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Abstract 

Machine learning (ML) is revolutionizing protein structural analysis, including an 
important subproblem of predicting protein residue contact maps, i.e., which amino-
acid residues are in close spatial proximity given the amino-acid sequence of a pro-
tein. Despite recent progresses in ML-based protein contact prediction, predicting 
contacts with a wide range of distances (commonly classified into short-, medium- 
and long-range contacts) remains a challenge. Here, we propose a multiscale graph 
neural network (GNN) based approach taking a cue from multiscale physics simu-
lations, in which a standard pipeline involving a recurrent neural network (RNN) is 
augmented with three GNNs to refine predictive capability for short-, medium- and 
long-range residue contacts, respectively. Test results on the ProteinNet dataset 
show improved accuracy for contacts of all ranges using the proposed multiscale 
RNN+GNN approach over the conventional approach, including the most challeng-
ing case of long-range contact prediction. 

Keywords—protein residue contact prediction; machine learning; multiscale 
approach; recurrent neural network; graph neural network. 

I. Introduction 

The three-dimensional (3D) structure of a protein reveals crucial information 
about how it interacts with other proteins to carry out fundamental biological 
functions. Proteins are linear chains of amino acids that fold into specific 3D 
conformations as a result of the physical properties of the amino acid sequence. The 
structure, in turn, determines the wide range of protein functions. Thus, 
understanding the complexity of protein folding is vital for studying the 
mechanisms of these molecular machines in health and disease, and for 
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development of new drugs. Various machine learning (ML) techniques have been 
applied successfully to protein structure analysis in the past [1, 2]. In previous 
works, for example, we explored fast atomistic learning based on a 2D 
convolutional neural network (CNN), through dimension mapping using space-
filling curves [3]. We have also demonstrated that a novel spatial model built with 
a graph convolution network (GCNN) can be used effectively to produce 
interpretable structural classification [4]. ML models such as neural networks have 
long been applied to predict 1D structural features such as backbone torsion angles, 
secondary structure and solvent accessibility of amino-acid residues. The focus of 
ML applications has since shifted to 2D representation of 3D structures such as 
residue-residue contact maps [5] and inter-residue distance matrices. Recognizing 
that contact maps are similar to 2D images — whose classification and 
interpretation have been among the most successful applications of deep learning 
(DL) approaches — the community has begun to apply DL to recognize patterns in 
the sequences and structures of proteins in the protein data bank (PDB) [6]. CNNs 
have demonstrated excellent performance in image analysis tasks, making them a 
natural choice for the prediction of protein contact maps. The question of how best 
to encode information about the target protein for input to the neural network is an 
active research topic. By analogy, color images are often encoded as three matrices 
of real numbers, i.e., the intensities of red, green and blue color channels for all 
image pixels. Methods such as DeepContact [7] and RaptorX-Contact [8] use input 
features consisting of 𝑁 ×𝑁 (where N is the number of amino acids in the sequence 
of the target protein) residue-residue coupling matrices derived from covariation 
analyses of the target protein, augmented by predictions of local sequence features. 
In the DeepCov [9] and TripletRes [10] approaches, more information in the target 
protein multiple-sequence alignment is provided to the network, in the form of 400 
different 𝑁 ×𝑁 feature matrices, each corresponding to a defined pair of amino 
acids, with the value at position (𝑖, 𝑗) in a given matrix being either the pair 
frequency or the covariance for the given amino acid pair at alignment positions i 
and j. Then, CNN integrates this massive set of features to identify spatial contacts, 
training by large sets of proteins of known structure and their associated contact 
maps and multiple sequence alignments. The importance of incorporating ML in 
template-free modeling has been highlighted by top-performing CASP13 structure 
prediction methods, all of which rely on deep convolutional neural networks for 
predicting residue contacts or distances, predicting backbone torsion angles and 
ranking the final models. 

Approaches to the protein residue contact map prediction problem include 
support vector machine (SVM) [11], CNN [9], recurrent neural network (RNN) + 
CNN [12], ResNet, VGG and other proven architectures. Most of these approaches 
require heavy feature engineering. Apart from the amino acids sequence, they used 
additional engineered features such as amino-acid pair frequency [9], covariation 
scores [9, 13], and position-specific scoring matrix (PSSM). Such heavy feature 
engineering often leads to poor ability of transfer learning across relevant protein 
folding tasks. Bepler et al. [12] demonstrated a promise of transfer learning, i.e., 
ability to transfer knowledge between structurally related proteins, through 
representation learning, which we will follow here. In this work, we introduce graph 
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neural network (GNN) to the conventional RNN-based pipeline [12] so as to better 
capture spatial correlations. Furthermore, we propose a multiscale GNN approach, 
in which short-, medium- and long-range spatial correlations are refined by 
dedicated respective GNNs after coarse learning. 

II. Contact Map Prediction through Representation Learning 

Contact Map Prediction Problem 
A protein contact map represents pairwise amino acid distances, where each 

pair of input amino acids from sequence is mapped to a label ∈ {0,1}, which denotes 
whether the amino acids are “in contact” (1, i.e., within a cutoff distance of 8 Å) or 
not (0); see Fig. 1. Accurate contact maps provide powerful global information, e.g., 
they facilitate the understanding of the complex dynamical behavior of proteins or 
other biomolecules [14] and robust modeling of full 3D protein structure [15]. Spe-
cifically, medium- and long-range contacts, which may be as few as twelve se-
quence positions apart, or as many as hundreds apart, are particularly important for 
3D structure modeling. However, existing approaches [9, 11, 12] require heavy fea-
ture engineering and suffer from poor ability of transfer learning across relevant 
protein folding tasks. 

 
Fig. 1. (Left) An example of 3D protein structure. (Right) An example of residue-residue contact map. 

Proposed Approach 
Here, we address these problems with the proved strength of representation 

learning. Specifically, we use a type of RNN, i.e., bidirectional long short-term 
memory (LSTM) embedding model, mapping sequences of amino acids to se-
quences of vector representations, such that residues occurring in similar structural 
contexts will be close in embedding space (Fig. 2). How to induce the residue-resi-
due contact from the vector representations is still a challenge, because these vectors 
have few position-level correspondences between residues. We solve this problem 
by introducing GNN. The role of GNN is, via its powerful capability of structural 
learning, to infer the pair relation of residues from the intermediate vector represen-
tations. 

Graph-based data in general can be represented as 𝑮 = (𝑽, 𝑬), where 𝑽 is the 
set of nodes and 𝑬 is the set of edges. Each edge 𝑒!" ∈ 𝑬 is a connection between 
nodes 𝑢 and 𝑣. If 𝑮 is directed, we have 𝑒!" ≢ 𝑒"!; if 𝑮 is undirected, instead 𝑒!" ≡
𝑒"!. Here, we deal with undirected graphs, but it is trivial to modify such a model to 
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process other directed graph data. In protein residue contact graphs, the nodes are 
amino-acid residues and the edges are their spatial proximity within 8 Å. 

 
Fig. 2. Procedures of the leaning task. AA: amino acid. 

The goal of GNN is to learn low-dimensional representation of graphs from the 
connectivity structure and input features of nodes and edges. The forward pass of 
GNN has two steps, i.e., message passing and node-state updating. The architecture 
is summarized by the following recurrence relations, where t denotes the iteration 
count: 

𝑚"
#$% = ∑ 𝑀#(ℎ"# , ℎ&# , 𝑒"&)&∈((")  (1) 

ℎ"#$% = 𝑈#(ℎ"# , 𝑚"
#$%) (2) 

where 𝑁(𝑣) denotes the neighbors of node 𝑣 in graph 𝑮. The message function 𝑀# 
takes node state ℎ"#  and edge state 𝑒"& as inputs and produces message 𝑚"

#$%, which 
can be considered as a collection of feature information from the neighbors of 𝑣. The 
node states are then updated by function 𝑈# based on the previous state and the mes-
sage. The initial states ℎ"+ are set to be the input features of amino acids. Here, we 
use normalized adjacency matrix 𝐴< of the graph coupled with some other features as 
the edge state. These two steps are repeated for a total of T times in order to gather 
information from distant neighbors, and the node states are updated accordingly. 
GNN can be regarded as a layer-wise model that propagates messages over the edges 
and update the states of nodes in the previous layer. Thus, T can be considered to be 
the number of layers in this model. 

The exact form of message function is 
𝑚"
#$% = 𝐴"𝑾𝒕[ℎ%# 	…	ℎ"# ] + 𝒃 (3) 

where 𝑾𝒕 are weights of GNN and 𝒃 denotes bias. We use gated recurrent units as 
the update function: 

𝑧"# = 𝜎(𝑾𝒛𝑚"
# +𝑼𝒛ℎ"#.%) (4) 

𝑟"# = 𝜎(𝑾𝒓𝑚"
# +𝑼𝒓ℎ"#.%) (5) 

ℎ"#H = tanh(𝑾𝑚"
# +𝑼(𝑟"# ⊙ℎ"#.%)) (6) 

ℎ"# = (1 − 𝑧"#) ⊙ ℎ"#.% + 𝑧"# ⊙ℎ"#H (7) 
where ⊙ denotes element-wise matrix multiplication and 𝜎(∙) is sigmoid function 
for nonlinear activation. 

Multiscale RNN+GNN Model 
Figure 3 shows a schematic of the proposed multiscale RNN+GNN model, 

which improves upon existing RNN+CNN models for protein residue contact map 
prediction [13]. 
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Fig. 3. The proposed multiscale GNN approach on top of the existing RNN-CNN pipeline. 

First, the RNN unit works as encoder that takes a sequence of amino acids rep-
resenting a protein and transforms it into vector representations of the same length. 
To align with the biological process of protein folding, we employ bidirectional 
LSTM as encoder to absorb the representation from the neighboring amino acids, 
thus the resultant embeddings contain hidden feature from both sides. 

In order to produce contacts from the sequence of embeddings, we define a 
pairwise feature tensor, 
𝑣01 = [𝑧0 − 𝑧1	||	𝑧0 ⊙𝑧1],  (8) 
of size L×L×2D, where D is the dimension of the embedding vector and L is the 
length of protein, || is concatenation, and ⊙ is element-wise product. This featuri-
zation is symmetric and has extensive applications in natural language processing 
(NLP) models [16]. This 3D feature is then transformed though the proposed GNN 
module. To have higher granularity of the contact predictions with regard to the 
positional ranges, particularly short-, medium- and long-range contacts, we have 
designed three range-based GNN blocks, where in each layer t, the edge feature, 
(𝑬3# , 𝑬4# , 𝑬5#), and node feature, (𝑯3

# , 𝑯4
# , 𝑯5

#), are updated respectively as 
𝑒01#$% = 𝛼[𝑊%(𝛼T𝑊6𝑒01# U	||	𝛼(𝑊7ℎ0#||ℎ1#))]  (9) 

ℎ0#$% = 𝛼[𝑊8(𝛼(𝑊9ℎ0#||
∑ 𝑒01#$%1

𝑁V ))]  (10) 
where 𝑊%…9 are learnable weights and 𝛼 is the rectified linear unit (ReLU) activa-
tion. In Eq. (10), N is the number of positional neighbors of an amino acid, which 
distinguishes the range-based blocks: (i) short-range blocks focus on positional 
neighbors from 6 to 11, so that there are N = 12 – 6 = 6 neighbors; (ii) medium-
range blocks for which N = 24 – 12 = 12; and (iii) long-range block for which N = 
L – 24. Thus, the new node features are induced by an average of the neighboring 
edge features. 
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The output of the final layer of the GNN blocks is a triplet, 𝑬; = (𝑬3; , 𝑬4; , 𝑬5;), 
containing edge features of the corresponding range-based blocks. A fully con-
nected layer will merge and convert 𝑬; into the contact map. 
 

It is worth noting here that our multiscale feature averaging is akin to the addi-
tive hybridization scheme [17] used in the celebrated multiscale quantum-mechan-
ical (QM)/molecular-mechanical (MM) simulation approach, for which Karplus, 
Levitt and Warshel shared the Nobel prize in chemistry in 2013 [18]. In the additive 
hybridization scheme, energy contributions from different spatial ranges are de-
scribed by appropriate approaches in the respective ranges which are averaged to 
provide the total energy [17]. 

III. Results and Discussion 

To evaluate the proposed model, we use the ProteinNet dataset [19]. ProteinNet 
is a standardized dataset for machine learning of protein structure which builds on 
CASP (Critical Assessment of protein Structure Prediction) assessment carrying out 
blind prediction of recently solved but publicly unavailable protein structures. In 
our experiment, we specifically chose a subset from CASP12. We implemented all 
methods in Tensorflow 2.5 and trained on two NVIDIA V100 graphics processing 
units (GPUs). The GNN module consists of two layers with independent parameters 
for each short-, medium- and long-range based block. 

Figure 4 shows the precision of the proposed multiscale RNN+GNN approach 
as a function of the training epoch compared with that of the baseline RNN+CNN 
approach. Here, we employ a commonly used metrics. The term “P@K” signifies 
precision for the top K contacts, where all predicted contacts are sorted from highest 
to lowest confidence. Let L be the length of the protein, then “P@L/2”, for example, 
is the precision for the L/2 most likely predicted contacts. 

In Fig. 4, we observe improved P@L/2 precision by the addition of multiscale 
GNNs. As is well known, contact prediction with increased spatial ranges are pro-
gressively more difficult. The proposed multiscale RNN+GNN approach consist-
ently outperforms the baseline in all ranges, including the hardest case of long-range 
contact prediction. 

In Tables 1-3, we show the results of contact prediction in terms of P@L, 
P@L/2 and P@L/5. We benchmark the proposed method against the CNN-based 
approach [12] as baseline. The precisions are collected from the test dataset consist-
ing of 144 protein sequences. The new multiscale RNN+GNN approach consist-
ently improves the prediction precision over the baseline RNN+CNN approach for 
all K top contacts (K = L, L/2, L/5). While the precision decreases as we move from 
the short- to medium- to long-ranges as expected, the multiscale RNN+GNN ap-
proach maintains its precision advantage over the baseline. 
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Fig. 4. P@L/2 precision of the proposed multiscale RNN+GNN model (green) as a function of the train-
ing epoch compared to that of the conventional RNN+CNN model (cyan) for the prediction of (top) 
short-, (middle) medium- and (bottom) long-range protein residue contacts. 

 
Table 1. Short-range contact prediction results. 

 P@L P@L/2 P@L/5 
baseline 0.319 0.299 0.344 
proposed 0.360 0.355 0.370 

 
Table 2. Medium-range contact prediction results. 
 P@L P@L/2 P@L/5 

baseline 0.220 0.223 0.237 
proposed 0.254 0.256 0.263 

  d 
Table 3. Long-range contact prediction results. 

 P@L P@L/2 P@L/5 
baseline 0.135 0.139 0.158 
proposed 0.145 0.150 0.165 
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IV. Concluding Remarks 

In summary, we have proposed a multiscale GNN-based approach taking a cue 
from the celebrated multiscale physics simulation approach, in which a standard 
pipeline consisting of RNN and CNN is improved by introducing three GNNs to 
refine predictive capability for short-, medium- and long-range contacts, respec-
tively. The results show improved accuracy for contacts of all ranges, including the 
most challenging case of long-range contact prediction. The multiscale GNN ap-
proach reflects the inherently multiscale nature of biomolecular and other physical 
systems, and as such is expected to find broader applications beyond the protein 
residue contact prediction problem. 

As deep learning continues to show promise at modeling the relation between 
primary and tertiary structure, methods of interpreting learned representations be-
come progressively more important in providing biologically meaningful insights 
about how proteins work. Previous work has tackled approaches for identifying bi-
ologically significant model parameters such as saliency measures along 3D space 
for volumetric methods like CNNs [4]. However, these approaches are limited in 
that saliency maps over a volume do not adequately describe the role of interactions 
between residues or the predictive value of higher-order sub-structures. Work by 
Zamora-Resendiz et al. [3] demonstrated how GCNN architectures learn more bio-
logically relevant representations. Parameter attributions were found to localize at 
meaningful segments (including secondary structures) for RAS proteins and these 
sub-structures were found to be characterized in literature on RAS. As we learn 
more about how to represent physical systems in deep learning frameworks, the 
“data-agnostic” capabilities of deep learning methods will help in discovering bio-
logically relevant sub-structures given the proper innate priors. 

With the continuously growing size of the ProteinNet dataset used in this study, 
the proposed ML approach is becoming heavily compute bound. To address this 
challenge, we are currently implementing our model on leadership-scale parallel 
supercomputers at the Argonne Leadership Computing Facility (ALCF), including 
the Theta [20] and new Polaris machines. Each computing node of Polaris consists 
of one AMD EPYC “Milan” central processing unit (CPU) and four NVIDIA A100 
GPUs. These leadership-scale implementations will be applied to the largest-avail-
able protein datasets. For the massively parallel learning, we employ data parallel-
ism utilizing a distributed ML framework, Horovod [21]. Here, the global batch of 
input data are split across computing nodes, and the model parameters are updated 
by aggregating the gradients from the nodes. Up to O(100) nodes, we adopt syn-
chronous training, where the model and gradients are always in sync among all the 
nodes. For larger-scale training, hybrid synchronous-asynchronous approach will 
be employed instead for higher scalability (though with slower statistical conver-
gence) [22]. For complex network and hyperparameter tuning, we also use DeepHy-
per, a scalable automated ML (AutoML) package for the development of deep neu-
ral networks [23]. In particular, we utilize two components of the package: (i) neural 
architecture search (NAS) for automatic search of high-performing deep neural net-
work (DNN) architectures; and (ii) hyperparameter search (HPS) for automatic 
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identification of high-performing DNN hyperparameters. Running such massive 
ML workflow on leadership-scale parallel supercomputers will likely pose runtime 
challenges such as fault recovery, for which we will utilize ALCF support for Bal-
sam high performance computing (HPC) workflows and edge services [24]. The 
multiscale RNN+GNN model is being scaled up to leadership-scale parallel super-
computers. 
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