1

〈
Yj −m

‖Yj −m‖ , u
〉
.

Bousquet’s version of Talagrand’s concentration inequality (see [5]) yields that

sup
‖u‖=1

Xk(u) ≤ 2E sup
‖u‖=1

Xk(u) + sup
‖u‖=1

Var1/2 (Xk(u))
√
2s+

4s

3k

with probability at least 1− e−s. It remains to notice that

E sup
‖u‖=1

Xk(u) ≤ E
1/2

∥∥∥∥∥∥
1

k

k∑

j=1

Yj −m

‖Yj −m‖

∥∥∥∥∥∥

2

=
1√
k
E
1/2

∥∥∥∥
Y1 −m

‖Y1 −m‖

∥∥∥∥
2

=
1√
k

and that sup‖u‖=1Var
1/2 (Xk(u)) =

1√
k

∥∥∥E Y1−m
‖Y1−m‖

(Y1−m)T

‖Y1−m‖

∥∥∥
1/2

=
√

∆
k . Part (b) of the lemma

follows from the standard concentration bound for sub-Gaussian processes (see [15]) in place
of Bousquet’s inequality.

Lemma 3.13. Let τ > be a positive constant, and define

δ := δ(k, t, τ,∆; s) := (1 + τ)

(
√
∆

(
1 +

√
2s

k

)
+

4√
k

)

+ 2(4 + 1/τ)t2E
1

‖Y −m‖2 +

(
8 +

4τ

3
+

5

3τ

)
s

k

If δ < 1, then the following inequality holds with probability at least 1− 2e−k/4 − 2e−s:

inf
‖u‖=1,‖m−x‖≤t

1

k

k∑

j=1

1

‖Yj − x‖

(
1−

〈
Yj − x

‖Yj − x‖ , u
〉2
)
≥ C (δ)√

tr (ΣY )
.
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Remark 3.14. Since ∆ < 1 (recall that we are mostly interested in the situation ∆ ≤ 1/2),
there exist τ = τ(∆) > 0 and ε = ε(∆) > 0 such that δ < 1 whenever

t < ε
(
E
1/2‖Y1 −m‖−2

)−1

and k is sufficiently large; let us again recall that in many typical situations,

(
E
1/2‖Y1 −m‖−2

)−1
�
√

tr (ΣY ).

Proof. Note that on event E that was defined at the start of the proof of the theorem,
‖Yj − x‖ ≤ ‖Yj −m‖+ 2

√
tr (ΣY ) for all j, hence one easily gets that for any κ > 0,

P

(
∃J ⊂ [k] : |J | ≥ κk and ‖Yj − x‖ ≥ (c(κ) + 2)

√
tr (ΣY ), j ∈ J

)

≤
(

k

bκkc

)(
2/c(κ)2

)bκkc ≤ e−k

where c(κ) < (e1/κ/κ)1/2. Consequently, on event E1 of probability at least 1− e−k,

‖Yj − x‖ ≤ (c(κ) + 2)
√

tr (ΣY ) for all j ∈ J such that |J | ≥ (1− κ)k.

Next, we will find an upper bound for 1
k

∑k
j=1

〈
Yj−x

‖Yj−x‖ , u
〉2

that holds uniformly over u. Recall

the following elementary inequality that is valid for all vectors y1, y2 ∈ R
d:
∥∥∥ y1
‖y1‖ −

y2
‖y2‖

∥∥∥ ≤
2 ‖y1−y2‖
max(‖y1‖,‖y2‖) . It implies that for all j, 1 ≤ j ≤ k,

∣∣∣∣
〈

Yj − x

‖Yj − x‖ , u
〉
−
〈

Yj −m

‖Yj −m‖ , u
〉∣∣∣∣

2

≤ 4min

(
1,
‖x−m‖2
‖Yj −m‖2

)

so that for any τ > 0,

(3.13) sup
‖u‖=1,‖x−m‖≤t

1

k

k∑

j=1

〈
Yj − x

‖Yj − x‖ , u
〉2

≤ 1 + τ

k

k∑

j=1

〈
Yj −m

‖Yj −m‖ , u
〉2

+
4 + 1/τ

k

k∑

j=1

min

(
1,

t2

‖Yj −m‖2
)
.

The first term in the sum above can be estimated as follows: note that

1

k

k∑

j=1

〈
Yj −m

‖Yj −m‖ , u
〉2

≤ 1

k

k∑

j=1

∣∣∣∣
〈

Yj −m

‖Yj −m‖ , u
〉∣∣∣∣

and define

Zk(u) =
1

k

k∑

j=1

∣∣∣∣
〈

Yj −m

‖Yj −m‖ , u
〉∣∣∣∣− E

∣∣∣∣
〈

Y1 −m

‖Y1 −m‖ , u
〉∣∣∣∣ .
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Bousquet’s version of Talagrand’s concentration inequality yields that

sup
‖u‖=1

Zk(u) ≤ 2E sup
‖u‖=1

Zk(u) + sup
‖u‖=1

Var1/2 (Zk(u))
√
2s+

4s

3k

with probability at least 1 − e−s. It remains to note that E

∣∣∣
〈

Y1−m
‖Y1−m‖ , u

〉∣∣∣ ≤
√
∆ in view of

Cauchy-Schwarz inequality, and that

E sup
‖u‖=1

Zk(u) ≤ 2E sup
‖u‖=1

1

k

k∑

j=1

εj

∣∣∣∣
〈

Yj −m

‖Yj −m‖ , u
〉∣∣∣∣

≤ 4E sup
‖u‖=1

1

k

k∑

j=1

〈
Yj −m

‖Yj −m‖ , u
〉

= 4E

∥∥∥∥∥∥
1

k

k∑

j=1

Yj −m

‖Yj −m‖

∥∥∥∥∥∥
≤ 4√

k

in view of the symmetrization and Talagrand’s contraction inequalities (see [16]). To summa-
rize, we showed that with probability at least 1− e−s, for all unit vectors u,

(3.14)
1 + τ

k

k∑

j=1

∣∣∣∣
〈

Yj −m

‖Yj −m‖ , u
〉∣∣∣∣ ≤ (1 + τ)

(
√
∆

(
1 +

√
2s

k

)
+

4√
k
+

4s

3k

)
.

In view of Bernstein’s inequality, the second term in (3.13) is at most

(3.15) (4 + 1/τ)

(
Emin

(
1,

z2

‖Yj −m‖2
)
+ 2

√
Var

(
min

(
1,

z2

‖Y −m‖2
))√

s

k
+

2s

3k

)

≤ (4 + 1/τ)

(
2t2E

1

‖Y −m‖2 +
5s

3k

)

with probability at least 1− e−s. Combining (3.13), (3.14), (3.15), we deduce the inequality

sup
‖u‖=1,‖x−m‖≤t

1

k

k∑

j=1

〈
Yj − x

‖Yj − x‖ , u
〉2

≤ δ(k, t, τ,∆; s) := (1 + τ)

(
√
∆

(
1 +

√
2s

k

)
+

4√
k

)

+ 2(4 + 1/τ)t2E
1

‖Y −m‖2 +

(
8 +

4τ

3
+

5

3τ

)
s

k

that holds with probability at least 1− 2e−s. If δ(k, t, τ,∆; s) < 1, then
∣∣∣∣∣

{
j :

〈
Yj − x

‖Yj − x‖ , u
〉2

≥ δ1/2(k, t, τ,∆; s)

}∣∣∣∣∣ ≤ δ1/2(k, t, τ,∆; s)k

uniformly over all ‖u‖ = 1 and ‖x −m‖ ≤ t with probability at least 1 − 2e−s. Now we set

κ := 1−δ1/2(k,t,τ,∆;s)
2 in (8) and deduce that for all u, there exists a subset J of cardinality
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at least κk such that 1
‖Yj−x‖ ≥

1

C(κ)
√

tr (ΣY )
and

〈
Yj−x

‖Yj−x‖ , u
〉2

< δ1/2(k, t, τ,∆; s) < 1 for all

j ∈ J . Consequently,

inf
‖u‖=1,‖m−x‖≤z

1

k

k∑

j=1

1

‖Yj − x‖

(
1−

〈
Yj − x

‖Yj − x‖ , u
〉2
)
≥ C (κ)√

tr (ΣY )

with probability at least 1− 2e−k/4 − 2e−s, where C (κ)→∞ as κ→ 0.

To complete the proof of the theorem, choose

t = t̂ := K

(√
tr (ΣY )

k
+
√
∆tr (ΣY )

√
s

k
+
√

tr (ΣY )
s

k

)

where the constant K is sufficiently large (the specific requirement for the size of K is given
below). If k ≥ k0(∆) is large enough, s ≤ c1(∆)k and t̂E1/2‖Y − m‖−2 ≤ c2(∆), then
δ(k, t̂, τ,∆) < 1, implying that the results of Lemmas 3.12 and 3.13 hold with t = t̂ on event
E2 of probability at least 1 − 2e−k/4 − 2e−s. If ‖m̂‖ ≥ t̂, then the following inequality must
hold on E2:

t̂ ≤ 1

C ′(∆)

(√
tr (ΣY )

k
+
√

∆tr (ΣY )

√
s

k

)
.

If K is set so that K > 1
C′(∆) , this yields a contradiction. Finally, the bound for the case

when Y−m
‖Y−m‖ has sub-Gaussian distribution follows with (3.12) in place of (3.11).

3.5. Implications for the median of means estimator. In this section we prove Theorem
2.1. To this end, we will apply Theorems 3.3 and 3.9 to the distribution P (n) of the average
1
n

∑n
j=1 Yj and the sample Ȳ1, . . . , Ȳk, noting that the corresponding covariance matrix satisfies

ΣȲ1
= Σ

n � 2Σ k
N whenever k ≤ N/2. In what follows, let mn denote the geometric median of

P (n).
Consider two scenarios: if r(ΣY ) ≤ c q

q−2 , then the inequality (1.1) readily yields the

result. On the other hand, if r(ΣY ) > c q
q−2 , then ∆tr (ΣY ) ≤ C(q)‖ΣY ‖ and E

1/2 1
‖Y−m‖2 ≤

C′√
tr (ΣY )

for a constant C ′ that depends on the parameters of the class Pj , j ∈ {1, 2, 3}. It

remains to show that the relevant parameters of the distribution P (n) can be controlled by
the corresponding parameters of the distribution PY . First, recall the inequality (3.4) which
implies that

M1/k
(
Σ
−1/2

Ȳ1

√
nȲ1

)
≤
√
2eM1/k

(
Σ
−1/2
Y Y

)
.

Therefore, the ratio E
1/2‖√n(Ȳ1−mn)‖−2

E‖√n(Ȳ1−mn)‖−1 can be estimated via Lemma 3.5, Lemma 3.6 or Lemma

3.7 in terms of parameters of the distribution PY whenever it belongs to one of the classes
Pj , j ∈ {1, 2, 3}. Next, consider the norm of the spatial sign covariance matrix

∆(n) :=

∥∥∥∥E
[
(Ȳ1 −mn)

‖Ȳ1 −mn‖
(Ȳ1 −mn)

T

‖Ȳ1 −mn‖

]∥∥∥∥ .
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In view of the well-known moment bounds (e.g., the Marcinkiewicz-Zygmund type inequality
by Rio [45]), for any unit vector u and q > 2,

E

∣∣∣∣∣∣

〈
1√
n

n∑

j=1

Yj , u

〉∣∣∣∣∣∣

q

≤ (q − 1)q/2E |〈Y1, u〉|q ,

thus the reasoning similar to (3.9) implies that

(3.16) ∆(n) ≤ KC1(q)

r(ΣY )

whenever PY ∈ Pj , j ∈ {1, 2, 3}. Therefore, conditions of Theorem 3.9 hold for k large
enough, and we deduce that

(3.17) ‖µ̂N − µ‖ ≤ ‖mn − µ‖+ ‖µ̂N −mn‖

≤ 2

√
‖ΣY ‖k

N

E
1/2‖√n(Ȳ1 −mn)‖−2

E‖√n(Ȳ1 −mn)‖−1
+K(∆(n))



√

tr (ΣY )

N
+
√

∆(n) tr (ΣY )

√√
k

N




with probability at least 1 − 4e−
√
k. The final form of the bound follows once we apply the

inequality (3.16) and estimate the ratio of moments via one of the lemmas in section 3.3. For
instance, if PY ∈ P1(M0,K), then Lemma 3.5 combined with (3.17) implies that

‖µ̂N − µ‖ ≤ C


M0

√
‖ΣY ‖k

N
+

√
tr (ΣY )

N
+
√

KC1(q)

√

‖ΣY ‖
√
k

N




≤ C

(
M0

√
‖ΣY ‖k

N
+

√
tr (ΣY )

N

)

with probability at least 1−4e−
√
k whenever k ≥ k0(M0,K, q). Bounds for the classes P2 and

P3 follow similarly.

Remark 3.15 (regarding efficiency). The values of most numerical constants appearing
in our bounds were left unspecified, however, they are important in applications. In one-
dimensional case, the question related to the optimality of the guarantees for the MOM
estimator was explored in the paper [38]. It turns out that one can improve the performance

of MOM estimator by making the estimator permutation-invariant: specifically, let A(n)
N =

{J ⊂ {1, . . . , N} : |J | = n} and ȲJ = 1
n

∑
i∈J Yi, and define

µ̂U
N := med

(
ȲJ , J ∈ A(n)

N

)
.

That is, µ̂U
N is the geometric median of the means evaluated over all possible subsets of the data

of given size n. Since card
(
A(n)

N

)
=
(
N
n

)
is too large, we can approximate µ̂U

N via iterating the
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following procedure: (1) apply a random permutation to the sample Y1, . . . , YN ; (2) partition
the permuted sample into k disjoint blocks of size n; (3) compute the sample means over the
resulting blocks. After repeating the process l times, we obtain a set k · l sample means. We
then compute the geometric median of this set. We tested this procedure with l = 10 in our
numerical simulations described in section 5 below, and confirmed its excellent performance.
Theoretical justification of the advantages of this approach in the case of multivariate data
are left for the future work.

4. Numerical error bounds. In this section we first propose a practical numerical proce-
dure for approximating the geometric median which admits provable error bounds based on
Theorem 2.3. The method itself is an accelerated gradient descent of a smooth relaxation of
the mean norm deviation function F (z; {yj}kj=1) =

1
k

∑k
j=1 ‖z−yj‖. While this method enjoys

theoretical support, we found that it can still be improved in practice. This improvement is
achieved by Newton’s method applied to successively weaker smooth relaxations of F (z) is fast
in simulations, but does not enjoy the same theoretical guarantees. Despite this theoretical
gap, Theorem 2.3 ensures that we can always check if the output of any numerical routine
satisfies error thresholds.

This rest of the exposition is organized as follows: subsection 4.1 details the aforementioned
algorithms, subsection 4.2 provides theoretical analysis of the accelerated gradient method,
and finally subsection 4.3 contains the proof of Theorem 2.3.

4.1. Algorithms. Given {yi}ki=1 ⊂ R
d and δ > 0, a smooth relaxation of the mean norm

deviation function F (z) is defined via

Fδ(z) = Fδ

(
z; {yi}ki=1

)
=

1

k

k∑

i=1

√
‖z − yi‖2 + δ2.(4.1)

This relaxation involves terms reminiscent of the Charbonnier loss, so we call this function and
the associated minimization program the Charbonnier relaxation of the mean norm deviation.
The main advantage of the Charbonnier relaxation is that, unlike F (z) the function Fδ(z) is
smooth, therefore, one may perform accelerated gradient descent to approximate its critical
point. At the same time, we show that for small δ, this critical point must be close to the
minimizer of F (z). Algorithm 4.1 below is just Nesterov’s accelerated gradient descent [40]
applied to the Charbonnier relaxation with δ = ε/2 for ε > 0 being the desired error threshold.

Using the standard results for accelerated gradient descent and simple sub-optimality
bounds, we establish the following estimate.

Theorem 4.1. The output of Algorithm 4.1 satisfies F (x(t))− F (m̂) < ε.

The proof is given in section 4.2. Recall that, in view of quadratic growth condition proved
in Theorem 2.3, whenever ‖z − m̂‖ is small, it behaves like

√
F (z)− F (m̂).

In turn, it implies that the Restarted Gradient Descent algorithm [51] achieves an iteration
complexity of order O(ε−1 log(ε−1)) for computation of the geometric median. However, the
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Algorithm 4.1 Accelerated Gradient Descent of the Charbonnier Relaxation

Require: ε > 0, t = 0, α0 = 3/4, {yi}ki=1 ∈ R
d, x(0) = v(0) = ȳk := k−1

∑k
i=1 yi

while ε/2 ≤ 16
9(t+1)2

[
Fε/2(ȳk) +

9
4εF

2
ε/2(ȳk)

]
do

x(t+1) ← v(t) − ε
2∇Fε/2(v

(t))

αt+1 ← αt
2

(√
α2
t + 4− αt

)

v(t+1) ← x(t+1) + αt(1−αt)
α2
t+αt+1

(xt+1 − xt)

t← t+ 1
end while

return x(t)

algorithm 4.1 admits the better iteration complexity O(ε−1) due to the strong convexity of
the Charbonnier relaxation.

In practice, we found that a simple second order method outperforms Algorithm 4.1.
It proceeds by decreasing δ by a fixed multiplicative factor and performing a single step of
Newton’s method on Fδ for each iteration until satisfaction of the stopping rule described in
Corollary 2.5. However, we note that, unlike algorithm 4.1, no rigorous analysis for algorithm

Algorithm 4.2 Newton’s Method for Successive Charbonnier Relaxation

Require: ε > 0, t = 0, τ = 1, M > 1, {yi}ki=1 ∈ R
d, x(0) = ȳk; constants a, b defined in the

statement of Theorem 2.3.
while aε

2b2(ε+b)
≤ ‖∇F (x(t))‖ do

τ ← τ/M

x(t+1) ← x(t) −
(
∇2Fτ (x

(t))
)−1∇Fτ (x

(t))
t← t+ 1

end while

return x(t)

4.2 is currently known to us.

4.2. Proof of Theorem 4.1. To prove Theorem 4.1, we first exhibit simple sub-optimality
bounds for the solution to the Charbonnier relaxation. Since Fδ is smooth, the Lipschitz
constant for ∇Fδ equals supx∈Rd ‖∇2Fδ(x)‖. The following estimate is straightforward:

‖∇2Fδ(x)‖ =
∥∥∥∥∥
1

k

k∑

i=1

1√
‖x− yi‖2 + δ2

(
I − 1

‖x− yi‖2 + δ2
(yi − x)(yi − x)T

)∥∥∥∥∥ ≤
1

δ
.

Indeed, it follows from the relation
∥∥∥∥I −

1

‖x− yi‖2 + δ2
(yi − x)(yi − x)T

∥∥∥∥ ≤ 1

that holds for all i = 1, . . . , k. Thus, we may minimize Fδ using the “constant step scheme II”
method on page 93 of the book by Nesterov [40]. In the notation of [40], we have that qf = 0,
so we get the following sub-optimality bound.
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Lemma 4.2. Suppose {yi}ki=1 ⊂ R
d, δ > 0, and let x∗,δ minimize Fδ. Then the updates xt

of algorithm 4.1 satify

Fδ(x
(t))− Fδ(x∗,δ) ≤

16

9(t+ 1)2

[
Fδ(ȳk) +

9

8δ
F 2
δ (ȳk)

]

for all t ≥ 0.

Proof. Theorem 2.2.3 in the book by Nesterov [40] holds with qf = 0 since

α0 =
3

4
≤ 6

3 +
√
21

in accordance with condition (2.2.21) of the book. This yields the bound

Fδ(x
(t))− Fδ(x∗,δ) ≤

4L

γ0(k + 1)2

[
Fδ(x

(0))− Fδ(x∗,δ) +
γ0
2
‖x(0) − x∗,δ‖2

]

with L = 1
δ and γ0 =

α2
0

1−α0
= 9

4L. The desired result follows from this bound when we also
invoke the inequalities Fδ(ȳk)− Fδ(x∗,δ) ≤ Fδ(ȳk) and ‖ȳk − x∗,δ‖ ≤ Fδ(ȳk).

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Using sub-additivity of the square root, observe that

F (z) ≤ Fδ(z) ≤ F (z) + δ

for all z ∈ R
d. Consequently, if m̂ minimizes F and x∗,δ minimizes Fδ, then

F (m̂) ≤ F (x∗,δ) ≤ Fδ(x∗,δ) ≤ F (m̂) + δ.

Therefore, a ε
2 numerical approximation x̃ to x∗,ε/2 satisfies

F (x̃)− F (m̂) ≤ Fδ(x̃)− F (m̂)

= Fδ(x̃)− Fδ(x∗,ε/2) + Fδ(x∗,ε/2)− F (m̂)

≤ ε

2
+

ε

2
= ε.

With x̃ = x(t) being the output of Algorithm 4.1, the termination condition and the bound of
Lemma 4.2 together imply the result.

Remark 4.3. Note that Fδ(x
(t))−Fδ(x∗,δ) ≤ δ whenever 4

3
√
δ

[
f + 9

8δf
2
]1/2− 1 ≤ t, where

f = Fδ(ȳk). When δ = ε/2, we see that the required number of iterations t is of order1/ε.
While computer science literature (e.g. [12]) exhibits better bounds than these, the numerical
constants in those algorithms can be impractical.
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4.3. Proof of Theorem 2.3. Fix z ∈ R
d with z 6= m̂, let r = ‖z−m̂‖, and set u = 1

r (z−m̂).
In view of the second fundamental theorem of calculus,

F (z)− F (m̂) =

∫ r

0
∇F (m̂+ tu)Tudt

=
1

k

∫ r

0

k∑

i=1

1

‖m̂− yi + tu‖(m̂− yi + tu)Tudt

=
1

k

∫ r

0

k∑

i=1

(m̂− yi)
Tu+ t√

‖m̂− yi‖2 + 2t(m̂− yi)Tu+ t2
dt

=
1

k

∫ r

0

k∑

i=1

γici + t√
(γici + t)2 + γ2i (1− c2i )

dt.

In this last line, we set γi = ‖m̂ − yi‖ and ci = 1
γi
(m̂ − yi)

Tu. By the Cauchy-Schwarz

inequality, we have that c2i ≤ 1. If c2i = 1, then

γici + t√
(γici + t)2 + γ2i (1− c2i )

= sgn(γici + t) ≥ ci

for all t > 0. If c2i < 1, then

γici + t√
(γici + t)2 + γ2i (1− c2i )

= ci +

∫ t

0

γ2i (1− c2i )[
(γici + s)2 + γ2i (1− c2i )

]3/2ds.

Note that
∑k

i=1 ci = ∇F (m̂)Tu = 0 since m̂ is the minimizer. Consequently, we have that

F (z)− F (m̂) ≥ 1

k

∫ r

0




k∑

i=1

ci +
∑

i:c2i<1

∫ t

0

γ2i (1− c2i )[
(γici + s)2 + γ2i (1− c2i )

]3/2ds


 dt

=
1

k

∑

i:c2i<1

∫ r

0

∫ t

0

γ2i (1− c2i )[
(γici + s)2 + γ2i (1− c2i )

]3/2ds dt

=
1

k

∑

i:c2i<1

∫ r

0

∫ t

0

1− c2i
γi

1
[
(ci +

s
γi
)2 + (1− c2i )

]3/2ds dt.

Given that

(
ci +

s

γi

)2

+ (1− c2i ) =
s2

γ2i
+ 2ci

s

γi
+ 1 ≤ s2

γ2i
+ 2

s

γi
+ 1 =

(
1 +

s

γi

)2

,
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we obtain the lower bound

F (z)− F (m̂) ≥ 1

k

∑

i:c2i<1

∫ r

0

∫ t

0

1− c2i
γi

1
[
( s
γi

+ 1)2
]3/2ds dt

=
1

k

∑

i:c2i<1

∫ r

0

∫ t

0

1− c2i
γi

1

( s
γi

+ 1)3
ds dt

=
1

k

∑

i:c2i<1

∫ r

0

∫ t

0

γ2i (1− c2i )

(s+ γi)3
ds dt

=
1

k




k∑

j=1

γ2j (1− c2j )



∫ r

0

∫ t

0

k∑

i=1

γ2i (1− c2i )∑k
j=1 γ

2
j (1− c2j )

1

(s+ γi)3
ds dt.

Noting that the inverse cubic function is convex, Jensen’s inequality and straightforward
integration yields

F (z)− F (m̂) ≥ 1

k




k∑

j=1

γ2j (1− c2j )



∫ r

0

∫ t

0

1
(
s+

∑k
i=1 γ

3
i (1−c2i )∑k

j=1 γ
2
j (1−c2j )

)3ds dt

=
1

2k




k∑

j=1

γ2j (1− c2j )


 r2
(∑k

i=1 γ
3
i (1−c2i )∑k

j=1 γ
2
j (1−c2j )

)2(
r +

∑k
i=1 γ

3
i (1−c2i )∑k

j=1 γ
2
j (1−c2j )

) .

We now observe that

k∑

i=1

γ3i (1− c2i ) ≤
k∑

i=1

‖m̂− yi‖3 ≤
k∑

i=1

(‖m̂‖+ ‖yi‖)3 ≤
k∑

i=1

(
2

k
F (0) + ‖yi‖

)3

and also that

k∑

i=1

γ2i (1− c2i ) =
k∑

i=1

‖m̂− yi‖2 −
(
(m̂− yi)

Tu
)2

=
k∑

i=1

d∑

j=2

uTj (m̂− yi)(m̂− yi)
Tuj ,

where {u, u2, . . . , ud} is an orthonormal basis of Rd. We further notice that

k∑

i=1

(m̂− yi)(m̂− yi)
T =

k∑

i=1

(m̂− x+ x− yi)(m̂− x+ x− yi)
T

= k(m̂− x)(m̂− x)T +
k∑

i=1

(yi − x)(yi − x)T .

The Courant-Fischer characterization of the eigenvalues gives the inequality

k∑

i=1

γ2i (1− c2i ) ≥
d∑

j=2

uTj

(
k∑

i=1

(yi − x)(yi − x)T

)
uj ≥ k

d∑

j=2

λj(Σ̂),
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where {λj(Σ̂)}dj=1 are the eigenvalues of Σ̂ listed with multiplicity and in the non-increasing
order. We therefore deduce that

F (z)− F (m̂) ≥ 1

2

∑d
j=2 λj(Σ̂)r

2

(
1
k

∑k
i=1(2ν1+‖yi−x‖)3
∑d

j=2 λj(Σ̂)

)2(
r +

1
k

∑k
i=1(2ν1+‖yi−x‖)3
∑d

j=2 λj(Σ̂)

) ,

thus completing the proof of Theorem 2.3.

5. Numerical experiments. We consider 21 years worth of daily adjusted closing prices
for a subset of 361 symbols from the S&P 500, and attempt to predict year-to-year average
log-return vectors for these adjusted closing prices across the symbols. We retrieve the data in
the date range January 1st, 2003 to December 31st, 2023 from Yahoo Finance using the python
package “yfinance, ” yielding 361-dimensional examples with approximately 250 examples per
year for 21 years (or, for 20 pairs of consecutive years). For each estimator and each pair of
consecutive years in the dataset, we use the estimator fit the first year’s data as a prediction
for the average log-return vector of the second year. That is, if µt+1 ∈ R

361 is the mean of

log-returns for the year t+1, we estimate it using the log-return data X
(t)
j , j = 1, . . . , 250 for

the year t. This framework is based on a simple model X
(t)
j = µt +Z

(t)
j , j = 1, . . . , 250 where

µt ∈ R
361 and Z

(t)
j , t = 1, . . . , 21, j = 1, . . . , 250 are i.i.d. random vectors. We assume that

µt is varying slowly so that µt ≈ µt+1.
While heavy tails notoriously appear in log-returns data, we must note that inclusion of a

symbol in the S&P 500 generally entails lower volatility; this fact also justifies our assumption
regarding the slowly varying trend. As such, our experiment only probes “robustness” of our
estimators over a limited number of “shocks” (between 2007 and 2008, and also between 2008
and 2009) where the mean changes substantially, and “non-inferiority” of the estimator in less
volatile regimes.

We compare several estimators: the standard mean (mean), the entry-wise median (me-
dian), the geometric median (g median), the geometric MOM with k = 5 blocks (gMOM5), the
geometric MOM with k = 10 blocks (gMOM10), and the approximation of the permutation-
invariant version of the MOM estimator described in remark 3.15, where we set the value of
parameter l to 10 (gMOM Rep). Since the standard MOM estimators involve random parti-
tions of the data, we perform the experiment 25 times for each estimation problem and take
the mean of the resulting errors to indicate average behavior.

Figure 1 indicates the “training errors” for the different estimators in the sense that we
consider the relative norm error

‖µ̂− µ̄t+1‖
‖µ̄t+1‖

where µ̂ is the output of the estimator on the first year’s data and µ̄t+1 is the empirical
mean for the second year. In particular, this shows that the geometric MOM estimators are
generally much closer to the standard mean than both the entry-wise median estimator and
the geometric median estimator.

Figure 2 displays the prediction errors for using the different estimators to predict the next
year’s average log-return. In this plot, year indices are sorted so that the prediction errors
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Appendix A. Notation. Here, we collect some of the key notation scattered throughout
the paper.

1. m or m(P ) stand for the (geometric) median of the distribution P ; m̂ stands for the
median corresponding to the empirical distribution based on a sample from P .

2. F (z) denotes the function F (z) = 1
k

∑k
j=1 ‖z − Yj‖.

3. µ̂N stands for the median of means estimator based on the sample Y1, . . . , YN .
4. M(Y ) stands for the sup-norm of the density pY of random vector Y that is absolutely

continuous with respect to the volume measure on a linear subspace of Rd.
5. The spatial sign covariance matrix DY is defined via

DY := E

[
(Y −m)

‖Y −m‖
(Y −m)T

‖Y −m‖

]
,

and its spectral norm is ∆ = ‖DY ‖.
6. mn stands the geometric median of the distribution P (n) of the average 1

n

∑n
j=1 Yj of



GEOMETRIC MEDIAN AND APPLICATIONS 31

i.i.d. random vectors.
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