
Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

David P. Woodruff * 1 Amir Zandieh * 2

Abstract

We propose an input sparsity time sampling algo-

rithm that can spectrally approximate the Gram

matrix corresponding to the q-fold column-wise

tensor product of q matrices using a nearly opti-

mal number of samples, improving upon all pre-

viously known methods by poly(q) factors. Fur-

thermore, for the important special case of the

q-fold self-tensoring of a dataset, which is the

feature matrix of the degree-q polynomial ker-

nel, the leading term of our method’s runtime is

proportional to the size of the input dataset and

has no dependence on q. Previous techniques

either incur poly(q) slowdowns in their runtime

or remove the dependence on q at the expense

of having sub-optimal target dimension, and de-

pend quadratically on the number of data-points

in their runtime. Our sampling technique relies

on a collection of q partially correlated random

projections which can be simultaneously applied

to a dataset X in total time that only depends on

the size of X , and at the same time their q-fold

Kronecker product acts as a near-isometry for any

fixed vector in the column span of X⊗q . We also

show that our sampling methods generalize to

other classes of kernels beyond polynomial, such

as Gaussian and Neural Tangent kernels.

1. Introduction

In many learning problems such as regression or PCA, one is

given a feature (or design) matrix Φ ∈ R
m×n and needs to

compute the inverse or singular value decomposition (SVD)

of the Gram matrix Φ⊤Φ. However, the feature matrices Φ,

particularly the features that correspond to kernel functions,

often have a massive (sometimes infinite) number of rows,

which makes the storage and computations involving Φ⊤Φ

*Equal contribution 1Max-Planck-Institut fÈur Informatik
2Carnegie Mellon University. Correspondence to: David Woodruff
<dwoodruf@cs.cmu.edu>, Amir Zandieh <azandieh@mpi-
inf.mpg.de>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

prohibitively expensive. This has motivated a long line of

work on approximating the Gram matrix Φ⊤Φ by a low-rank

matrix (Williams & Seeger, 2001; Rahimi & Recht, 2009;

Avron et al., 2014; El Alaoui & Mahoney, 2014; Cohen

et al., 2015; Musco & Musco, 2017; Avron et al., 2017).

In this work, we focus on feature matrices whose columns

are tensor products of a large number of arbitrary vec-

tors, i.e., Φ = X(1) ⊗ X(2) ⊗ . . . X(q) for datasets

X(1), . . . X(q) ∈ R
d×n (for tensor product notations see

Definitions 2.1 and 2.2). Note that the tensor product matrix

Φ defined this way has dq rows and n columns. This type

of tensor product feature matrix Φ is of great importance in

learning applications, particularly because the special case

of X(1) = · · · = X(q) corresponds to the feature matrix of

the degree-q polynomial kernel, i.e., the Gram matrix Φ⊤Φ
is the degree-q polynomial kernel matrix. To tackle scalabil-

ity challenges, much work has focused on compressing the

large number of rows of such tensor product feature matri-

ces through linear sketching or sampling techniques (Pham

& Pagh, 2013; Avron et al., 2014; Ahle et al., 2020; Meister

et al., 2019; Zandieh et al., 2021; Song et al., 2021).

The aim of our work is to devise efficient sampling methods

for reducing the dimensionality (number of rows) of tensor

product matrices while preserving the spectral structure

of the Gram matrix. Formally, for any given ϵ, λ > 0
and any X(1), . . . X(d) ∈ R

d×n, if the feature matrix is

defined as Φ := X(1)⊗. . . X(q), we want to find a sampling

matrix Π ∈ R
s×dd

, such that the sub-sampled Gram matrix

Φ⊤Π⊤ΠΦ is an (ϵ, λ)-spectral approximation to Φ⊤Φ, i.e.,

Φ⊤Φ+ λI

1 + ϵ
⪯ Φ⊤Π⊤ΠΦ+ λI ⪯ Φ⊤Φ+ λI

1− ϵ
. (1)

Sampling a small number of rows of any matrix Φ according

to its leverage scores is known to yield a spectral approxi-

mation to Φ⊤Φ (Li et al., 2013). Our goal is to generate a

sampling matrix Π according to the ridge leverage scores of

Φ in input sparsity time, i.e., O
(∑q

j=1 nnz
(
X(j)

))
.

1.1. Our Main Results

• It is well-known that for any linear sketch or sam-

pling matrix Π to satisfy (1), its number s of rows needs

to be proportional to the statistical dimension sλ :=

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

∑n
i=1

λi

λi+λ , where the λi are the eigenvalues of Φ⊤Φ,

(Avron et al., 2019). Woodruff & Zandieh (2020) re-

cently showed that it is possible to generate a sampling

matrix with s = O
(
sλ
ϵ2 log n

)
rows that satisfies (1) in time

Õ
(
poly(q, ϵ−1) · s2λn+ q1.5

∑q
j=1 nnz

(
X(j)

))
. The sig-

nificance of this result was showing the possibility of decou-

pling ϵ−1 factors from the leading term in its runtime, i.e.,∑q
j=1 nnz

(
X(j)

)
. The following fundamental question

about whether the factor q1.5 in the runtime of (Woodruff &

Zandieh, 2020) is necessary has not been answered yet.

Can we produce a sampling matrix that satisfies (1) in time

Õ
(
poly(q, ϵ−1) · s2λn+

∑q
j=1 nnz

(
X(j)

))
?

We answer the above question positively in Theorem 2.7,

which shows that input sparsity runtime and small s =
O(ϵ−2sλ log n) number of samples are achievable. One

advantage of our method is that after computing the sam-

pling matrix Π using Theorem 2.7, we can simply store

ΠΦ using O(ns) = O(ϵ−2sλn log n) words of memory,

while the memory needed to store the exact Gram matrix

Φ⊤Φ is Θ(n2). Thus, our method reduces the memory from

quadratic in the dataset size n, to linear.

Additionally, for solving many downstream learning tasks

such as ridge regression, low-rank approximation, or PCA

with the feature matrix Φ, one typically needs to either

compute the inverse or the SVD of the Gram matrix Φ⊤Φ.

If Φ⊤Φ is pre-computed exactly and is stored in mem-

ory, then computing its SVD requires Θ(n3) additional

runtime. So the total time to compute Φ⊤Φ exactly and

then find its SVD, for tensor product feature matrices Φ,

is Θ
(
n ·∑q

j=1 nnz
(
X(j)

)
+ n3

)
. In contrast, given the

sub-sampled feature matrix ΠΦ, we can (spectrally) approx-

imate the SVD of Φ⊤Φ by the SVD of (ΠΦ)⊤(ΠΦ), using

only s2n = O(ϵ−4s2λn log2 n) operations. Thus, using our

Theorem 2.7, the SVD of (ΠΦ)⊤(ΠΦ) can be computed

in total time Õ
(
poly(q, ϵ−1) · s2λn+

∑q
j=1 nnz

(
X(j)

))
.

Hence, our method improves the runtime of solving down-

stream applications, such as ridge regression or PCA from

cubic in n to linear.

• For the important case when the input datasets are iden-

tical X(1) = X(2) = · · ·X(q) = X and the feature ma-

trix Φ := X⊗q corresponds to the degree-q polynomial

kernel, invoking our Theorem 2.7 results in a runtime of

Õ
(
poly(q, ϵ−1) · s2λn+ q · nnz(X)

)
, which is a factor q

larger than the desired input sparsity time. On the other

hand, Song et al. (2021) has recently proposed a linear

sketch with Õ(n/ϵ2) rows which satisfies (1) for Φ = X⊗q

and can be applied in time Õ
(
q2ϵ−2n2 + nd

)
, which can be

considered to be Õ
(
q2ϵ−2n2 + nnz(X)

)
for dense X , i.e.,

nnz(X) = Ω̃(nd). That is, Song et al. (2021) showed that

decoupling the factor of q from nnz(X) is possible at the

expense of having sub-optimal target dimension s ≈ n/ϵ2

and losing quadratically in n in the runtime. However, it is

unclear whether these losses are necessary. Specifically we

consider the following fundamental question:

Can we produce a sampling matrix with s = O
(
sλ
ϵ2 log n

)

rows that satisfies (1) for the degree-q polynomial kernel in

time Õ
(
poly(q, ϵ−1) · s2λn+ nnz(X)

)
?

We answer the above question positively in Theorem 4.3.

Specifically, our Theorem 4.3 applies to any matrix Φ =

X⊗q in time Õ
(

poly(q, 1/ϵ)
(
s2λ +

√
∥K∥/λ

)
· n+ dn

)
,

where K = Φ⊤Φ is the kernel matrix corresponding to

the degree-q polynomial kernel. For large d, this runtime

is dominated by Õ(dn). Thus, for dense datasets with

nnz(X) = Ω̃(nd), this runtime has the same asymptotic

order as the input sparsity nnz(X), and is thus optimal up

to log factors.

• We generalize our sampling methods to other classes

of kernels beyond polynomial, such as the Gaussian and

the Neural Tangent Kernels (Jacot et al., 2018) in Sec-

tion 5. For example in Corollary 5.3, we prove that our

sampling method spectrally approximates the Gaussian

kernel for dense datasets with squared radius r in time

Õ
(

r8

ϵ4 s
2
λn+ r3

√
n
λn+ nd

)
. For comparison, the run-

time of (Song et al., 2021) is Õ
(

r3

ϵ2 · n2 + nd
)

, which

means that for any λ = ω(1/n), any ϵ = Ω̃(1), and any

r = o
(
n0.2

)
, the result of our Corollary 5.3 is strictly faster.

• In addition to our theoretical guarantees, we provide

regression and classification experiments in Section 6,

which show our method performs well in practice even

for moderately-sized datasets. In particular, our empirical

results show that our method achieves better testing errors

compared to prior results for both Gaussian and Neural

Tangent kernels.

1.2. Our Techniques

• Our algorithm samples s i.i.d. rows of the feature ma-

trix Φ =
⊗q

j=1 X
(j) according to its ridge leverage scores.

We devise a highly optimized version of the recursive sam-

pling framework of (Woodruff & Zandieh, 2020), which

previously had a runtime of Õ
(
q1.5

∑q
j=1 nnz

(
X(j)

))
.

By closely examining (Woodruff & Zandieh, 2020) we

isolate the main computational bottleneck of their algo-

rithm and formulate it as a data-structure (DS) problem

in Section 3. In particular, our algorithm crucially relies

on an efficient DS that can be constructed in input spar-

sity time, i.e.,
∑q

j=1 nnz
(
X(j)

)
, and enables estimation

of

∥∥∥
(⊗q

j=1 X
(j)
)
V
∥∥∥
2

F
for arbitrary queries V ∈ R

n×r in

time poly(q) · nnz(V). We solve this DS problem in Sec-

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

tion 3 and then use it in our importance sampling method

for tensor product matrices in Section 2.1 and Appendix B.

• To run our sampling algorithm on the feature matrix X⊗q

of the polynomial kernel in input sparsity time, we cru-

cially need a DS that can be constructed in nnz(X) time

and can quickly answer queries of the form ∥X⊗q · V ∥2F .

Our main technical tool for solving this problem is a col-

lection of sketches S(1), S(2), . . . S(q) which are correlated

to the extent that they can be simultaneously applied to X
in a total of Õ(nnz(X)) time, and at the same time are in-

dependent enough to ensure that

∥∥∥
(⊗q

j=1 S
(j)X

)
V
∥∥∥
2

F
≈

∥X⊗qV ∥2F . We show in Section 4.1 that a set of Subsam-

pled Randomized Hadamard Transform (SRHT) sketches

with shared random signs can be applied to any dense dataset

X in total time Õ(nnz(X)), and also provide an unbiased

estimator with small variance for ∥X⊗qV ∥2F . It is not clear

at this point if variants of sparse sketches (e.g., CountSketch)

with these properties also exist or not.

1.3. Related Work

A popular line of work on kernel approximation is based

on the Random Fourier Features method (Rahimi & Recht,

2009), which works well for shift-invariant kernels and

with some modifications can embed the Gaussian kernel

in constant dimension using a near optimal number of fea-

tures (Avron et al., 2017). However, all variants of this

method need at least Ω(sλ · nnz(X)) runtime which is a

factor sλ higher than our desired time.

Another popular kernel approximation approach is the

NystrÈom method (Williams & Seeger, 2001). While the

recursive NystrÈom sampling of Musco & Musco (2017)

can embed kernel matrices using a near optimal number of

landmarks, this method also needs at least Ω(sλ · nnz(X))
runtime, which is a factor sλ higher than our desired time.

For the polynomial kernel, sketching methods have been

developed extensively (Avron et al., 2014; Pham & Pagh,

2013; Woodruff & Zandieh, 2020; Song et al., 2021). For

example, Ahle et al. (2020) proposed a subspace embedding

for high-degree polynomial kernels as well as the Gaussian

kernel. However, their required runtime for the degree q
polynomial kernel is at least Ω(q·nnz(X)), which has an un-

desirable factor q. Recently, Song et al. (2021) showed that

this sketching method can be accelerated for dense datasets

by applying an SRHT on the input dataset. However, their

resulting runtime is Õ(q2n2+nd) which has an undesirable

quadratic dependence on n.

2. Preliminaries

Throughout the paper, we use symbols e1, e2, . . . ed to de-

note the standard basis vectors in R
d. For any positive

integer n, we define the set [n] = {1, 2, . . . n}. For a matrix

A we use ∥A∥ to denote its operator norm. We also use Ai,⋆

and A⋆,i to denote the ith row and ith column of A, respec-

tively. We use the notation Õ(f) to denote O(f ·poly log f),
for any f . For any matrix Φ ∈ R

m×n and regularizer λ > 0,

the (row) λ-ridge leverage scores of this matrix are defined

as

ℓλi :=
∥∥∥Φi,⋆(Φ

⊤Φ+ λI)−1/2
∥∥∥
2

2
, for every i ∈ [m]. (2)

Definition 2.1 (Tensor product). Given x ∈ R
m and

y ∈ R
n we define the tensor product of these vectors

as x ⊗ y = xy⊤. Although tensor products are multidi-

mensional objects, it is convenient to associate them with

single-dimensional vectors, so we often associate x⊗y with

(x1y1, x2y1, . . . xmy1, x1y2, . . . xmy2, . . . xmyn).
For shorthand, we use the notation x⊗p to denote

x⊗ x⊗ . . . x︸ ︷︷ ︸
p terms

, the p-fold self-tensoring of x.

We wish to define the column-wise tensoring of matrices as:

Definition 2.2. Given A(1) ∈ R
m1×n, . . . , A(k) ∈ R

mk×n,

we define A(1)⊗ . . .⊗A(k) to be the matrix in R
m1...mk×n

whose jth column is A
(1)
⋆,j ⊗ . . .⊗A

(k)
⋆,j for every j ∈ [n].

A key property of tensor products that we frequently use is

that for any matrices A,B,C with a conforming number of

columns, there is a bijective correspondence between the

elements of (A⊗B) ·C⊤ and A ·(B⊗C)⊤. More precisely,

the entry at row (i, j) and column k of (A⊗B) ·C⊤ is equal

to the entry at row i and column (j, k) of A · (B ⊗ C)⊤.

We use a norm-preserving dimensionality reduction tech-

nique that can be applied to tensor products in input sparsity

time. Specifically, we use the POLYSKETCH transform in-

troduced in (Ahle et al., 2020), which preserves the norms of

vectors in R
dq

and can be applied to tensor product vectors

u1⊗u2⊗ . . . uq very quickly. The following lemma follows

from Theorem 1.1 of (Ahle et al., 2020).

Lemma 2.3 (POLYSKETCH). For every positive integers

q, d, and every ϵ > 0, there exists a distribution on random

matrices Sq ∈ R
m×dq

with m = O
(

q
ϵ2

)
, called degree-q

POLYSKETCH , such that,

1. Pr
[
∥SqY ∥2F ∈ (1± ϵ)∥Y ∥2F

]
≥ 19/20 for any Y ∈

R
dq×n.

2. For any vectors u1, u2, . . . uq ∈ R
d, the total time to

compute Sq
(
e⊗j
1 ⊗ uj+1 ⊗ uj+2 ⊗ . . . uq

)
for all j =

0, 1, . . . q is O
(

q2 log2 q
ϵ

ϵ2 +
∑q

j=1 nnz (uj)
)

.

For a proof of Lemma 2.3, see Appendix A. We also use

the Subsampled Randomized Hadamard Transform (SRHT

) (Ailon & Chazelle, 2009), which is a norm-preserving

dimensionality reduction with near linear runtime.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Algorithm 1 RECURSIVE LEVERAGE SCORE SAMPLING

input: Matrix Φ ∈ R
m×n and λ, ϵ, µ > 0

output: Sampling matrix Π ∈ R
s×m

1: s← C µ
ϵ2 log2 n for some constant C

2: Π0 ← {0}1×m, λ0 ← ∥Φ∥2F /ϵ and T ← log2
λ0

λ
3: for t = 1 to T do

4: Πt ← ROWSAMPLER (Φ,Πt−1Φ, λt−1, s)
5: λt ← λt−1/2
6: return ΠT

Lemma 2.4 (SRHT Sketch). For every positive integer

d and every ϵ, δ > 0, there exists a distribution on ran-

dom matrices S ∈ R
m×d with m = O

(
1
ϵ2 · log 1

ϵδ log
1
δ

)
,

called SRHT , such that for any matrix X ∈ R
d×n,

Pr
[
∥SX∥2F ∈ (1± ϵ)∥X∥2F

]
≥ 1− δ. Moreover, SX can

be computed in time O (mn+ nd log d).

2.1. Recursive Leverage Score Sampling for
⊗q

j=1 X
(j)

Algorithm 1 is a generic procedure for sampling the rows of

a matrix Φ ∈ R
m×n with probabilities proportional to their

leverage scores, restated from (Woodruff & Zandieh, 2020).

It starts by generating samples from a crude approximation

to the leverage score distribution and then iteratively refines

the distribution. The core primitive used in Algorithm 1

is ROWSAMPLER, which samples rows of a certain matrix

with probabilities proportional to their squared norms.

A row norm sampler is defined in (Woodruff & Zandieh,

2020) as follows,

Definition 2.5 (Row Norm Sampler). Let Φ be an m× n
matrix and s be some positive integer. A rank-s row

norm sampler for Φ is a random matrix S ∈ R
s×m

which is constructed by first generating s i.i.d. samples

j1, j2, · · · js ∈ [m] from some distribution {pi}mi=1 which

satisfies pi ≥ 1
4
∥ϕi,⋆∥2

2

∥Φ∥2
F

for all i ∈ [m], and then letting the

rth row of S be 1√
s·pjr

e⊤jr for every r ∈ [s].

Now we restate the correctness guarantee of Algorithm 1

from (Woodruff & Zandieh, 2020).

Lemma 2.6. Suppose for any matrices Φ ∈ R
m×n and

B ∈ R
r×n, any λ′ > 0, and integer s > 0, the primitive

ROWSAMPLER(Φ, B, λ′, s) returns a rank-s row norm sam-

pler for Φ(B⊤B + λ′I)−1/2 as in Definition 2.5. Then for

any λ, ϵ > 0, any Φ ∈ R
m×n with statistical dimension

sλ = ∥Φ(Φ⊤Φ+ λI)−1/2∥2F , and µ ≥ sλ, Algorithm 1 re-

turns a sampling matrix Π ∈ R
s∗×m with s∗ = O(µ

ϵ2 log n)
rows such that with probability 1 − 1

poly(n) , Φ⊤Π⊤ΠΦ is

an (ϵ, λ)-spectral approximation to Φ⊤Φ as in (1).

Given this lemma, our goal is to run Algorithm 1 on

Φ =
⊗q

j=1 X
(j) in nearly

∑
i nnz

(
X(i)

)
time. This cru-

cially requires an efficient implementation of ROWSAM-

Algorithm 2 DS for estimating

∥∥∥
(⊗q

j=1 X
(j)
)
V
∥∥∥
2

F

input: Matrices X(1), . . . X(q) ∈ R
d×n, ε > 0

1: m← C1
q
ε2 , T ← C2 log n, m′ ← C3

log(1/ε)
ε2

2: For every i ∈ [T], let Qi ∈ R
m′×m be indepen-

dent copies of the SRHT as per Lemma 2.4, and let

Sq
i ∈ R

m×dq

be independent copies of the degree-q
POLYSKETCH as per Lemma 2.3

3: Compute Pi,j ← Qi ·Sq
i

(
E⊗j

1 ⊗X(j+1) ⊗ . . . X(q)
)

,

for every i ∈ [T] and j = 0, 1, . . . q, where E1 ∈ R
d×n

is defined as E1 := [e1, e1, . . . e1]
Procedure QUERY (V, j)

4: z̃j ← MEDIANi∈[T]

{
∥Pi,j · V ∥2F

}

return z̃j

PLER, which carries out the main computations. We show

in Appendix B that there exists an efficient ROWSAMPLER

primitive for matrices of the form Φ(B⊤B + λI)−1/2, for

any B. Our algorithm employs a data-structure for efficient

estimation of queries of the form

∥∥∥
(⊗q

j=1 X
(j)
)
V
∥∥∥
2

F
,

which we will design and present in Section 3, and heavily

exploits various properties of tensor products. See Algo-

rithm 4 and Lemma B.1 for details. We further prove the

following main theorem in Appendix B.

Theorem 2.7. For any collection of matrices

X(1), X(2), . . . X(q) ∈ R
d×n and any ϵ, λ > 0, if

matrix Φ :=
⊗q

j=1 X
(j) has statistical dimension

sλ = ∥Φ(Φ⊤Φ + λI)−1/2∥2F and
∥Φ∥2

F

ϵλ ≤ poly(n),
then there exists an algorithm that returns a random

sampling matrix Π ∈ R
s×dq

with s = O(sλϵ2 log n) in time

O
(
poly(q, log n, ϵ−1) · s2λn+ log4 n log q

∑
i nnz

(
X(i)

))

such that with probability 1 − 1
poly(n) , Φ⊤Π⊤ΠΦ is an

(ϵ, λ)-spectral approximation to Φ⊤Φ as per (1).

3. Data Structure for Estimating∥∥∥
(⊗q

j=1 X
(j)
)
V

∥∥∥
2

F

At the core of our leverage score sampling algorithm, we

have a new data-structure (DS) that can efficiently answer

queries of the form

∥∥∥
(⊗q

j=1 X
(j)
)
V
∥∥∥
2

F
. In this section,

we solve the following DS problem,

TENSORNORM DS Problem. For every matrices

X(1), X(2), . . . X(q) ∈ R
d×n and every ϵ > 0, we want

to design a DS called TENSORNORMDS such that,

• The time to construct TENSORNORMDS and the mem-

ory needed to store it are Õ
(∑q

j=1 nnz
(
X(j)

))
and

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Õ
(
poly(q, ϵ−1) · n

)
, respectively.

• There exists an algorithm that, given TENSORNORMDS

and every query V ∈ R
n×r and j = 0, . . . q− 1, outputs an

estimator z̃j in time Õ
(
poly(q, ϵ−1) · nnz(V)

)
, such that,

z̃j ∈ (1± ϵ)
∥∥∥
(
X(j+1) ⊗ . . . X(q)

)
V
∥∥∥
2

F
. (3)

Using POLYSKETCH and SRHT , we design TENSORNOR-

MDS in Algorithm 2 and analyze it in the following lemma.

Lemma 3.1 (TensorNorm Data-structure). For any input

datasets X(1), X(2), . . . X(q) ∈ R
d×n and any ϵ > 0,

Algorithm 2 constructs a DS such that given this DS,

the procedure QUERY(V, j), for any query V ∈ R
n×r

and j = 0, 1, . . . q, outputs z̃j that satisfies (3) with

probability 1 − 1
poly(n) . The time to construct the DS

is O
(

q2 log2 q
ϵ

ϵ2 · n log n+ log n ·
∑q

j=1 nnz
(
X(j)

))
.

Additionally, the memory required to store this DS and

the runtime of QUERY(V, j) are O
(

q log(1/ϵ)
ϵ2 n log n

)
and

O
(

log(1/ϵ)
ϵ2 log n · nnz(V)

)
, respectively.

We prove this lemma in Appendix A.1. Given this DS and

using Algorithm 1, we can generate leverage score samples

for Φ =
⊗q

j=1 X
(j).

4. High Degree Polynomial Kernels

Using Theorem 2.7, one can spectrally approximate the

Gram matrix of a degree-q self tensor product X⊗q,

in time Õ
(
poly(q, ϵ−1) · s2λn+ q · nnz(X)

)
. Note that

X⊗q⊤X⊗q is in fact the kernel matrix corresponding to

the degree-q polynomial kernel. While this is fast, it is still

a factor of q slower than our desired input sparsity runtime

(i.e., fastest achievable runtime). We want to understand the

following fundamental question:

Is the factor q in runtime necessary, or can one achieve a

runtime of Õ(nnz(X))?

We show that it is possible to shave off the factor q and

achieve Õ(nnz(X)) time complexity, at least for dense

datasets X . Our main technical tool is a new variant of

SRHT sketches that are partially correlated by sharing the

same random signs.

4.1. SRHT Sketches with Shared Random Signs

Consider the DS problem in Section 3 for a self-tensor

product matrix X⊗q. To estimate ∥X⊗q · V ∥2F for query

matrices V , we can use TENSORNORMDS (Algorithm 2);

however, the time to construct this DS is Õ (q · nnz(X)), by

Lemma 3.1. Our goal is to improve this runtime by a factor

of q and be able to construct this DS in input sparsity time.

A natural approach for doing so is to first apply a linear

sketch, say S, on the dataset X to reduce its size (number

of rows) and then construct TENSORNORMDS for (SX)⊗q .

To make this work, one needs to ensure that the sketch S
satisfies ∥(SX)⊗qV ∥2F ≈ ∥X⊗qV ∥2F for every query V
(at least with constant probability). One way of ensuring

this condition, as shown in (Song et al., 2021, Lemma 4.5),

is through requiring S to satisfy the oblivious subspace

embedding (OSE) property. However, this would require

S to have at least n rows, which results in an undesirable

quadratic in n running time (recall that our aim is to have a

linear in n runtime for constructing the DS).

On the other hand, an OSE might seem like overkill be-

cause we just want to estimate ∥X⊗qV ∥2F for some fixed

queries V . One might hope that the weaker JL property

would be sufficient for S. However, this is not the case.

To see why, suppose for simplicity that q = 2. Also

let v be the all ones vector in R
n i.e., v = 1n, and let

X ∈ R
d×n have orthonormal rows. By basic properties

of tensor products we have
∥∥X⊗2 · v

∥∥2
2
= d and our esti-

mator is
∥∥(SX)⊗2 · v

∥∥2
2
=
∥∥SX · diag(v) ·X⊤S⊤∥∥2

F
=∥∥SS⊤∥∥2

F
. Now if S, for instance, is a random Gaussian

matrix,
∥∥SS⊤∥∥2

F
is not even an unbiased estimator and has

a large bias, i.e., E
[∥∥SS⊤∥∥2

F

]
̸=
∥∥X⊗2 · v

∥∥2
2
= d. It is not

clear at all that a Gaussian matrix with a small poly(log n)

number of rows would be sufficient to have
∥∥SS⊤∥∥2

F
≈ d.

Note that Sparse JL transforms have even larger variance

and bias than Gaussian sketches. The main issue here is the

fact that we used a single sketch matrix.

If we had independent JL transforms, S1 and S2, then∥∥S1S
⊤
2

∥∥2
F

would be a good estimator for
∥∥X⊗2 · v

∥∥2
2
= d.

However, using two identical copies of a single sketch in-

troduces dependencies that are problematic even in the toy

example of q = 2.

Thus, we need to construct a collection of sketches

S(1), S(2), . . . S(q) which are correlated to the extent that

would make computation of S(j)X in total time Õ(nnz(X))
possible, and at the same time are independent enough to

ensure that

∥∥∥
(⊗q

j=1 S
(j)X

)
V
∥∥∥
2

F
≈ ∥X⊗qV ∥2F while the

number of rows of the sketches is small. We achieve this

by using a set of correlated SRHT sketches that can be

simultaneously applied to X in a total runtime that only

depends on the size of the dataset X . We prove that

for a collection of SRHT ’s with shared random signs,

the sketched matrices S(j)X can be computed quickly

and

∥∥∥
(⊗q

j=1 S
(j)X

)
V
∥∥∥
2

F
is an unbiased estimator for

∥X⊗qV ∥2F with a small variance. It is not clear at this

point if variants of sparse sketches (e.g., CountSketch) with

these properties exist or not.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Furthermore, note that the eventual use of the DS for esti-

mating ∥X⊗qV ∥2F will be in our sampling method in Sec-

tion 4.2 and as it turns out, the queries V that our sampling

algorithm produces exhibit some structure. We exploit these

structures to prove tighter norm estimation bounds for our

new family of correlated SRHT ’s in the following lemma.

Lemma 4.1 (SRHT Sketches with Shared Random Signs).

Let D ∈ R
d be a diagonal matrix with i.i.d. Rademacher

diagonal entries and let H ∈ R
d×d be the Hadamard matrix

and also let P1, P2, . . . Pq ∈ R
m×d be independent random

sampling matrices that sample m random coordinates of Rd.

Define the collection of SRHT sketches with shared signs(
S(1), S(2), . . . S(q)

)
as S(c) := 1√

m
· PcHD for c ∈ [q].

For any X ∈ R
d×n, any PSD matrix K ∈ R

n×n with

condition number κ := λmax(K)
λmin(K) , any matrix Σ ∈ R

d′×n,

and any ϵ, δ > 0, if m = Ω
((

1
ϵ2 + κ

ϵ

)
· qδ log n

)
, then with

probability at least 1− δ,

∥∥∥∥∥

[
q⊗

c=1

S(c)X

]
(Σ⊗K)

⊤
∥∥∥∥∥

2

F

∈ (1±ϵ)
∥∥∥X⊗q (Σ⊗K)

⊤
∥∥∥
2

F

Furthermore, the total time to compute S(1)X, . . . S(q)X is

bounded by O (qmn+ nd log d).

We prove this lemma in Appendix C. According to

Lemma 4.1, the Kronecker product of SRHT sketches with

shared random signs S(1) × S(2) × . . . S(q) acts as a near-

isometry for matrices of the form X⊗q · (Σ⊗K)⊤ with con-

stant probability, as long as the target dimension of the S(c)’s

is at least m ≈ (ϵ−2 + ϵ−1κ)q log n. If the S(c) sketches

were fully independent, as in (Ahle et al., 2020), then a target

dimension of m ≈ ϵ−2q log n would suffice. So the price

of using correlated sketches is a factor of ϵκ+ 1 increase in

the target dimension. On the other hand, letting the sketches

S(c) use independent sampling matrices is critical. If we

used identical SRHT ’s S(1) = . . . S(q) = S, as is done in

Lemma 4.5 of (Song et al., 2021), then to have the guaran-

tee of Lemma 4.1, the sketch S would need to be an OSE,

which requires a target dimension of m = Ω
(

q2

ϵ2 · n log n
)

.

Lemma 4.1 provides a target dimension improvement over

the OSE-based results by a factor of qn
1+ϵκ , which is signifi-

cant.

Lemma 4.1 shows us a way of speeding up the DS given in

Algorithm 2 for self tensor products X⊗q . One can quickly

compute sketched datasets Y (r) = S(r)X for every r ∈ [q],
and then apply TENSORNORMDS to Y (1), . . . Y (q), in total

time Õ(nnz(X)) for dense X . It turns out that all queries

that our sampling algorithm in Section 4.2 produces are

exactly of the form V = (Σ⊗K)⊤. Thus, the combination

of Lemma 4.1 and Algorithm 2 is a perfect solution for our

sampling algorithm’s norm estimation needs.

Algorithm 3 ROWSAMPLER for X⊗q

input: q, s ∈ Z+, X ∈ R
d×n, B ∈ R

m×n, λ > 0
output: Sampling matrix S ∈ R

s×dq

1: κ←
√

∥B⊤B∥
λ + 1

2: Generate H ∈ R
d′×n with i.i.d. normal entries with

d′ = C0q
2 log n rows

3: M ← H · (B⊤B + λI)−1/2

4: For every k ∈ [m′], let S
(1)
k , S

(2)
k , . . . S

(q)
k ∈ R

m′′×d

be independent copies of SRHT sketches with shared

signs as per Lemma 4.1, where m′ = C1 log n and

m′′ = C2(q
3 + q2κ) log n

5: For every k ∈ [m′], let TN(k) be the DS in Algorithm 2

for inputs
(
S
(1)
k X, . . . S

(q)
k X,M

)
and ϵ = 1

40q

6: Let h : [d] → [s′] be a fully independent and uniform

hash function with s′ = ⌈q3s⌉ buckets

7: Let h−1(r) = {j ∈ [d] : h(j) = r} for every r ∈ [s′]
8: For every r ∈ [s′] and k ∈ [m′], lget Gk

r ∈ R
n′×dr be

independent instances of degree-1 POLYSKETCH as per

Lemma 2.3, where dr = |h−1(r)|, n′ = C3q
2

9: Wr,k ← Gk
r ·Xh−1(r),⋆ for every k ∈ [m′] and r ∈ [s′]

10: for ℓ = 1 to s do

11: D1 ← In and βℓ ← s
12: for a = 1 to q do

13: La
r,k ← Da ·W⊤

r,k for every k ∈ [m′], and r ∈ [s′]

14: par ← MEDIANk∈[m′]TN(k) .QUERY(La
r,k, a) for

every r ∈ [s′]

15: par ← par/
∑s′

t=1 p
a
t for every r ∈ [s′]

16: Sample t ∈ [s′] from distribution {par}s
′

r=1

17: Let qai ← MEDIANk∈[m′]TN(k) .QUERY(DaX⊤
i,⋆, a)

for every i ∈ h−1(t)
18: qai ← qai /

∑
j∈h−1(t) q

a
j for every i ∈ h−1(t)

19: Sample ia ∈ [d] from distribution {qai }i∈h−1(t)

20: Da+1 ← Da · diag
(
X

(a)
ia,⋆

)

21: βℓ ← βℓ · pat qaia
22: Let ℓth row of S be β

−1/2
ℓ

(
ei1 ⊗ ei2 ⊗ · · · eiq

)⊤
23: return S

4.2. ROWSAMPLER for Degree-q Self-Tensor Products

In this section, we design an algorithm that can perform row

norm sampling (see Definition 2.5) on a matrix of the form

X⊗q(B⊤B+λI)−1/2 using Õ(nnz(X)) runtime for dense

X . Our primitive crucially relies on TENSORNORMDS

(Algorithm 3) as well as our new variant of SRHT with

shared random signs that we analyzed in Lemma 4.1.

Overview of Algorithm 3: The goal of ROWSAMPLER is

to generate samples (i1, i2, · · · iq) ∈ [d]q with probabilities

proportional to the squared norm of the row (i1, · · · iq) of

matrix X⊗q(B⊤B + λI)−1/2. Because (B⊤B + λI)−1/2

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

has a large n× n size, we first compress it without perturb-

ing the distribution of row norms of X⊗q(B⊤B + λI)−1/2

too much. This can be done by applying a JL-transformation

to the rows of this matrix (see, e.g., (Dasgupta & Gupta,

2003)). Let H ∈ R
d′×n be a random matrix with i.i.d.

normal entries with d′ = C0q
2 log2 n rows. With proba-

bility 1 − 1
poly(n) the norm of each row of the sketched

matrix X⊗q(B⊤B + λI)−1/2 · H⊤ is preserved up to a(
1±O(q−1)

)
factor. This is done in line 3 of the algorithm

by computing M := H · (B⊤B + λI)−1/2, which can be

computed quickly since B and H have a small number of

rows.

Now the problem is reduced to performing row norm sam-

pling on X⊗qM⊤. Note that computing the exact row

norms of this matrix is out of the question since it has a

huge dq number of rows. However, by using TENSORNOR-

MDS that we designed in Algorithm 2 and the new variant

of SRHT sketches we introduced in Lemma 4.1 and by

exploiting properties of tensor products we can generate

samples from the row norm distribution as follows.

By basic properties of tensor products, the entries of

X⊗qM⊤ are in bijective correspondence with the entries of

X⊗(q−1) · (X ⊗M)⊤, where the entry at row (i1, i2, · · · iq)
and column j of X⊗qM⊤ is equal to the entry at row

(i2, . . . iq) and column (i1, j) of X⊗(q−1) · (X ⊗M)⊤.

Therefore, it is enough to have a procedure to sam-

ple (i1, i2, . . . iq) with probability proportional to the

squared norm of the row (i2, . . . iq) of matrix X⊗(q−1) ·
(M · diag (Xi1,⋆))

⊤
for every i1 ∈ [d]. We do this task

in two steps; first we sample an index i1 with probability

proportional to the squared Frobenius norm of X⊗(q−1) ·
(M · diag (Xi1,⋆))

⊤
, and then we perform row norm sam-

pling on the sampled matrix.

To do the first sampling step above, we need to cheaply

estimate the Frobenius norms of matrices X⊗(q−1) ·
(M · diag (Xi1,⋆))

⊤
. We can estimate such norms us-

ing TENSORNORMDS given in Algorithm 2. However,

note that
∑q−1

j=1 Õ(nnz(X)) = Õ(q · nnz(X)) opera-

tions are required to build this DS. This is where the

SRHT sketches with shared random signs plays an im-

portant role. If we let S(1), . . . S(q) ∈ R
m′′×d be the

SRHT sketches with shared signs as per Lemma 4.1,

then we can compute S(c)X for all c ∈ [q] in time

O(nd log d) = Õ(nnz(X)), for dense datasets X . Now

we can cheaply estimate the Frobenius norms of matrices(⊗q−1
c=1 S

(c)X
)
· (M · diag (Xi1,⋆))

⊤
up to a small pertur-

bation using TENSORNORMDS (Algorithm 2) because the

sketched matrices S(c)X have small sizes. We let the target

dimension of these sketches be m′′ = C2(q
3 + q2κ) log n,

where κ =
√

∥B⊤B∥
λ + 1 is the condition number of

(B⊤B + λI)−1/2. Thus, by Lemma 4.1 and using the fact

that matrix M = H(B⊤B+λI)−1/2 for a JL matrix H , the

Frobenius norm of
(⊗q−1

c=1 S
(c)X

)
· (M · diag (Xi1,⋆))

⊤

is within a factor (1 ± O(q−1)) of the Frobenius norm of

X⊗(q−1)
(
(B⊤B + λI) · diag (Xi1,⋆)

)⊤
.

After this point, we will have an index i1 ∈ [d] sampled from

the correct distribution and all that is left to do is to carry

out row norm sampling on X⊗(q−1)
(
M · diag

(
X

(1)
i1,⋆

))⊤
.

Note that we have made progress because this matrix has

dq−1 rows, so we have reduced the size of our problem by

a factor of d. Algorithm 4 recursively repeats this process

of reshaping and sketching and sampling with the aid of

our DS, q times until having all q indices i1, i2, · · · iq . Note

that the actual procedure requires more work because we

need to generate s i.i.d. samples from the distribution of

row norms, and in order to ensure that the runtime does not

lose a multiplicative factor of s, resulting in s · nnz(X) total

time, we need to perform additional sketching and a random

partitioning of the rows of the datasets to q3s buckets. We

also boost the success probability of all these operations,

when necessary, using the median trick.

The formal guarantee on Algorithm 3 is given in the follow-

ing lemma.

Lemma 4.2. For any matrix X ∈ R
d×n and B ∈ R

m×n,

any λ > 0 and any positive integers q, s, with probability at

least 1 − 1
poly(n) , Algorithm 3 outputs a rank-s row norm

sampler for X⊗q(B⊤B + λI)−1/2 as per Definition 2.5 in

time O
(
m2n+ q8s2n log3 n+ q3κn log3 n+ nd log4 n

)
,

where κ =
√
∥B⊤B∥/λ+ 1.

We prove Lemma 4.2 in Appendix D.1. Now we can give our

main theorem about spectrally approximating the degree-q
polynomial kernel matrix X⊗q⊤X⊗q using nearly nnz(X)
runtime for dense datasets.

Theorem 4.3. For any dataset X ∈ R
d×n and any ϵ, λ > 0,

if matrix Φ := X⊗q has statistical dimension sλ =

∥Φ(Φ⊤Φ + λI)−1/2∥2F and
∥Φ∥2

F

ϵλ ≤ poly(n), then there

exists an algorithm that returns a random sampling matrix

Π ∈ R
s×dq

with sampling dimension s = O(sλϵ2 log n) in

time O

(
q8s2λn log5 n

ϵ4 +
√

∥Φ⊤Φ∥
λ q3n log3 n+ nd log5 n

)

such that with probability 1 − 1
poly(n) , Φ⊤Π⊤ΠΦ is an

(ϵ, λ)-spectral approximation to Φ⊤Φ as per (1).

For a proof of this theorem see Appendix D.2.

Remark on the runtime of Theorem 4.3. Assuming that
∥Φ⊤Φ∥

λ ≤ poly(q/ϵ) · s4λ, the low order term of our algo-

rithm’s runtime is Õ(poly(q/ϵ) · s2λn). While the quadratic

dependence on sλ might seem like a limitation, we argue

that for a wide range of downstream applications this is not

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

an issue. In particular, for applications such as regression or

PCA, one needs to either invert or compute the SVD of the

approximated Gram matrix (ΠΦ)⊤(ΠΦ) and both of these

operations require s2n runtime, where s is the target dimen-

sion of the matrix Π. Note that for any method to achieve

the spectral approximation guarantee of (1), the target di-

mension has to be at least s = Ω(sλ) (Avron et al., 2019).

Thus, the runtime of solving the mentioned downstream

learning tasks using any sketching or sampling method is

at least Ω(s2λn), which shows that quadratic dependence on

sλ is unavoidable. For comparison against prior results note

that, the sketch in (Song et al., 2021) has a target dimension

of m ≈ n/ϵ2. Thus, the total time of using their algorithm

to approximately solve kernel ridge regression (KRR) or

PCA is Θ(n3/ϵ4 + q2n2/ϵ2 + dn).

5. Generalization to Other Kernels

In this section we generalize our sampling algorithms to

other classes of kernels such as Gaussian, dot-product, and

Neural Tangent kernels. We start by defining a class of

kernels that encompasses all aforementioned kernels,

Definition 5.1 (Generalized Polynomial Kernel). Given a

positive integer q, a vector of coefficients α ∈ R
q+1, a vec-

tor v ∈ R
n, and a dataset X ∈ R

d×n, we define the corre-

sponding generalized polynomial kernel (GPK) matrix K ∈
R

n×n as K := diag(v)
(∑q

j=0 α
2
j ·X⊗j⊤X⊗j

)
diag(v).

The GPK matrix can be expressed as a Gram matrix K =
Φ⊤Φ for

Φ :=

q⊕

j=0

αjX
⊗j · diag(v). (4)

We show in Appendix E, how to adapt our leverage score

sampling method to the GPK feature matrix Φ defined in

(4) and prove the following main theorem,

Theorem 5.2. Let Φ ∈ R
m×n and K be the GPK fea-

ture matrix and kernel matrix defined in Definition 5.1.

For any ϵ, λ > 0, if Φ has statistical dimension

sλ = ∥Φ(K + λI)−1/2∥2F and
∥Φ∥2

F

ϵλ ≤ poly(n), then

there exists an algorithm that returns a random sam-

pling matrix Π ∈ R
s×m with s = O(sλϵ2 log n) rows

in time O

(
q8s2λn log5 n

ϵ4 +
√

∥K∥
λ q3n log3 n+ nd log5 n

)

such that with probability 1 − 1
poly(n) , Φ⊤Π⊤ΠΦ is an

(ϵ, λ)-spectral approximation to K as per (1).

Gaussian Kernel. We show in Appendix E.1 that the

class of GPK kernels contains a good approximation to

the Gaussian kernel matrix for datasets with bounded ℓ2
norm and therefore, we have the following corollary of

Theorem 5.2:

Corollary 5.3 (Application to Gaussian Kernel). For any

r > 0 and dataset x1, . . . xn ∈ R
n with maxi∈[n] ∥xi∥22 ≤

r, any λ, ϵ > 0, if K ∈ R
n×n is the Gaussian kernel ma-

trix, i.e., Ki,j := e−∥xi−xj∥2
2/2, with statistical dimension

sλ = tr
(
K(K + λI)−1

)
, then there exists an algorithm

that computes Z ∈ R
s×n with s = O(sλϵ2 log n) in time

Õ

(
r8

ϵ4 s
2
λn+ r3

√
∥K∥
λ n+ nd

)
such that with probability

1− 1
poly(n) , Z⊤Z is an (ϵ, λ)-spectral approximation to K.

Note that for the Gaussian kernel we have ∥K∥ ≤ tr(K) =
n. Therefore, for constant ϵ, the runtime of Corollary 5.3

is always upper bounded by Õ
(
r8s2λn+ r3

√
n
λ · n+ nd

)
.

For comparison, the runtime of (Song et al., 2021) for

spectrally approximating the Gaussian kernel matrix is

Õ
(
r3 · n2 + nd

)
, which means that for any λ = ω(1/n)

and any r = o
(
n0.2

)
, our runtime is strictly faster than the

runtime of (Song et al., 2021).

Neural Tangent Kernel (NTK). We consider the NTK

corresponding to an infinitely wide neural network with two

layers and ReLU activation function. This kernel function is

defined as follows for any x, y ∈ R
d (Zandieh et al., 2021)

Θntk(x, y) := ∥x∥2∥y∥2 · kntk
(⟨x, y⟩
∥x∥2∥y∥2

)
, (5)

kntk(β) :=
1

π

(√
1− β2 + 2β(π − arccosβ)

)
.

We show in Appendix E.2 that there exists a GPK that well-

approximates Θntk(x, y) defined in (5) on datasets with

bounded ℓ2 norm. Thus, we have the following corollary of

Theorem 5.2:

Corollary 5.4 (Application to NTK). For any r > 0 and

dataset x1, . . . xn ∈ R
n with maxi∈[n] ∥xi∥22 ≤ r, any

λ, ϵ > 0, if K ∈ R
n×n is the NTK kernel matrix, i.e.,

Ki,j := Θntk(xi, xj) as per (5), with statistical dimen-

sion sλ = tr
(
K(K + λI)−1

)
, then there exists an algo-

rithm that computes Z ∈ R
s×n with s = O(sλϵ2 log n)

in time Õ
((

nr
ϵλ

)16 s2λn
ϵ4 + nd

)
, such that with probability

1− 1
poly(n) , Z⊤Z is an (ϵ, λ)-spectral approximation to K.

Note that, for constant ϵ and any r = (log n)O(1),

the runtime of Corollary 5.4 is upper bounded by

Õ
((

n
λ

)16 · s2λn+ nd
)

. For comparison, the runtime of

(Song et al., 2021) for spectrally approximating the NTK on

datasets with unit radius r = 1 is Õ
(
n11/3 + nd

)
, which

means that for any λ = ω(n5/6), our runtime is strictly

faster than the runtime of (Song et al., 2021). Further-

more, the random features proposed in (Zandieh et al., 2021)

requires Õ
(
(n/λ) · nd2

)
operations to spectrally approxi-

mate the NTK, which is slower than our runtime for high

dimensional datasets with d = ω
(
(n/λ)15

)
. Additionally,

Corollary 5.4 applies to datasets with arbitrary radius r

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Table 1. Approximate kernel ridge regression/classification with

Gaussian and Neural Tangent kernels. We denote the ridge param-

eter by λ, and the number of samples or sketching dimension of

different methods by s. The RMSE and classification error rates

are measured on the testing sets for each task.

Data-set: MNIST Location of CT

n/d 60,000 / 784 53,500 / 384
λ / s 1 / 1,000 0.5 / 2,000

Kernel function Θntk(x, y) Θntk(x, y) e−
∥x−y∥2

40

Metric Error (%) RMSE RMSE

Fourier Features

(Rahimi & Recht, 2008)
± ± 4.92

PolySketch

(Ahle et al., 2020)

(Zandieh et al., 2021)

5.92 4.87 5.05

Accelerated PolySketch

(Song et al., 2021)
6.07 4.93 5.14

Adaptive Sampling

(Woodruff & Zandieh, 2020)
5.87 4.72 4.76

Our Method

Corollaries 5.3 and 5.4
5.44 4.71 4.76

while both of (Song et al., 2021) and (Zandieh et al., 2021)

only apply to datasets with unit radius.

6. Experiments

In this section we apply our sampling algorithm to acceler-

ate regression and classification on real-world datasets. We

approximately solve the kernel ridge regression problem by

running least squares regression on the features sampled by

our algorithm. We also reduce the classification problem

to regression by applying a one-hot encoding to the labels

of classes and then use our fast regression method to solve

it. In the experiments, we focus on ridge regression with

a Gaussian kernel as well as the depth-1 Neural Tangent

kernel, and compare our result from Corollaries 5.3 and

5.4 to various popular sampling and sketching methods for

Gaussian and Neural Tangent kernels. The classification

error rate and root mean square error (RMSE) on the test-

ing sets are summarized in Table 1 (average over 5 trials

with different random seeds). For each task, the number of

features and sketching dimensions are chosen to be equal

across all different methods. Thus, we can compare dif-

ferent methods given that the memory needed to store the

approximate kernel matrices is equal for all methods.

While our theoretical results guarantee that for large enough

datasets in high dimensions our method performs better than

prior work, our experiments verify that even for moderately-

sized datasets with dimension d < 1000 our method per-

forms well. In particular, we achieve the best RMSE and

classification error rate compared to all other methods un-

der the condition that the number of sampled features or

sketching dimension is fixed for each method. We remark

Figure 1. Approximate classification of the MNIST dataset using

depth-1 Neural Tangent KRR. The ridge parameter is λ = 1. The

classification error rates are measured on the testing set.

that the Fourier features method (Rahimi & Recht, 2008)

only applies to shift invariant kernels such as the Gaussian

kernel and cannot be used for Neural Tangent kernels. On

the other hand, the sketching methods of (Ahle et al., 2020)

and (Song et al., 2021) can be used to sketch the Taylor

expansion of the NTK, as was previously done in (Zandieh

et al., 2021).

Accuracy/memory trade-off. Figure 1 shows the trade-

off of various methods for MNIST classification using the

NTK kernel function. We plot the testing set accuracy as a

function of the number of samples or sketching dimension,

which is a parameter that directly controls the memory usage

of different methods. It can been seen that our method has

the best accuracy/memory trade-off.

Acknowledgements

David Woodruff would like to thank NSF grant No.

CCF-1815840, NIH grant 5401 HG 10798-2, ONR grant

N00014-18-1-2562, and a Simons Investigator Award.

Amir Zandieh was supported by the Swiss NSF grant No.

P2ELP2 195140.

References

Ahle, T. D., Kapralov, M., Knudsen, J. B., Pagh, R., Vel-

ingker, A., Woodruff, D. P., and Zandieh, A. Oblivious

sketching of high-degree polynomial kernels. In Proceed-

ings of the Fourteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 141±160. SIAM, 2020.

Ailon, N. and Chazelle, B. The fast johnson±lindenstrauss

transform and approximate nearest neighbors. SIAM Jour-

nal on computing, 39(1):302±322, 2009.

Avron, H., Nguyen, H., and Woodruff, D. Subspace em-

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

beddings for the polynomial kernel. Advances in neural

information processing systems, 27, 2014.

Avron, H., Kapralov, M., Musco, C., Musco, C., Velingker,

A., and Zandieh, A. Random fourier features for kernel

ridge regression: Approximation bounds and statistical

guarantees. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pp. 253±

262. JMLR. org, 2017.

Avron, H., Kapralov, M., Musco, C., Musco, C., Velingker,

A., and Zandieh, A. A universal sampling method for

reconstructing signals with simple fourier transforms. In

Proceedings of the 51st Annual ACM SIGACT Symposium

on Theory of Computing, pp. 1051±1063, 2019.

Charikar, M., Chen, K., and Farach-Colton, M. Finding

frequent items in data streams. In International Collo-

quium on Automata, Languages, and Programming, pp.

693±703. Springer, 2002.

Cohen, M. B., Lee, Y. T., Musco, C., Musco, C., Peng, R.,

and Sidford, A. Uniform sampling for matrix approxi-

mation. In Proceedings of the 2015 Conference on Inno-

vations in Theoretical Computer Science, pp. 181±190,

2015.

Dasgupta, S. and Gupta, A. An elementary proof of a

theorem of johnson and lindenstrauss. Random Structures

& Algorithms, 22(1):60±65, 2003.

El Alaoui, A. and Mahoney, M. W. Fast randomized kernel

methods with statistical guarantees. stat, 1050:2, 2014.

Haagerup, U. and Musat, M. On the best constants in

noncommutative khintchine-type inequalities. Journal of

Functional Analysis, 250(2):588±624, 2007.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-

nel: Convergence and generalization in neural networks.

Advances in neural information processing systems, 31,

2018.

Li, M., Miller, G. L., and Peng, R. Iterative row sampling.

In 2013 IEEE 54th Annual Symposium on Foundations of

Computer Science, pp. 127±136. IEEE, 2013.

Meister, M., Sarlos, T., and Woodruff, D. Tight dimensional-

ity reduction for sketching low degree polynomial kernels.

Advances in Neural Information Processing Systems, 32:

9475±9486, 2019.

Musco, C. and Musco, C. Recursive sampling for the nys-

trom method. In Advances in Neural Information Pro-

cessing Systems, pp. 3833±3845, 2017.

Pham, N. and Pagh, R. Fast and scalable polynomial kernels

via explicit feature maps. In Proceedings of the 19th

ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 239±247, 2013.

Rahimi, A. and Recht, B. Random features for large-scale

kernel machines. In Advances in neural information

processing systems, pp. 1177±1184, 2008.

Rahimi, A. and Recht, B. Random Features for Large-Scale

Kernel Machines. 2009.

Song, Z., Woodruff, D., Yu, Z., and Zhang, L. Fast sketching

of polynomial kernels of polynomial degree. In Interna-

tional Conference on Machine Learning, pp. 9812±9823.

PMLR, 2021.

Williams, C. and Seeger, M. Using the nystroem method to

speed up kernel machines. Advances in Neural Informa-

tion Processing Systems 13, 2001.

Woodruff, D. and Zandieh, A. Near input sparsity time ker-

nel embeddings via adaptive sampling. In International

Conference on Machine Learning, pp. 10324±10333.

PMLR, 2020.

Zandieh, A., Han, I., Avron, H., Shoham, N., Kim, C., and

Shin, J. Scaling neural tangent kernels via sketching

and random features. In Beygelzimer, A., Dauphin, Y.,

Liang, P., and Vaughan, J. W. (eds.), Advances in Neural

Information Processing Systems, 2021. URL https:

//openreview.net/forum?id=vIRFiA658rh.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Sbase

Sbase

Tbase Tbase

Sbase

Tbase Tbase

internal nodes: TENSORSKETCH

leaves: COUNTSKETCH

Figure 2. The structure of sketch Sq proposed in Theorem 1.1 of (Ahle et al., 2020): the sketch matrices in nodes of the tree labeled with

Sbase and Tbase are independent instances of degree-2 TENSORSKETCH and COUNTSKETCH, respectively.

A. Preliminary Sketching Results

In this section we provide preliminary sketching results. In particular, we provide a proof of Lemma 2.3.

Proof of Lemma 2.3: By invoking Corollary 4.1 of (Ahle et al., 2020), we find that there exists a random sketch Sq ∈ R
m×dq

such that if m = C · q · ε−2 for some absolute constant C, then this sketch satisfies the (ϵ, 1/20, 2)-JL-moment property. It

follows from the definition of the JL-moment property along with Minkowski’s Inequality that for any Y ∈ R
dq×n,

E

[∣∣∣∥SqY ∥2F − ∥Y ∥
2
F

∣∣∣
2
]
≤ ϵ2/20 · ∥Y ∥4F .

Thus, by applying Markov’s inequality on

∣∣∣∥SqY ∥2F − ∥Y ∥
2
F

∣∣∣
2

, we find that

Pr
[
∥SqY ∥2F ∈ (1± ε)∥Y ∥2F

]
≥ 19/20.

This immediately proves the first statement of the lemma.

It was shown in (Ahle et al., 2020) that the sketch Sq can be represented by a binary tree with q leaves. As shown

in Figure 2, the leaves are independent copies of COUNTSKETCH and the internal nodes are independent instances of

degree-2 TENSORSKETCH (Pham & Pagh, 2013), which can sketch 2-fold tensor products efficiently. The sketch Sq can

be applied to tensor product vectors of the form u1 ⊗ u2 ⊗ . . . uq by recursive application of O(q) independent instances

of COUUNTSKETCH (Charikar et al., 2002) and degree-2 TENSORSKETCH (Pham & Pagh, 2013) on vectors ui and their

sketched versions. The use of COUNTSKETCH in the leaves of this sketch structure ensures input sparsity runtime for

sketching sparse input vectors.

Runtime analysis: By Theorem 1.1 of (Ahle et al., 2020), for any collection of vectors u1, u2, . . . uq ∈ R
d,

Sq (u1 ⊗ u2 ⊗ . . . uq) can be computed in time O
(
qm logm+

∑q
j=1 nnz(uj)

)
. From the binary tree structure of the

sketch, shown in Figure 2, it follows that once we compute Sq (u1 ⊗ u2 ⊗ . . . uq), then Sq (e1 ⊗ u2 ⊗ u3 ⊗ . . . uq) can

be computed by updating the path from one of the leaves to the root of the binary tree. This exactly amounts to ap-

plying an instance of COUNTSKETCH on e1 and then applying O(log q) instances of degree-2 TENSORSKETCH on the

intermediate nodes of the tree. This can be computed in a total additional runtime of O(m logm log q). By this argu-

ment, it follows that Sq
(
e⊗j
1 ⊗ uj+1 ⊗ uj+2 . . . uq

)
can be computed sequentially for all j = 0, 1, 2, · · · q in total time

O
(
qm logm log q +

∑q
j=1 nnz(uj)

)
. By plugging in the value m = O

(
q
ε2

)
, this runtime will be upper bounded by

O
(

q2 log2 q
ε

ε2 +
∑q

j=1 nnz(uj)
)

, which gives the second statement of the lemma.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

In order to prove our main result about SRHT with shared random signs in Lemma 4.1, we use Khintchine’s inequality. We

provide a formal statement of this inequality in the following lemma.

Lemma A.1 (Khintchine’s inequality (Haagerup & Musat, 2007)). Let t be a positive integer, x ∈ R
d, and (σi)i∈[d] be

independent Rademacher ±1 random variables. Then

(
E
[
|⟨σ, x⟩|t

])1/t ≤ Ct ∥x∥2,

where Ct ≤
√
2
(

Γ((t+1)/2)√
π

)1/t
≤
√
t for all t ≥ 1. Consequently, by Minkowski’s Inequality along with Markov’s

inequality, for any δ > 0 and any matrix X ∈ R
d×n, we have

Pr

[
∥∥X⊤ · σ

∥∥
2
≥ 2

√
log2

1

δ
· ∥X∥F

]
≤ δ.

A.1. Proof of Lemma 3.1

Let Pi,j be the matrices defined in line 3 of Algorithm 2. For every V ∈ R
n×r, we can write,

Pi,j · V = Qi · Sq
i ·
((

E⊗j
1 ⊗X(j+1) ⊗X(j+2) ⊗ . . . X(q)

)
· V
)
,

where Sq
i is an instance of degree-q POLYSKETCH and Qi is an SRHT . By Lemma 2.3 and Lemma 2.4 and a union bound,

for every fixed i ∈ [T] and j ∈ {0, 1, 2, . . . q} the following holds,

Pr

[
∥Pi,j · V ∥2F ∈ (1± ϵ)

∥∥∥
(
E⊗j

1 ⊗X(j+1) ⊗X(j+2) ⊗ . . . X(q)
)
· V
∥∥∥
2

F

]
≥ 9/10 (6)

Using the properties of tensor products and the definition of matrix E1 we have,

∥∥∥
(
E⊗j

1 ⊗X(j+1) ⊗X(j+2) ⊗ . . . X(q)
)
· V
∥∥∥
2

F
=
∥∥∥
(
X(j+1) ⊗X(j+2) ⊗ . . . X(q)

)
· V
∥∥∥
2

F

Because z̃j is defined as the median over T = Ω(log n) independent copies in line 4 of Algorithm 2, using the above

equality and (6) we have,

Pr

[
z̃ ∈ (1± ϵ)

∥∥∥
(
X(j+1) ⊗X(j+2) ⊗ . . . X(q)

)
· V
∥∥∥
2

F

]
≥ 1− 1

poly(n)
.

This proves the first statement of the lemma.

Runtime and Memory: The time to compute Pi,j for a fixed i and all j = 0, 1, . . . q is

O
(

q2 log2 q
ϵ

ϵ2 · n+
∑q

j=1 nnz
(
X(j)

))
, by Lemma 2.3 and Lemma 2.4. Therefore, the total time to compute Pi,j

for all i ∈ [T] and all j = 0, 1, . . . q is O
(

q2 log2 q
ϵ

ϵ2 · n log n+ log n ·
∑q

j=1 nnz
(
X(j)

))
. Since matrices Pi,j are of

size m′ × n, the total memory needed to store them for all i and j is O
(

q log(1/ϵ)
ϵ2 · n log n

)
. Finally note that the

runtime of QUERY(V, j) is dominated by time needed to compute the product Pi,j · V for i ∈ [T]. This can be done in

O
(

log(1/ϵ)
ϵ2 · log n · nnz(V)

)
operations.

B. Spectral Approximation to Tensor Product Matrices Φ =
⊗q

j=1 X
(j)

In this section we design the ROWSAMPLER procedure which can perform row norm sampling as per Definition 2.5 on

Φ(B⊤B+λI)−1/2 for Φ =
⊗q

j=1 X
(j) using Õ

(∑
i nnz

(
X(i)

))
runtime. Our primitive crucially relies on TENSORNOR-

MDS, given in Algorithm 2, to quickly estimate norm queries of the form

∥∥∥
(⊗q

j=1 X
(j)
)
V
∥∥∥
2

F
.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Algorithm 4 ROWSAMPLER for Φ =
⊗q

j=1 X
(j)

input: q, s ∈ Z+, X(1), . . . X(q) ∈ R
d×n, B ∈ R

m×n, λ > 0
output: Sampling matrix S ∈ R

s×dq

1: Generate H ∈ R
d′×n with i.i.d. normal entries with d′ = C1q log n rows

2: M ← H · (B⊤B + λI)−1/2

3: Let TNORM be the DS in Algorithm 2 for inputs
(
X(1), X(2), . . . , X(q),M

)
and ϵ = 1

20q

4: Let h : [d]→ [s′] be a fully independent and uniform hash function with s′ = ⌈q2s⌉ buckets

5: Define the set h−1(r) := {j ∈ [d] : h(j) = r} for every r ∈ [s′]
6: For every r ∈ [s′] and k ∈ [m′], let Gk

r ∈ R
n′×dr be independent instances of degree-1 POLYSKETCH as per Lemma 2.3,

where dr = |h−1(r)|, n′ = C2q
2, and m′ = C3 log n

7: W a
r,k ← Gk

r ·X
(a)
h−1(r),⋆ for every a ∈ [q], k ∈ [m′], and r ∈ [s′]

8: for ℓ = 1 to s do

9: D1 ← In and βℓ ← s
10: for a = 1 to q do

11: La
r,k ← Da ·W a⊤

r,k for every k ∈ [m′], and r ∈ [s′]

12: par ← MEDIANk∈[m′]

{
TNORM.QUERY(La

r,k, a)
}

for every r ∈ [s′]

13: par ← par/
∑s′

t=1 p
a
t for every r ∈ [s′]

14: Sample t ∈ [s′] from distribution {par}s
′

r=1

15: qai ← TNORM.QUERY

(
Da ·X(a)⊤

i,⋆ , a
)

for every i ∈ h−1(t)

16: qai ← qai /
∑

j∈h−1(t) q
a
j for every i ∈ h−1(t)

17: Sample ia ∈ [d] from distribution {qai }i∈h−1(t)

18: Da+1 ← Da · diag
(
X

(a)
ia,⋆

)

19: βℓ ← βℓ · pat qa,tia

20: Let the ℓth row of S be β
−1/2
ℓ

(
ei1 ⊗ ei2 ⊗ · · · eiq

)⊤
21: return S

Overview of Algorithm 4: The goal of ROWSAMPLER is to generate a sample (i1, i2, · · · iq) ∈ [d]q with probability

proportional to the squared norm of the row (i1, · · · iq) of matrix
(⊗q

j=1 X
(j)
)
· (B⊤B + λI)−1/2. Because (B⊤B +

λI)−1/2 has a large n× n size, we first compress it using random projection techniques without perturbing the row norm

distribution of
(⊗q

j=1 X
(j)
)
· (B⊤B + λI)−1/2 too much. This can be done by applying a JL-transformation to the rows

of this matrix (see, e.g., (Dasgupta & Gupta, 2003)). Let H ∈ R
d′×n be a random matrix with i.i.d. normal entries with

d′ = C1q log2 n rows. With probability 1− 1
poly(nq) the norm of each row of the sketched matrix

(⊗q
j=1 X

(j)
)
· (B⊤B +

λI)−1/2 ·H⊤ is preserved up to a (1± 0.1) factor and hence by a union bound, with probability 1− 1
poly(nq) , all row norms

of the sketched matrix are within a (1± 0.1) factor of the original row norms. This is done in line 2 of the algorithm by

computing M := H · (B⊤B + λI)−1/2, which can be computed quickly since matrices B and H have few rows.

Now the problem is reduced to performing row norm sampling on
(⊗q

j=1 X
(j)
)
·M⊤. Note that computing the exact row

norms of this matrix is out of the question since it has a huge dq number of rows. However, by using TENSORNORMDS that

we designed in Algorithm 2 and exploiting the properties of tensor products we can approximately generate samples from

the row norm distribution in near input sparsity time as follows:

First note that by basic properties of tensor products, the entries of
(
X(1) ⊗X(2) . . . X(q)

)
· M⊤ are in bijec-

tive correspondence with the entries of
(
X(1) ⊗M

)
·
(
X(2) ⊗X(3) . . . X(q)

)⊤
. More precisely, the entry at row

(i1, i2, · · · iq) and column j of
(
X(1) ⊗X(2) . . . X(q)

)
·M⊤ is equal to the entry at row (i1, j) and column (i2, . . . iq) of

(
X(1) ⊗M

)
·
(
X(2) ⊗ . . . X(q)

)⊤
.

Therefore, it is enough to have a procedure to sample (i1, i2, . . . iq) with probability proportional to the squared norm of

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

column (i2, . . . iq) of matrix
(
M · diag

(
X

(1)
i1,⋆

))
·
(
X(2) ⊗ . . . X(q)

)⊤
for every i1 ∈ [d]. To this end, we first sample an

index i1 with probability proportional to the squared Frobenius norm of
(
M · diag

(
X

(1)
i1,⋆

))
·
(
X(2) ⊗ . . . X(q)

)⊤
, and

then perform column norm sampling on the sampled matrix. We can cheaply estimate the Frobenius norms of matrices(
M · diag

(
X

(1)
i1,⋆

))
·
(
X(2) ⊗ . . . X(q)

)⊤
up to

(
1± 1

20q

)
perturbation using TENSORNORMDS (Algorithm 2).

After this point, we will have an index i1 ∈ [d] sampled from the right distribution and all that is left to do is to carry out

row norm sampling on
(
X(2) ⊗ . . . X(q)

)
·
(
M · diag

(
X

(1)
i1,⋆

))⊤
. Note that we have made progress because this matrix

has dq−1 rows, meaning that we have reduced the size of our problem by a factor of d. Algorithm 4 recursively repeats this

process of reshaping, norm estimation, and sampling q times until having all q indices i1, i2, · · · iq .

Note that the actual procedure requires more work because we need to generate s i.i.d. samples with the row norm

distribution and to ensure that the runtime does not lose a multiplicative factor of s, resulting in s ·
∑

j∈[q] nnz
(
X(j)

)
total

time, we need to do extra sketching and a random partitioning of the rows of the datasets to q2s buckets. Moreover, we use

the median trick to boost the success probabilities of our randomized operations, when needed.

The formal guarantee on Algorithm 4 is given in the following lemma.

Lemma B.1. For any matrices X(1), X(2), . . . X(q) ∈ R
d×n and B ∈ R

m×n, any λ > 0 and any positive integers q, s, with

probability at least 1− 1
poly(n) , Algorithm 4 outputs a ranks-s row norm sampler for the matrix

(
X(1) ⊗X(2) ⊗ . . . X(q)

)
·

(B⊤B + λI)−1/2 as per Definition 2.5 in time O
(
m2n+ q7s2n log3 n+ log3 n log q

∑q
j=1 nnz

(
X(j)

))
.

Proof. All rows of the sampling matrix S ∈ R
s×dq

(the output of Algorithm 4) have independent and identical distributions

because for each ℓ ∈ [s], the ℓth row of the matrix S is constructed by sampling indices i1, i2, · · · iq in line 17 completely

independent of the sampled values for other rows ℓ′ ̸= ℓ. Thus, it is enough to consider the distribution of the ℓth row of S
for some arbitrary ℓ ∈ [s].

Let I := (I1, I2, · · · Iq) be a vector-valued random variable that takes values in [d]q with the following conditional probability

distribution for every a = 1, 2, · · · q and every i ∈ [d],

Pr [Ia = i|I1 = i1, I2 = i2, · · · Ia−1 = ia−1] := pah(i) · qai , (7)

where distributions {par}r∈[s′] and {qai }i∈h−1(t) for every t ∈ [s′] are defined as per lines 13 and 16 of the algorithm. One

can see that the random vector (i1, i2, · · · iq) obtained by stitching together the random indices sampled in line 17 of the

algorithm, is in fact a copy of the random variable I defined above.

Let βℓ be the quantity computed in line 19 of the algorithm. If i1, i2, · · · iq ∈ [d] are the indices sampled in line 17 of the

algorithm, then using the conditional distribution of I in (7), we find that the value of βℓ is equal to the following,

βℓ = s ·
q∏

a=1

pah(ia)q
a
ia

= s ·
q∏

a=1

Pr [Ia = ia|I1 = i1, I2 = i2, · · · Ia−1 = ia−1]

= s · Pr [I = (i1, i2, . . . iq)] ,

where pa and qa are the distributions computed in lines 13 and 16 of the algorithm. Hence, for any i1, i2, · · · iq ∈ [d], the

distribution of Sℓ,⋆ is,

Pr
[
Sℓ,⋆ = β

−1/2
ℓ (ei1 ⊗ ei2 ⊗ · · · eiq)⊤

]

= Pr [I = (i1, i2, . . . iq)] =
βℓ

s
. (8)

We will use (8) later.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

By Lemma 3.1 and the way TNORM is constructed in line 3 of the algorithm, we have the following inequalities for any

r ∈ [s′], k ∈ [m′], i ∈ [d], and any a = 1, 2, . . . q , with probability at least 1− 1
poly(n) ,

TNORM.QUERY
(
La
r,k, a

)
∈
(
1± 1

20q

)∥∥∥
(
X(a+1) ⊗ . . . X(q) ⊗M

)
DaW a⊤

r,k

∥∥∥
2

F
, (9)

TNORM.QUERY

(
Da ·X(a)⊤

i,⋆ , a
)
∈
(
1± 1

20q

)
·
∥∥∥
(
X(a+1) ⊗ . . . X(q) ⊗M

)
Da ·X(a)⊤

i,⋆

∥∥∥
2

2
. (10)

By union bounding over qds′m′ events, with probability at least 1− 1
poly(n) , (9) and (10) hold simultaneously for all a ∈ [q],

k ∈ [m′], i ∈ [d], and all r ∈ [s′].

Furthermore, note that W a
r,k is defined in line 7 as W a

r,k = Gk
r · X

(a)
h−1(r),⋆, where Gk

r is an instance of the degree-1

POLYSKETCH as per Lemma 2.3 with target dimension n′ = C2q
2. By the first statement of Lemma 2.3, the POLYSKETCH

Gk
r approximately preserves the Frobenius norm of any fixed matrix with constant probability. In particular, for every

a ∈ [q], r ∈ [s′], k ∈ [m′], with probability at least 9/10 the following holds,

∥∥∥
(
X(a+1) ⊗ . . . X(q) ⊗M

)
DaW a⊤

r,k

∥∥∥
2

F
∈
(
1± 1

50q

)∥∥∥∥
(
X(a+1) ⊗ . . . X(q) ⊗M

)
Da
(
X

(a)
h−1(r),⋆

)⊤∥∥∥∥
2

F

. (11)

By taking the median of m′ = Ω(log n) independent instances of Gk
r , the success probability in (11) gets boosted. Thus, by

combining this inequality with (9) using a union bound, and applying the median trick, with probability at least 1− 1
poly(n)

the following holds simultaneously for all a ∈ [q] and r ∈ [s′],

MEDIANk∈[m′]

{
TNORM.QUERY

(
La
r,k, a

)}
∈
(
1± 1

14q

)∥∥∥∥
(
X(a+1) ⊗ . . . X(q)

)
Da
(
X

(a)
h−1(r),⋆ ⊗M

)⊤∥∥∥∥
2

F

(12)

Note that to obtain the above inequality we used the property of tensor products regarding the bijective correspondence

between entries of
(
X(a+1) ⊗ . . . X(q) ⊗M

)
Da
(
X

(a)
h−1(r),⋆

)⊤
and

(
X(a+1) ⊗ . . . X(q)

)
Da
(
X

(a)
h−1(r),⋆ ⊗M

)⊤

By plugging the above inequality along with (10) into (7), we conclude that with high probability the following bound holds

simultaneously for all a ∈ [q],

Pr[Ia = i|I1 = i1, I2 = i2, · · · Ia−1 = ia−1]

≥
(
1− 1

5q

)
·

∥∥∥
(
X(a+1) ⊗ . . . X(q)

)
Dadiag

(
X

(a)
i,⋆

)
M⊤

∥∥∥
2

F∥∥∥
(
X(a+1) ⊗ . . . X(q)

)
Da
(
X(a) ⊗M

)⊤∥∥∥
2

F

. (13)

Again to obtain the above inequality we used the property of tensor products regarding the bijective correspondence between

the entries of vector
(
X(a+1) ⊗ . . . X(q) ⊗M

)
Da ·X(a)⊤

i,⋆ and matrix
(
X(a+1) ⊗ . . . X(q)

)
Dadiag

(
X

(a)
i,⋆

)
M⊤

It follows from the properties of tensor products and the definition of Da in line 18 of the algorithm, that

∥∥∥∥
(
X(a+2) ⊗ . . . X(q)

)
Da+1

(
X(a+1) ⊗M

)⊤∥∥∥∥
2

F

=

∥∥∥∥
(
X(a+2) ⊗ . . . X(q)

)
Dadiag

(
X

(a)
ia,⋆

)(
X(a+1) ⊗M

)⊤∥∥∥∥
2

F

=
∥∥∥
(
X(a+1) ⊗X(a+2) ⊗ . . . X(q)

)
Dadiag

(
X

(a)
ia,⋆

)
M⊤

∥∥∥
2

2

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Using this equality and inequality (13), we have:

Pr [I = (i1, i2, · · · iq)] =
q∏

a=1

Pr [Ia = ia|I1 = i1, · · · Ia−1 = ia−1]

≥
q∏

a=1

(
1− 1

5q

)
∥∥∥
(
X(a+1) ⊗ . . . X(q)

)
Da · diag

(
X

(a)
ia,⋆

)
M⊤

∥∥∥
2

F∥∥∥
(
X(a+1) ⊗ . . . X(q)

)
Da
(
X(a) ⊗M

)⊤∥∥∥
2

F

≥ 3

4
·

∥∥∥1⊤
n ·Dq · diag

(
X

(q)
iq,⋆

)
M⊤

∥∥∥
2

F∥∥∥
(
X(2) ⊗ . . . X(q)

)
D1
(
X(1) ⊗M

)⊤∥∥∥
2

F

=
3

4
·

∥∥∥
[(
X(1) ⊗X(2) ⊗ . . . X(q)

)
·M⊤]

(i1,i2,···iq),⋆

∥∥∥
2

2∥∥(X(1) ⊗X(2) ⊗ . . . X(q)
)
·M⊤

∥∥2
F

(14)

By plugging (14) back in (8) we find that,

Pr
[
Sℓ,⋆ = β

−1/2
ℓ (ei1 ⊗ ei2 ⊗ · · · eiq)⊤

]
≥ 3

4
·

∥∥∥
[(
X(1) ⊗ . . . X(q)

)
·M⊤]

(i1,i2,···iq),⋆

∥∥∥
2

∥∥(X(1) ⊗ . . . X(q)
)
·M⊤

∥∥2
F

Matrix M is defined as M = H · (B⊤B + λI)−1/2 where H is a random matrix with i.i.d. Gaussian entries with

d′ = C1q log n rows. Therefore, H is a JL-transform, so for every (i1, i2, · · · iq) ∈ [d]q , with probability 1− 1
poly(nq) ,

(d′)−1

∥∥∥∥
[(

X(1) ⊗ . . . X(q)
)
·M⊤

]

(i1,i2,···iq),⋆

∥∥∥∥
2

2

∈ (1± 0.1)

∥∥∥∥
[
X(1) ⊗ . . . X(q)

]

(i1,i2,···iq),⋆
(B⊤B + λI)−1/2

∥∥∥∥
2

2

.

Therefore, by union bounding over dq rows of
(
X(1) ⊗ . . . X(q)

)
· M⊤, the above holds simultaneously for all

(i1, i2, · · · iq) ∈ [d]q with probability 1− 1
poly(nq) . Therefore, with high probability in n,

Pr
[
Sℓ,⋆ = β

−1/2
ℓ (ei1 ⊗ ei2 ⊗ · · · eiq)⊤

]

≥ 1

2
·

∥∥∥
[(
X(1) ⊗ . . . X(q)

)
· (B⊤B + λI)−1/2

]
(i1,i2,···iq),⋆

∥∥∥
2

2∥∥(X(1) ⊗ . . . X(q)
)
· (B⊤B + λI)−1/2

∥∥2
F

Because βℓ

s is the probability of sampling row (i1, i2, · · · iq) of
(
X(1) ⊗ . . . X(q)

)
· (B⊤B + λI)−1/2, the above inequality

proves that with high probability, matrix S is a rank-s row norm sampler for
(
X(1) ⊗ . . . X(q)

)
· (B⊤B + λI)−1/2 as in

Definition 2.5.

Runtime: One of the expensive steps of this algorithm is the computation of M in line 2 which takes O(m2n+qmn log n)
operations since B has rank at most m. Another expensive step is the computation of the TNORM data-structure in line 3.

By Lemma 3.1, this DS for ϵ = 1
20q can be formed in time O

(
q4 log2 q · n log n+ log n ·∑q

j=1 nnz
(
X(j)

))
.

By Lemma 2.3, matrices W a
r,k for all r ∈ [s′], k ∈ [m′] and a ∈ [q] in line 7 of the algorithm can be computed in total time

O
(
q3s′n log2 n+ log n ·∑q

j=1 nnz
(
X(j)

))
.

The matrix W a
r,k for every k ∈ [m′], and r ∈ [s′], has size O(q2) × n. Thus, by Lemma 3.1, computing the distribution

{par}s
′

r=1 in line 13 takes time O
(
q4s′ · n log2 n log q

)
for a fixed a ∈ [q] and a fixed ℓ ∈ [s]. Therefore, the total time to

compute this distribution for all a and ℓ is O
(
q7s2 · n log2 n log q

)
.

The runtime of computing the distribution {qai }i∈h−1(t) in line 16 depends on the sparsity of X
(a)
h−1(t),⋆, i.e., nnz

(
X

(a)
h−1(t),⋆

)
.

To bound the sparsity of X
(a)
h−1(t),⋆, note that, nnz

(
X

(a)
h−1(t),⋆

)
=
∑d

i=1 ✶{i∈h−1(t)} · nnz
(
X

(a)
i,⋆

)
. Since the hash function

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

h is fully independent, by invoking Bernstein’s inequality, we find that for every t ∈ [s′] and a ∈ [q], with high probability

in n, nnz
(
X

(a)
h−1(t),⋆

)
= O

((
nnz

(
X(a)

)
/s′ + n

)
log n

)
. By union bounding over qs′ events, with high probability in n,

nnz
(
X

(a)
h−1(t),⋆

)
= O

((
nnz

(
X(a)

)
/s′ + n

)
log n

)
, simultaneously for all t ∈ [s′] and a ∈ [q].

Therefore, by Lemma 3.1, the distribution {qai }i∈h−1(t) in line 16 of the algorithm can be computed in total time

O
(
q3sn log3 n log q + log3 n log q ·∑q

j=1 nnz
(
X(j)

))
for all a ∈ [q] and all ℓ ∈ [s].

The total runtime of Algorithm 4 is thus O
(
m2n+ q7s2n log2 n log q + log3 n log q ·∑q

j=1 nnz
(
X(j)

))
.

Now we can prove our main theorem about spectrally approximating the Gram matrix Φ⊤Φ for matrices of the form

Φ =
⊗q

j=1 X
(j) using nearly

∑
i nnz

(
X(i)

)
runtime.

Proof of Theorem 2.7: The theorem follows by invoking Lemmas 2.6 and B.1. To find the sampling matrix Π, run

Algorithm 1 on Φ with µ = sλ and for the ROWSAMPLER primitive, invoke Algorithm 4. By Lemma B.1, Algorithm 4

outputs a row norm sampler as per Definition 2.5 with probability 1− 1
poly(n) . Therefore, since the total number of times

Algorithm 4 is invoked by Algorithm 1 is log
∥Φ∥2

F

ϵλ = O(log n), by a union bound, the preconditions of Lemma 2.6 are

satisfied with high probability. Thus, it follows that Π satisfies the following spectral approximation guarantee

Φ⊤Φ+ λI

1 + ϵ
⪯ Φ⊤Π⊤ΠΦ+ λI ⪯ Φ⊤Φ+ λI

1− ϵ
.

Algorithm 1 invokes the ROWSAMPLER primitive log
∥Φ∥2

F

ϵλ = O(log n) times. Thus, by Lemma B.1, the runtime of finding

Π is O
(

q7·s2λ·n
ϵ4 log5 n log q + log4 n log q ·∑i nnz

(
X(i)

))
.

C. Proof of Lemma 4.1

First, by properties of tensor products and using the definitions of sketch matrices S(c) = 1√
m
· PcHD, we obtain

(
S(1)X

)
⊗
(
S(2)X

)
⊗ . . .

(
S(q)X

)
=

1

mq/2
· (P1 × P2 × . . . Pq) · (HDX)

⊗q
, (15)

where P1×P2× . . . Pq denotes the Kronecker product of the sampling matrices P1, P2, . . . Pq and is of size mq × dq . Now

let x1, x2, . . . xn ∈ R
d denote the columns of X . By Khintchine’s inequality (Lemma A.1) along with a union bound over

the d entries of the vector HDxℓ, the following holds with probability 1− 1
poly(n) , for every ℓ ∈ [n]:

∥HD · xℓ∥2∞ ≤ O (log n) · ∥xℓ∥22.

Therefore, using the definition of tensor product, the following holds with probability 1− 1
poly(n) , simultaneously for all

ℓ ∈ [n] and all r ∈ [q]
∥∥(HD · xℓ)

⊗r
∥∥2
∞ ≤ O (log n)

r ·
∥∥x⊗r

ℓ

∥∥2
2
. (16)

From now on we condition on the above inequality holding for every r ∈ [q] and every ℓ ∈ [n].

Now let us consider the matrix (HDX)
⊗q · (Σ ⊗K)⊤. This matrix has dq rows and n columns. If we let λmin be the

smallest eigenvalue of K, then using the properties of the tensor product of matrices, the Frobenius norm of this matrix

satisfies the following inequality,

∥∥∥(HDX)
⊗q · (Σ⊗K)

⊤
∥∥∥
2

F
=
∥∥∥
(
Σ⊗ (HDX)

⊗q
)
·K⊤

∥∥∥
2

F

≥ λ2
min ·

∥∥∥Σ⊗ (HDX)
⊗q
∥∥∥
2

F
= dq · λ2

min ·
∥∥Σ⊗X⊗q

∥∥2
F

(17)

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Furthermore, if we let λmax be the largest eigenvalue of K, then for any row j ∈ [d]q of the matrix (HDX)
⊗q · (Σ⊗K)⊤,

the following upper bound holds,

∥∥∥∥
[
(HDX)

⊗q · (Σ⊗K)
⊤
]

j,⋆

∥∥∥∥
2

2

=

∥∥∥∥Σ · diag
([

(HDX)
⊗q
]

j,⋆

)
·K⊤

∥∥∥∥
2

F

≤ λ2
max ·

∥∥∥∥Σ · diag
([

(HDX)
⊗q
]

j,⋆

)∥∥∥∥
2

F

= λ2
max ·

n∑

ℓ=1

∣∣∣
[
(HD · xℓ)

⊗q
]
(j)
∣∣∣
2

· ∥Σ⋆,ℓ∥22

By incorporating (16) into the above inequality for r = q, we find that for any j ∈ [d]q ,

∥∥∥∥
[
(HDX)

⊗q
(Σ⊗K)⊤

]

j,⋆

∥∥∥∥
2

2

≤ O (log n)
q
λ2
max

n∑

ℓ=1

∥∥x⊗q
ℓ

∥∥2
2
∥Σ⋆,ℓ∥22 = O (log n)

q · λ2
max

∥∥Σ⊗X⊗q
∥∥2
F

In fact, we can prove a stronger version of the above inequality which will turn out to be very useful in our analysis. Let

j ∈ [d]q be some arbitrary index vector. Also, let S ⊆ [q] be some arbitrary subset. Let us denote the subset of indices in

[d]q that agree with j on S by [d]qjS and formally define it as follows:

[d]qjS := {i ∈ [d]q : it = jt for all t ∈ S}.

Using this notation along with the properties of tensor products and (16) we have the following for every j ∈ [d]q and

S ⊆ [q],

∑

i∈[d]q
jS

∥∥∥∥
[
(HDX)

⊗q · (Σ⊗K)⊤
]

i,⋆

∥∥∥∥
2

2

=

∥∥∥∥∥(HDX)
⊗(q−|S|) ·

∏

t∈S

diag ([HDX]jt,⋆) · (Σ⊗K)⊤
∥∥∥∥∥

2

F

≤ λ2
max ·

∥∥∥∥∥
(
Σ⊗ (HDX)⊗(q−|S|)

)∏

t∈S

diag ([HDX]jt,⋆)

∥∥∥∥∥

2

F

= λ2
max ·

∑

ℓ∈[n]

∥∥∥∥∥
(
Σ⋆,ℓ ⊗ (HD · xℓ)

⊗(q−|S|)
)
·
∏

t∈S

[HD · xℓ](jt)

∥∥∥∥∥

2

2

= λ2
max ·

∑

ℓ∈[n]

∥∥∥Σ⋆,ℓ ⊗ (HD · xℓ)
⊗(q−|S|)

∥∥∥
2

2
·
∏

t∈S

|[HD · xℓ](jt)|2

≤ λ2
max · dq−|S| ·

∑

ℓ∈[n]

∥∥∥Σ⋆,ℓ ⊗ x
⊗(q−|S|)
ℓ

∥∥∥
2

2
·
∏

t∈S

O(log n) · ∥xℓ∥22

= O(log n)|S| · λ2
max · dq−|S| ·

∥∥Σ⊗X⊗q
∥∥2
F
,

where the fifth line above follows from (16) for r = 1. Now by combining the above with (17) we find the following for

every non-empty set S ⊆ [q],

max
j∈[d]q





∑

i∈[d]q
jS

∥∥∥∥
[
(HDX)

⊗q · (Σ⊗K)⊤
]

i,⋆

∥∥∥∥
2

2




≤ O

(
log n

d

)|S|
· κ2 ·

∥∥∥(HDX)
⊗q · (Σ⊗K)⊤

∥∥∥
2

F
, (18)

where κ = λmax

λmin
is the condition number of K. This inequality shows that the rows of (HDX)

⊗q · (Σ⊗K)⊤ are ªflatº

and the Frobenius norm of this matrix is spread-out evenly over the rows of this matrix. In addition to (18), we can prove a

stronger inequality for the case of sets of cardinality one. Specifically, we prove a stronger version of (18) for any singleton

set S, i.e., |S| = 1. We start by denoting the sole element of set S by s̃, i.e., S = {s̃}. So when S = {s̃}, using the definition

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

of [d]qjS we have [d]qjS = {i ∈ [d]q : is̃ = js̃}. Therefore, by properties of tensor products, we can write for any js̃ ∈ [d]:

∑

i∈[d]q
jS

∥∥∥∥
[
(HDX)

⊗q · (Σ⊗K)⊤
]

i,⋆

∥∥∥∥
2

2

=
∥∥∥(HDX)

⊗(q−1) · diag ([HDX]js̃,⋆) (Σ⊗K)⊤
∥∥∥
2

F

= dq−1 ·
∥∥∥X⊗(q−1) · diag ([HDX]js̃,⋆) (Σ⊗K)⊤

∥∥∥
2

F

= dq−1 ·
∥∥∥∥∥

[
HDX ·

(
Σ⊗K ⊗X⊗(q−1)

)⊤]

js̃,⋆

∥∥∥∥∥

2

2

.

Using the above inequality along with Khintchine’s inequality from Lemma A.1, we find that the following holds for any

S = {s̃}, with probability at least 1− 1
poly(n) ,

∑

i∈[d]q
jS

∥∥∥∥
[
(HDX)

⊗q · (Σ⊗K)⊤
]

i,⋆

∥∥∥∥
2

2

≤ O(log n) · dq−1 ·
∥∥∥∥X ·

(
Σ⊗K ⊗X⊗(q−1)

)⊤∥∥∥∥
2

F

= O(log n) · dq−1 ·
∥∥∥
(
X ⊗X⊗(q−1)

)
(Σ⊗K)⊤

∥∥∥
2

F

= O

(
log n

d

)
·
∥∥(HDX)⊗q · (Σ⊗K)⊤

∥∥2
F

Now using the above inequality and union bounding over all s̃ ∈ [d] and js̃ ∈ [d], we can conclude that with probability at

least 1− 1
poly(n) , the following holds simultaneously for all singleton sets S = {s̃} ⊆ [q] and all j ∈ [d]q ,

max
j∈[d]q





∑

i∈[d]q
jS

∥∥∥∥
[
(HDX)

⊗q · (Σ⊗K)⊤
]

i,⋆

∥∥∥∥
2

2




≤ O

(
log n

d

)
·
∥∥∥(HDX)

⊗q · (Σ⊗K)⊤
∥∥∥
2

F
, (19)

which is a stronger upper bound than (18) by a factor of κ2.

Now recall that, by (15), we have the following,

∥∥∥
(
S(1)X

)
⊗ . . .

(
S(q)X

)
· (Σ⊗K)⊤

∥∥∥
2

F
=

1

mq
·
∥∥∥(P1 × P2 × . . . Pq) · (HDX)

⊗q · (Σ⊗K)⊤
∥∥∥
2

F

Therefore, to simplify the notation, if we denote the vector corresponding to row norms of (HDX)
⊗q · (Σ ⊗ K)⊤ by

y ∈ R
dq

,

yj :=

∥∥∥∥
[
(HDX)

⊗q · (Σ⊗K)⊤
]

j,⋆

∥∥∥∥
2

for every j ∈ [d]q,

then it suffices to prove that

Pr
P1,...Pq

[
1

mq
· ∥(P1 × P2 × . . . Pq) · y∥22 ∈ (1± ϵ)

∥y∥22
dq

]
≥ 1− δ (20)

given the fact that the Pi are independent random sampling matrices and conditioned on y satisfying the following flatness

property for any non-empty set S ⊆ [q] (by combining (18) and (19)):

max
j∈[d]q

∑

i∈[d]q
jS

|yi|2 ≤ O

(
log n

d

)|S|
·
(
κ2 · ✶{|S|>1} + ✶{|S|=1}

)
· ∥y∥22 . (21)

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

In order to prove (20), first note that 1
mq · ∥(P1 × P2 × . . . Pq) · y∥22 is an unbiased estimator, i.e.,

EP1,...Pq

[
1

mq
· ∥(P1 × . . . Pq) · y∥22

]
=

1

mq
·

∑

i1,i2,...iq∈[d]

Pr[i1 ∈ P1] · . . .Pr[iq ∈ Pq] · |y(i1,...iq)|2

=
1

dq
·

∑

i1,i2,...iq∈[d]

|y(i1,...iq)|2

=
∥y∥22
dq

,

where by Pr[ic ∈ Pc] we mean the probability that ic is sampled by matrix Pc, and this quantity is equal to Pr[ic ∈ Pc] ≡ m
d .

Next we bound the variance of this estimator and then finish the proof by Chebyshev’s inequality.

EP1,...Pq

[(
1

mq
· ∥(P1 × P2 × . . . Pq) · y∥22

)2
]

=
1

m2q

∑

j,i∈[d]q

Pr[i1, j1 ∈ P1] · . . .Pr[iq, jq ∈ Pq] · |yi|2 · |yj|2

=
1

m2q

∑

S⊆[q]

∑

j∈[d]q

∑

i∈[d]q
jS



∏

t∈[q]\S
✶{jt ̸=it}


 · Pr[i1, j1 ∈ P1] · . . .Pr[iq, jq ∈ Pq] · |yi|2 · |yj|2

=
1

m2q

∑

S⊆[q]

∑

j∈[d]q

∑

i∈[d]q
jS



∏

t∈[q]\S
✶{jt ̸=it} · Pr[it, jt ∈ Pt]


 ·

(
∏

t′∈S

Pr[jt′ ∈ Pt′]

)
· |yi|2 · |yj|2 (22)

Where the second line follows because P1, . . . Pq are independent and the third line follows from the definition of the set

[d]qjS . Now we can bound (22) by noting that for any i ̸= j, the collision probability Pr[i, j ∈ Pt] =
m(m−1)
d(d−1) ≤

(
m
d

)2
and

Pr[j ∈ Pt] =
m
d . We can write,

EP1,...Pq

[(
1

mq
· ∥(P1 × P2 × . . . Pq) · y∥22

)2
]
≤ 1

m2q

∑

j∈[d]q

∑

i∈[d]q

(m
d

)2q
· |yi|2 · |yj|2

+
1

m2q

∑

∅≠S⊆[q]

∑

j∈[d]q

∑

i∈[d]q
jS

(m
d

)2q−|S|
· |yi|2 · |yj|2

=
∥y∥42
d2q

+
∑

∅̸=S⊆[q]

1

m|S| · d2q−|S|

∑

j∈[d]q

|yj|2
∑

i∈[d]q
jS

|yi|2

≤ ∥y∥
4
2

d2q
+
∑

S⊆[q]
|S|=1

O(log n) ∥y∥22
m · d2q

∑

j∈[d]q

|yj|2

+
∑

S⊆[q]
|S|>1

O(log n)|S| · κ2 ∥y∥22
m|S| · d2q

∑

j∈[d]q

|yj|2

≤ ∥y∥
4
2

d2q
+O

(
q log n

m
+

q2κ2 log2 n

m2

)
· ∥y∥

4
2

d2q
,

where the fourth and fifth lines above follow from the fact that y satisfies the condition in (21). Therefore, the above

inequality along with the fact that 1
mq · ∥(P1 × P2 × . . . Pq) · y∥22 is an unbiased estimator implies that,

VarP1,...Pq

[
1

mq
· ∥(P1 × P2 × . . . Pq) · y∥22

]
= O

(
q log n

m
+

q2κ2 log2 n

m2

)
· ∥y∥

4
2

d2q

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Thus if m = C
(

1
ϵ2 + κ

ϵ

)
· q

δ log n for a large enough constant C, by using the definition of vector y together with

Chebyshev’s inequality and a union bound, we have the following,

Pr

[∥∥∥
((

S(1)X
)
⊗ . . .

(
S(q)X

))
· (Σ⊗K)⊤

∥∥∥
2

F
∈ (1± ϵ)

∥∥X⊗q · (Σ⊗K)⊤
∥∥2
F

]
≥ 1− δ,

so the lemma statement follows.

The runtime of applying all sketches to X consists of the time to compute Y = HDX and the time to compute PrY for

every r ∈ [q]. The time to compute Y is O(nd log d) by using the FFT algorithm and the time to compute all PrY matrices

is O(qmn).

D. Leverage Score Sampler for Polynomial Kernel

D.1. Proof of Lemma 4.2

All rows of the sampling matrix S ∈ R
s×dq

(the output of Algorithm 3) have independent and identical distributions because

for each ℓ ∈ [s], the ℓth row of S is constructed by sampling indices i1, i2, · · · iq in line 19 completely independent of the

sampled values for other rows ℓ′ ̸= ℓ. Thus, it is enough to consider the distribution of the ℓth row of S for some arbitrary

ℓ ∈ [s]. Let I := (I1, . . . Iq) be a vector-valued random variable that takes values in [d]q with the following conditional

probability distribution for every a = 1, 2, · · · q and every i ∈ [d],

Pr [Ia = i|I1 = i1, · · · Ia−1 = ia−1] := pah(i) · qai , (23)

where distributions {par}r∈[s′] and {qai }i∈h−1(t) for every t ∈ [s′] are defined as per lines 15 and 18 of the algorithm. One

can verify that the random vector (i1, i2, · · · iq) obtained by stitching together the random indices generated in line 19 of the

algorithm, is in fact a copy of I defined above.

Let βℓ be the quantity computed in line 21 of the algorithm. If i1, i2, · · · iq ∈ [d] are the indices sampled in line 19 of the

algorithm, then using the conditional distribution of I in (23), we find that the value of βℓ is equal to the following,

βℓ = s ·
q∏

a=1

pah(ia)q
a
ia

= s ·
q∏

a=1

Pr [Ia = ia|I1 = i1, · · · Ia−1 = ia−1]

= s · Pr [I = (i1, i2, . . . iq)] ,

where pa and qa are the distributions computed in lines 15 and 18 of the algorithm. Hence, for any i1, i2, · · · iq ∈ [d], the

distribution of Sℓ,⋆ is,

Pr
[
Sℓ,⋆ = β

−1/2
ℓ (ei1 ⊗ ei2 ⊗ · · · eiq)⊤

]
= Pr [I = (i1, i2, . . . iq)] =

βℓ

s
. (24)

Now to ease the notation we define Y
(c)
k :=

⊗q
j=c S

(j)
k X for every k ∈ [m′] and c ∈ [q], where S

(c)
k are the SRHT sketches

with shared signs drawn in line 4 of the algorithm. From the definition of TN(k) in line 5 and by invoking Lemma 3.1

we have the following inequalities for any r ∈ [s′], k ∈ [m′], i ∈ [d], and any a = 1, 2, . . . q , with probability at least

1− 1
poly(n) ,

TN(k) .QUERY
(
La
r,k, a

)
∈
(
1± 1

40q

)∥∥∥
(
Y

(a+1)
k ⊗M

)
DaW⊤

r,k

∥∥∥
2

F
, (25)

TN(k) .QUERY
(
DaX⊤

i,⋆, a
)
∈
(
1± 1

40q

)∥∥∥
(
Y

(a+1)
k ⊗M

)
DaX⊤

i,⋆

∥∥∥
2

2
(26)

By union bounding over qds′m′ events, (25) and (26) hold simultaneously for all a ∈ [q], k ∈ [m′], i ∈ [d], and all r ∈ [s′]
with high probability. From now on we condition on (25) and (26).

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Furthermore, note that Wr,k is defined in line 9 as Wr,k = Gk
r ·Xh−1(r),⋆, where Gk

r is a degree-1 POLYSKETCH with

target dimension n′ = C3q
2. By Lemma 2.3, Gk

r approximately preserves Frobenius norm of any fixed matrix with constant

probability. In particular, for every a ∈ [q], r ∈ [s′], k ∈ [m′], with probability at least 19/20:

∥∥∥
(
Y

(a+1)
k ⊗M

)
DaW⊤

r,k

∥∥∥
2

F
∈
(
1± 1

80q

)∥∥∥Y (a+1)
k Da

(
Xh−1(r),⋆ ⊗M

)⊤∥∥∥
2

F
. (27)

To obtain the above inequality we used the fact that there is a bijective correspondence between entries of(
Y

(a+1)
k ⊗M

)
DaX⊤

h−1(r),⋆ and Y
(a+1)
k Da

(
Xh−1(r),⋆ ⊗M

)⊤
.

Additionally, note that M = H · (B⊤B+λI)−1/2 for a random Gaussian matrix H with d′ = Ω(q2 log n) rows. Therefore,

H is a JL-transform. So if we define A := (B⊤B + λI)−1/2 for ease of notation, then with probability 1− 1
poly(n) , the

following holds for any a ∈ [q], r ∈ [s′]:

∥∥∥Y (a+1)
k Da

(
Xh−1(r),⋆ ⊗M

)⊤∥∥∥
2

F
∈
(
1± 1

80q

)∥∥∥Y (a+1)
k Da

(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
.

By union bounding over qs′ events we can conclude that the above inequality holds simultaneously for all a ∈ [q] and

r ∈ [s′]. From now on we condition on the above inequality holding. By combining this condition with (27) we find that

with probability at least 19/20 the following holds:

∥∥∥
(
Y

(a+1)
k ⊗M

)
DaW⊤

r,k

∥∥∥
2

F
∈
(
1± 1

39q

)∥∥∥Y (a+1)
k Da

(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
. (28)

Using the definition of matrices Y
(c)
k :=

⊗q
j=c S

(j)
k X and by Lemma 4.1, because the number of rows of S

(c)
k is

m′′ = Ω(q3 + q2κ log n), the following holds with probability at least 19/20 for any a ∈ [q], r ∈ [s′], k ∈ [m′],

∥∥∥Y (a+1)
k Da

(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
∈
(
1± 1

80q

)∥∥∥X⊗(q−a)Da
(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
.

By combining the above with (28) using a union bound, and plugging the result into (25) we find that with probability at

least 9/10 the following holds,

TN(k) .QUERY
(
La
r,k, a

)
∈
(
1± 1

10q

)∥∥∥X⊗(q−a) ·Da
(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
.

By taking the median of m′ = Ω(log n) independent instances of TN(k) .QUERY

(
La
r,k, a

)
, the success probability of the

above gets boosted. Thus, by a union bound, with probability at least 1− 1
poly(n) the following holds simultaneously for all

a ∈ [q] and r ∈ [s′],

MEDIANk∈[m′]

{
TN(k) .QUERY

(
La
r,k, a

)}
∈
(
1± 1

10q

)∥∥∥X⊗(q−a)Da
(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
(29)

Similarly, we can use the fact that there is a bijective correspondence between the entries of
(
Y

(a+1)
k ⊗M

)
DaX⊤

i,⋆ and

Y
(a+1)
k Dadiag (Xi,⋆)M

⊤ along with M = H · A to conclude that with probability 1− 1
poly(n) , the following holds for

any a ∈ [q], r ∈ [s′], k ∈ [m′], i ∈ [d]:

∥∥∥
(
Y

(a+1)
k ⊗M

)
DaX⊤

i,⋆

∥∥∥
2

2
∈
(
1± 1

80q

)∥∥∥Y (a+1)
k Da · diag (Xi,⋆)A

∥∥∥
2

F
(30)

By a union bound over qs′m′d events we can conclude that the above inequality holds simultaneously for all a ∈ [q], r ∈
[s′], k ∈ [m′], i ∈ [d]. From now on we condition on the above inequality holding. Then, by using the definition of

matrices Y
(c)
k :=

⊗q
j=c S

(j)
k X and invoking Lemma 4.1, the following holds with probability at least 19/20 for any

a ∈ [q], r ∈ [s′], k ∈ [m′], i ∈ [d],

∥∥∥Y (a+1)
k Dadiag (Xi,⋆)A

∥∥∥
2

F
∈
(
1± 1

80q

)∥∥∥X⊗(q−a) ·Dadiag (Xi,⋆)A
∥∥∥
2

F

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

By combining this with the condition in (30) and (26) we find that with probability at least 19/20:

TN(k) .QUERY
(
DaX⊤

i,⋆, a
)
∈
(
1± 1

15q

)∥∥∥X⊗(q−a)Dadiag (Xi,⋆)A
∥∥∥
2

F

By taking the median of m′ = Ω(log n) independent instances of TN(k) .QUERY
(
DaX⊤

i,⋆, a
)
, the success probability of the

above gets boosted. Thus, by applying the median trick and then using a union bound, with probability at least 1− 1
poly(n)

the following holds simultaneously for all a ∈ [q], i ∈ [d] and r ∈ [s′],

MEDIANk∈[m′]

{
TN(k) .QUERY

(
DaX⊤

i,⋆, a
)}
∈
(
1± 1

15q

)∥∥∥X⊗(q−a)Dadiag (Xi,⋆)A
∥∥∥
2

F

Plugging the above inequality along with (29) into (23), we conclude that with high probability the following bound holds

simultaneously for all a ∈ [q] and all i ∈ [d],

Pr[Ia = i|I1 = i1, I2 = i2, · · · Ia−1 = ia−1] ≥
(
1− 1

3q

)
·
∥∥X⊗(q−a)Da · diag (Xi,⋆)A

∥∥2
F∥∥X⊗(q−a+1)DaA

∥∥2
F

. (31)

Thus, using the definition of Da and A = (B⊤B + λI)−1/2, we have

Pr [I = (i1, i2, · · · iq)] =
q∏

a=1

Pr [Ia = ia|I1 = i1, · · · Ia−1 = ia−1]

≥
q∏

a=1

(
1− 1

3q

) ∥∥X⊗(q−a)Da · diag (Xia,⋆)A
∥∥2
F∥∥X⊗(q−a+1)DaA

∥∥2
F

≥ 1

2
·
∥∥1⊤

n ·Dq · diag
(
Xiq,⋆

)
A
∥∥2
F

∥X⊗qD1A∥2F

=
1

2
·

∥∥∥
[
X⊗q · (B⊤B + λI)−1/2

]
(i1,i2,···iq),⋆

∥∥∥
2

2∥∥X⊗q · (B⊤B + λI)−1/2
∥∥2
F

This shows that, with high probability in n,

Pr
[
Sℓ,⋆ = β

−1/2
ℓ (ei1 ⊗ ei2 ⊗ · · · eiq)⊤

]
≥ 1

2
·

∥∥∥
[
X⊗q · (B⊤B + λI)−1/2

]
(i1,i2,···iq),⋆

∥∥∥
2

2∥∥X⊗q · (B⊤B + λI)−1/2
∥∥2
F

Because βℓ

s is the probability of sampling row (i1, i2, · · · iq) of X⊗q(B⊤B + λI)−1/2, the above inequality proves that

with high probability, matrix S is a rank-s row norm sampler for X⊗q(B⊤B + λI)−1/2 as in Definition 2.5.

Runtime: The first expensive step of this algorithm is the computation of M in line 3 which takes O(m2n+ q2mn log n)

operations since B has rank at most m. The next expensive computation is the computation of S
(c)
k X for c ∈ [q]

and k ∈ [m′] in line 5 of the algorithm. By Lemma 4.1, the total time to compute these sketched matrices

is O
(
(q4 + q3κ)n log2 n+ nd log2 n

)
. Another expensive step is the construction of the TN(k) data-structure in

line 5 for k ∈ [m′]. By Lemma 3.1, these DS’s for ϵ = 1
40q and all k ∈ [m′] can be formed in total time

O
(
q4 log2 q · n log2 n+ (q4 + q3κ)n log3 n

)
.

By Lemma 2.3, matrices Wr,k for all r ∈ [s′] and k ∈ [m′] in line 9 of the algorithm can be computed in total time

O
(
q2s′n log2 n+ log n · nnz (X)

)
.

The matrix Wr,k for every k ∈ [m′], and r ∈ [s′], has size O(q2) × n. Thus, by Lemma 3.1, computing the distribution

{par}s
′

r=1 in line 15 takes time O
(
q4s′ · n log2 n log q

)
for a fixed a ∈ [q] and a fixed ℓ ∈ [s]. Therefore, the total time to

compute this distribution for all a and ℓ is O
(
q8s2 · n log2 n log q

)
.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

The runtime of computing the distribution {qai }i∈h−1(t) in line 18 depends on the sparsity of Xh−1(t),⋆, i.e., nnz
(
Xh−1(t),⋆

)
.

To bound the sparsity of Xh−1(t),⋆, note that, the hash function h is fully independent. Thus, by invoking Bernstein’s

inequality, we find that, Pr
[
nnz

(
Xh−1(t),⋆

)
= O

(
log n ·

(√
n
s′ nnz (X) + n

))]
≥ 1− 1

poly(n) . Hence, by union bounding

over qs′ events, with high probability in n, nnz
(
Xh−1(t),⋆

)
= O ((nnz (X) /s′ + n) log n), simultaneously for all t ∈ [s′]

and a ∈ [q].

Therefore, by Lemma 3.1, the distribution {qai }i∈h−1(t) in line 18 of the algorithm can be computed in total time

O
(
q3sn log4 n log q + log4 n log q · nnz (X)

)
for all a ∈ [q] and all ℓ ∈ [s].

The total runtime of Algorithm 3 is thus O(m2n+ q8s2n log2 n log q + q3κn log3 n+ dn log4 n).

D.2. Proof of Theorem 4.3

The theorem follows by invoking Lemmas 2.6 and 4.2. To find the sampling matrix Π, run Algorithm 1 on Φ with µ = sλ
and for the ROWSAMPLER primitive, invoke Algorithm 3. By Lemma 4.2, Algorithm 3 outputs a row norm sampler as

per Definition 2.5, with probability 1 − 1
poly(n) . Therefore, since the total number of times Algorithm 3 is invoked by

Algorithm 1 is log
∥Φ∥2

F

ϵλ = O(log n), by a union bound, the preconditions of Lemma 2.6 are satisfied with high probability.

Thus, it follows that Π satisfies the following spectral approximation guarantee

Φ⊤Φ+ λI

1 + ϵ
⪯ Φ⊤Π⊤ΠΦ+ λI ⪯ Φ⊤Φ+ λI

1− ϵ
.

The only thing that remains is bounding the runtime. In the proof of Lemma 2.6 in (Woodruff & Zandieh, 2020), it is shown

that with high probability at any iteration t ∈ [T] of Algorithm 1, the following holds,

Φ⊤Φ+ λtI

1 + ϵ
⪯ Φ⊤Π⊤

t ΠtΦ+ λtI ⪯
Φ⊤Φ+ λtI

1− ϵ
.

Therefore,
∥∥Φ⊤Π⊤

t ΠtΦ
∥∥ = O(∥Φ⊤Φ∥). Now note that Algorithm 1 invokes the ROWSAMPLER primi-

tive T = log
∥Φ∥2

F

ϵλ = O(log n) times. Thus, by Lemma 4.2, the runtime of finding Π is the sum of

O

(
q8s2λn log4 n

ϵ4 +

√
∥Φ⊤Π⊤

t ΠtΦ∥
λt

q3n log3 n+ nd log4 n

)
for all t ∈ [T]. Since λt = 2T−tλ has a geometric decay,

the total time complexity is O

(
q8s2λn log5 n

ϵ4 +
√

∥Φ⊤Φ∥
λ q3n log3 n+ nd log5 n

)
.

E. Spectral Approximation to Generalized Polynomial Kernels

In this section we design an algorithm that can produce a spectral approximation to the GPK defined in Definition 5.1. Our

approach is to perform leverage score sampling on the GPK feature matrix Φ defined in (4). We do this by invoking our

recursive sampling method given in Algorithm 1 on Φ. Our central contribution is the design of ROWSAMPLER algorithm for

the GPK feature matrix Φ that runs in input sparsity time. This procedure can perform row norm sampling as per Definition

2.5 on Φ(B⊤B + λI)−1/2 for Φ =
⊕q

j=0 αjX
⊗jdiag(v) using Õ (nnz(X)) runtime. Our primitive is an adaptation and

generalization of Algorithm 3.

The formal guarantee on Algorithm 5 is given in the following lemma.

Lemma E.1. For any matrix X ∈ R
d×n, any vector v ∈ R

n, any positive integers q, s, and any α ∈ R
q+1, let

Φ be the GPK feature matrix defined in (4). For any matrix B ∈ R
m×n and any λ > 0, with probability at least

1 − 1
poly(n) , Algorithm 5 outputs a rank-s row norm sampler for Φ(B⊤B + λI)−1/2 as per Definition 2.5, in time

O
(
m2n+ q8s2n log3 n+ q3κn log3 n+ nd log4 n

)
, where κ =

√
∥B⊤B∥/λ+ 1.

Proof. All rows of the sampling matrix S ∈ R
s×dq

(the output of Algorithm 3) have independent and identical distributions

because for each ℓ ∈ [s], the ℓth row of the matrix S is constructed by sampling the degree b and indices i1, i2, · · · iq in

lines13 and 22, respectively, completely independent of the sampled values for other rows ℓ′ ̸= ℓ. Thus, it is enough to

consider the distribution of the ℓth row of S for some arbitrary ℓ ∈ [s].

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Algorithm 5 ROWSAMPLER for GPK features Φ =
⊕q

j=0 αjX
⊗jdiag(v)

input: q, s ∈ Z+, X ∈ R
d×n, v ∈ R

n, α ∈ R
q+1, B ∈ R

m×n, λ > 0
output: Sampling matrix S ∈ R

s×dq

1: κ←
√

∥B⊤B∥
λ + 1

2: Generate H ∈ R
d′×n with i.i.d. normal entries with d′ = C0q

2 log n rows

3: M ← H · (B⊤B + λI)−1/2

4: For every k ∈ [m′], let S
(1)
k , S

(2)
k , . . . S

(q)
k ∈ R

m′′×d be independent copies of SRHT sketches with shared signs as per

Lemma 4.1, where m′ = C1 log n and m′′ = C2(q
3 + q2κ) log n

5: For every k ∈ [m′], let TNORM
(k) be the DS in Algorithm 2 for inputs

(
S
(1)
k X, . . . S

(q)
k X,M

)
and ϵ = 1

40q

6: Let h : [d]→ [s′] be a fully independent and uniform hash function with s′ = ⌈q3s⌉ buckets

7: Let h−1(r) = {j ∈ [d] : h(j) = r} for every r ∈ [s′]
8: For every r ∈ [s′] and k ∈ [m′], let Gk

r ∈ R
n′×dr be independent instances of degree-1 POLYSKETCH as per Lemma 2.3,

where dr = |h−1(r)|, n′ = C3q
2

9: Wr,k ← Gk
r ·Xh−1(r),⋆ for every k ∈ [m′] and r ∈ [s′]

10: fj ← α2
j ·MEDIANk∈[m′]TNORM

(k) .QUERY(v, q − j) for every j = 0, 1, . . . q

11: fj ← fj/
∑q

i=0 fi for every j = 0, 1, . . . q
12: for ℓ = 1 to s do

13: Sample b ∈ {0, 1, . . . q} from distribution {fj}qj=0

14: D1 ← diag(v) and βℓ ← s · fb
15: for a = 1 to b do

16: La
r,k ← Da ·W⊤

r,k for every k ∈ [m′], and r ∈ [s′]

17: par ← MEDIANk∈[m′]TNORM
(k) .QUERY(La

r,k, a+ q − b) for every r ∈ [s′]

18: par ← par/
∑s′

t=1 p
a
t for every r ∈ [s′]

19: Sample t ∈ [s′] from distribution {par}s
′

r=1

20: Let qai ← MEDIANk∈[m′]TNORM
(k) .QUERY(DaX⊤

i,⋆, a+ q − b) for every i ∈ h−1(t)

21: qai ← qai /
∑

j∈h−1(t) q
a
j for every i ∈ h−1(t)

22: Sample ia ∈ [d] from distribution {qai }i∈h−1(t)

23: Da+1 ← Da · diag
(
X

(a)
ia,⋆

)

24: βℓ ← βℓ · pat qaia
25: if b > 0 then

26: Let ℓth row of S be β
−1/2
ℓ

(
0, 0, . . . 0︸ ︷︷ ︸
db−1

d−1
zeros

, ei1 ⊗ ei2 ⊗ · · · eib , 0, 0, . . . 0︸ ︷︷ ︸
dq+1−db+1

d−1
zeros

)

27: else

28: Let ℓth row of S be β
−1/2
ℓ

(
1, 0, 0, . . . 0︸ ︷︷ ︸

dq+1−d
d−1

zeros

)

29: return S

Let U be a random variable that takes values in {0, 1, . . . q} with the following distribution for every a = 0, 1, . . . q

Pr[U = a] = fa (32)

where {fa}qa=0 is the distribution defined in line 11 of the algorithm. Additionally, for any b ∈ {1, . . . q}, let Ib := (I1, . . . Ib)
be a vector-valued random variable that takes values in [d]b with the following conditional probability distribution for every

a = 1, 2, · · · b and every i ∈ [d],

Pr [Ia = i|I1 = i1, · · · Ia−1 = ia−1] := pah(i) · qai , (33)

where distributions {par}r∈[s′] and {qai }i∈h−1(t) for every t ∈ [s′] are defined as per lines 18 and 21 of the algorithm. One

can verify that conditioned on Algorithm 5 sampling some b = 1, . . . q in line 13, the random vector (i1, i2, · · · ib) obtained

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

by stitching together the random indices generated in line 22 of the algorithm, is in fact a copy of Ib defined above. Note

that if the algorithm samples degree b = 0 in line 13 then the algorithm does not sample any indices in line 22.

Let βℓ be the quantity computed in line 24 of the algorithm. If b ∈ {1, . . . q} is the degree sampled in line 13 and

i1, i2, · · · ib ∈ [d] are the indices sampled in line 22 of the algorithm, then using the distribution of U in (32) and the

conditional distribution of Ib in (33), we find that the value of βℓ is equal to the following,

βℓ = s · fb ·
b∏

a=1

pah(ia)q
a
ia

= s · Pr[U = b] ·
b∏

a=1

Pr [Ia = ia|I1 = i1, · · · Ia−1 = ia−1]

= s · Pr
[
Ib = (i1, i2, . . . ib)

]
· Pr[U = b],

where pa and qa are the distributions computed in lines 18 and 21 of the algorithm. Hence, for any b = 1, . . . q and any

i1, i2, · · · ib ∈ [d], the distribution of Sℓ,⋆ is,

Pr


Sℓ,⋆ = β

−1/2
ℓ

(
0, 0, . . . 0︸ ︷︷ ︸
db−1

d−1
zeros

, ei1 ⊗ ei2 ⊗ · · · eib , 0, 0, . . . 0︸ ︷︷ ︸
dq+1−db+1

d−1
zeros

)



= Pr
[
Ib = (i1, i2, . . . ib)

]
· Pr[U = b] =

βℓ

s
. (34)

Furthermore, if b = 0 is the degree sampled in line 13 of the algorithm then βℓ = s · f0 = s · Pr[U = 0]. Thus,

Pr


Sℓ,⋆ = β

−1/2
ℓ

(
1, 0, 0, . . . 0︸ ︷︷ ︸

dq+1−d
d−1

zeros

)

 = Pr[U = 0] =

βℓ

s
.

Now to ease the notation we define Y
(c)
k :=

⊗q
j=c S

(j)
k X for every k ∈ [m′] and c ∈ [q], where S

(c)
k are the SRHT sketches

with shared signs drawn in line 4 of the algorithm. Using the definition of TNORM
(k) in line 5 and by invoking Lemma 3.1

we have the following inequality for any k ∈ [m′] and any j = 0, 1, . . . q:

TNORM
(k) .QUERY (v, q − j) ∈

(
1± 1

40q

)∥∥∥
(
Y

(q−j+1)
k ⊗M

)
v
∥∥∥
2

2
. (35)

By union bounding over (q + 1)m′ events, (35) holds simultaneously for all j ∈ {0, 1, . . . q}, and k ∈ [m′], with high

probability. From now on we condition on (35). Now, note that M = H · (B⊤B + λI)−1/2 for a random Gaussian matrix

H with d′ = Ω(q2 log n) rows. Therefore, H is a JL-transform. So if we define A := (B⊤B+λI)−1/2 for ease of notation,

then with probability 1− 1
poly(n) , the following holds for any j ∈ {0, 1, . . . q}, k ∈ [m′]:

∥∥∥
(
Y

(q−j+1)
k ⊗M

)
v
∥∥∥
2

2
∈
(
1± 1

80q

)∥∥∥Y (q−j+1)
k · diag(v)A

∥∥∥
2

F
.

To obtain the above inequality we used the fact that there is a bijective correspondence between entries of vector(
Y

(q−j+1)
k ⊗M

)
v and matrix Y

(q−j+1)
k · diag(v)M⊤. Now, using the above inequality along with the definition of matri-

ces Y
(c)
k :=

⊗q
j=c S

(j)
k X and by invoking Lemma 4.1, because the number of rows of S

(c)
k ’s is m′′ = Ω(q3 + q2κ log n),

the following holds with probability at least 9/10 for any j ∈ {0, 1, . . . q}, k ∈ [m′],

∥∥∥
(
Y

(q−j+1)
k ⊗M

)
v
∥∥∥
2

2
∈
(
1± 1

39q

)∥∥X⊗j · diag(v)A
∥∥2
F
.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

By plugging the above into (35), we find that with probability at least 9/10 the following holds,

TNORM
(k) .QUERY (v, q − j) ∈

(
1± 1

19q

)∥∥X⊗j · diag(v)A
∥∥2
F
.

By taking the median of m′ = Ω(log n) independent instances of TNORM
(k) .QUERY (v, q − j), the success probability of

the above gets boosted. Thus, by a union bound, with probability at least 1− 1
poly(n) , the following holds simultaneously

for all j ∈ {0, 1, . . . q},

MEDIANk∈[m′]

{
TNORM

(k) .QUERY (v, q − j)
}
∈
(
1± 1

19q

)∥∥X⊗j · diag(v)A
∥∥2
F
.

Therefore, using the above along with (32) and definition of fj in line 11 of the algorithm as well as A = (B⊤B + λI)−1/2,

with high probability in n, for any b = 0, 1, . . . q we have

Pr[U = b] = fb

≥
(
1± 1

9q

)
α2
b ·
∥∥X⊗b · diag(v)A

∥∥2
F∑q

j=0 α
2
j · ∥X⊗j · diag(v)A∥2F

=

(
1± 1

9q

)
α2
b ·
∥∥X⊗b · diag(v)(B⊤B + λI)−1/2

∥∥2
F∥∥Φ · (B⊤B + λI)−1/2

∥∥2
F

, (36)

where the last line follows from the definition of Φ =
⊕q

j=0 αjX
⊗jdiag(v).

Moreover, suppose that b ∈ {1, 2, . . . q}. From the definition of TNORM
(k) in line 5 and by invoking Lemma 3.1 we have

the following inequalities for any r ∈ [s′], k ∈ [m′], i ∈ [d], and any a = 1, 2, . . . b , with probability at least 1− 1
poly(n) ,

TNORM
(k) .QUERY

(
La
r,k, a+ q − b

)
∈
(
1± 1

40q

)∥∥∥
(
Y

(a+q−b+1)
k ⊗M

)
DaW⊤

r,k

∥∥∥
2

F
, (37)

TNORM
(k) .QUERY

(
DaX⊤

i,⋆, a+ q − b
)
∈
(
1± 1

40q

)∥∥∥
(
Y

(a+q−b+1)
k ⊗M

)
DaX⊤

i,⋆

∥∥∥
2

2
(38)

By union bounding over qds′m′ events, (37), and (38) hold simultaneously for all a ∈ [b], k ∈ [m′], i ∈ [d], and all r ∈ [s′]
with high probability. From now on we condition on (37) and (38).

Furthermore, note that Wr,k is defined in line 9 as Wr,k = Gk
r ·Xh−1(r),⋆, where Gk

r is a degree-1 POLYSKETCH with

target dimension n′ = C3q
2. By Lemma 2.3, Gk

r approximately preserves the Frobenius norm of any fixed matrix with

constant probability. In particular, for every a ∈ [b], r ∈ [s′], k ∈ [m′], with probability at least 19/20:

∥∥∥
(
Y

(a+q−b+1)
k ⊗M

)
DaW⊤

r,k

∥∥∥
2

F
∈
(
1± 1

80q

)∥∥∥Y (a+q−b+1)
k Da

(
Xh−1(r),⋆ ⊗M

)⊤∥∥∥
2

F
. (39)

To obtain the above inequality we used the fact that there is a bijective correspondence between entries of(
Y

(a+q−b+1)
k ⊗M

)
DaX⊤

h−1(r),⋆ and Y
(a+q−b+1)
k Da

(
Xh−1(r),⋆ ⊗M

)⊤
. Additionally, we use the fact that M = H ·A

for a JL-transform H . So, with probability 1− 1
poly(n) , the following holds for any a ∈ [b], r ∈ [s′]:

∥∥∥Y (a+q−b+1)
k Da

(
Xh−1(r),⋆ ⊗M

)⊤∥∥∥
2

F
∈
(
1± 1

80q

)∥∥∥Y (a+q−b+1)
k Da

(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
.

By union bounding over qs′ events we can conclude that the above inequality holds simultaneously for all a ∈ [b], r ∈ [s′].
From now on we condition on the above inequality holding. By combining this condition with (39) we find that with

probability at least 19/20 the following holds:

∥∥∥
(
Y

(a+q−b+1)
k ⊗M

)
DaW⊤

r,k

∥∥∥
2

F
∈
(
1± 1

39q

)∥∥∥Y (a+q−b+1)
k Da

(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
. (40)

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Using the definition of matrices Y
(c)
k :=

⊗q
j=c S

(j)
k X and by Lemma 4.1, because the number of rows of S

(c)
k is

m′′ = Ω(q3 + q2κ log n), the following holds with probability at least 19/20 for any a ∈ [b], r ∈ [s′], k ∈ [m′],

∥∥∥Y (a+q−b+1)
k Da

(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
∈
(
1± 1

80q

)∥∥∥X⊗(b−a)Da
(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
.

By combining the above with (40) and a union bound, plugging the result into (37) we find that with probability at least

9/10 the following holds,

TNORM
(k) .QUERY

(
La
r,k, a

)
∈
(
1± 1

10q

)∥∥∥X⊗(b−a) ·Da
(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
.

By taking the median of m′ = Ω(log n) independent instances of TN(k) .QUERY

(
La
r,k, a

)
, the success probability of the

above gets boosted. Thus, by a union bound, with probability at least 1− 1
poly(n) the following holds simultaneously for all

a ∈ [b] and r ∈ [s′],

MEDIANk∈[m′]

{
TNORM

(k) .QUERY
(
La
r,k, a

)}
∈
(
1± 1

10q

)∥∥∥X⊗(b−a)Da
(
Xh−1(r),⋆ ⊗A

)⊤∥∥∥
2

F
(41)

Similarly, we can use the fact that there is a bijective correspondence between the entries of
(
Y

(a+q−b+1)
k ⊗M

)
DaX⊤

i,⋆

and Y
(a+q−b+1)
k Dadiag (Xi,⋆)M

⊤ along with M = H · A to conclude that with probability 1 − 1
poly(n) , the following

holds for any a ∈ [b], r ∈ [s′], k ∈ [m′], i ∈ [d]:

∥∥∥
(
Y

(a+q−b+1)
k ⊗M

)
DaX⊤

i,⋆

∥∥∥
2

2
∈
(
1± 1

80q

)∥∥∥Y (a+q−b+1)
k Da · diag (Xi,⋆)A

∥∥∥
2

F
(42)

By a union bound over qs′m′d events we can conclude that the above inequality holds simultaneously for all a ∈ [b], r ∈
[s′], k ∈ [m′], i ∈ [d]. From now on we condition on the above inequality holding. Then by using the definition of

matrices Y
(c)
k :=

⊗q
j=c S

(j)
k X and invoking Lemma 4.1, the following holds with probability at least 19/20 for any

a ∈ [b], r ∈ [s′], k ∈ [m′], i ∈ [d],

∥∥∥Y (a+q−b+1)
k Dadiag (Xi,⋆)A

∥∥∥
2

F
∈
(
1± 1

80q

)∥∥∥X⊗(b−a) ·Dadiag (Xi,⋆)A
∥∥∥
2

F

By combining this with the condition in (42) and (38) we find that with probability at least 19/20:

TNORM
(k) .QUERY

(
DaX⊤

i,⋆, a+ q − b
)
∈
(
1± 1

19q

)∥∥∥X⊗(b−a)Dadiag (Xi,⋆)A
∥∥∥
2

F

By taking the median of m′ = Ω(log n) independent instances of TNORM
(k) .QUERY

(
DaX⊤

i,⋆, a+ q − b
)
, the success

probability of the above gets boosted. Thus, by applying the median trick and then using a union bound, with probability at

least 1− 1
poly(n) the following holds simultaneously for all a ∈ [b], i ∈ [d] and r ∈ [s′],

MEDIANk∈[m′]

{
TNORM

(k) .QUERY
(
DaX⊤

i,⋆, a+ q − b
)}
∈
(
1± 1

19q

)∥∥∥X⊗(b−a)Dadiag (Xi,⋆)A
∥∥∥
2

F

Plugging the above inequality along with (41) into (33), we conclude that with high probability the following bound holds

simultaneously for all a ∈ [b] and all i ∈ [d],

Pr[Ia = i|I1 = i1, I2 = i2, · · · Ia−1 = ia−1] ≥
(
1− 1

3q

)
·
∥∥X⊗(b−a)Da · diag (Xi,⋆)A

∥∥2
F∥∥X⊗(b−a+1)DaA

∥∥2
F

. (43)

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Thus, using the definition of Da and A = (B⊤B + λI)−1/2, for any b ∈ {1, 2, . . . q}, we have

Pr
[
Ib = (i1, i2, · · · ib)

]
=

q∏

a=1

Pr [Ia = ia|I1 = i1, · · · Ia−1 = ia−1]

≥
b∏

a=1

(
1− 1

3q

) ∥∥X⊗(b−a)Da · diag (Xia,⋆)A
∥∥2
F∥∥X⊗(b−a+1)DaA

∥∥2
F

≥ 1

2
·
∥∥1⊤

n ·Db · diag (Xib,⋆)A
∥∥2
F

∥X⊗bD1A∥2F

=
1

2
·

∥∥∥
[
X⊗b · diag(v)(B⊤B + λI)−1/2

]
(i1,i2,···ib),⋆

∥∥∥
2

2∥∥X⊗b · diag(v)(B⊤B + λI)−1/2
∥∥2
F

This together with (36), shows that for any b ∈ {1, 2 . . . q}, with high probability in n,

Pr


Sℓ,⋆ = β

−1/2
ℓ

(
0, 0, . . . 0︸ ︷︷ ︸
db−1

d−1
zeros

, ei1 ⊗ ei2 ⊗ · · · eib , 0, 0, . . . 0︸ ︷︷ ︸
dq+1−db+1

d−1
zeros

)



= Pr
[
Ib = (i1, i2, . . . ib)

]
· Pr[U = b]

≥ 1

3
·

∥∥∥
[
X⊗bdiag(v)(B⊤B + λI)−1/2

]
(i1,i2,···ib),⋆

∥∥∥
2

2∥∥X⊗bdiag(v)(B⊤B + λI)−1/2
∥∥2
F

·
α2
b ·
∥∥X⊗b · diag(v)(B⊤B + λI)−1/2

∥∥2
F∥∥Φ · (B⊤B + λI)−1/2

∥∥2
F

=
1

3
·
α2
b ·
∥∥∥
[
X⊗bdiag(v)(B⊤B + λI)−1/2

]
(i1,i2,···ib),⋆

∥∥∥
2

2∥∥Φ · (B⊤B + λI)−1/2
∥∥2
F

.

The numerator above is exactly equal to the norm of row (i1, i2, · · · ib) of the bth block of the matrix Φ(B⊤B + λI)−1/2

(note that Φ has q + 1 blocks and its bth block is αb ·X⊗bdiag(v)). On the other hand if b = 0, we have,

Pr


Sℓ,⋆ = β

−1/2
ℓ

(
1, 0, 0, . . . 0︸ ︷︷ ︸

dq+1−d
d−1

zeros

)

 = Pr[U = 0] ≥

(
1± 1

9q

)
α2
0 ·
∥∥X⊗0 · diag(v)(B⊤B + λI)−1/2

∥∥2
F∥∥Φ · (B⊤B + λI)−1/2

∥∥2
F

.

The numerator above is exactly equal to the norm of (the sole row of) the 0th block of the matrix Φ(B⊤B + λI)−1/2.

Because βℓ

s is the probability of sampling row (i1, i2, · · · ib) in the bth block of the matrix Φ(B⊤B + λI)−1/2 or the sole

row of the zero-th block, the above inequalities prove that with high probability, matrix S is a rank-s row norm sampler for

Φ(B⊤B + λI)−1/2 as in Definition 2.5.

Runtime: The first expensive step of this algorithm is the computation of M in line 3 which takes O(m2n+ q2mn log n)

operations since B has rank at most m. The next expensive computation is the computation of S
(c)
k X for c ∈ [q]

and k ∈ [m′] in line 5 of the algorithm. By Lemma 4.1, the total time to compute these sketched matrices is

O
(
(q4 + q3κ)n log2 n+ nd log2 n

)
. Another expensive step is the construction of the TNORM

(k) data-structure in

line 5 for k ∈ [m′]. By Lemma 3.1, these DS’s for ϵ = 1
40q and all k ∈ [m′] can be formed in total time

O
(
q4 log2 q · n log2 n+ (q4 + q3κ)n log3 n

)
.

By Lemma 2.3, matrices Wr,k for all r ∈ [s′] and k ∈ [m′] in line 9 of the algorithm can be computed in total time

O
(
q2s′n log2 n+ log n · nnz (X)

)
.

The matrix Wr,k for every k ∈ [m′], and r ∈ [s′], has size O(q2) × n. Thus, by Lemma 3.1, computing the distribution

{par}s
′

r=1 in line 18 takes time O
(
q4s′ · n log2 n log q

)
for a fixed a ∈ [b] and a fixed ℓ ∈ [s]. Therefore, the total time to

compute this distribution for all a and ℓ is O
(
q8s2 · n log2 n log q

)
.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

The runtime of computing the distribution {qai }i∈h−1(t) in line 21 depends on the sparsity of Xh−1(t),⋆, i.e., nnz
(
Xh−1(t),⋆

)
.

To bound the sparsity of Xh−1(t),⋆, note that, nnz
(
Xh−1(t),⋆

)
=
∑d

i=1 ✶{i∈h−1(t)} · nnz (Xi,⋆). Since the hash function h
is fully independent, by invoking Bernstein’s inequality, we find that, for every t ∈ [s′] and a ∈ [b], with high probability

in n, nnz
(
Xh−1(t),⋆

)
= O ((nnz (X) /s′ + n) log n). By union bounding over qs′ events, with high probability in n,

nnz
(
Xh−1(t),⋆

)
= O ((nnz (X) /s′ + n) log n), simultaneously for all t ∈ [s′] and a ∈ [b].

Therefore, by Lemma 3.1, the distribution {qai }i∈h−1(t) in line 21 of the algorithm can be computed in total time

O
(
q3sn log4 n log q + log4 n log q · nnz (X)

)
for all a ∈ [b] and all ℓ ∈ [s].

The total runtime of Algorithm 3 is thus O(m2n+ q8s2n log2 n log q + q3κn log3 n+ dn log4 n).

Now we are ready to prove the main result, i.e., Theorem 5.2.

Proof of Theorem 5.2: The theorem follows by invoking Lemmas 2.6 and E.1. To find the sampling matrix Π, run

Algorithm 1 on Φ with µ = sλ and for the ROWSAMPLER primitive, invoke Algorithm 3. By Lemma E.1, Algorithm 5

outputs a row norm sampler as per Definition 2.5, with probability 1− 1
poly(n) . Therefore, since the total number of times

Algorithm 5 is invoked by Algorithm 1 is log
∥Φ∥2

F

ϵλ = O(log n), by a union bound, the preconditions of Lemma 2.6 are

satisfied with high probability. Thus, it follows that Π satisfies the following spectral approximation guarantee

Φ⊤Φ+ λI

1 + ϵ
⪯ Φ⊤Π⊤ΠΦ+ λI ⪯ Φ⊤Φ+ λI

1− ϵ
.

The only thing that remains is to bound the runtime. In the proof of Lemma 2.6 in (Woodruff & Zandieh, 2020), it is shown

that with high probability at any iteration t ∈ [T] of Algorithm 1, the following holds,

Φ⊤Φ+ λtI

1 + ϵ
⪯ Φ⊤Π⊤

t ΠtΦ+ λtI ⪯
Φ⊤Φ+ λtI

1− ϵ
.

Therefore,
∥∥Φ⊤Π⊤

t ΠtΦ
∥∥ = O(∥Φ⊤Φ∥). Now note that Algorithm 1 invokes the ROWSAMPLER primi-

tive T = log
∥Φ∥2

F

ϵλ = O(log n) times. Thus, by Lemma E.1, the runtime of finding Π is the sum of

O

(
q8s2λn log4 n

ϵ4 +

√
∥Φ⊤Π⊤

t ΠtΦ∥
λt

q3n log3 n+ nd log4 n

)
for all t ∈ [T]. Since λt = 2T−tλ has a geometric decay,

the total time complexity is O

(
q8s2λn log5 n

ϵ4 +
√

∥Φ⊤Φ∥
λ q3n log3 n+ nd log5 n

)
.

E.1. Application to Gaussian Kernel

In this section we show how to use Theorem 5.2 to spectrally approximate the Gaussian kernel matrix on a dataset with

bounded radius. Specifically, we prove Corollary 5.3:

Proof of Corollary 5.3: Our approach is to show that there exists a GPK that tightly approximates the Gaussian kernel

matrix and then invoke Theorem 5.2. We start by letting X ∈ R
d×n be the matrix whose columns are data-points

x1, . . . xn. Also, let q = Θ
(
r + log n

ϵλ

)
and define α ∈ R

q+1 as αj := 1/
√
j! for every j = 0, 1, . . . q. Additionally,

let v ∈ R
n be defined as vi := e−∥xi∥2

2/2 for i ∈ [n]. Now we define the GPK kernel matrix K̃ ∈ R
n×n corresponding

to the above mentioned q, X , α, and v, i.e., K̃ := diag(v)
(∑q

j=0 α
2
j ·X⊗j⊤X⊗j

)
diag(v). Also let Φ̃ be the feature

matrix corresponding to K̃ defined as per (4). Then by invoking Theorem 5.2 we can find a sampling matrix Π in time

O

(
q8s2λn log5 n

ϵ4 +
√

∥K∥
λ q3n log3 n+ nd log5 n

)
= Õ

(
r8s2λn

ϵ4 +
√

∥K∥
λ r3n+ nd

)
such that with high probability in n,

K̃ + λI

1 + ϵ/3
⪯ Φ̃⊤Π⊤ΠΦ̃ + λI ⪯ K̃ + λI

1− ϵ/3
.

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

Now all that is left to do is to show that
K + λI

1 + ϵ/3
⪯ K̃ + λI ⪯ K + λI

1− ϵ/3
.

To prove the above we note that since K and K̃ are PSD matrices, it suffices to prove

∥∥∥K̃ −K
∥∥∥ ≤ ϵλ

4 . The reason we have

this bound is,

∥∥∥K̃ −K
∥∥∥
2

≤
∥∥∥K̃ −K

∥∥∥
2

F

=
∑

i,j∈[n]

∣∣∣K̃i,j −Ki,j

∣∣∣
2

=
∑

i,j∈[n]

∣∣∣∣∣

q∑

ℓ=0

⟨xi, xj⟩ℓ/ℓ!− e⟨xi,xj⟩
∣∣∣∣∣

2

· e−∥xi∥2
2 · e−∥xj∥2

2

≤
∑

i,j∈[n]

∣∣∣∣∣∣

∞∑

ℓ=q+1

⟨xi, xj⟩ℓ/ℓ!

∣∣∣∣∣∣

2

≤
∑

i,j∈[n]

∣∣∣∣∣∣

∞∑

ℓ=q+1

rℓ/ℓ!

∣∣∣∣∣∣

2

≤
∑

i,j∈[n]

∣∣∣∣
ϵλ

4n

∣∣∣∣
2

=
ϵ2λ2

16
.

This completes the proof and shows that,

K + λI

1 + ϵ
⪯ Φ̃⊤Π⊤ΠΦ̃ + λI ⪯ K + λI

1− ϵ
.

E.2. Application to Neural Tangent Kernel

In this section we show how to use Theorem 5.2 to spectrally approximate the kernel matrix corresponding to the NTK

defined in (5) on a dataset with bounded radius. Specifically, we prove Corollary 5.4:

Proof of Corollary 5.4: Our approach is to show that there exists a GPK that tightly approximates the NTK and then invoke

Theorem 5.2. We start by letting X ∈ R
d×n be the matrix whose columns are normalized data points x1

∥x1∥2
, . . . xn

∥xn∥2
. Also

let v ∈ R
n be defined as the vector of norms vi := ∥xi∥2 for i ∈ [n]. Additionally, let q = Θ

(
n2r2

ϵ2λ2

)
and define the vector

of coefficients α ∈ R
2q+3 as follows for every j = 0, 1, . . . 2q + 2:

αj :=





1
π if j = 0

1 if j = 1

0 if j > 1 is odd
1
π ·

(j+1)·(j−2)!
2j−2((j/2−1)!)2·(j−1)·j if j > 1 is even

.

Now we define the GPK kernel matrix K̃ ∈ R
n×n corresponding to the abovementioned q, X , α, and v, i.e., K̃ :=

diag(v)
(∑q

j=0 α
2
j ·X⊗j⊤X⊗j

)
diag(v). Also let Φ̃ be the feature matrix corresponding to K̃ defined as per (4). Then

by invoking Theorem 5.2 and also noting that the definition of NTK in (5) implies ∥K∥ ≤ tr(K) = 2n, we can find

Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time

a sampling matrix Π in time O

(
q8s2λn log5 n

ϵ4 +
√

∥K∥
λ q3n log3 n+ nd log5 n

)
= Õ

((
nr
ϵλ

)16 s2λn
ϵ4 + nd

)
such that with

high probability in n,

K̃ + λI

1 + ϵ/3
⪯ Φ̃⊤Π⊤ΠΦ̃ + λI ⪯ K̃ + λI

1− ϵ/3
.

Now all that is left to do is to show that
K + λI

1 + ϵ/3
⪯ K̃ + λI ⪯ K + λI

1− ϵ/3
.

To prove the above we note that since K and K̃ are PSD matrices, it suffices to prove

∥∥∥K̃ −K
∥∥∥ ≤ ϵλ

4 . To prove this bound

note that the Taylor series expansion of function kntk(β) defined in (5) is the following,

kntk(β) ≡
1

π
+ β +

1

π

∞∑

ℓ=0

(2ℓ+ 3) · (2ℓ)!
22ℓ(ℓ!)2 · (2ℓ+ 1)(2ℓ+ 2)

· β2ℓ+2.

Therefore, we can write

∥∥∥K̃ −K

∥∥∥
2

≤
∥∥∥K̃ −K

∥∥∥
2

F

=
∑

i,j∈[n]

∣∣∣K̃i,j −Ki,j

∣∣∣
2

=
∑

i,j∈[n]

∣∣∣∣∣
1

π
+

⟨xi, xj⟩

∥xi∥∥xj∥
+

1

π

q∑

ℓ=0

(2ℓ+ 3) · (2ℓ)!

22ℓ(ℓ!)2(2ℓ+ 1)(2ℓ+ 2)

(
⟨xi, xj⟩

∥xi∥∥xj∥

)2ℓ+2

− kntk

(
⟨xi, xj⟩

∥xi∥∥xj∥

)∣∣∣∣∣

2

· ∥xi∥
2
2∥xj∥

2
2

=
∑

i,j∈[n]

∣∣∣∣∣∣
1

π

∞∑

ℓ=q+1

(2ℓ+ 3) · (2ℓ)!

22ℓ(ℓ!)2(2ℓ+ 1)(2ℓ+ 2)

(
⟨xi, xj⟩

∥xi∥∥xj∥

)2ℓ+2

∣∣∣∣∣∣

2

· ∥xi∥
2
2∥xj∥

2
2

≤
∑

i,j∈[n]

∣∣∣∣∣∣
1

π

∞∑

ℓ=q+1

(2ℓ+ 3) · (2ℓ)!

22ℓ(ℓ!)2(2ℓ+ 1)(2ℓ+ 2)

∣∣∣∣∣∣

2

· r2

=
n2r2

π2
·

∣∣∣∣∣∣

∞∑

ℓ=q+1

(2ℓ+ 3) · (2ℓ)!

22ℓ(ℓ!)2(2ℓ+ 1)(2ℓ+ 2)

∣∣∣∣∣∣

2

≤
n2r2

π2
·

∣∣∣∣∣∣

∞∑

ℓ=q+1

1

2ℓ3/2

∣∣∣∣∣∣

2

≤
n2r2

4π2q
≤

ϵ2λ2

16
.

This completes the proof and shows that,

K + λI

1 + ϵ
⪯ Φ̃⊤Π⊤ΠΦ̃ + λI ⪯ K + λI

1− ϵ
.

