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Abstract

We propose an input sparsity time sampling algo-
rithm that can spectrally approximate the Gram
matrix corresponding to the g-fold column-wise
tensor product of ¢ matrices using a nearly opti-
mal number of samples, improving upon all pre-
viously known methods by poly(q) factors. Fur-
thermore, for the important special case of the
g-fold self-tensoring of a dataset, which is the
feature matrix of the degree-q polynomial ker-
nel, the leading term of our method’s runtime is
proportional to the size of the input dataset and
has no dependence on g. Previous techniques
either incur poly(q) slowdowns in their runtime
or remove the dependence on ¢ at the expense
of having sub-optimal target dimension, and de-
pend quadratically on the number of data-points
in their runtime. Our sampling technique relies
on a collection of ¢ partially correlated random
projections which can be simultaneously applied
to a dataset X in total time that only depends on
the size of X, and at the same time their g-fold
Kronecker product acts as a near-isometry for any
fixed vector in the column span of X ®4. We also
show that our sampling methods generalize to
other classes of kernels beyond polynomial, such
as Gaussian and Neural Tangent kernels.

1. Introduction

In many learning problems such as regression or PCA, one is
given a feature (or design) matrix ® € R"™*" and needs to
compute the inverse or singular value decomposition (SVD)
of the Gram matrix ® ' ®. However, the feature matrices @,
particularly the features that correspond to kernel functions,
often have a massive (sometimes infinite) number of rows,
which makes the storage and computations involving ® "
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prohibitively expensive. This has motivated a long line of
work on approximating the Gram matrix ® " ® by a low-rank
matrix (Williams & Seeger, 2001; Rahimi & Recht, 2009;
Avron et al., 2014; El Alaoui & Mahoney, 2014; Cohen
et al., 2015; Musco & Musco, 2017; Avron et al., 2017).

In this work, we focus on feature matrices whose columns
are tensor products of a large number of arbitrary vec-
tors, ie, ® = XM ® X® @ ... X@ for datasets
XM . X@ e R¥" (for tensor product notations see
Definitions 2.1 and 2.2). Note that the tensor product matrix
® defined this way has d? rows and n columns. This type
of tensor product feature matrix ® is of great importance in
learning applications, particularly because the special case
of XU = ... = X(@ corresponds to the feature matrix of
the degree-¢ polynomial kernel, i.e., the Gram matrix ® " ®
is the degree-q polynomial kernel matrix. To tackle scalabil-
ity challenges, much work has focused on compressing the
large number of rows of such tensor product feature matri-
ces through linear sketching or sampling techniques (Pham
& Pagh, 2013; Avron et al., 2014; Ahle et al., 2020; Meister
et al., 2019; Zandieh et al., 2021; Song et al., 2021).

The aim of our work is to devise efficient sampling methods
for reducing the dimensionality (number of rows) of tensor
product matrices while preserving the spectral structure
of the Gram matrix. Formally, for any given e, A > 0
and any X1, X (4 ¢ RIX"_if the feature matrix is
defined as ® := X(M®. .. X(9 we want to find a sampling
matrix II € RSde, such that the sub-sampled Gram matrix
O TIITTI® is an (e, \)-spectral approximation to ® ' ®, i.e.,

OTD+ AT OTD+ AT
S OHN e 4 ar < 22 A

1
1+e 1—c¢ M

Sampling a small number of rows of any matrix ¢ according
to its leverage scores is known to yield a spectral approxi-
mation to &' ® (Li et al., 2013). Our goal is to generate a
sampling matrix IT according to the ridge leverage scores of

® in input sparsity time, i.e., O (E?:l nnz (X(j)))'

1.1. Our Main Results

e It is well-known that for any linear sketch or sam-
pling matrix II to satisfy (1), its number s of rows needs
to be proportional to the statistical dimension s) :=
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Z;;l X j‘+ % where the \; are the eigenvalues of OT O,
(Avron et al., 2019). Woodruff & Zandieh (2020) re-
cently showed that it is possible to generate a sampling
matrix with s = O (22 log n) rows that satisfies (1) in time
9] (poly(q, el sin+gt? >, nnz (X(j))). The sig-
nificance of this result was showing the possibility of decou-
pling ¢! factors from the leading term in its runtime, i.e.,
4 nnz (X (9)). The following fundamental question
about whether the factor ¢'° in the runtime of (Woodruff &
Zandieh, 2020) is necessary has not been answered yet.

Can we produce a sampling matrix that satisfies (1) in time
O (poly(a, ) - s3n + 320 mnz (X)) ) 7

We answer the above question positively in Theorem 2.7,
which shows that input sparsity runtime and small s =
O(e 25y logn) number of samples are achievable. One
advantage of our method is that after computing the sam-
pling matrix II using Theorem 2.7, we can simply store
® using O(ns) = O(e 2synlogn) words of memory,
while the memory needed to store the exact Gram matrix
dTdis G)(nQ). Thus, our method reduces the memory from
quadratic in the dataset size n, to linear.

Additionally, for solving many downstream learning tasks
such as ridge regression, low-rank approximation, or PCA
with the feature matrix ®, one typically needs to either
compute the inverse or the SVD of the Gram matrix ® " ®.
If ®"® is pre-computed exactly and is stored in mem-
ory, then computing its SVD requires ©(n?) additional
runtime. So the total time to compute ® ' ® exactly and
then find its SVD, for tensor product feature matrices ,
is © (n -0 iz (X @) + n3). In contrast, given the
sub-sampled feature matrix I1®, we can (spectrally) approx-
imate the SVD of ® T ® by the SVD of (I1®) T (I1®), using
only s?n = O(e~*s3nlog® n) operations. Thus, using our
Theorem 2.7, the SVD of (I1®) T (II®) can be computed
in total time O (poly(q, e ) sin+ Y9, nnz (X(j))).
Hence, our method improves the runtime of solving down-
stream applications, such as ridge regression or PCA from
cubic in 7 to linear.

* For the important case when the input datasets are iden-
tical X(1) = X(® = ... X(@ = X and the feature ma-
trix ® := X®9 corresponds to the degree-q polynomial
kernel, invoking our Theorem 2.7 results in a runtime of
0] (poly(q, el sin+q- nnz(X)), which is a factor ¢
larger than the desired input sparsity time. On the other
hand, Song et al. (2021) has recently proposed a linear
sketch with O(n/€?) rows which satisfies (1) for ® = X®4
and can be applied in time O (¢%¢~?n? + nd), which can be

considered to be O (¢%¢7*n? + nnz(X)) for dense X, i.c.,

nnz(X) = Q(nd). That is, Song et al. (2021) showed that
decoupling the factor of ¢ from nnz(X) is possible at the

expense of having sub-optimal target dimension s ~ n/e?
and losing quadratically in n in the runtime. However, it is
unclear whether these losses are necessary. Specifically we
consider the following fundamental question:

Can we produce a sampling matrix with s = O (Z—; log n)
rows that satisfies (1) for the degree-q polynomial kernel in
time O (poly(q, e 1) sin+ nnZ(X)) ?

We answer the above question positively in Theorem 4.3.
Specifically, our Theorem 4.3 applies to any matrix & =

X% in time O (poly(q7 1/€) (si + ||K||/)\) ‘n+ dn),
where K = & ® is the kernel matrix corresponding to
the degree-q polynomial kernel. For large d, this runtime
is dominated by O(dn). Thus, for dense datasets with
nnz(X) = Q(nd), this runtime has the same asymptotic
order as the input sparsity nnz(X ), and is thus optimal up
to log factors.

* We generalize our sampling methods to other classes
of kernels beyond polynomial, such as the Gaussian and
the Neural Tangent Kernels (Jacot et al., 2018) in Sec-
tion 5. For example in Corollary 5.3, we prove that our
sampling method spectrally approximates the Gaussian
kernel for dense datasets with squared radius r in time

19) (Z—jsin + 73/ Fn + nd). For comparison, the run-
time of (Song et al., 2021) is O (— n? + nd), which

means that for any A\ = w(1/n), any ¢ = (1), and any
r=o (no'z), the result of our Corollary 5.3 is strictly faster.

* In addition to our theoretical guarantees, we provide
regression and classification experiments in Section 6,
which show our method performs well in practice even
for moderately-sized datasets. In particular, our empirical
results show that our method achieves better testing errors
compared to prior results for both Gaussian and Neural
Tangent kernels.

1.2. Our Techniques

* Our algorithm samples s i.i.d. rows of the feature ma-
trix ¢ = ®g:1 X ) according to its ridge leverage scores.
We devise a highly optimized version of the recursive sam-
pling framework of (Woodruff & Zandieh, 2020), which
previously had a runtime of O (q1'5 >4 nnz (X (j))>.
By closely examining (Woodruff & Zandieh, 2020) we
isolate the main computational bottleneck of their algo-
rithm and formulate it as a data-structure (DS) problem
in Section 3. In particular, our algorithm crucially relies
on an efficient DS that can be constructed in input spar-
sity time, i.e., Z?Zl nnz (X (j)), and enables estimation

. 2
of H (®3:1 X(J)) VHF for arbitrary queries V' € R™*" in
time poly(q) - nnz(V'). We solve this DS problem in Sec-
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tion 3 and then use it in our importance sampling method
for tensor product matrices in Section 2.1 and Appendix B.

* To run our sampling algorithm on the feature matrix X ©4
of the polynomial kernel in input sparsity time, we cru-
cially need a DS that can be constructed in nnz(X) time
and can quickly answer queries of the form || X ®1 - V||§,
Our main technical tool for solving this problem is a col-
lection of sketches S(Y), S ... §(@ which are correlated
to the extent that they can be simultaneously applied to X
in a total of O(nnz(X)) time, and at the same time are in-

4 2
dependent enough to ensure that H (®‘;—:1 SU x ) VHF ~

HX®‘1VH2. We show in Section 4.1 that a set of Subsam-
pled Randomized Hadamard Transform (SRHT ) sketches
with shared random signs can be applied to any dense dataset
X in total time O(nnz(X)), and also provide an unbiased
estimator with small variance for || X ®qV||§,. It is not clear
at this point if variants of sparse sketches (e.g., CountSketch)
with these properties also exist or not.

1.3. Related Work

A popular line of work on kernel approximation is based
on the Random Fourier Features method (Rahimi & Recht,
2009), which works well for shift-invariant kernels and
with some modifications can embed the Gaussian kernel
in constant dimension using a near optimal number of fea-
tures (Avron et al., 2017). However, all variants of this
method need at least (s, - nnz(X)) runtime which is a
factor sy higher than our desired time.

Another popular kernel approximation approach is the
Nystrom method (Williams & Seeger, 2001). While the
recursive Nystrom sampling of Musco & Musco (2017)
can embed kernel matrices using a near optimal number of
landmarks, this method also needs at least (s - nnz(X))
runtime, which is a factor sy higher than our desired time.

For the polynomial kernel, sketching methods have been
developed extensively (Avron et al., 2014; Pham & Pagh,
2013; Woodruff & Zandieh, 2020; Song et al., 2021). For
example, Ahle et al. (2020) proposed a subspace embedding
for high-degree polynomial kernels as well as the Gaussian
kernel. However, their required runtime for the degree ¢
polynomial kernel is at least 2(g-nnz(X)), which has an un-
desirable factor q. Recently, Song et al. (2021) showed that
this sketching method can be accelerated for dense datasets
by applying an SRHT on the input dataset. However, their
resulting runtime is O(q®n? +nd) which has an undesirable
quadratic dependence on 7.

2. Preliminaries

Throughout the paper, we use symbols e, e, . .. e4 to de-
note the standard basis vectors in R?. For any positive

integer n, we define the set [n] = {1,2,...n}. For a matrix
A we use || A|| to denote its operator norm. We also use A, ,

and A, ; to denote the i** row and i** column of A, respec-

tively. We use the notation O(f) to denote O(f -poly log f),
for any f. For any matrix ® € R™*" and regularizer A > 0,
the (row) A-ridge leverage scores of this matrix are defined
as

2

= ‘ . forevery i € [m]. (2)

K3

o, (@7 D+ )\I)_l/z‘

Definition 2.1 (Tensor product). Given z € R™ and
y € R" we define the tensor product of these vectors
asx ®y = xy'. Although tensor products are multidi-
mensional objects, it is convenient to associate them with
single-dimensional vectors, so we often associate x ® y with
($1y1,$2y17 YL T1Y2, - T Y2, - - T ln)-

For shorthand, we use the notation z®P to denote
r®x® ...z, the p-fold self-tensoring of z.

p terms

We wish to define the column-wise tensoring of matrices as:

Definition 2.2. Given A(D) € Rmixn  AK) ¢ Rmexn,
we define A @ ... ® A% to be the matrix in R -7k X7
whose j" column is Ailj) ®...® Aikj) for every j € [n].

A key property of tensor products that we frequently use is
that for any matrices A, B, C' with a conforming number of
columns, there is a bijective correspondence between the
elements of (A® B)-C'" and A-(B®C)". More precisely,
the entry at row (i, j) and column k of (A® B)-C'T is equal
to the entry at row 4 and column (j, k) of A- (B® C) .

We use a norm-preserving dimensionality reduction tech-
nique that can be applied to tensor products in input sparsity
time. Specifically, we use the POLYSKETCH transform in-
troduced in (Ahle et al., 2020), which preserves the norms of
vectors in R*" and can be applied to tensor product vectors
UL QU ® . .. uq very quickly. The following lemma follows
from Theorem 1.1 of (Ahle et al., 2020).

Lemma 2.3 (POLYSKETCH ). For every positive integers
q,d, and every € > 0, there exists a distribution on random
matrices S € R™* % with m = O (%), called degree-q
POLYSKETCH, such that,

1. Pr[||S9Y |3 € 1+ e)|Y|%] > 19/20 for any Y €
quxn.
2. For any vectors ui,ua,...Ug € R4, the total time to

compute S (e?j @ Ujt1 QU2 @ ... uq) for all j =

202g
O,l,...qisO(q log +23:1nnz(uj)).

€2

For a proof of Lemma 2.3, see Appendix A. We also use
the Subsampled Randomized Hadamard Transform (SRHT
) (Ailon & Chazelle, 2009), which is a norm-preserving
dimensionality reduction with near linear runtime.
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Algorithm 1 RECURSIVE LEVERAGE SCORE SAMPLING

input: Matrix ® € R™>*" and A\, e, u > 0
output: Sampling matrix IT € R**™

I: s < C45 log, n for some constant C'

2: Tlg = {0}1™, Ao < [|®[|% /e and T+ log, 42
3: fort =1toT do

4: II; + ROWSAMPLER (P, 11, 1P, N1, 5)

5: )\t — )\t71/2

6: return I

Lemma 2.4 (SRHT Sketch). For every positive integer
d and every €¢,6 > 0, there exists a distribution on ran-
dom matrices S € R™* with m = O (eiz -log % log %)
called SRHT , such that for any matrix X € R4x7,
Pr[|SX|% € (1 £€)|X||%] > 1 — 6. Moreover, SX can
be computed in time O (mn + ndlog d).

2.1. Recursive Leverage Score Sampling for Q7_, X )

Algorithm 1 is a generic procedure for sampling the rows of
amatrix & € R™*™ with probabilities proportional to their
leverage scores, restated from (Woodruff & Zandieh, 2020).
It starts by generating samples from a crude approximation
to the leverage score distribution and then iteratively refines
the distribution. The core primitive used in Algorithm 1
is ROWSAMPLER, which samples rows of a certain matrix
with probabilities proportional to their squared norms.

A row norm sampler is defined in (Woodruff & Zandieh,
2020) as follows,

Definition 2.5 (Row Norm Sampler). Let ® be an m x n
matrix and s be some positive integer. A rank-s row
norm sampler for ® is a random matrix S € R*™
which is constructed by first generating s i.i.d. samples
J1,J2, - js € [m] from some distribution {p;}/", which

satisfies p; > %”‘Tb <i>|*\£2 for all i € [m], and then letting the
th
.

row of S be

1T

7= for every r € [s].

Now we restate the correctness guarantee of Algorithm 1
from (Woodruff & Zandieh, 2020).

Lemma 2.6. Suppose for any matrices & € R™*" and
B € R™" any N > 0, and integer s > 0, the primitive
ROWSAMPLER(®, B, X, s) returns a rank-s row norm sam-
pler for (BT B + N'1)~/2 as in Definition 2.5. Then for
any \,e > 0, any ® € R"™ "™ with statistical dimension

A= ®(@T® + \I)"Y2|%, and i > 5>\, Algorithm 1 re-
turns a sampling matrix II € R <™ with s* = O(Llogn)
rows such that with probability 1 — 1y(n), @THTHCP is

an (e, \)-spectral approximation to <I>T<I> as in (1).

Given this lemma, our goal is to run Algorithm 1 on
¢ = ®I_, XU in nearly Y-, nnz (X)) time. This cru-
cially requires an efficient implementation of ROWSAM-

, 2
Algorithm 2 DS for estimating H (®?:1 XU )> VH
F

L X@ e RIXN 2 >0
log( 1/5)

input: Matrices X () .
1: m<+ C4 2,T<—C’2logn m' <+ C4
2: For every i € [T], let Q; € R™ xm be indepen-

dent copies of the SRHT as per Lemma 2.4, and let

Sl e R™*4" be independent copies of the degree-q
POLYSKETCH as per Lemma 2.3

e QS (EY @ XUt e . x@),
Ran

3: Compute P,

foreveryz € [T] andj =0,1,...
is defined as F1 := [e1, e1,...€1]
Procedure QUERY (V, j)

4: Zj < MEDIAN¢|7) {HPM . VHQF}
return z;

q, where E; €

PLER, which carries out the main computations. We show
in Appendix B that there exists an efficient ROWSAMPLER
primitive for matrices of the form ®(BT B + AI)~'/2, for
any B. Our algorithm employs a data-structure for efficient

2
X(J‘)) VH

F
which we will design and present in Section 3, and heavily
exploits various properties of tensor products. See Algo-

rithm 4 and Lemma B.1 for details. We further prove the
following main theorem in Appendix B.

estimation of queries of the form H (@;?:1

Theorem 2.7. For any collection of matrices
XW x@  Xx@ e R and any e, > 0, if
matrix ® = ®?:1 XU has statistical dimension

|2(@T® + A1)"V2|% and 1212 < poly(n),

then there exists an algorithm that returns a random
sampling matrix 11 € R**% with s = O(%3 logn) in time
0] (poly(q, logn,e 1) - s3n+ log* nlong nnzg (X(i)))
such that with probability 1 — ool (n), OTIITI® is an

(e, X)-spectral approximation to <I>T<I> as per (1).

3. Data Structure for Estimating
2
q A
(@ xo)v],
At the core of our leverage score sampling algorithm, we

have a new data-structure (DS) that can efficiently answer

4 2
queries of the form H (®§:1 X0 )) VH . In this section,
F

we solve the following DS problem,

TENSORNORM DS Problem. For every matrices
XM x@  x@ e R and every € > 0, we want
to design a DS called TENSORNORMDS such that,

¢ The time to construct TENSORNORMDS and the mem-
ory needed to store it are O (ijlnnz (X (ﬁ)) and
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O (poly(q,e™!) - n), respectively.

* There exists an algorithm that, given TENSORNORMDS
and every query V' € R"*" and j = 0,...q — 1, outputs an
estimator Z; in time O (poly(q, e ') - nnz(V')), such that,

zje(l+e)

’(X(j“) ®. ..X(‘Z)) VH? 3)

Using POLYSKETCH and SRHT , we design TENSORNOR-
MDS in Algorithm 2 and analyze it in the following lemma.

Lemma 3.1 (TensorNorm Data-structure). For any input
datasets XM X@) . X0 ¢ R>" gnd any e > 0,
Algorithm 2 constructs a DS such that given this DS,
the procedure QUERY (V. j), for any query V. € R"*"
and j = 0,1,...q, outputs z; that satisfies (3) with
probability 1 — m. The time to construct the DS
is 0(92122g2% -nlogn—i—logn-zgzl nnz (XU))).
Additionally, the memory required to store this DS and

the runtime of QUERY(V, j) are O (‘“%Q/E)n log n) and

19) (10%&# log n - nnZ(V)), respectively.

We prove this lemma in Appendix A.1. Given this DS and
using Algorithm 1, we can generate leverage score samples
for & = @1_, XU

4. High Degree Polynomial Kernels

Using Theorem 2.7, one can spectrally approximate the
Gram matrix of a degree-¢ self tensor product X®9,
in time O (poly(g,e™!) - s3n+¢-nnz(X)). Note that
X®4T X®4 is in fact the kernel matrix corresponding to
the degree-q polynomial kernel. While this is fast, it is still
a factor of ¢ slower than our desired input sparsity runtime
(i.e., fastest achievable runtime). We want to understand the
following fundamental question:

Is the factor q in runtime necessary, or can one achieve a
runtime of O(unz(X))?

We show that it is possible to shave off the factor ¢ and
achieve O(nnz(X)) time complexity, at least for dense
datasets X. Our main technical tool is a new variant of
SRHT sketches that are partially correlated by sharing the
same random signs.

4.1. SRHT Sketches with Shared Random Signs

Consider the DS problem in Section 3 for a self-tensor
product matrix X®4. To estimate | X®4 . V%, for query
matrices V', we can use TENSORNORMDS (Algorithm 2);
however, the time to construct this DS is O (¢ - nnz(X)), by
Lemma 3.1. Our goal is to improve this runtime by a factor
of ¢ and be able to construct this DS in input sparsity time.

A natural approach for doing so is to first apply a linear
sketch, say S, on the dataset X to reduce its size (number
of rows) and then construct TENSORNORMDS for (SX)®4.
To make this work, one needs to ensure that the sketch S
satisfies H(SX)®‘1V||§ ~ \|X®‘IV||2F for every query V
(at least with constant probability). One way of ensuring
this condition, as shown in (Song et al., 2021, Lemma 4.5),
is through requiring S to satisfy the oblivious subspace
embedding (OSE) property. However, this would require
S to have at least n rows, which results in an undesirable
quadratic in n running time (recall that our aim is to have a
linear in n runtime for constructing the DS).

On the other hand, an OSE might seem like overkill be-
cause we just want to estimate || X ®‘1VH% for some fixed
queries V. One might hope that the weaker JL property
would be sufficient for .S. However, this is not the case.
To see why, suppose for simplicity that ¢ = 2. Also
let v be the all ones vector in R™ i.e., v = 1,,, and let
X € R%*™ have orthonormal rows. By basic properties

of tensor products we have HX ®2. sz = d and our esti-
mator is ||(SX)%? sz = ||SX - diag(v) ~XTST||2 =
||SST va Now if S, for instance, is a random Gaussian
matrix, ||SST Hi is not even an unbiased estimator and has
alarge bias, i.e., E [HSSTHH # || x®2 sz = d. Itis not

clear at all that a Gaussian matrix with a small poly(logn)

number of rows would be sufficient to have H SST ||; ~ d.
Note that Sparse JL transforms have even larger variance
and bias than Gaussian sketches. The main issue here is the
fact that we used a single sketch matrix.

If we had independent JL transforms, S; and Ss, then
||SlSQT||i, would be a good estimator for HX®2 . v||§ =d.
However, using two identical copies of a single sketch in-
troduces dependencies that are problematic even in the toy
example of ¢ = 2.

Thus, we need to construct a collection of sketches
SM 82 5@ which are correlated to the extent that
would make computation of SU) X in total time O (nnz(X))
possible, and at the same time are independent enough to

2
ensure that H <®?:1 S(j)X) VHF ~ || X®9V ||, while the
number of rows of the sketches is small. We achieve this
by using a set of correlated SRHT sketches that can be
simultaneously applied to X in a total runtime that only
depends on the size of the dataset X. We prove that

for a collection of SRHT ’s with shared random signs,
the sketched matrices S)X can be computed quickly

, 2
and ||(®?_, SV X ) V|| 1is an unbiased estimator for
Jj=1 F

|\X®QVH2F with a small variance. It is not clear at this
point if variants of sparse sketches (e.g., CountSketch) with
these properties exist or not.
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Furthermore, note that the eventual use of the DS for esti-
mating || X @)qVH?7 will be in our sampling method in Sec-
tion 4.2 and as it turns out, the queries V' that our sampling
algorithm produces exhibit some structure. We exploit these
structures to prove tighter norm estimation bounds for our
new family of correlated SRHT ’s in the following lemma.

Lemma 4.1 (SRHT Sketches with Shared Random Signs).
Let D € RY be a diagonal matrix with i.i.d. Rademacher
diagonal entries and let H € R4*? be the Hadamard matrix
and also let Py, P, ... P, € R™*4 be independent random
sampling matrices that sample m random coordinates of R%.
Define the collection of SRHT sketches with shared signs
(S(D,S(Q), . ..S(‘I)) as S = \/% - P.HD for c € [q].
For any X € R¥™" any PSD matrix K € R™ " with

71‘\‘“‘88 any matrix ¥ € R4 xn,
and any ¢,§ > 0, if m = Q) ((}2 + %) . %logn), then with

probability at least 1 — 6,

Furthermore, the total time to compute SV X, ... 8D X is
bounded by O (gmn + ndlog d).

condition number K :=

2
€ (1+e)
F

ECoK)"

q
l@ S50 x
c=1

We prove this lemma in Appendix C. According to
Lemma 4.1, the Kronecker product of SRHT sketches with
shared random signs S() x S(2) x ... (@) acts as a near-
isometry for matrices of the form X®?. (S ® K) T with con-
stant probability, as long as the target dimension of the S(©)s
is at least m ~ (¢~2 + ¢ 'k)qlogn. If the S(©) sketches
were fully independent, as in (Ahle et al., 2020), then a target
dimension of m ~ e~ 2qlogn would suffice. So the price
of using correlated sketches is a factor of ex + 1 increase in
the target dimension. On the other hand, letting the sketches
S(°) use independent sampling matrices is critical. If we
used identical SRHT ’s S = ... §(9) = &, as is done in
Lemma 4.5 of (Song et al., 2021), then to have the guaran-
tee of Lemma 4.1, the sketch S would need to be an OSE,

2
which requires a target dimension of m = ) (2—2 -nlog n)
Lemma 4.1 provides a target dimension improvement over
the OSE-based results by a factor of %, which is signifi-
cant.

Lemma 4.1 shows us a way of speeding up the DS given in
Algorithm 2 for self tensor products X ®4. One can quickly
compute sketched datasets Y'(") = S(") X for every r € [q],
and then apply TENSORNORMDS to Y1, ... V(@ in total
time O(nnz(X)) for dense X. It turns out that all queries
that our sampling algorithm in Section 4.2 produces are
exactly of the form V = (¥ ® K) . Thus, the combination
of Lemma 4.1 and Algorithm 2 is a perfect solution for our
sampling algorithm’s norm estimation needs.

T 2
‘X®q (2 K) HF

Algorithm 3 ROWSAMPLER for X ®¢

input: ¢,s € Z, X € R>", B ¢ R™*" X\ > 0
output: Sampling matrix S € R**%"

s e /LB ]

2: Generate H € RY*" with i.i.d. normal entries with
d' = Cyq? log n rows

33 M <« H-(BTB+AI)~'/?

4: Forevery k € [m], let 5", 8% ... §\0 ¢ Rm”xd
be independent copies of SRHT sketches with shared
signs as per Lemma 4.1, where m’ = C;logn and
m” = Ca(q® + ¢*k) logn

5: For every k € [m/], let TN®) be the DS in Algorithm 2

for inputs (S,(CI)X, L.SWX, M) and € = g

6: Let h : [d] — [¢'] be a fully independent and uniform
hash function with s” = [¢3s] buckets

7: Let h=Y(r) = {j € [d] : h(j) = r} forevery r € [s]

8: Forevery r € [s'] and k € [m/], Iget G € R %" be
independent instances of degree-1 POLYSKETCH as per
Lemma 2.3, where d, = |h=1(r)], n’ = C3¢®

9: Wik < GF- Xp—1(,, forevery k € [m/] and r € [5/]

10: for / =1to sdo

11: D'« 1I,and B < s

12 fora=1toqdo

13: LE, « D*- W, forevery k € [m/], and r € [¢]

14: p¢ < MEDIAN¢ [, TN® .QUERY(L? ., a) for
every r € [¢/]

15: pe <+ pt/ Zflzl p¢ for every r € [5']

16: Sample ¢ € [s'] from distribution {p®}5_,

17: Let ¢¢ <~ MEDIAN [, TN®) . QUERY(D X/, | a
forevery i € h™1(t)

18: 4f < af/ X jen-1() € forevery i € h1(t)

19: Sample i, € [d] from distribution {g{ };cp—1 (1)

200 DU e D diag (X))

21: Be < Be -pqua

22:  Let ' row of S be ﬂ[l/Q (ei, ®eiy ® - -eiq)T
23: return S

4.2. ROWSAMPLER for Degree-q Self-Tensor Products

In this section, we design an algorithm that can perform row
norm sampling (see Definition 2.5) on a matrix of the form
X®4(BT B+ AI)~'/2 using O(nnz(X)) runtime for dense
X. Our primitive crucially relies on TENSORNORMDS
(Algorithm 3) as well as our new variant of SRHT with
shared random signs that we analyzed in Lemma 4.1.

Overview of Algorithm 3: The goal of ROWSAMPLER is
to generate samples (i1, iz, - - - i) € [d]? with probabilities
proportional to the squared norm of the row (i1, - - - i) of
matrix X®4(BT B 4+ \I)~'/2. Because (B" B + \I)~'/?

)
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has a large n X n size, we first compress it without perturb-
ing the distribution of row norms of X®4(BT B + \I)~1/2
too much. This can be done by applying a JL-transformation
to the rows of this matrix (see, e.g., (Dasgupta & Gupta,
2003)). Let H € R¥*™ be a random matrix with i.i.d.
normal entries with d’ = Cyq? logy n rows. With proba-
bility 1 — m the norm of each row of the sketched
matrix X®4(BTB + XI)~*/2 . HT is preserved up to a
(1 + O(q_l)) factor. This is done in line 3 of the algorithm
by computing M := H - (BT B + X\I)~'/2, which can be
computed quickly since B and H have a small number of
TOWS.

Now the problem is reduced to performing row norm sam-
pling on X®IM T, Note that computing the exact row
norms of this matrix is out of the question since it has a
huge d? number of rows. However, by using TENSORNOR-
MDS that we designed in Algorithm 2 and the new variant
of SRHT sketches we introduced in Lemma 4.1 and by
exploiting properties of tensor products we can generate
samples from the row norm distribution as follows.

By basic properties of tensor products, the entries of
X®4MT are in bijective correspondence with the entries of
X®@=. (X ®M)T, where the entry at row (iy, dg, - - - i)
and column j of X®IM T is equal to the entry at row
(g, ...14) and column (i1, j) of X®@~1 . (X @ M)T.

Therefore, it is enough to have a procedure to sam-
ple (i1,i2,...1,) with probability proportional to the
squared norm of the row (ia, . ..4,) of matrix X®(@~1) .
(M - diag (Xih*))T for every i; € [d]. We do this task
in two steps; first we sample an index ¢; with probability
proportional to the squared Frobenius norm of X®(¢—1) .
(M - diag (Xih*))T, and then we perform row norm sam-
pling on the sampled matrix.

To do the first sampling step above, we need to cheaply
estimate the Frobenius norms of matrices X®(—1) .
(M - diag (Xih*))—r. We can estimate such norms us-
ing TENSORNORMDS given in Algorithm 2. However,
note that Zq O(mz(X)) = O(q - nnz(X)) opera-
tions are requlred to build this DS. This is where the
SRHT sketches with shared random signs plays an im-
portant role. If we let S, ... 8@ ¢ R™'*d pe the
SRHT sketches with shared signs as per Lemma 4.1,
then we can compute S(9X for all ¢ € [g] in time
O(ndlogd) = 5(nnz(X)), for dense datasets X. Now
we can cheaply estimate the Frobenius norms of matrices

(®Z;} S(C)X) - (M - diag (X;, +)) " up to a small pertur-
bation using TENSORNORMDS (Algorithm 2) because the

sketched matrices S(®) X have small sizes. We let the target
dimension of these sketches be m” = Cy(¢3 + ¢°k) logn,

BT . ..
@ + 1 is the condition number of

where Kk =

(BT B 4 \XI)~'/2. Thus, by Lemma 4.1 and using the fact
that matrix M = H (BT B+XI)~'/? for a JL matrix H, the

Frobenius norm of (®Z;} S(C)X) - (M - diag (Xim))T
is within a factor (1 & O(g™!)) of the Frobenius norm of
X®@=1 (BTB 4 Al - diag (X, 1)) -

After this point, we will have an index i; € [d] sampled from
the correct distribution and all that is left to do is to carry
(xi2))°
Note that we have made progress because this matrix has
d?~! rows, so we have reduced the size of our problem by
a factor of d. Algorithm 4 recursively repeats this process
of reshaping and sketching and sampling with the aid of
our DS, ¢ times until having all ¢ indices i1, 2, - - - 4. Note
that the actual procedure requires more work because we
need to generate s i.i.d. samples from the distribution of
row norms, and in order to ensure that the runtime does not
lose a multiplicative factor of s, resulting in s - nnz(X) total
time, we need to perform additional sketching and a random
partitioning of the rows of the datasets to ¢>s buckets. We
also boost the success probability of all these operations,
when necessary, using the median trick.

out row norm sampling on X®@—1 (M . diag

The formal guarantee on Algorithm 3 is given in the follow-
ing lemma.

Lemma 4.2. For any matrix X € R™" and B € R™*",
any \ > 0 and any positive integers q, s, with probability at
least 1 — m, Algorithm 3 outputs a rank-s row norm
sampler for X®4(BT B + )\I)_l/Q as per Definition 2.5 in
time O (mzn + ¢8s2nlog® n + ¢3knlog® n + ndlog? n)

where k. = +/||BTB||/A+ 1.

We prove Lemma 4.2 in Appendix D.1. Now we can give our
main theorem about spectrally approximating the degree-q
polynomial kernel matrix X ®4T X ®4 using nearly nnz(X)
runtime for dense datasets.

Theorem 4.3. For any dataset X € R*™ and any e, \ > 0,

if matrix ® = X©9 has statistical dimension sy =
2

[®(@T® + AI)~Y/2|2 and % < poly(n), then there

exists an algorithm that returns a random sampling matrix

I € RS with sampling dimension s = O(% logn) in

8.2 5
time O (q Sﬂgog Y/ ”q);q)” 3nlog® n + ndlog® n)

such that with probability 1 — Oly(n), OIS is an
(€, \)-spectral approximation to ® " ® as per (1).

For a proof of this theorem see Appendix D.2.

Remark on the runtime of Theorem 4.3. Assuming that

”‘I’ 2l < poly(q/e ) s3, the low order term of our algo-

r1thm s runtime is O (poly(q/e) - s 3n). While the quadratic
dependence on s, might seem like a limitation, we argue
that for a wide range of downstream applications this is not
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an issue. In particular, for applications such as regression or
PCA, one needs to either invert or compute the SVD of the
approximated Gram matrix (II®) T (II®) and both of these
operations require s>n runtime, where s is the target dimen-
sion of the matrix II. Note that for any method to achieve
the spectral approximation guarantee of (1), the target di-
mension has to be at least s = {)(sy) (Avron et al., 2019).
Thus, the runtime of solving the mentioned downstream
learning tasks using any sketching or sampling method is
at least (s2n), which shows that quadratic dependence on
s 1s unavoidable. For comparison against prior results note
that, the sketch in (Song et al., 2021) has a target dimension
of m = n/e2. Thus, the total time of using their algorithm
to approximately solve kernel ridge regression (KRR) or
PCA is O(n3/e* + ¢*n?/e? + dn).

5. Generalization to Other Kernels

In this section we generalize our sampling algorithms to
other classes of kernels such as Gaussian, dot-product, and
Neural Tangent kernels. We start by defining a class of
kernels that encompasses all aforementioned kernels,

Definition 5.1 (Generalized Polynomial Kernel). Given a
positive integer ¢, a vector of coefficients « € RI*1 a vec-
tor v € R™, and a dataset X € R?*"_ we define the corre-
sponding generalized polynomial kernel (GPK) matrix K €

R™*"™ as K := diag(v) ( 100 X®jTX®j) diag(v).
The GPK matrix can be expressed as a Gram matrix K =

O TP for

q
P = @ a; X®7 - diag(v). 4)
§=0

We show in Appendix E, how to adapt our leverage score
sampling method to the GPK feature matrix ® defined in
(4) and prove the following main theorem,

Theorem 5.2. Let ® € R™*"™ and K be the GPK fea-
ture matrix and kernel matrix defined in Definition 5.1.
For any e, AN > 0, if ® has statistical dimension

= ||®(K + X)~Y2||2 and % < poly(n), then
there exists an algorithm that returns a random sam-
pling matrix T € R**™ with s = O(% logn) rows

in time O (q Sknlog Y/ ”K‘q‘gnlog n + ndlog® n)

such that with probability 1 — poly(n), OTIITI® is an
(e, X)-spectral approximation to K as per (1).

Gaussian Kernel. We show in Appendix E.1 that the
class of GPK kernels contains a good approximation to
the Gaussian kernel matrix for datasets with bounded /2
norm and therefore, we have the following corollary of
Theorem 5.2:

Corollary 5.3 (Application to Gaussian Kernel). For any

r > 0 and dataset 1, . .. 2, € R™ with max;c(,) ||2:]]3 <

r,any A, e > 0, if K € R™"™" is the Gaussian kernel ma-
trix, i.e., K; j == e‘”“‘wﬂ'”gm, with statistical dimension
sx = tr (K(K + \)™1), then there exists an algorithm
that computes 7 € R**" with s = O(% logn) in time

O (45 n+rd ”K” n—+ nd) such that with probability

1- Z T Z is an (e, \)-spectral approximation to K.

W(n)’
Note that for the Gaussian kernel we have || K|| < tr(K) =
n. Therefore, for constant ¢, the runtime of Corollary 5.3
is always upper bounded by O (r®s3n + /% - n + nd).
For comparison, the runtime of (Song et al., 2021) for
spectrally approximating the Gaussian kernel matrix is
O (r* - n? + nd), which means that for any A\ = w(1/n)
and any r = o0 (n%?), our runtime is strictly faster than the
runtime of (Song et al., 2021).

Neural Tangent Kernel (NTK). We consider the NTK
corresponding to an infinitely wide neural network with two
layers and ReLLU activation function. This kernel function is
defined as follows for any z,y € RY (Zandieh et al., 2021)

(z,y) )
@n ) = : kn Nellolalls ’ 5
e (7, ) = [|z]l2]|yll2 - Fatx <|x||2||y||2 ®

Fa(B) := % (\/ 1—p324+28(m — arccosﬁ)) .

We show in Appendix E.2 that there exists a GPK that well-
approximates On.x(z,y) defined in (5) on datasets with
bounded /s norm. Thus, we have the following corollary of
Theorem 5.2:

Corollary 5.4 (Application to NTK). For any r > 0 and
dataset x1,...x, € R™ with max;epy ||x]|3 < v, any
Ne >0, if K € R"™™ s the NTK kernel matrix, i.e.,
K;; = Ongl(xi,x;) as per (5), with statistical dimen-
sion sy = tr (K(K + AI)™"), then there exists an algo-
rithm that computes Z € R¥>™ with s = O(% logn)

in time O ((Z;)lﬁ S*" + nd) such that with probability
1—

ﬁ(n)’ Z 1 Z is an (e, \)-spectral approximation to K.

Note that, for constant ¢ and any r = (logn)o(l),

the runtime of Corollary 5.4 is upper bounded by
9] ((%)16 - s3n+ nd).
(Song et al., 2021) for spectrally approximating the NTK on
datasets with unit radius r = 1is O ( /3 4 nd) which
means that for any A = w(n®/%), our runtime is strictly
faster than the runtime of (Song et al., 2021). Further-
more, the random features proposed in (Zandieh et al., 2021)
requires O ((n/)) - nd?) operations to spectrally approxi-
mate the NTK, which is slower than our runtime for high
dimensional datasets with d = w ((n/))'®). Additionally,
Corollary 5.4 applies to datasets with arbitrary radius r

For comparison, the runtime of
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Table 1. Approximate kernel ridge regression/classification with
Gaussian and Neural Tangent kernels. We denote the ridge param-
eter by A, and the number of samples or sketching dimension of
different methods by s. The RMSE and classification error rates
are measured on the testing sets for each task.

Data-set: MNIST Location of CT

n/d 60,000/ 784 53,500/ 384

Als 1/1,000 0.5/2,000
z—y|2

Kernel function Onex(T,y)  Onex(z,y) T

Metric Error (%) RMSE RMSE

Fourier Features _ 492

(Rahimi & Recht, 2008) ’

PolySketch

(Ahle et al., 2020) 5.92 4.87 5.05

(Zandieh et al., 2021)

Accelerated PolySketch

(Song et al., 2021) 6.07 4.93 5.14

Adaptive Sampling

(Woodruff & Zandieh, 2020) >-87 472 4.76

Our Method 5.44 471 4.76

Corollaries 5.3 and 5.4

while both of (Song et al., 2021) and (Zandieh et al., 2021)
only apply to datasets with unit radius.

6. Experiments

In this section we apply our sampling algorithm to acceler-
ate regression and classification on real-world datasets. We
approximately solve the kernel ridge regression problem by
running least squares regression on the features sampled by
our algorithm. We also reduce the classification problem
to regression by applying a one-hot encoding to the labels
of classes and then use our fast regression method to solve
it. In the experiments, we focus on ridge regression with
a Gaussian kernel as well as the depth-1 Neural Tangent
kernel, and compare our result from Corollaries 5.3 and
5.4 to various popular sampling and sketching methods for
Gaussian and Neural Tangent kernels. The classification
error rate and root mean square error (RMSE) on the test-
ing sets are summarized in Table 1 (average over 5 trials
with different random seeds). For each task, the number of
features and sketching dimensions are chosen to be equal
across all different methods. Thus, we can compare dif-
ferent methods given that the memory needed to store the
approximate kernel matrices is equal for all methods.

While our theoretical results guarantee that for large enough
datasets in high dimensions our method performs better than
prior work, our experiments verify that even for moderately-
sized datasets with dimension d < 1000 our method per-
forms well. In particular, we achieve the best RMSE and
classification error rate compared to all other methods un-
der the condition that the number of sampled features or
sketching dimension is fixed for each method. We remark

Classification with NTK, regularizer=1

94

g

g 93 1

g

5

;5 92+

& 7 — Our method
91 4 -
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—{-= Accelerated PolySketch

90 1

400 500 600 700 800 900 1000

Feature Dimension (m)

Figure 1. Approximate classification of the MNIST dataset using
depth-1 Neural Tangent KRR. The ridge parameter is A = 1. The
classification error rates are measured on the testing set.

that the Fourier features method (Rahimi & Recht, 2008)
only applies to shift invariant kernels such as the Gaussian
kernel and cannot be used for Neural Tangent kernels. On
the other hand, the sketching methods of (Ahle et al., 2020)
and (Song et al., 2021) can be used to sketch the Taylor
expansion of the NTK, as was previously done in (Zandieh
etal., 2021).

Accuracy/memory trade-off. Figure 1 shows the trade-
off of various methods for MNIST classification using the
NTK kernel function. We plot the testing set accuracy as a
function of the number of samples or sketching dimension,
which is a parameter that directly controls the memory usage
of different methods. It can been seen that our method has
the best accuracy/memory trade-off.
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internal nodes: TENSORSKETCH

\ leaves: COUNTSKETCH

Figure 2. The structure of sketch S? proposed in Theorem 1.1 of (Ahle et al., 2020): the sketch matrices in nodes of the tree labeled with
Shase and Thase are independent instances of degree-2 TENSORSKETCH and COUNTSKETCH, respectively.

A. Preliminary Sketching Results
In this section we provide preliminary sketching results. In particular, we provide a proof of Lemma 2.3.

Proof of Lemma 2.3: By invoking Corollary 4.1 of (Ahle et al., 2020), we find that there exists a random sketch $¢ € R™*?*
such that if m = C' - ¢ - e~2 for some absolute constant C, then this sketch satisfies the (e, 1/20, 2)-JL-moment property. It
follows from the definition of the JL-moment property along with Minkowski’s Inequality that for any Y e R*" <",

a2 2 |? 2 4
E|[IS7Y 15— IV I3 | < /20 ¥

2
Thus, by applying Markov’s inequality on ’||S‘1Y||§7 - ||YH?J , we find that

Pr [||qu||§ el i5)||Y|\2F} > 19/20.
This immediately proves the first statement of the lemma.

It was shown in (Ahle et al., 2020) that the sketch S¢ can be represented by a binary tree with g leaves. As shown
in Figure 2, the leaves are independent copies of COUNTSKETCH and the internal nodes are independent instances of
degree-2 TENSORSKETCH (Pham & Pagh, 2013), which can sketch 2-fold tensor products efficiently. The sketch S9 can
be applied to tensor product vectors of the form u; ® u2 ® ... uq by recursive application of O(g) independent instances
of COUUNTSKETCH (Charikar et al., 2002) and degree-2 TENSORSKETCH (Pham & Pagh, 2013) on vectors u; and their
sketched versions. The use of COUNTSKETCH in the leaves of this sketch structure ensures input sparsity runtime for
sketching sparse input vectors.

Runtime analysis: By Theorem 1.1 of (Ahle et al., 2020), for any collection of vectors ui,us,...uq € R?,
S9(u1 @ ug ® ... u,) can be computed in time O (qm logm + Z?Zl nnz(uj)). From the binary tree structure of the

sketch, shown in Figure 2, it follows that once we compute S? (u1 ® us ® ... ug), then S (e1 @ us @ uz ® ... u,) can
be computed by updating the path from one of the leaves to the root of the binary tree. This exactly amounts to ap-
plying an instance of COUNTSKETCH on e; and then applying O(log ¢) instances of degree-2 TENSORSKETCH on the
intermediate nodes of the tree. This can be computed in a total additional runtime of O(mlogmlogq). By this argu-

ment, it follows that S¢ (e?j @ Ujp1 @Ujya... uq) can be computed sequentially for all j = 0,1,2,--- ¢ in total time
@) (qm logmlogq+>i_, nnz(uj)). By plugging in the value m = O (%), this runtime will be upper bounded by

2 2 g
1) (% + 25:1 HHZ(Uj)), which gives the second statement of the lemma.
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O

In order to prove our main result about SRHT with shared random signs in Lemma 4.1, we use Khintchine’s inequality. We
provide a formal statement of this inequality in the following lemma.

Lemma A.1 (Khintchine’s inequality (Haagerup & Musat, 2007)). Let t be a positive integer, x € R?, and (04)iclq) be
independent Rademacher +£1 random variables. Then

(E [0, x)"D"" < Cyllz]a,

1/t
where Cy < /2 (F((L\/;)/z)) < V't forall t > 1. Consequently, by Minkowski’s Inequality along with Markov’s

inequality, for any § > 0 and any matrix X € R¥", we have

1
pe 1701, 2l S <

A.1. Proof of Lemma 3.1

Let P; ; be the matrices defined in line 3 of Algorithm 2. For every V' € R™*", we can write,
P V=Q; S ((E?j © XUt @ X0+ g | ..X@) . V) ,

where S is an instance of degree-g POLYSKETCH and (); is an SRHT . By Lemma 2.3 and Lemma 2.4 and a union bound,
for every fixed ¢ € [T] and j € {0,1,2,...q} the following holds,

Pr [P VIR € (12

. , , 2
‘(Ei@J ® x G+ ® x(+2) ® . '.X(q)) VH } > 9/10 (6)
F
Using the properties of tensor products and the definition of matrix £; we have,
H(E{@j @ XU+ g x6+2) ®...X(‘1)> 'VHQ - H(X(j+1) @ XU+ ®...X(‘1>> 'VHQ
F F

Because Z; is defined as the median over ' = (log n) independent copies in line 4 of Algorithm 2, using the above
equality and (6) we have,

A , 2 1
Pr|ze(1+e) ‘(X(J“) ® X0+D g, ..X(‘J)> VH >1- .
F poly(n)
This proves the first statement of the lemma.
Runtime and Memory: The time to compute F;; for a fixed ¢ and all 7 = 0,1,...q is

2 2 q .
o) (q l"zgg <.p 4 E‘;.:l nnz (X (J))), by Lemma 2.3 and Lemma 2.4. Therefore, the total time to compute P ;

2

2 q .
foralli € [T]and all j = 0,1,...qis O (% -nlogn +logn - > 1_ nnz (XU))>. Since matrices P; ; are of

size m’ x n, the total memory needed to store them for all ¢ and j is O (‘ﬂ%(;/e) -nlog n) Finally note that the
runtime of QUERY (V/, j) is dominated by time needed to compute the product P; ; - V for i € [T]. This can be done in
0 (logi# logn - nnz(V)) operations.

B. Spectral Approximation to Tensor Product Matrices ¢ = ®§:1 X )

In this section we design the ROWSAMPLER procedure which can perform row norm sampling as per Definition 2.5 on
O(BTB+N)"Y2 ford = ®g:1 X0 using O (21 nnz (X(i))) runtime. Our primitive crucially relies on TENSORNOR-

_ 2
MDS, given in Algorithm 2, to quickly estimate norm queries of the form H (®;¥:1 X(J)) VHF.



Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Algorithm 4 ROWSAMPLER for ® = @7_, X/)

input: ¢,s € Z,, X1 ... X@ ¢ R*" B e R™*" )\ > (
output: Sampling matrix S € R** %’
1: Generate H € R% X" with i.i.d. normal entries with d’ = C1qlog n rows
M« H-(B"B+ \)~'/?
Let TNORM be the DS in Algorithm 2 for inputs (X(l), X® X, M) and € = ﬁ
Let h : [d] — [s'] be a fully independent and uniform hash function with s’ = [¢%s] buckets
Define the set h=1(r) := {j € [d] : h(j) = r} for every r € [$']
Forevery r € [s'] and k € [m/], let G¥ € R™ %4 be independent instances of degree-1 POLYSKETCH as per Lemma 2.3,
where d,. = |h=1(r)|, n’ = Caq?, and m’ = Cslogn
7. Wiy, + GE -X}(La_)l(m* forevery a € [¢], k € [m/], and r € [¢']
8: for{=1tosdo
9: D'« I,and By + s
10 fora=1toqgdo

SARANE

11: L2, < D*- W forevery k € [m'], and r € [5/]

12: Py <= MEDIAN ;¢ [;/] {TNORM.QUERY(L;LJC, a } for every r € [s']
13: e« p2/ Zflzl p§ for every r € [§']

14: Sample ¢ € [s'] from distribution {p?}5_,

15: q¢ < TNORM.QUERY (D“ : Xi(i)T, a) for every i € h™1(t)

16: 4f < a4f/ X jen-1(1) € forevery i € h1(t)

17: Sample i, € [d] from distribution {g{ };c,—1(z)

18: Dot « D¢ . diag (Xl(f)*)

19: Be < Be - pialt

20:  Let the " row of S be 621/2 (ei, ®e, ® - eiq)T
21: return S

Overview of Algorithm 4: The goal of ROWSAMPLER is to generate a sample (i1, 2, - -iq) € [d]? with probability
proportional to the squared norm of the row (i1, - - - iq) of matrix (@?:1 X(j)) -(BTB + AI)~'/2. Because (B' B +
AI)~1/2 has a large n x n size, we first compress it using random projection techniques without perturbing the row norm
distribution of <®?:1 XU )) - (BT B + AI)~'/? too much. This can be done by applying a JL-transformation to the rows

of this matrix (see, e.g., (Dasgupta & Gupta, 2003)). Let H € RY %" be a random matrix with i.i.d. normal entries with
d’ = C1qlogy n rows. With probability 1 — —-— the norm of each row of the sketched matrix (®Z:1 X )> -(B"B+

poly(n)
M)~Y/2. HT is preserved up to a (14 0.1) factor and hence by a union bound, with probability 1 — m
of the sketched matrix are within a (1 4= 0.1) factor of the original row norms. This is done in line 2 of the algorithm by
computing M := H - (BT B 4+ AI)~'/2, which can be computed quickly since matrices B and H have few rows.

, all row norms

q

Now the problem is reduced to performing row norm sampling on ( =1 X (g )) - M. Note that computing the exact row

norms of this matrix is out of the question since it has a huge d? number of rows. However, by using TENSORNORMDS that
we designed in Algorithm 2 and exploiting the properties of tensor products we can approximately generate samples from
the row norm distribution in near input sparsity time as follows:

First note that by basic properties of tensor products, the entries of (X @ X® ... X@) . MT are in bijec-

tive correspondence with the entries of (X W e M ) : (X @ex®. X (Q))T. More precisely, the entry at row
(i1,42, - iq) and column j of (XM @ X@ ... X(@) . MT is equal to the entry at row (i1, j) and column (is, . . .1iq) of

(XWe M) (X@ .. x@)"

Therefore, it is enough to have a procedure to sample (i1, i2, . . . i) with probability proportional to the squared norm of
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column (is, . . . i,) of matrix (M - diag <X(1) )) (X@ ... X(q))—r for every i; € [d]. To this end, we first sample an

11 ,%
index ¢; with probability proportional to the squared Frobenius norm of (M - diag <X1(11)*)) . (X De...X (Q)) T, and
then perform column norm sampling on the sampled matrix. We can cheaply estimate the Frobenius norms of matrices
(M diag ( xW )) (XP .. .X(q))T up to (1 + ﬁ) perturbation using TENSORNORMDS (Algorithm 2).

After this point, we will have an index 41 € [d] sampled from the right distribution and all that is left to do is to carry out

T
row norm sampling on (X(2) ® . X(q)) . (M - diag (X(l) )) . Note that we have made progress because this matrix

has d?~! rows, meaning that we have reduced the size of our problem by a factor of d. Algorlthm 4 recursively repeats this
process of reshaping, norm estimation, and sampling ¢ times until having all ¢ indices 1, iz, -

Note that the actual procedure requires more work because we need to generate s i.i.d. samples with the row norm
distribution and to ensure that the runtime does not lose a multiplicative factor of s, resulting in s - > je[q) NNZ (X (])) total

time, we need to do extra sketching and a random partitioning of the rows of the datasets to ¢?s buckets. Moreover, we use
the median trick to boost the success probabilities of our randomized operations, when needed.
The formal guarantee on Algorithm 4 is given in the following lemma.

Lemma B.1. For any matrices XV X2 X0 ¢ R¥*" gnd B € R™*", any A > 0 and any positive integers q, s, with

probability at least 1 — m, Algorithm 4 outputs a ranks-s row norm sampler for the matrix (X(l) XD ... X(‘J)) .

(BT B + \XI)~Y/2 as per Definition 2.5 in time O (m2n + ¢"s*nlog® n + log® nlog q >4 nnz (X(j))).

Proof. All rows of the sampling matrix S € R** %" (the output of Algorithm 4) have independent and identical distributions
because for each ¢ € [s], the /*" row of the matrix S is constructed by sampling indices i1, ia, - - - i, in line 17 completely
independent of the sampled values for other rows ¢ # ¢. Thus, it is enough to consider the distribution of the /! row of S
for some arbitrary ¢ € [s].

Let] := (I, I, - - I) be a vector-valued random variable that takes values in [d]? with the following conditional probability
distribution for every a = 1,2, - - - ¢ and every i € [d],

Pr(l, =illy = iy, Is = i, - Loo1 = 1] == P(s) - @ )

where distributions {p{ },¢[s/) and {q };icp—1(;) for every ¢ € [s'] are defined as per lines 13 and 16 of the algorithm. One
can see that the random vector (i1, 42, - - - i) obtained by stitching together the random indices sampled in line 17 of the
algorithm, is in fact a copy of the random variable I defined above.

Let 3, be the quantity computed in line 19 of the algorithm. If ¢1, ¢2, - - - iy € [d] are the indices sampled in line 17 of the
algorithm, then using the conditional distribution of I in (7), we find that the value of 3, is equal to the following,

q
Be=s- Hpi(ia)q?a
a=1
q
=S HPI‘[I(L :ia|Il :il,IQ :ig,"'la_l :ia—l]

a=1

ZS'PT[I:(il,iQ,...iq)],

where p® and ¢° are the distributions computed in lines 13 and 16 of the algorithm. Hence, for any i1, iz, - - - i4 € [d], the
distribution of Sy , is,

=Pr [I = (il,ig,..~iq)] = - (8)

We will use (8) later.



Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

By Lemma 3.1 and the way TNORM is constructed in line 3 of the algorithm, we have the following inequalities for any

rels],ke[m],ield,andanya =1,2,...q, with probability at least 1 — m,
2
TNORM.QUERY (L%, a) € <1 + 20) H( () @ ... x@ ®M) Dewel ’ , )
: q Fllp
2
TNORM.QUERY (D“ X@T, a) (1 + > H( Xt g x@ g M) De . Xﬁ”” . (10)
: > 2
By union bounding over gds’m’ events, with probability at least 1 — ﬁ(n)’ (9) and (10) hold simultaneously for all a € [g],
ke [m'],i € [d],and all r € [s'].
Furthermore, note that Wr‘fk is defined in line 7 as Wﬁk Gk a)l(r) where G’,f is an instance of the degree-1

POLYSKETCH as per Lemma 2.3 with target dimension n’ = Cy¢?. By the first statement of Lemma 2.3, the POLYSKETCH
G* approximately preserves the Frobenius norm of any fixed matrix with constant probability. In particular, for every
a € [q],r € [¢'], k € [m/], with probability at least 9/10 the following holds,

2

|(xe Ve x@ ) Dowel (11)

’ 1£— || (xe g, x@ ®M) Do (X(“)l )T
50q (r),*

By taking the median of m’ = Q(log n) independent instances of G, the success probability in (11) gets boosted. Thus, by

combining this inequality with (9) using a union bound, and applying the median trick, with probability at least 1 — m
the following holds simultaneously for all a € [¢] and r € [s'],
a 1 (1) @\ pa (@ I
MEDIANy¢ ;] { TNORM.QUERY (L{ ., a) } € 1i — (X ®...Xx ) D (Xh_lm ) ®M) (12)
F

Note that to obtain the above inequality we used the property of tensor products regarding the bijective correspondence

0
between entries of (X (1 @ ... X @ A1) D* (X% ) and (X @ X@) D (X\9, ) @ M)

By plugging the above inequality along with (10) into (7), we conclude that with high probability the following bound holds
simultaneously for all a € [g],

Pr(l, =illy = i1, 13 =g, La—1 = iq—1]

1y (e e x@) Dediag (X[ )MTH
-2

(a+1) (q) a (a)
H(X ®...X@) D (X(® @ M) HF

Again to obtain the above inequality we used the property of tensor products regarding the bijective correspondence between
the entries of vector (X (@) ® ... X(@ g M) D* - Xi(i)—r and matrix (X (@1 @ ... X(@) Dadiag (Xl(a*)) M7

It follows from the properties of tensor products and the definition of D¢ in line 18 of the algorithm, that

2 2
H (X(‘”Q) ®... X<q>) patl (X(““) ® M)T - H (X<a+2> ®... X<‘1>) DAdiag (Xi(j}*) (X(““) ® M)T

F

- H (X<a+1) ® X+ g .X<q)) Ddiag (X.(“) ) MTH2
Tg % 9



Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Using this equality and inequality (13), we have:

q
Pr(l = (i1, ig, - H o =ially = i1, To1 = a1

2
) ) |(xCe e, x@) Do diag (X(,) M7 |

>ﬁ(1— E
a=1

o o.ox) 5 (e ) |
F

2
17 Dt - diag (X(7),) MTH
qs F

Lo 2
|(x®e.. x@) D1 (X0 M)|
F

e

H X0 o X® g, x@). 7] ?

(11,42, +iq) % ||9

(14)

(XD ox®e...X©@ .MTH’;
By plugging (14) back in (8) we find that,

H (X0 ®.. x@). MT]

(i1,82,+1q),%

»Moo

P S*: /2 i 7 G =
r[z, By (e ®ei, ® eq)]_ (XMW @...x@). MT|%

Matrix M is defined as M = H - (BB + \I)~'/2? where H is a random matrix with i.i.d. Gaussian entries with

d’ = Cyqlogn rows. Therefore, H is a JL-transform, so for every (i1, iz, - - i,) € [d]9, with probability 1 — W%rﬂ)’

2 2

() [(XU) ®. ..X<q>) ~MT]

€ (1£0.1) H [X(l) ®...X(q)} (BTB + AI)"'/2

(11,42, +iq) || 9 (11,42, ++iq) * 2

Therefore, by union bounding over d? rows of (X Oe...X (‘1)) - M7, the above holds simultaneously for all
(i1, 2, -iq) € [d]? with probability 1 — m. Therefore, with high probability in 7,

Pr {SZ,* = 6;1/2(61'1 X e - eiq)T}

H [(X©®...X@). (BTB+ AI)~1/?]

(31,82, +1q),

>

l\.’)\»—l

[(XO®...X@) . (BTB+ )~V HF

Because 2~ is the probability of sampling row (i1, iz, - - -i4) of (X ® ... X @) . (BT B+ \I)~1/2, the above inequality
proves that with high probability, matrix .S is a rank-s row norm sampler for ( XWg.. . X (‘1)) (BTB+ \X)~"? asin
Definition 2.5.

Runtime: One of the expensive steps of this algorithm is the computation of M in line 2 which takes O(m?n + gmnlogn)
operations since B has rank at most m. Another expensive step is the computation of the TNORM data-structure in line 3.

By Lemma 3.1, this DS for e = 25 can be formed in time O ( 4 log;2 g-nlogn+logn - 23:1 nnz (X(j))).
By Lemma 2.3, matrices W, forall 7 € [s'], k € [m/] and a € [q] in line 7 of the algorithm can be computed in total time
0 <q3s’n log?n +logn - iy nnz (X(j))>.

The matrix W2, for every k € [m'], and 7 € [s'], has size O(¢®) x n. Thus, by Lemma 3.1, computing the distribution
{p®}_, in line 13 takes time O (¢*s"-n log® n log q) for a fixed a € [g] and a fixed ¢ € [s]. Therefore, the total time to
compute this distribution for all ¢ and ¢ is O (q7s2 -nlog® nlog q).

The runtime of computing the distribution {g{' } ;c,~1(;) in line 16 depends on the sparsity of X }(La,)l (1),x2 1€, INZ (X }(in)l ® *) .

To bound the sparsity of X ,(fi)l (1), DOtE that, nnz (X }(ﬁ)l ® *) = Zle Liien—1(4)} - nNZ (X fi)) Since the hash function
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h is fully independent, by invoking Bernstein’s inequality, we find that for every ¢ € [s'] and a € [g], with high probability
in n, nnz (X ,(la,)l ( t)’*> = O ((nnz (X@) /s' + n) logn). By union bounding over ¢s’ events, with high probability in n,

nnz (X,S‘i)l (t))*> = O ((nnz (X@) /s’ +n) logn), simultaneously for all ¢ € [s'] and a € [g].

Therefore, by Lemma 3.1, the distribution {g };cs-1(;) in line 16 of the algorithm can be computed in total time
0 <q3sn log® nlog q + log® nlogq - =y Dz (X(j))) forall @ € [g] and all £ € [s].

The total runtime of Algorithm 4 is thus O (an + ¢"s*nlog? nlogq + log® nlogq - >4 nnz (X(j))). O

Now we can prove our main theorem about spectrally approximating the Gram matrix ® " ® for matrices of the form
® = ®I_, X using nearly 3, nnz (X ) runtime.

Proof of Theorem 2.7: The theorem follows by invoking Lemmas 2.6 and B.1. To find the sampling matrix II, run
Algorithm 1 on ® with 1 = s) and for the ROWSAMPLER primitive, invoke Algorithm 4. By Lemma B.1, Algorithm 4
outputs a row norm sampler as per Definition 2.5 with probability 1 — m. Therefore, since the total number of times

Algorithm 4 is invoked by Algorithm 1 is log % = O(logn), by a union bound, the preconditions of Lemma 2.6 are
satisfied with high probability. Thus, it follows that II satisfies the following spectral approximation guarantee

OTD+ AT OTD+ AT
2o+ <O + N < 74_
1+e 1—c¢

Algorithm 1 invokes the ROWSAMPLER primitive log I® ”F = O(log n) times. Thus, by Lemma B.1, the runtime of finding
ITis O (q S* log® nlogq + log* nlogq - >, nnz (X( ))>

O
C. Proof of Lemma 4.1
First, by properties of tensor products and using the definitions of sketch matrices S(¢) = \/% - P.HD, we obtain
1
(sWx) @ (s@X)@... (SOX) = — (P x Pax ... Py) - (HDX)®, (15)
m

where Py X P5 X ... P, denotes the Kronecker product of the sampling matrices P, P, ... P, and is of size m? x d?. Now
let 1,22, ... 7, € R? denote the columns of X. By Khintchine’s inequality (Lemma A.1) along with a union bound over
the d entries of the vector H Dz, the following holds with probability 1 — m, for every ¢ € [n]:

|HD - 2|2, < O (logn) - [lze3-

Therefore, using the definition of tensor product, the following holds with probability 1 —
¢ € [n]and all r € [q]

m, simultaneously for all

H(HD-;zcg)‘X’TH2 < O (logn)" ||x (16)

-
From now on we condition on the above inequality holding for every r € [¢] and every ¢ € [n].

Now let us consider the matrix (HDX)®? . (X ® K)T. This matrix has d? rows and n columns. If we let Ay, be the
smallest eigenvalue of K, then using the properties of the tensor product of matrices, the Frobenius norm of this matrix
satisfies the following inequality,

o007 = (55 o)

> A2, H2® HDX)®q — 4702 - |T e x| (17)
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Furthermore, if we let Apay be the largest eigenvalue of K, then for any row j € [d]? of the matrix (HDX)®? . (L @ K)T,
the following upper bound holds,

2 2

H [(HDX)®q (E® K)T}

Jox

- Hz . diag ([(HDX)@)QL_’*) KT

2 F

<A2 Hz - diag ([(HDX)@"]L ) :

F

X Y |[ED 20 G 15l
=1

By incorporating (16) into the above inequality for r = ¢, we find that for any j € [d]?,

2 n
< 0 (logn)? X Y. [[227|[2 1.,
2 /=1

H [(HDX)®‘1 (E® K)T}

O(logn)q maxHE@X@qH

Jox

In fact, we can prove a stronger version of the above inequality which will turn out to be very useful in our analysis. Let
j € [d]? be some arbitrary index vector. Also, let S C [g] be some arbitrary subset. Let us denote the subset of indices in
[d]? that agree with j on S by [d]{_ and formally define it as follows:

[di ={ie€d?:i =jiforallt € S}.

Js

Using this notation along with the properties of tensor products and (16) we have the following for every j € [d]? and
S C g,

2

>

‘ [(HDX)@W (E® K)T]

= H(HDX)@’@S') ] diag (HDXJ;,.0) - (B ® K)T
tesS

i

2

ie[d]J‘.’S F
2
<A ‘ (z @ (HDX)®a=15D) T] diag ((HDXJ;, .)
tesS F
2
N S (E*J@(HD-W)@(‘I—'SD) J1ED - 2G)
Le[n] tes 2
2
= N Y ||Bee® HD 2@ 15| [T w0
teln]
<N de IS ST Hz ® 220" 'S‘)H HOlogn) lze))?
Le[n] es

= Ologn)!®! - 22, - 81 |2 @ x®9| 7,

where the fifth line above follows from (16) for » = 1. Now by combining the above with (17) we find the following for
every non-empty set S C [¢],

2 <0 <logn>|s ey H(HDX)®(I , (Z®K)TH2 18)
o ~ d P’

sy 2

ield] SIS

‘ [(HDX)®q (Z® K)T}

i%

where Kk = imﬁ“‘ is the condition number of K. This inequality shows that the rows of (HDX )®q (2@ K)T are “flat”
and the Frobenius norm of this matrix is spread-out evenly over the rows of this matrix. In addition to (18), we can prove a
stronger inequality for the case of sets of cardinality one. Specifically, we prove a stronger version of (18) for any singleton
set S, i.e., | S| = 1. We start by denoting the sole element of set S by §, i.e., S = {§}. So when S = {5}, using the definition
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of [d]{, we have [d]{_ = {i € [d]? : i5 = js}. Therefore, by properties of tensor products, we can write for any j; € [d]:

2 2
= |[(rDx)# - ding (HDX);..0) (B @ K>THF
2

>

HS [d]Jf‘S

’ [(HDX)®‘1 (Z® K)T}

i*

2
= ar! || X267 diag (HDX);,..) (S e K)T ||

=9 1.

’ [HDX : (2 9K ® X®<q—1>)T]

Ja,x 2
Using the above inequality along with Khintchine’s inequality from Lemma A.1, we find that the following holds for any
S = {5}, with probability at least 1 — m

2 2

>

ie [d]J?S

’ {(HDX)QM (E® K)T}

.
< O(logn) -d?*. HX . <§] QK ®X®(q—1))

ix

2 F

= Oftogm) -t~ | (X 0 x°0Y) (e )7,

1

~0 ( Og”) l(EDX)® - (20 K)T|[
d

Now using the above inequality and union bounding over all § € [d] and j; € [d], we can conclude that with probability at

least 1 — m, the following holds simultaneously for all singleton sets S = {5} C [¢] and all j € [d]9,

i

Vo) umwr worrt, o

sy 2

i€ [d]J‘.’S

‘ [(HDX)@’Q (E® K)T}

which is a stronger upper bound than (18) by a factor of 2.

Now recall that, by (15), we have the following,
@ @ L ®q T||?
H(S X)e... (s9X) - (SeK) HF - ﬁ-H(P1 x Pyx...P) (HDX)®" - (S @ K) HF

Therefore, to simplify the notation, if we denote the vector corresponding to row norms of (HDX)®? . (X @ K)T by
y €RY,

Yy = H [(HDX)@M (E® K)T} for every j € [d]9,

Jx||g

then it suffices to prove that
m4a d

1 2
LPr {-(P1 X Pyx ... Py)-y|?e (11@"”{'}'2] >1-6 (20)
1s---4°q

given the fact that the P; are independent random sampling matrices and conditioned on y satisfying the following flatness
property for any non-empty set S C [¢] (by combining (18) and (19)):

[S]
max wil* <0 ( ) (K Tgsps1y + Lysi=iy) - lylls - 21
ie[d]J‘?S

logn
d
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In order to prove (20), first note that ﬁ (P x Py X

2. . .
Py) - y||5 is an unbiased estimator, i.e
Ep,.. P

L 2 1 .
PRyl = Y e Al
il,ig,.A.in[d]

1

= q1 Z |y(i1,.,.iq)|2

i1,i2,...iq€[d]
Iyl

da’

where by Pr[i. € P.] we mean the probability that i, is sampled by matrix P,, and this quantity is equal to Pr[i, € P.] =

Next we bound the variance of this estimator and then finish the proof by Chebyshev’s inequality.

2
1
Ep,.,..p, Kmq (P x Py x ... Py) '?J||§> ]

1 ..
— Z Prlii,ji € P

o Prlig, g € Pyl - |uil? - lys)?
jie(d)

Iy ey [Tt

3

-Prlis, j1 € Pi] - Prlig, g € Py] - |l - |5l
SClaljeldl? ig[d]]  \t€lq
.. . 2 2
Z > Z II g - Priicdc € P (H Pr(jy EPt/]> 2 (22)
SC[q]_]E[d]q 16[ t€[q]\S t'es
Where the second line follows because P,
[d]gs'
Pr[j e P =

m(m—1) <

1 2
Ep,,.p, [(ﬂ”ﬂ |(P1 x Pyx...Pp) y||§) 1

S—ZZ() -yl

jeld)e ig[d]4

rem X Y Y (5

[S|
) il -y
0#SC(q) jeld]4 ie[d]]

2yl

IIsz 2
+ ST 2a—1s] d2q El >l > u
0+£5C[q) j€ld)a ield)f,
112 O(logn) [|yll3 2
<@t T 2
SClq] jeld)e
|S|=1
O(logn)!¥' - &2 ||y3 2
DD e - e DR
5Clq] j€ld]e
[S|>1
< wlls (qlogn N q2n210g2n) itz
d24 m m?2 d24
inequality along with the fact that —-

where the fourth and fifth lines above follow from the fact that y satisfies the condition in (21). Therefore, the above
H(Pl X PQ X .

. P;) - y||5 is an unbiased estimator implies that
Varp,

1
’”_Pq ﬁ'”(PlXPQX

qlogn  ¢*xk?log*n yl|3
] o (1 P

m2 d2q

C. .Pr[iq S Pq] : |y(i1’ iq)

P, are independent and the third line follows from the definition of the set
Now we can bound (22) by noting that for any ¢ # j, the collision probability Pr[i, j € P;] =
%. We can write,

d(d—1) < (% ) and

m
rE
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us if m = = + =) - < logn tor a large enou constant C/, using the definition of vector y together witl
Thus if C(%+%) - 4logn for a larg gh C, by using the definition of gether with

Chebyshev’s inequality ;nd a union bound, we have the following,

Pr [H((S(”X) ... (s9x))- (Z@K)THi c+o|x® . (oK) |5 >1-4

so the lemma statement follows.

The runtime of applying all sketches to X consists of the time to compute Y = H DX and the time to compute P,.Y for
every r € [q]. The time to compute Y is O(nd log d) by using the FFT algorithm and the time to compute all P,.Y" matrices
is O(gmn).

D. Leverage Score Sampler for Polynomial Kernel
D.1. Proof of Lemma 4.2

All rows of the sampling matrix S € R**?" (the output of Algorithm 3) have independent and identical distributions because
for each £ € [s], the £*" row of S is constructed by sampling indices i1, ia, - - - i, in line 19 completely independent of the
sampled values for other rows ¢/ # ¢. Thus, it is enough to consider the distribution of the #** row of S for some arbitrary
¢ € [s]. Let I := (I, ...1;) be a vector-valued random variable that takes values in [d]? with the following conditional
probability distribution for every a = 1,2, -- - ¢ and every i € [d],

Pr(l, =illy = i1, Lam1 = da—1] =Py - 4 (23)

where distributions {p{ },¢[s and {q{ };icp—1(;) for every ¢ € [s'] are defined as per lines 15 and 18 of the algorithm. One
can verify that the random vector (i1, 42, - - - i) obtained by stitching together the random indices generated in line 19 of the
algorithm, is in fact a copy of I defined above.

Let 3, be the quantity computed in line 21 of the algorithm. If ¢1, i2, - - - iy € [d] are the indices sampled in line 19 of the
algorithm, then using the conditional distribution of I in (23), we find that the value of 3, is equal to the following,

q
Be=s" H pz(ia)qfa

a=1

q
=S H Pr [Ia = ia|Il = ’L.l,"'Ia,1 = ’L’afl]

a=1

:S'PT[I:(il,i27...’iq)]7

where p® and ¢“ are the distributions computed in lines 15 and 18 of the algorithm. Hence, for any i1, iz, - - - i, € [d], the
distribution of Sy , is,

Pr [S&* = 621/2(81‘1 ® €iqy SR eiq)T} =Pr [I = (il,ig, .o ’Lq)] = % (24)
Now to ease the notation we define Yk@ = ;1':(: S ,(Cj )X for every k € [m’] and ¢ € [g], where S ](CC) are the SRHT sketches

with shared signs drawn in line 4 of the algorithm. From the definition of TN in line 5 and by invoking Lemma 3.1
we have the following inequalities for any r € [s], k € [m/], ¢ € [d], and any a = 1,2, ... ¢, with probability at least

1
1- poly(n)’

TN®).QuEry (LZ,,a) € <1i ) (v @ ar) pow] H (25)

¥) QUERY (DX, q) € <1i ) H( (a+1) ®M) DXy, (26)

By union bounding over gds’m’ events, (25) and (26) hold simultaneously for all a € [¢], k € [m/], ¢ € [d], and all r € [¢/]
with high probability. From now on we condition on (25) and (26).
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Furthermore, note that W, . is defined in line 9 as W, ;, = G’,f . Xh—l(r)’*, where fo is a degree-1 POLYSKETCH with
target dimension n’ = C3¢?. By Lemma 2.3, G¥ approximately preserves Frobenius norm of any fixed matrix with constant
probability. In particular, for every a € [q],r € [s’ ], k € [m/], with probability at least 19/20:

2

vt @ M) DT, 11— YD (X @ M) || Q27)
'

To obtain the above inequality we used the fact that there is a bijective correspondence between entries of
(a+1) a (a+1) Ha T

(Vi @ M) DeX L and VDO (X @ M)

Additionally, note that M = H - (BT B + \I)~'/2 for a random Gaussian matrix H with d’ = Q(¢?logn) rows. Therefore,

H is a JL-transform. So if we define A := (B" B + AI)~!/2 for ease of notation, then with probability 1 — m, the

following holds for any a € [q], 7 € [s']:

a a T2 a a 2
Hyk( DY (X 1y © M) HF (1 + ) Hy (VD (X1, ® A) HF
By union bounding over ¢gs’ events we can conclude that the above inequality holds simultaneously for all a € [¢] and
r € [s]. From now on we condition on the above inequality holding. By combining this condition with (27) we find that
with probability at least 19/20 the following holds:

2

(e o) (12 1) [0 (00

F

Using the definition of matrices Yk(c) = g:C S,ij 'X and by Lemma 4.1, because the number of rows of S,(CC) is
/.

m” = Q(q* + ¢k logn), the following holds with probability at least 19/20 for any a € [q],r € [s'],k € [m/],

2 2

HYk(aJrl)Da (thl(r)7*®A)TH F.

1 _ T
e () [erop e 00)|

By combining the above with (28) using a union bound, and plugging the result into (25) we find that with probability at
least 9/10 the following holds,
2

N® QuERY (L%, a) € (lj:> |xeo D (X0 )|

By taking the median of m’ = €(log n) independent instances of TN(* QUERY (Lﬁ o @ ) the success probability of the

above gets boosted. Thus, by a union bound, with probability at least 1 —
a € [qlandr € [s'],

W(n) the following holds simultaneously for all

MEDIAN¢[1n/] {TN(k).QUERY (Lﬁ)k,a)} (1 + ) HXQW DD (Xp-1(y5 ® A) H (29)

Similarly, we can use the fact that there is a bijective correspondence between the entries of (Y(“H) M ) D*X, T and

Yk(aH)D“diag (X; ) M " along with M = H - A to conclude that with probability 1 — ( L the following holds for
any a € [q],r € [¢'],k € [m/],i € [d]:

(v @ m) DX,

2 1 (a+1) hya 1 2
c (118061) HYka D ~d1ag(Xi,*)AHF (30)

By a union bound over ¢s’m’d events we can conclude that the above inequality holds simultaneously for all a € [q],r €

[¢'],k € [m'],i € [d]. From now on we condition on the above inequality holding. Then, by using the definition of

matrices Y( . H S(J )X and invoking Lemma 4.1, the following holds with probability at least 19/20 for any

acldr e[k e i€ dl

2
HY,j“*”D“diag(Xi,*)AHF € <1i = )Hx®<q a) . Dadiag (X, AH
q
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By combining this with the condition in (30) and (26) we find that with probability at least 19/20:

1 2
TN®) QuUERY (DX, a) € (14— Hx®<q—a>D“diag (Xi*)AH
’ 15¢q ’ F

By taking the median of m’ = Q(log n) independent instances of TN®) QUERY (D“X ZT i a), the success probability of the

above gets boosted. Thus, by applying the median trick and then using a union bound, with probability at least 1 —
the following holds simultaneously for all a € [¢],% € [d] and r € [],

1
poly(n)
1 2
MEDIAN ¢ [yn] {TN(k).QUERY (D“XiT*,a)} € (1 + 1561) HX@’(‘?*“)D“diag (Xi) AHF

Plugging the above inequality along with (29) into (23), we conclude that with high probability the following bound holds
simultaneously for all a € [g] and all ¢ € [d],

. ) HX@(qfa)Da - diag (Xi,*)AHf?

Prl, =i|lly =iy, Io =g, Iy 1 =iq 1] > [1—
rf iy =1, Ip = iz 1= ] ( 3q HX@(Q*LH»l)DaAHi_‘

€2y
Thus, using the definition of D% and A = (BT B + AI)~'/2, we have

q
Pr(I = (ir iz, - +ig)] = [[ Prlla = ialls = i1, Tacy = iq1]
a=1

q X®W=-a)pa. diag (X; A 2
> H <1_1> H - iag ( a2*) HF
e 3q | X®(a-a+1) Dag ]F
1 [ e ding (X3,.) A1
2 | X @ DLA| 7
2
_ 1 . H [X®q : (BTB + /\I)_l/Q] (7;171'2,..4'(1)’* 2
2 | X - (BTB+AI)~-1/2||2,
This shows that, with high probability in n,
2
X® . (BTB4A)"Y?]
Pr Se,* = ﬂe_lm(@u RKe, ®---e )T} > 1 : H[ ](11,12,;-%),* :
! 2 |X®a- (BTB+AI)~1/2||,

Because 22 is the probability of sampling row (i1, 42, - - - 44) of X®1(BTB + )\I)’l/Q, the above inequality proves that

S

with high probability, matrix S is a rank-s row norm sampler for X®9(BT B + )\I)_1/2 as in Definition 2.5.

Runtime: The first expensive step of this algorithm is the computation of M in line 3 which takes O(m?n + ¢*>mnlogn)
operations since B has rank at most m. The next expensive computation is the computation of S,(CC)X for ¢ € [q]
and k € [m/] in line 5 of the algorithm. By Lemma 4.1, the total time to compute these sketched matrices
is O ((q4 + qSH)nloanJr ndlog? n) Another expensive step is the construction of the TN®) data-structure in
line 5 for k € [m']. By Lemma 3.1, these DS’s for ¢ = ﬁ and all k& € [m’/] can be formed in total time
O (¢*log® g - nlog®n + (¢* + ¢*k)nlog® n).

By Lemma 2.3, matrices W, for all » € [s'] and k& € [m/] in line 9 of the algorithm can be computed in total time
O (¢*s'n log® n + logn - nnz (X)).

The matrix W, for every k € [m’], and r € [s'], has size O(¢?) x n. Thus, by Lemma 3.1, computing the distribution
{p®}s_, in line 15 takes time O (g*s’ - nlog®nlogq) for a fixed a € [¢] and a fixed ¢ € [s]. Therefore, the total time to
compute this distribution for all a and ¢ is O (¢®s? - nlog” nlogq).
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The runtime of computing the distribution {q?}ieh—l(t) in line 18 depends on the sparsity of Xj-1(4) 4, i.€., nnz (Xh—l(t)’*).
To bound the sparsity of Xj,-1(4) ., note that, the hash function £ is fully independent. Thus, by invoking Bernstein’s
inequality, we find that, Pr [nnz (Xh—l(t)’*) =0 (logn . ( Znnz (X) + n))} >1- m
over s events, with high probability in 7, nnz (X -1(4) ) = O ((nnz (X) /s’ + n)logn), simultaneously for all ¢ € [5']
and a € [q].

Hence, by union bounding

Therefore, by Lemma 3.1, the distribution {g{ };cs-1(;) in line 18 of the algorithm can be computed in total time
O (¢*sn log* nlog g + log* nlog ¢ - nnz (X)) forall a € [¢] and all £ € [s].

The total runtime of Algorithm 3 is thus O(m?n + ¢®s?n log® nlog q + ¢*knlog® n + dnlog® n).

D.2. Proof of Theorem 4.3

The theorem follows by invoking Lemmas 2.6 and 4.2. To find the sampling matrix I, run Algorithm 1 on ® with p = s,
and for the ROWSAMPLER primitive, invoke Algorithm 3. By Lemma 4.2, Algorithm 3 outputs a row norm sampler as

per Definition 2.5, with probability 1 — m. Therefore, since the total number of times Algorithm 3 is invoked by

Algorithm 1 is log % = O(logn), by a union bound, the preconditions of Lemma 2.6 are satisfied with high probability.
Thus, it follows that II satisfies the following spectral approximation guarantee

OTd 4+ AT TP 4+ AT
e o+ <®TIITH® + N < 7+
1+e 1—¢

The only thing that remains is bounding the runtime. In the proof of Lemma 2.6 in (Woodruff & Zandieh, 2020), it is shown
that with high probability at any iteration ¢ € [T'] of Algorithm I, the following holds,

TP+ N\ T OTD+ N\ T
& e+ AL < @TH:HtCI)—l—)\tI < #
1+4+e€ 1—¢
Therefore, || ®TII[IL®|| = O(|®"®|). Now note that Algorithm 1 invokes the ROWSAMPLER primi-
tive T = 1og% = O(logn) times. Thus, by Lemma 4.2, the runtime of finding II is the sum of

. T T
0 <q85§2iog4 n [||® H;tHﬁ?H ¢*nlog® n + ndlog! n) for all t € [T]. Since \; = 277X has a geometric decay,

8.2 5
the total time complexity is O (q Sktiog Y/ ”(p;q)” ¢*nlog® n + ndlog® n) .

E. Spectral Approximation to Generalized Polynomial Kernels

In this section we design an algorithm that can produce a spectral approximation to the GPK defined in Definition 5.1. Our
approach is to perform leverage score sampling on the GPK feature matrix ¢ defined in (4). We do this by invoking our
recursive sampling method given in Algorithm 1 on ®. Our central contribution is the design of ROWSAMPLER algorithm for
the GPK feature matrix @ that runs in input sparsity time. This procedure can perform row norm sampling as per Definition
250n ®(BT B+ AI)~ /2 for @ = @I_ a; X diag(v) using O (nnz(X)) runtime. Our primitive is an adaptation and
generalization of Algorithm 3.

The formal guarantee on Algorithm 5 is given in the following lemma.

Lemma E.1. For any matrix X € R¥" any vector v € R", any positive integers ¢, s, and any o € RIt1 et
® be the GPK feature matrix defined in (4). For any matrix B € R™*"™ and any A > 0, with probability at least
1- m, Algorithm 5 outputs a rank-s row norm sampler for ®(B' B + )\I)’l/Q as per Definition 2.5, in time

O (m*n + ¢*s*nlog® n + ¢®knlog® n + ndlog n), where k = /|| BT B|[/X + 1.

Proof. All rows of the sampling matrix S € R**?" (the output of Algorithm 3) have independent and identical distributions
because for each ¢ € [s], the £*" row of the matrix S is constructed by sampling the degree b and indices i1, iz, - - - ig in
lines13 and 22, respectively, completely independent of the sampled values for other rows ¢ # £. Thus, it is enough to
consider the distribution of the ¢! row of S for some arbitrary ¢ € [s].
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Algorithm 5 ROWSAMPLER for GPK features ® = @7_, a; X 7 diag(v)

input: ¢,s € Z,, X ¢ R¥*" v € R, a € R, B € R™*", X\ >0
output: Sampling matrix S € R**®*

b n e JIEBL

Generate H € R *"™ with i.i.d. normal entries with d’ = Coq? log n rows

M <« H-(B"B+\I)~'/?

For every k € [m/], let 5121)7 S,(f), o S,(Cq) € R™"*d pe independent copies of SRHT sketches with shared signs as per
Lemma 4.1, where m’ = C logn and m” = Cy(¢® + ¢°k) logn

For every k € [m/], let TNORM*) be the DS in Algorithm 2 for inputs (S,(Cl)X, e S,iq)X, M) and € = ﬁ

s er

Let h : [d] — [s'] be a fully independent and uniform hash function with s’ = [¢3s] buckets
Let h=1(r) = {j € [d] : h(j) = r} forevery r € [

Forevery r € ['] and k € [m/],let GF € R™ *4r be independent instances of degree-1 POLY SKETCH as per Lemma 2.3,
where d,. = |h=1(r)|, ' = C3¢®

9: Wik < GF - Xp—1() , forevery k € [m/] and r € [¢/]

10: f; < a? - MEDIAN¢n) TNORM™ .QUERY (v, g — j) forevery j = 0,1,...q

11: fj + fi/ >0, fiforevery j =0,1,...q

12: for / =1to sdo

13:  Sample b € {0, 1, ... ¢} from distribution { f;}_,

14: D! <« diag(v) and B¢ < 5 f

15: fora=1tobdo

16: L¢ ) D*- W] forevery k € [m/], and 1 € [5]
17: p{ + MEDIAN () TNORM™ .QUERY(LZ ., a + ¢ — b) for every r € [5']
18: pe <+ p2/ Zflzl p? for every r € [¢']
19: Sample ¢ € [s'] from distribution {p?}5_,
20: Let ¢ + MEDIANc,,) TNORM®) . QUERY (DX, a + q — b) for every i € h™1(t)
21: 4§ < a7/ X jen-1(1) 45 Torevery i € h=1(t)
22: Sample i, € [d] from distribution {g{ };cp—1(1)
2 DU D diag (X))
24: Be < Be - pias
25:  if b > 0 then
26: Let " row of S be 8, /%(0,0,...0,¢;, ® e, @---e;, 0,0,...0 )
———— —_———
db-1 Zeros datl—gb+l Zeros
d—1 d—1
27:  else
28: LetéthrowofS’beﬁj_l/Q(l, 0,0,...0 )
- ————
datl_d Zeros
d—1
29: return S

Let U be a random variable that takes values in {0, 1, .. . ¢} with the following distribution for every a = 0,1,...¢
Pr[U =a] = fa (32)
where { f,}?_, is the distribution defined in line 11 of the algorithm. Additionally, forany b € {1,...q},let I® := (Iy,...I})
be a vector-valued random variable that takes values in [d]® with the following conditional probability distribution for every
a=1,2,---bandevery i € [d],
Pr(l, =illy =1, lam1 = da—1] =Py - 4F, (33)

where distributions {p{ },¢[s/) and {q{ };cp—1(¢) for every ¢ € [s'] are defined as per lines 18 and 21 of the algorithm. One
can verify that conditioned on Algorithm 5 sampling some b = 1,. .. ¢ in line 13, the random vector (i1, 42, - - - i) obtained
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by stitching together the random indices generated in line 22 of the algorithm, is in fact a copy of I° defined above. Note
that if the algorithm samples degree b = 0 in line 13 then the algorithm does not sample any indices in line 22.

Let 3¢ be the quantity computed in line 24 of the algorithm. If b € {1,...q} is the degree sampled in line 13 and
i1,42, - ip € [d] are the indices sampled in line 22 of the algorithm, then using the distribution of U in (32) and the
conditional distribution of I° in (33), we find that the value of 5, is equal to the following,

b
Be=s-fo- HPZ(@,)Q?@
a=1

b
=s-Pr[U HPr Iy =iy =41, Lo—1 = iq—1]

a=1

=s-Pr [Ib—(zl,ZQ,... b)] - PrlU = b],

where p® and ¢® are the distributions computed in lines 18 and 21 of the algorithm. Hence, for any b = 1, ... ¢ and any
i1,12, - - ip € [d], the distribution of Sy is,

Pr Sg,*:5;1/2(&;9?61,1@61,2@...@%7 w )

b_ q+1_ gb+1
dd_ll zeros % zeros

=Pr[I" = (i1,i2,...4)] - Pr[U = 0] = —. (34)

Furthermore, if b = 0 is the degree sampled in line 13 of the algorithm then 5, = s - fo = s - Pr[U = 0]. Thus,

Pr | Se. =8, "%(1, 0,0,...0 )| =Pr[U=0] = Be
N—_—— S
7dq+j =4 zeros
Now to ease the notation we define Yk(c) =Qj_. S,(Cj )X forevery k € [m/] and ¢ € [g], where S,(f) are the SRHT sketches

with shared signs drawn in line 4 of the algorithm. Using the definition of TNorM® in line 5 and by invoking Lemma 3.1
we have the following inequality for any k& € [m/] andany j = 0,1,...¢:

2

TNoRM®) QUERY (v, q — j) € <1 + ) H (Y(q i g M) (35)

2

By union bounding over (¢ + 1)m’ events, (35) holds simultaneously for all j € {0,1,...¢}, and k € [m/], with high
probability. From now on we condition on (35). Now, note that M = H - (BT B + \I )_1/ 2 for a random Gaussian matrix
H with d' = Q(q?logn) rows Therefore, H is a JL-transform. So if we define A := (BT B 4+ \I)~'/? for ease of notation,

then with probability 1 — poly(n) , the following holds for any j € {0,1,...q},k € [m/]:

. 2
il () [ o

To obtain the above inequality we used the fact that there is a bijective correspondence between entries of vector
(Y(qﬂ 1) @M ) v and matrix Y(qu + . diag(v)M . Now, using the above inequality along with the definition of matri-

ces Y( o ®q,c S(j)X and by invoking Lemma 4.1, because the number of rows of S( s is m!! = Q(¢3 + ¢*klogn),
the followmg holds w1th probability at least 9/10 for any j € {0,1,...q¢},k € [m/],

o)

2 (11 >||x®ﬂ diag(v) A .
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By plugging the above into (35), we find that with probability at least 9/10 the following holds,
TNorRM®) .QUERY (v,q — j) € (1 + > | X% - diag(v AHF

By taking the median of m’ = Q(log n) independent instances of TNORM (¥ QUERY (v, q — j), the success probability of
the above gets boosted. Thus, by a union bound, with probability at least 1 — m, the following holds simultaneously

forall j € {0,1,...q},
MEDIAN ¢ [1m/] {TNORM .QUERY (v, q 7])} <1 + ) | X®7 - diag(v A||F

Therefore, using the above along with (32) and definition of f; in line 11 of the algorithm as well as A = (BT B + \I )~1/2,
with high probability in n, forany b = 0,1, ... ¢ we have

s (1) bl dneal
9q a2 - || X®i - diag(v)All%

2 || xX®b . i BB 1—1/2 2
_ < j:1> of || diag(v)( + ) HF7 36)

9 |® - (BTB+AI)-12|3,
where the last line follows from the definition of ® = @7_ a; X ® diag(v).

Moreover, suppose that b € {1,2,...¢}. From the definition of TNorM® in line 5 and by invoking Lemma 3.1 we have

the following inequalities for any r € [s], k € [m'], i € [d], andany a = 1,2, ... b, with probability at least 1 — =,
2
TNORM® .QUERY (L%, a + g — b) € (1 + ) H (Y(“+q 1) g M) D“WTT,CHF , 37)
TNorRM®) .QUERY (DX, 0 +q —b) € (1 + ) H (Y(‘”q g M) DX, (38)

By union bounding over gds’m/ events, (37), and (38) hold simultaneously for all a € [b], k € [m/], i € [d], and all r € [¢/]
with high probability. From now on we condition on (37) and (38).

Furthermore, note that W, j is defined in line 9 as W, ;, = G’,f . Xh—l(r)’*, where fo is a degree-1 POLYSKETCH with
target dimension n’ = C3¢%. By Lemma 2.3, G approximately preserves the Frobenius norm of any fixed matrix with
constant probability. In particular, for every a € [b],r € [¢'], k € [m’], with probability at least 19/20:

2 2

H( (a+q—b+1) ®M) DawT H (1 4 ) HY at+q— b+1)Da (Xh L(r) ok ®M) H . (39)
F

F
To obtain the above inequality we used the fact that there is a bijective correspondence between entries of
(Y(‘” D g M) DX,y ., and VTP D (X, @ M) T Additionally, we use the fact that M = H - A

for a JL-transform H. So, with probability 1 — the following holds for any a € [b],r € [¢]:

_ 1
poly(n)’

2 2
e i 0 € (g 00 07

By union bounding over gs’ events we can conclude that the above inequality holds simultaneously for all a € [b], r € [s'].
From now on we condition on the above inequality holding. By combining this condition with (39) we find that with
probability at least 19/20 the following holds:

2
H (Yk:(a'f‘q—b-'rl) ® M) DaWTTk ’ (1 Zt > HY at+q— b+1)Da (Xh 1 7‘) N ® A) HF . (40)
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Using the definition of matrices Yk,(c) = gz . S,gj )X and by Lemma 4.1, because the number of rows of S ,E,C) is
m” = Q(¢® + ¢*k logn), the following holds with probability at least 19/20 for any a € [b],r € [s], k € [m/],
2

2
[t D (X A) | e (1ﬁ: >Hx®b DD (X @A) |

By combining the above with (40) and a union bound, plugging the result into (37) we find that with probability at least
9/10 the following holds,

TNorM™™.QUERY (L%, a) € <1i )HX@’(Z’ DD (X120 ® A) Hi

By taking the median of m’ = Q(log n) independent instances of TN(* QUERY (L;} o @ ), the success probability of the
above gets boosted. Thus, by a union bound, with probability at least 1 — W(n) the following holds simultaneously for all
a € [b]and r € [¢'],

MEDIANke[m/]{TNORM .QUERY ( ik,a)} <1i> HX®(b DD (Xp-1(ry5 ® A) HF (41)

Similarly, we can use the fact that there is a bijective correspondence between the entries of <Yk,(a+q_b+1) QM > DX ZT .

and Y,C(a+q_b+1)Dadiag (Xix) M T along with M = H - A to conclude that with probability 1 — m, the following
holds for any a € [b],r € [s'], k € [m/],i € [d]:
H (Y,j“*q"’“) ® M) D“XZT* (1 + ) HY a+0=b+1) pa . diag (X, . AH (42)

By a union bound over gs'm’d events we can conclude that the above inequality holds simultaneously for all a € [b],r €
[¢'],k € [m/],i € |d]. From now on we condition on the above inequality holding. Then by using the definition of

matrices Yk(c) = ®;1-:C S ,ij )X and invoking Lemma 4.1, the following holds with probability at least 19/20 for any
a€[b,rels ke[m]ield],

2
HY,C(”‘I**’“)D“diag (Xi) AH € (1 + ) Hx®<b @) . Didiag (X . AH
’ F
By combining this with the condition in (42) and (38) we find that with probability at least 19/20:
1 2
TNorM®) .QUERY (D°X/T,,a+q—b) € (1 + 19) HX®(b‘“)D“diag (X AH
q ’ F

By taking the median of ’ = Q(log n) independent instances of TNORM®) QUERY (D‘LXZT*, a+q—b), the success

probability of the above gets boosted. Thus, by applying the median trick and then using a union bound, with probability at

least 1 — m the following holds simultaneously for all a € [b],¢ € [d] and 7 € [s'],

MEDIAN ¢ /] {TNORM(k).QUERY (DX, a+q— b)} <1 + > HX®<b @) Ddiag (X; . AH

Plugging the above inequality along with (41) into (33), we conclude that with high probability the following bound holds
simultaneously for all @ € [b] and all ¢ € [d],

[ Xx®C=0) D . diag (X; AHF
HX®(b a+1) DaAH

Pr[Ia :Z|Il :il,IQ :’L'Q,"'Ia,1 :Z'afl] 2 (]. 3 ) (43)
q
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Thus, using the definition of D% and A = (BT B + XI)~/2 forany b € {1,2,...¢q}, we have

q
Pr (1" = (iy,ig, - +ip)] = [[ Pr(la = ially = i1, -+ Loy = ia_1]
a=1

o7 (1 1 ) |X®t=9) D . diag (X, ) A 5
=R | xee-a+bpaa||
. 2
> 1 Hljn - D" - diag (X, +) AHF
2 | X DAl
2
- _. H [X®b ' diag(v)(BTB * /\I)_l/Q] (11,42, +ip) % || o
2 | X0 - diag(v) (BT B + AI)=1/2|7,
This together with (36), shows that for any b € {1,2... ¢}, with high probability in n,
Pr (S, =8, /%(0,0,...0,e;, @ e, @€, 0,0,...0 )
N—_—— N—_——
db—1 Zeros 42t b+l Zeros
d—1 —
=Pr [I" = (i1,i2,...4)] - Pr[U = 8]
2
.y H (X diag(0)(BTBHANTV2] o iyll, 0f - [|X®° - diag(u)(BTB + AD~2|[}
~ 3 | X @b diag(v)(BT B+ AI)=1/2||7, |@ - (BTB +AI)-12|[2,
2
1ok H [xdiag(e)(BTB+AD2]
=3 .

|@ - (BT B+ AI)-1/2|[2,

The numerator above is exactly equal to the norm of row (iy, iz, - - - i) of the b*" block of the matrix ®(B T B 4 \I)~1/2
(note that ® has ¢ + 1 blocks and its b" block is ay, - X®Pdiag(v)). On the other hand if b = 0, we have,

1 > a2 - ||X®0 - diag(v)(BT B + AI)~1/2[3,

PrSee=6,""(1,0.0,..0)| =P =012 <1i9q @ (BTB+A1)-1/2|
F

da+l_4
d—1

Zeros

The numerator above is exactly equal to the norm of (the sole row of) the 0" block of the matrix ®(BT B + \I)~1/2,

Because % is the probability of sampling row (i1, 4z, - - - i) in the b** block of the matrix ®(BT B + A\I)~1/? or the sole
row of the zero-th block, the above inequalities prove that with high probability, matrix S is a rank-s row norm sampler for
®(BT B + M)~'/2 as in Definition 2.5.

Runtime: The first expensive step of this algorithm is the computation of M in line 3 which takes O(m?n + ¢*>mnlogn)
operations since B has rank at most m. The next expensive computation is the computation of S,(CC)X for ¢ € [q]
and k € [m/] in line 5 of the algorithm. By Lemma 4.1, the total time to compute these sketched matrices is
O ((q4 + q3n)nlog2 n + ndlog? n) Another expensive step is the construction of the TNorM™®) data-structure in
line 5 for k € [m']. By Lemma 3.1, these DS’s for ¢ = ﬁ and all k& € [m’/] can be formed in total time
O (¢*log® g - nlog®n + (¢* + ¢*k)nlog® n).

By Lemma 2.3, matrices W, for all » € [s'] and k& € [m/] in line 9 of the algorithm can be computed in total time
O (¢*s'n log® n + logn - nnz (X)).

The matrix W, for every k € [m’], and r € [s'], has size O(¢?) x n. Thus, by Lemma 3.1, computing the distribution
{p®}_, in line 18 takes time O (g*s" - nlog®nlogq) for a fixed a € [b] and a fixed ¢ € [s]. Therefore, the total time to
compute this distribution for all a and ¢ is O (¢®s? - nlog” nlogq).
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The runtime of computing the distribution {q?}ieh—l(t) in line 21 depends on the sparsity of Xj-1(4) 4, i.€., nnz (Xh—l(t)’*).
To bound the sparsity of X,~1 ;) 4, note that, nnz (Xp,-1(;) +) = DO Liien—1(1)} - nnz (X; ). Since the hash function
is fully independent, by invoking Bernstein’s inequality, we find that, for every ¢ € [s'] and a € [b], with high probability
in n, nnz (Xp,-1(),) = O ((nnz(X) /s’ + n)logn). By union bounding over ¢s’ events, with high probability in 7,
nnz (Xp,-1()+) = O ((nnz (X) /s’ + n)log n), simultaneously for all ¢ € [s'] and a € [b].

Therefore, by Lemma 3.1, the distribution {gf };cp-1(;) in line 21 of the algorithm can be computed in total time
O (¢3sn log* nlog ¢ + log* nlogq - nnz (X)) forall a € [b] and all £ € [s].

The total runtime of Algorithm 3 is thus O(m?2n + ¢®s?nlog? nlog q + ¢*knlog® n 4 dnlog* n).

Now we are ready to prove the main result, i.e., Theorem 5.2.

Proof of Theorem 5.2: The theorem follows by invoking Lemmas 2.6 and E.1. To find the sampling matrix II, run
Algorithm 1 on ® with u = s, and for the ROWSAMPLER primitive, invoke Algorithm 3. By Lemma E.1, Algorithm 5
outputs a row norm sampler as per Definition 2.5, with probability 1 — . Therefore, since the total number of times

Algorithm 5 is invoked by Algorithm 1 is log % = O(logn), by a union bound, the preconditions of Lemma 2.6 are

satisfied with high probability. Thus, it follows that II satisfies the following spectral approximation guarantee

1
poly(n)

OTD+ AT OTD+ AT
oo+ A <O IS + N < 7+
1+e 1—c¢

The only thing that remains is to bound the runtime. In the proof of Lemma 2.6 in (Woodruff & Zandieh, 2020), it is shown
that with high probability at any iteration ¢ € [T] of Algorithm 1, the following holds,

TP+ NI ST+ N\ T
#5®THZH@+AJ§7+ Lty
1+e 1—ce¢
Therefore, ”(I)TH;'_th)H = O(]|®7®|). Now note that Algorithm 1 invokes the ROWSAMPLER primi-
tive T' = log% = O(logn) times. Thus, by Lemma E.I, the runtime of finding II is the sum of

€

8.2 5 -
the total time complexity is O (q S*TZiOg Y/ ”(I);q)” ¢*nlog® n + ndlog® n)

T T
0 <q853niog4n n [||@ H/\tthCPH @#nlog®n + ndlog? n) for all t € [T]. Since \; = 277*\ has a geometric decay,

E.1. Application to Gaussian Kernel

In this section we show how to use Theorem 5.2 to spectrally approximate the Gaussian kernel matrix on a dataset with
bounded radius. Specifically, we prove Corollary 5.3:

Proof of Corollary 5.3: Our approach is to show that there exists a GPK that tightly approximates the Gaussian kernel
matrix and then invoke Theorem 5.2. We start by letting X € R?*™ be the matrix whose columns are data-points
T1,... T, Also, let ¢ = O (r +log %) and define o € R?™! as a; := 1/4/5! for every j = 0,1,...q. Additionally,
let v € R™ be defined as v; := e 1#l2/2 for i € [n]. Now we define the GPK kernel matrix & € R™*"™ corresponding

to the above mentioned ¢, X, o, and v, i.e., K := diag(v) (Z?:O a? . X®jTX®j) diag(v). Also let d be the feature
matrix corresponding to K defined as per (4). Then by invoking Theorem 5.2 we can find a sampling matrix IT in time
O (qssiniogs)n + ”—If”q?’nlog3 n + ndlog® n) =0 (TBZEW + ”—@7‘371 + nd) such that with high probability in n,

€

K+ M~ - K+ )\
AT g Ay < EAL
1+¢/3 1—¢/3
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Now all that is left to do is to show that

K+ ~ K+
<K+ = .
1+¢/3 ~ + ~1—¢/3

To prove the above we note that since K and K are PSD matrices, it suffices to prove HIN( - K H < %. The reason we have
this bound is,

~ 2 - 2
&~k <]} - x|
F
~ 2
= Y |Ki;—Ki;
i,jE€[n]
q 2
- Z Zm’xjy/@_em,m e E e A
i,j€[n] 1£=0
2
< Z Z <xl7xj>[/£'

i,j€[n] [{=q+1

2
0o

Z Z rt /!

i,j€[n] [{=q+1
> 2l
4 4n

i,j€[n]
€2\?
16 -

IN

IA

This completes the proof and shows that,

K+M -~ _ K+
KM _5mnmng 4oar < B
1+e€ 1—¢

E.2. Application to Neural Tangent Kernel

In this section we show how to use Theorem 5.2 to spectrally approximate the kernel matrix corresponding to the NTK
defined in (5) on a dataset with bounded radius. Specifically, we prove Corollary 5.4:

Proof of Corollary 5.4: Our approach is to show that there exists a GPK that tightly approximates the NTK and then invoke

Theorem 5.2. We start by letting X € R?*" be the matrix whose columns are normalized data points ”fﬁ, . ﬁ Also

let v € R™ be defined as the vector of norms v; := ||x;||2 for ¢ € [n]. Additionally, let ¢ = © (%) and define the vector

of coefficients o € R29%3 as follows for every j = 0,1,...2q + 2:

ifj =0
ifj=1
ifj > 1lisodd
(J+1):-(G=2)!

TGP GG 1T > Liseven

A= O o

Now we define the GPK kernel matrix K € R"*n corresponding to the abovementioned ¢, X, «, and v, i.e., K =
diag(v) ( 1 oad X® TX®I ) diag(v). Also let ® be the feature matrix corresponding to K defined as per (4). Then
by invoking Theorem 5.2 and also noting that the definition of NTK in (5) implies || K|| < tr(K) = 2n, we can find
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16 3n

a sampling matrix II in time O <qgs§2410g5n + 4/ @q?’n log® n 4 ndlog® n) =0 ((g) Ar + nd) such that with
high probability in n,

K+ M~ ~ K+ M\
A T g Ay < K EAL
1+¢/3 1—¢/3

Now all that is left to do is to show that
K+ I ~ K+ I

<K+ = .
T+e3 TN 213

To prove the above we note that since K and K are PSD matrices, it suffices to prove ‘ K-K H < %. To prove this bound

note that the Taylor series expansion of function ky.x () defined in (5) is the following,

1 1 & (20 +3) - (20)! o0
kn =— — . g2
wlf) =240+ 2 ; 220(0)2 - (20 + 1)(2€ + 2)
Therefore, we can write
Bk <||g -k
_ < _
| sl < %= xe,
~ 2
= Z ’Kiyj—Ki,j
i,j€[n]
2
1 (wzy) 15 (20+3) - (20)! ( (w3, 2;) )2”2 < (w3, 2;) ) o o
= —t e+ = = kaex | e )| a2l
2 |7 Tl 7 2 F@r@+ DD Tl wTdeyr )| 1201
= Z 1 i (2¢+3) - (20)! ( (wi, 25) )QHZ AR
20(01)2 . . v
|7 2 2+ 1)+ 2) el
2
1 (2¢+3) - (20)! 9
< Z P Z 20(01)2
Rl ”e:q+12 (eH2(20+1)(2¢ +2)
2
_n’rt i (20 +3) - (20)!
| e PP+ 1)(20+2)
2
n2r? > 1
= 2 243/2
L=q+1
2.2 24y2
Lt € A .
~ 4m2q — 16
This completes the proof and shows that,
K+ ~ ~ K+
A LETHTd A < 2T
1+e¢ 1—c€



