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Abstract

A common method in training neural networks
is to initialize all the weights to be independent
Gaussian vectors. We observe that by instead
initializing the weights into independent pairs,
where each pair consists of two identical Gaus-
sian vectors, we can significantly improve the
convergence analysis. While a similar technique
has been studied for random inputs [Daniely,
NeurIPS 2020], it has not been analyzed with
arbitrary inputs. Using this technique, we show
how to significantly reduce the number of neu-
rons required for two-layer ReLU networks, both
in the under-parameterized setting with logistic
loss, from roughly v~® [Ji and Telgarsky, ICLR
2020] to y~2, where 7 denotes the separation
margin with a Neural Tangent Kernel, as well as
in the over-parameterized setting with squared
loss, from roughly n* [Song and Yang, 2019] to
n?, implicitly also improving the recent running
time bound of [Brand, Peng, Song and Weinstein,
ITCS 2021]. For the under-parameterized setting
we also prove new lower bounds that improve
upon prior work, and that under certain assump-
tions, are best possible.

1. Introduction

Deep learning has achieved state-of-the-art performance
in many areas, e.g., computer vision (LeCun et al., 1998;
Krizhevsky et al., 2012; Szegedy et al., 2015; He et al.,
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2016), natural language processing (Collobert et al., 2011;
Devlin et al., 2018), self-driving cars, games (Silver et al.,
2016; 2017), and so on. A beautiful work connected the
convergence of training algorithms for over-parameterized
neural networks to kernel ridge regression, where the kernel
is the Neural Tangent Kernel (NTK) (Jacot et al., 2018).

The convergence results motivated by NTK mainly require
two assumptions: (1) the kernel matrix /K formed by the in-
put data points has a sufficiently large minimum eigenvalue
Amin (&) > A > 0, which is implied by the separability of
the input point set (Oymak & Soltanolkotabi, 2020), and (2)
the neural network is over-parameterized. Mathematically,
the latter means that the width of the neural network is a suf-
ficiently large polynomial in the other parameters of the net-
work, such as the number of input points, the data dimension,
etc. The major weakness of such convergence results is that
the neural network has to be sufficiently over-parameterized.
In other words, the over-parameterization is a rather large
polynomial, which is not consistent with architectures for
neural networks used in practice, cf. (Kawaguchi & Huang,
2019).

Suppose m is the width of the neural network, which is the
number of neurons in a hidden layer, and n is the number
of input data points. In an attempt to reduce the number
of neurons for binary classification, a recent work (Ji &
Telgarsky, 2020) has shown that a polylogarithmic depen-
dence on n suffices to achieve arbitrarily small training
error. Their width, however, depends on the separation mar-
gin v in the RKHS (Reproducing Kernel Hilbert Space)
induced by the NTK. More specifically they show an up-
per bound of m = O(y ®logn) and a lower bound of
m = Q(y~/?) relying on the NTK technique. Our new
analysis in this regime significantly improves the upper
bound to m = O(y~2logn).

We complement this result with a series of lower bounds.
Without relying on any assumptions we show m = Q(y~1)
is necessary. Assuming we need to rely on the NTK tech-
nique as in (Ji & Telgarsky, 2020), we can improve their
lower bound to m = Q(y~logn). Finally, assuming we
need to rely on a special but natural choice for estimating
an expectation by its empirical mean in the analysis of Ji
& Telgarsky (2020), which we have adopted in our general
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upper bound, we can even prove that m = O(y 2logn),
i.e., that our analysis is tight. However, in the 2-dimensional
case we can construct a better estimator yielding a linear up-
per bound of m = O(y~tlogn), so the above assumption
seems strong for very low dimensions, though it is a seem-
ingly natural method that works in arbitrary dimensions.
We also present a candidate hard instance in ©(logy~1) di-
mensions which could potentially give a matching Q(y~2)
lower bound, up to logarithmic factors.

For regression with target variable y with |y| € O(1) we
consider a two-layer neural network with squared loss and
ReLU as the activation function, which is standard and
popular in the study of deep learning. Du et al. (2019c)
show that m = O(\~*n®) suffices (suppressing the depen-
dence on remaining parameters). Further, Song & Yang
(2019) improve this bound to m = O(A~*n*). The trivial
information-theoretic lower bound is £2(n), since the model
has to memorize! the n input data points arbitrarily well.
There remains a huge gap between n and n*. In this work,
we improve the upper bound, showing that m = O(A~2n?)
suffices for gradient descent to get arbitrarily close to 0
training error. We summarize our results and compare with
previous work in Table 1.

1.1. Related Work

The theory of neural networks is a huge and quickly growing
field. Here we only give a brief summary of the work most
closely related to ours.

Convergence results for neural networks with random
inputs. Assuming the input data points are sampled from a
Gaussian distribution is often done for proving convergence
results (Zhong et al., 2017b; Li & Yuan, 2017; Zhong et al.,
2017a; Ge et al., 2018; Bakshi et al., 2019; Chen et al., 2020).
A more closely related work is the work of Daniely (2020)
who introduced the coupled initialization technique, and
showed that O(n/d) hidden neurons can memorize all but
an e fraction of n random binary labels of points uniformly
distributed on the sphere. Similar results were obtained
for random vertices of a unit hypercube and for random
orthonormal basis vectors. In contrast to our work, this
reference uses stochastic gradient descent, where the nice
assumption on the input distribution gives rise to the 1/d
factor; however, this reference achieves only an approximate
memorization. We note that full memorization of all input
points is needed to achieve our goal of an error arbitrarily
close to zero, and €(n) neurons are needed for worst case
inputs. Similarly, though not necessarily relying on random
inputs, Bubeck et al. (2020) shows that for well-dispersed
inputs, the neural tangent kernel (with ReLU network) can
memorize the input data with O(n/d) neurons. However,

"Here, by memorize, we mean that the network has zero error
on every input point.

their training algorithm is neither a gradient descent nor a
stochastic gradient descent algorithm, and also their network
consists of complex weights rather than real weights. One
motivation of our work is to analyze standard algorithms
such as gradient descent. In this work, we do not make any
input distribution assumptions; therefore, these works are
incomparable to ours. In particular, random data sets are
often well-dispersed inputs that allow smaller width and
tighter concentration, but are hardly realistic. In contrast,
we conduct worst case analyses to cover all possible inputs,
which might not be well-dispersed in practice.

Convergence results of neural networks in the under-
parameterized setting. When considering classification
with cross-entropy (logistic) loss, the analogue of the mini-
mum eigenvalue parameter of the kernel matrix is the maxi-
mum separation margin -y (see Assumption 3.1 for a formal
definition) in the RKHS of the NTK. Previous separability
assumptions on an infinite-width two-layer ReLU network
in (Cao & Gu, 2019b;a) and on smooth target functions in
(Allen-Zhu et al., 2019a) led to polynomial dependencies
between the width m and the number n of input points. The
work of (Nitanda et al., 2019) relies on the NTK separation
mentioned above and improved the dependence, but was
still polynomial.

A recent work of (Ji & Telgarsky, 2020) gives the first
convergence result based on an NTK analysis where the
direct dependence on n, i.e., the number of points, is only
poly-logarithmic. Specifically, they show that as long as the
width of the neural network is polynomially larger than 1/~
and log n, then gradient descent can achieve zero training
loss.

Convergence results for neural networks in the over-
parameterized setting. There is a body of work study-
ing convergence results of over-parameterized neural net-
works (Li & Liang, 2018; Du et al., 2019c¢; Allen-Zhu et al.,
2019c;b; Du et al., 2019b; Allen-Zhu et al., 2019a; Song
& Yang, 2019; Arora et al., 2019b;a; Cao & Gu, 2019b;
Zou & Gu, 2019; Du et al., 2019a; Lee et al., 2020; Huang
& Yau, 2020; Chen & Xu, 2020; Brand et al., 2021; Li
et al., 2021; Song et al., 2021). One line of work explic-
itly works on the neural tangent kernel (Jacot et al., 2018)
with kernel matrix K. This line of work shows that as long
as the width of the neural network is polynomially larger
than n/Apmin (K), then one can achieve zero training error.
Another line of work instead assumes that the input data
points are not too “collinear”’, where this is formalized by
the parameter 6 = min, 4 {||z; — x;|l2, [|¥; + x;]2}* (Li
& Liang, 2018; Oymak & Soltanolkotabi, 2020). These
works show that as long as the width of the neural network
is polynomially larger than 1/§ and n, then one can train the
neural network to achieve zero training error. The work of

*This is also sometimes called the separability of data points.
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Song & Yang (2019) shows that the over-parameterization
m = Q(A~*n*) suffices for the same regime we consider?.
Additional work claims that even a linear dependence is pos-
sible, though it is in a different setting. E.g., (Kawaguchi &
Huang, 2019) show that for any neural network with nearly
linear width, there exists a trainable data set. Although their
width is small, this work does not provide a general conver-
gence result. Similarly, Zhang et al. (2021) use a coupled
LeCun initialization scheme that also forces the output at
initalization to be 0. This is shown to improve the width
bounds for shallow networks below n neurons. However,
their convergence analysis is local and restricted to cases
where it remains unclear how to find globally optimal or
even approximate solutions. We instead focus on cases
where gradient descent provably optimizes up to arbitrary
small error, for which we give a lower bound of Q(n).

Other than considering over-parameterization in first-order
optimization algorithms, such as gradient descent, Brand
et al. (2021) show convergence results via second-order
optimization, such as Newton’s method. Their running time
also relies on m = Q(A~4n?), which is the state-of-the-art
width for first-order methods (Song & Yang, 2019), and
it was noted that any improvement to m would yield an
improved running time bound.

Our work presented in this paper continues and improves
those lines of research on understanding two-layer ReLU
networks.

Roadmap. In Section 2, we introduce our problem for-
mulations and present our main ideas. In Section 3, we
present our main results. In Section 4, we present a tech-
nical overview of our core analysis for the convergence
of the gradient descent algorithm in both of our studied
regimes and give a hard instance and the intuition behind
our lower bounds. In Section 5, we conclude our paper with
a summary and some discussion.

We defer all detailed technical proofs to the appendix. The
details for the logarithmic width networks under logistic loss
are given in Appendices B-F, whereas the polynomial width
networks with squared loss are analyzed in Appendices G-1.

2. Problem Formulation and Initialization
Scheme

We follow the standard problem formulation (Du et al.,
2019c; Song & Yang, 2019; Ji & Telgarsky, 2020). One

3 Although the title of (Song & Yang, 2019) is quadratic, n>
is only achieved when the finite sample kernel matrix deviates
from its limit in norm only by a constant o w.h.p., and the inputs
are well-dispersed with constant 0, i.e., |(z;, z;)| < 6/+/n for all
1 Zé j. In general, (Song & Yang, 2019) only achieve a bound of
n-.

major difference of our formulation with the previous work
is that we do not have a 1/y/m normalization factor in
what follows. We note that only removing the normal-
ization does not give any improvement in the amount of
over-parameterization required of the previous bounds. The
output function of our network is given by

FW,z,0) =Y ard(w, ), (1)
r=1

where ¢(z) = max{z, 0} denotes the ReLU activation func-
tion*, € R? is an input point, w1, ..., w,, € R? are
weight vectors in the first (hidden) layer, and a4, ..., a,, €
{—1, 41} are weights in the second layer. We only optimize
W and keep a fixed, which suffices to achieve zero error.
Also previous work shows how to extend the analysis to
include a in the optimization, cf. (Du et al., 2019c¢).

Definition 2.1 (Coupled Initialization). We initialize the
network weights as follows:

e For each r = 21 — 1, we choose w, to be a random
Gaussian vector drawn from N'(0,T).

o For each r = 2i — 1, we sample a, from {—1,+1}
uniformly at random.

e For each r = 2i, we choose W, = Wy_1.

e For each r = 2i, we choose a, = —a,_1.

We note this coupled initialization appeared before in
(Daniely, 2020) for analyzing well-spread random inputs on
the sphere. The initialization is chosen in such a way as to
ensure that for each of the n input points, the initial value
of the network is 0. Here we present an independent and
novel analysis, where this property is leveraged repeatedly
to bound the iterations of the optimization, which yields sig-
nificantly improved worst case bounds for any input. This
is crucial for our analysis, and is precisely what allows us to
remove the 1//m factor that multiplies the right-hand-side
of (1) in previous work. Indeed, that factor was there pre-
cisely to ensure that the initial value of the network is small.
One might worry that our initialization causes the weights
to be dependent. Indeed, each weight vector occurs exactly
twice in the hidden layer. We are able to show that this
dependence does not cause problems for our analysis. In
particular, the minimum eigenvalue bounds of the associated
kernel matrix and the separation margin in the NTK-induced
feature space required for convergence in previous work can
be shown to still hold, since such analyses are loose enough
to accommodate such dependencies. Now, we have a similar
initialization as in previous work, but since we no longer

“We note that our analysis can be extended to Lipschitz contin-
uous, positively homogeneous activations.
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need a 1/4/m factor in (1), we can show that we can change
the learning rate of gradient descent from that in previous
work and it no longer needs to be balanced with the initial
value, since the latter is 0. This ultimately allows for us to
use a smaller over-parameterization (i.e., value of m) in our
analyses. For r € [m], we have’

ofW,z,a)

awr = a"r"r]-w:mZO 2

independent of the loss function that we aim to minimize.

2.1. Loss Functions

In this work, we mainly focus on two different types of loss
functions. The binary cross-entropy (logistic) loss and the
squared loss. These loss functions are arguably the most
well-studied for binary classification and for regression tasks
with low numerical error, respectively.

We are given a set of n input data points and corresponding
labels, denoted by

{(xhyl)a ey (znayn)} C Rd x R.

We make a standard normalization assumption, as in (Du
et al., 2019c¢; Song & Yang, 2019; Ji & Telgarsky, 2020).
In the case of logistic loss, the labels are restricted to y; €
{—1,+1}. In the case of squared loss, the labels are |y;| =
O(1). In both cases, as in prior work and for simplicity, we
assume that ||z;]|2 = 1°, Vi € [n]. We also define the output
function on input z; to be f;(W) = f(W,z;,a). At time
t, let u(W(t)) = (ur (W (t)),...,u,(W(t))) € R™ be the
prediction vector, where each u; (W (¢)) is defined to be

ui(W(t) = f(W(t), zi,a). 3)

For simplicity, we use u(t) to denote u(W (t)) in later dis-
cussion.

We consider the objective function L:

n

L(W) = Z (i, ui(W))

i=1

where the individual logistic loss is defined as ¢(v1,vs) =

In(1+exp(—v1v2)), and the individual squared loss is given

by f(i}l,UQ) = %(Ul — 1)2)2.

SNote that ReLU is not continuously differentiable. Slightly
abusing notation, one can view 0 f /0w, as a valid (sub)gradient
given in the RHS of (2). This extends to L /0w, as the RHS of
(4) and (5) which yields the update rule (6) commonly used in
practice and in related theoretical work, cf. (Du et al., 2019c¢).

SWe adopt the assumption for a concise presentation, but we
note it can be resolved by weaker constant bounds 0 < 1b <
||zi]] < ub, introducing a constant ub/1b factor, cf. (Du et al.,
2019c), or otherwise the data can be rescaled and padded with an
additional coordinate to ensure ||x;|| = 1, cf. (Allen-Zhu et al.,
2019a).

For logistic loss, we can compute the gradient’ of L in terms
of w, € R?

OL(W) _ 2”:

ow,

—exp(—yi f(W, x;,a))
L+ exp(—yi f(W, 2, a)

) YiQrZ; ]-w:z;, >0

“)
For squared loss, we can compute the gradient® of L in
terms of w, € R4

OL(W)
ow,

=Y (f(W,zi,0) = yi)arzilyry50. ()
=1

We apply gradient descent to optimize the weight matrix W
with the following standard update rule,

SPICAULI A

W(t+1) = W) 0”50

where 0 < 1 < 1 determines the step size.

In our analysis, we assume that W consists of mq blocks of
Gaussian vectors, where in each block, there are B identical
copies of the same Gaussian vector. Thus, we have m =
myo - B. Ultimately we show it already suffices to set mg =
m/2 and B = 2. We use w, to denote the b-th row of the
r-th block, where b € [B] and r € [mg]. When there is
no confusion, we also use w, to denote the r-th row of W,
r € [m].

3. Our Results

Our results are summarized and compared to previous work
in Table 1. Our first main result is an improved general
upper bound for the width of a neural network for binary
classification, where training is performed by minimizing
the cross-entropy (logistic) loss. We need the following as-
sumption which is standard in previous work in this regime
(Ji & Telgarsky, 2020).

Assumption 3.1 (informal version of Definition C.1 and
Assumption C.1). We assume that there exists a mapping
v with |[0(2)||2 < 1 for all = € R* and margin vy > 0 such
that

min E
1€[n] w~N(0,14)

[y: (T(w), z;) 1[{w, x;) > 0]] > .

Our theorem improves the previous best upper bound of Ji &
Telgarsky (2020) from O(y~8logn) to only O(y~2logn).
As a side effect, we also remove the dependence of the
number n of iterations.

Theorem 3.1 (informal version of Theorem E.1). Givenn
labeled data points in d-dimensional space, consider a two-
layer ReLU neural network with width m = Q(vy~logn).
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Table 1. Summary of our results and comparison to previous work. The improvements are mainly in the dependence on the parameters
A, v, n affecting the width m. None of the results depend on the dimension d, except the lower bounds, which require d > 2. In both
regimes the dependence on ¢ is the same as in previous literature. We note that the difference between regimes comes from different
properties of the loss functions that affect the convergence rate, cf. (Nitanda et al., 2019). We want to remark that our squared loss result
also implicitly improves the dependence on m in the running time bound of Brand et al. (2021) (see Theorem 1.1, Remark 1.2, and Table

1 in (Brand et al., 2021)).

| References | Width m | Tterations T | Loss function |
(Ji & Telgarsky, 2020) | O(y8logn) | O(e~1v=2(v/logn + log(1/€))?) | logistic loss
Our work O(y2logn) | O(e 1y 2log*(1/¢)) logistic loss
(Ji & Telgarsky, 2020) | Q(y~1/2) N/A logistic loss
Our work Q(yllogn) | N/A logistic loss
(Du et al., 2019¢) O(\~*nf) O(A\"2n2%log(1/¢)) squared loss
(Song & Yang, 2019) | O(A~* 4) O\ "2n?log(1/e)) squared loss
Our work O(\~?n?) O\~ 2n2 log(1/e)) squared loss

Starting from a coupled initialization (Def. 2.1), for any ac-
curacy € € (0, 1), we can ensure the cross-entropy (logistic)
training loss is less than € when running gradient descent
for T = O(e*y~2log?(1/€)) iterations.

As a corollary of Theorem 3.1, we immediately obtain the
same significant improvement from O(y8logn) to only
O(y~2logn) for the generalization results of Ji & Telgarsky
(2020). To this end, we first extend Assumption 3.1 to hold
for any data generating distribution instead of a fixed input
data set:

Assumption 3.2. (Ji & Telgarsky, 2020) We assume that
there exists a mapping v with ||[v(z)||s < 1 for all z € R?
and margin vy > 0 such that

[y(@(w), 2)1[(w, z) > 0]] > ~

E
’LUN./\/.(O,Id)

Sor almost all (x,y) sampled from the data distribution D.

By simply replacing the main result, Theorem 2.2 of Ji &
Telgarsky (2020) by our Theorem 3.1 in their proof®, we
obtain the following improved generalization bounds with
full gradient descent:

Corollary 3.1. Given a distribution D over labeled data
points in d-dimensional space, consider a two-layer ReLU
neural network with width m = Q(y~2logn). Starting
Jfrom a coupled initialization (Def. 2.1), with constant prob-
ability over the data samples from D and over the random
initialization, it holds for an absolute constant C' > 1 that

81n(4/e)

N
where k denotes the step attaining the smallest empirical
risk before T = O(e~ 'y~ 2log?(1/e)) iterations.

In(20)

P (Wew,0) < 0] < 26

+6

SWe note that in Theorem 3.1 we did not bound the distance
between the weights at each step ¢ < I" compared to the initializa-
tion ¢t = 0. Since this can be done exactly as in Theorem 2.2 of Ji
& Telgarsky (2020), we omit this detail for brevity of presentation.

Corollary 3.1 can then be used exactly as in (Ji & Telgarsky,
2020) to obtain:

Corollary 3.2. Under Assumption 3.2, given € > 0, and
a uniform random sample of size n = Q(y " *e~2) and
m = Q(y~2logn) it holds with constant probability that
Pry y~p [Uf (Wi, z,a) <0 < € where k denotes the
step attaining the smallest empirical risk before T =
O(e~ 'y ~2log?(1/€)) iterations.

We finally note that the improved generalization bound can
be further extended exactly as in (Ji & Telgarsky, 2020) to
work for stochastic gradient descent.

Next, we turn our attention to lower bounds. We provide an
unconditional linear lower bound, and note that Lemma D.4
yields an m = Q(n) lower bound for any loss function, in
particular also for squared loss; see Sec. 4.2.

Theorem 3.2 (informal version of Lemma D.4). There ex-
ists a data set in 2-dimensional space, such that any two-
layer ReLU neural network with width m = o(y~1) neces-
sarily misclassifies at least Q)(n) points.

Next, we impose the same assumption as in (Ji & Telgarsky,
2020), namely, that separability is possible at initialization
of the NTK analysis. Formally, this means that there exists
V € R™*4 such that no i € [n] has y;(V f;(W), V) < 0.
Under this condition we improve their lower bound of m =
Q(y"Y?) tom = Q(y 'logn):

Theorem 3.3 (informal version of Lemma D.3). There
exists a data set of size n in 2-dimensional space, such
that for any two-layer ReLU neural network with width
m = o(y~tlogn) it holds with constant probability over
the random initialization of Wy that for any weights V &€
R™*X4 there exists at least one index i € [n] such that
yi(Vfi(Wo), V) < 0.

As pointed out in (Ji & Telgarsky, 2020) this does not neces-
sarily mean that gradient descent cannot achieve arbitrarily
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small training error for lower width, but the NTK analysis
fails in this case.

An even stronger assumption is that we must rely on the
finite dimensional separator U in the analysis of Ji & Telgar-
sky (2020) that mimics the NTK separator v in the RKHS
achieving a margin of v > 0. In this case we can show that
our upper bound is indeed tight, i.e., for this natural choice
of U and the necessity of a union bound over n points, we
have m = ©(y~2logn), which follows from the following
lemma.

Lemma 3.4 (informal version of Lemma F.1). There exists
a data set in 2-dimensional space, such that for the two-
layer ReLU neural network with parameter matrix U and
width m = o(y~2logn), with constant probability there

exists an i € [n] such that y;(V f;(Wp),U) <O0.

In fact, this is also the only place in our improved analysis
where the width m depends on poly(logn,1/v); every-
where else it only depends on log(1/¢). Our linear upper
bound for the 2-dimensional space gets around this lower
bound by defining a different U in Lemma F.2:

Lemma 3.5 (follows directly using Lemma F.2 in the anal-
ysis of Theorem 3.1). Given n labeled data points in
2-dimensional space, consider a two-layer ReLU neural
network with width m = Q(y tlogn). Starting from a
coupled initialization (Def. 2.1), for arbitrary accuracy
e € (0,1), we can ensure the cross-entropy (logistic) train-
ing loss is less than € when running gradient descent for
T = O(e 'y 2log?(1/e€)) iterations.

However, the construction in Lemma F.2 / 3.5 uses a net
argument of size (1/)9~! to discretize the points on the
sphere, and that — already in 3 dimensions — matches the
quadratic general upper bound and becomes worse in higher
dimensions. It thus remains an open question whether there
are better separators in dimensions d > 3 or if the quadratic
lower bound is indeed tight. We also present a candidate
hard instance, for which we conjecture that it has an Q(y~2)
lower bound, up to logarithmic factors, for any algorithm;
see Sec. 4.2.

Next, we move on to the analysis of the squared loss. We
first state our assumption that is standard in the literature on
the width of neural networks, and is necessary to guarantee
the existence of an arbitrarily accurate parameterization (Du
et al., 2019c; Song & Yang, 2019).

Assumption 3.3. Let K be the NTK kernel matrix where
foreach i,j € [n] we have that K; ; equals

K(z;,z;)= E

wNN(OJd)[a:iijl[<xi7w> > 0, (z;,w) > 0]].

We assume in the following that the smallest eigenvalue

M K) of K satisfies A(K) > A, for some value A > 0.

We state our main result for squared loss as follows:

Theorem 3.6 (informal version of Theorem H.4). Givenn
input data points in d-dimensional space, consider a two-
layer neural network with width m = Q(\~2n?). Starting
from a coupled initialization (Def. 2.1) and for any accuracy
€ € (0,1), the squared training loss is smaller than € after
T = O(A\"2n?%log(1/¢)) iterations of gradient descent.

4. Technical Overview

4.1. Logarithmic Width for Logistic Loss, Upper
Bound

The work of (Ji & Telgarsky, 2020) shows that we can bound
the actual logistic loss averaged over 1" gradient descent
iterations W, ¢t € [T using any reference parameterization
W in the following NTK bound:

T
1 _ _
L(W,) < & l[Wo = Wl + 7= > LU W), (1)
t=1

N

S|~
]~

t

1

where LO(W) == Y1 £ (yi, (Vfi(Wy),W)). It seems
very natural to choose W = Wy + pU where U is a rea-
sonably good separator for the NTK points with bounded
norm |U|r < 1, meaning that for all i it holds that
yi(Vfi(Wo),U) = Q(v). It thus has the same margin
as in the infinite case up to constants. This already im-
plies that the first term of Eq. (7) is sufficiently small when
we choose roughly T = p? /¢ iterations. Now, in order to
bound the second term, Ji & Telgarsky (2020) propose to
show L(®) (W) < e for every t < T, which is implied if for
each index ¢ € [n] we have that

yi(V fi(Wy), W) = yi(V fi(Wo), Wo)
+ yi(V fi(We) = V fi(Wo), Wo) + pyi(V fs(Wy), U)

is sufficiently large. Here, we can leverage the coupled
initialization scheme (Def. 2.1) to prove Theorem 3.1:
bounding the first term for random Gaussian parameters,
this results in roughly the value y/Iogn, but now since
for each Gaussian vector there is another identical Gaus-
sian with opposite signs, those simply cancel and we have
yi(V fi(Wo), Wp) = 0 in the initial state.

To bound the second term, the previous analysis (Ji & Tel-
garsky, 2020) relied on a proper scaling with respect to
the parameters m, p, and 7, where the requirement that
m > p?/~° led to a bound of roughly m > ~~8logn.
Using the coupled initialization, however, the terms again
cancel in such a way that the scaling does not matter,
and in particular does not need to be balanced among the
variables. Another crucial insight is that the gradient is
entirely independent of the scale of the parameter vec-
tors in Wy. This implies V f;(W;) = V f;(Wy) and thus
yi(Vfi(We) = V fi;(Wp), W) = 0 again, notably without
any implications for the width of the neural network!
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Indeed, the only place in the analysis where the width is con-
strained by roughly m > v ~2log n occurs when bounding

the contribution of the third term by py;(V f;(W}),U) =
i (V f:(Wo),U) = Q(py). This is done exactly as in (Ji &
Telgarsky, 2020) by a Hoeffding bound to relate the separa-
tion margin of the finite subsample to the separation margin

of the infinite width case, i.e.,

m

Yi— > @(z), @) 1[(z5,2:) > 0]

o [zl > 0 dun(2) 20 ®)

followed by a union bound over all n input points.

The special and natural choice of U such that u; =
a;0(z;)/+/m yields Eq. (8) above, where notably the LHS
equals the RHS in expectation. We will discuss this particu-
lar choice again in our lower bounds section 4.2.

4.2. Logarithmic Width for Logistic Loss, Lower
Bounds

Our assumption on the separation margin is formally defined
in Section C where we also give several examples and useful
lemmas to bound ~. Our lower bounds in Section D are
based on the following hard instance in 2 dimensions. The
points are equally spaced and with alternating labels on the
unit circle.

Formally, let n be divisible by 4. We define the alter-

nating points on the circle data set to be X = {x :=
(cos (227) ;sin (7)) | k € [n]} C R2 and we put

Yk = (fl)k for each k ¢ [n].

A natural choice for 7 would send any z € R to its closest
point in our data set X, multiplied by its label. However,
applying Lemma C.2 gives us the following improved map-
ping, which is even optimal by Lemma C.5: note that for
any z € R? that is not collinear with any input point, there
exists a unique i, such that z € Cone({z;,,z; +1}). In-
stead of mapping to the closest input point, in what follows,
we map to a point that is nearly orthogonal to z,

Ti Vi, T Ti,+1Yi.+1
zi. — @i 412

T, =

More precisely we define v : R? — R? by

_ 0
U(z) = {(_1)n/4+17,z

See Fig. 1 for an illustration. We show in Lemma D.2 that
1o = 7(X,Y) = Q(n1) and consequently n = Q(y1).
Now we can derive our lower bounds under increasingly
stronger assumptions as follows:

LJfde, e X, 72> 0: 2 =71y
, otherwise.

Figure 1. The picture shows how 7(z) is constructed: we subtract
the vector x3 which is labeled —1 from the vector x2 which is
labeled 1. We obtain r after rescaling to unit norm. Since n/4 =
3 is odd we have T(z) = r..

For the first unconditional bound, Theorem 3.2, we map the
input points on the unit circle by contraction to the unit /1
ball and note that by doing so, the labels remain in alter-
nating order. Next we note that the output function f of
our network restricted to the ¢; ball is a piecewise linear
function of z and thus its gradient % can only change in the
vertices of the ball or where z is orthogonal to one of the pa-
rameter vectors ws, i.e., at most O(m) times. Now consider
any triple of consecutive points. Since they have alternating
labels, the gradient needs to change at least once for each
triple. Consequently m = Q(n) = Q(y~!), improving
the (7 ~1/2) conditional lower bound in (Ji & Telgarsky,
2020). We remark that since the argument only depends on
the output function but not on the loss function, Lemma D.4
yields an m = Q(n) lower bound for any loss function, in
particular also for squared loss.

Now consider any argument that relies on an NTK analysis,
where the fist step is to show that for our choice of the
width m, we have separability at initialization; this is how
the argument in (Ji & Telgarsky, 2020) proceeds. Formally,
assume that there exists W € R™*9 such that for all i € [n],
we have y;(V f;(Wy), W) > 0. This condition enables us
to show an improved lower bound, Theorem 3.3, as follows.
Partition our data set into tuples, each consisting of four
consecutive points. Now consider the event that there exists
a point z; such that all parameter vectors w; satisfy

1[{x;, ws) > 0] = 1[(Ti41, ws) > 0]
= 1[(zi12, ws) > 0] = 1[{@i13, ws) > 0],

which implies that at least one of the points in
{®i, Tit2, Ti+3, Tita} is misclassified. To avoid this, it
means that our initialization necessarily needs to include, for
each ¢ divisible by 4, a vector wy that hits the areas orthogo-
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nal to the cones separating two points out of the quadruple.
There are O(n) quadruples to hit, each succeeding with
probability (n~!) with respect to the Gaussian measure.
This is exactly the coupon collector’s problem, where the
coupons are the quadruples, and it is known (Erd6s & Rényi,
1961) that m = Q(nlogn) = Q(y~!logn) are necessary
to collect all O(n) items with constant probability, which
yields our improved lower bound for this style of analysis.
One thus needs a different approach beyond NTK to break
this barrier, cf. (Ji & Telgarsky, 2020).

For the upper bound, Theorem 3.1, we further note that
the existence of an NTK separator W as above is not suffi-
cient, i.e., we need to construct a separator U satisfying the
separability condition. Moreover, to achieve a reasonable
bound in terms of the margin parameter v~ ! we also need
that U achieves a separation margin of (7). To do so, it
seems natural to construct U such that u; = a;v(w;)/v/m
for all j € [m]. Indeed, this is the most natural choice
because the resulting separation margin in the finite case is
exactly the empirical mean estimator for the infinite case
and thus standard concentration bounds (Hoeffing’s bound)
yield the necessary proximity of the margins between the
two cases, cf. Eq. (8). Let us assume we fix this choice
of U. This condition enables us to prove a quadratic lower
bound, Lemma 3.4, which shows that our analysis of the
upper bound is actually tight: for our alternating points on a
circle example, the summands have high variance, and there-
fore Hoeffding’s bound is tight by a matching lower bound
(Feller, 1943). Consequently, m = Q(y%logn), and one
would need a different definition of U and a non-standard
estimation of +y to break this barrier.

Finally, we conjecture that the quadratic upper bound is
actually tight in general. Specifically, we conjecture the
following: take n = 1/ random points on the sphere
in ©(log(1/)) dimensions and assign random labels y; €
{—1,1}. Then the NTK margin is ().

If the conjecture is true, we obtain an Q(1/4%) lower
bound for m, up to logarithmic factors.” Indeed, we can
round the weights to the nearest vectors in a net of size
poly(1/~)?1°&(1/7) 'which only changes v by a constant
factor. Then, if we could classify with zero error, we would
encode n = 1/~ random labels using m log® ¥ (1/~) bits,
which implies m > Q(1/(721og®M(1/7))). We note that
Ji & Telgarsky (2020) gave an O(1/+/n) upper bound for
the margin of any data with random labels, but we would
need a matching £2(1/y/n) lower bound for this instance in
order for this argument to work.

"This might be confusing, since we argued before that such data
is particularly mild for the squared loss function. This may be due
to the different loss functions, but regardless, it does not contradict
the O(n/d) bound of (Daniely, 2020) for the same data distribution
in the squared loss regime, since n/d = ©(1/(y? log(1/7))).

4.3. Polynomial Width for Squared Loss

The high level intuition of our proof of Theorem 3.6 is to
recursively prove the following: (1) the weight matrix does
not change much, and (2) given that the weight matrix does
not change much, the prediction error, measured by the
squared loss, decays exponentially.

Given (1) we prove (2) as follows. The intuition is that
the kernel matrix does not change much, since the weights
do not change much, and it is close to the initial value
of the kernel matrix, which is in turn close to the NTK
matrix, involving the entire Gaussian distribution rather
than our finite sample. The NTK matrix has a lower bound
on its minimum eigenvalue by Assumption 3.3. Thus, the
prediction loss decays exponentially.

Given (2) we prove (1) as follows. Since the prediction
error decays exponentially, one can show that the change in
weights is upper bounded by the prediction loss, and thus
the change in weights also decays exponentially and the
total change is small.

First, we show a concentration lemma for initialization:

Lemma 4.1 (Informal version of Lemma G.1). Let m =
moB. Let {wy,wa,...,w,} C R denote a collection
of vectors constructed as in Definition 2.1. We define
Hets, Hdis ¢ R g5 follows

cts .__ T,..
Hi,j = w~./\I/E(07I) [1’1 $1111;Tx120,uﬁxj20] )
m
dis . __ T
H?',,j E E E [Iz Ijlw,fxizo,wjszo] .
r=1

Let A = Apin (H®). If mg = Q(A"2n%log(nB/6)), we
have that
”Hdis _ HctsHF <

2, and Apin (HU®) > =\

3
4
holds with probability at least 1 — 4.

Second, we can show a perturbation bound for random
weights.

Lemma 4.2 (Informal version of Lemma G.2). Let
R € (0,1). Let {wy,wa,...,wy} denote a collec-
tion of weight vectors constructed as in Definition 2.1.
For any set of weight vectors Wy, ..., W, € R? that

satisfy that for any v € [m], |0, — w.|2 < R,
consider the map H R™xd s R™ " defined by
H(w)ij = 12 %530 LgTa, 0,57 a,>0- Then we

have that ||H(w) — H(w)||r < 2n.R holds with probability
at least 1 — n? - B - exp(—moR/10).

Next, we have the following lemma (see Section I for a
formal proof) stating that the weights should not change too
much. Note that the lemma is a variation of Corollary 4.1 in
(Du et al., 2019c¢).
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Lemma 4.3. If Eq. (16) holds for i = 0,...,k, then we
have for all v € [m]

lw,(t +1) —w,.(0)]|]2 < M =D.

A

Next, we calculate the difference of predictions between

. . . du; (t) .
two consecutive iterations, analogous to the —;= term in
Fact H.1. For each ¢ € [n], we have

wilt+ 1) —ui(t) = Y ar - (B (t 4+ 1))

(0720 = Y
where
Zigp =@ <(wr(t) _ LW (®)

Ow,(t) )T:CL) — d(w, () "z;).

Here we divide the right hand side into two parts. First, vy ;
represents the terms for which the pattern does not change,
while v; ; represents the terms for which the pattern may
change. For each i € [n], we define the set S; C [m] as

S; = {rem]:VweRst |lw—w.(0)]2 <R,
and 1wr(0)T$iZO = 1wT11_20}.
Then we define vy ; and vo; as follows

V1,4 = E QrZir, V24 := § QrZg -

resS; res;

Define H and HL € R™"*™ ag

m

1
H(t)i,j = E Z xz—'l—xj1wr(t)7mi20,wT(t)ij207 )]

r=1
1
H(t)fg = Z x;rxj]—w,»(t)Trlzo,wT(t)ij207 (10

res;
and
Cyi= = 2n(y — u(t)) " H(t)(y — u(t)),
Cy = +2n(y —u(t)) "H(t) " (y — u(t)),
Cy = —2(y — u(t) "va,
Cy = |lu(t +1) — u(®)|3.

Then we have that (see Section I for a formal proof)

Claim 4.4. [ly —u(t +1)[3 = [ly — u(t)||5 + C1 + C2 +
Cs3 + Cy.

Applying Claim 1.2, 1.3, 1.4 and 1.5 with the appropriate
choice of parameters, we can show that the /5 norm shrinks
in each iteration ¢: ||y —u(t+1)||3 < ||y —u(t)||3- o, where
a = (1 —mn\ + 8mnnR + 8mnnR + m2n*n?).

5. Discussion

We present a novel worst case analysis using an initializa-
tion scheme for neural networks involving coupled weights.
This technique is versatile and can be applied in many dif-
ferent settings. We give an improved analysis based on this
technique to reduce the parameterization required to show
the convergence of 2-layer neural networks with ReLU acti-
vations in the under-parameterized regime for the logistic
loss to m = O(y~2logn), which significantly improves
the prior O(y~%log n) bound. We further introduce a new
unconditional lower bound of m = Q(y~!) as well as con-
ditional bounds to narrow the gap in this regime. We also
reduce the amount of over-parameterization required for the
standard squared loss function to roughly m = O(\~2n?),
improving the prior O(A~%n%) bound, and coming closer to
the 2(n) lower bound. We believe this is a significant theo-
retical advance towards explaining the behavior of 2-layer
neural networks in different settings. It is an intriguing open
question to close the gaps between upper and lower bounds
in both the under and over-parameterized settings. We note
that the quadratic dependencies arise for several fundamen-
tal reasons in our analysis, and are already required to show
a large minimum eigenvalue )\ of our kernel matrix, or a
large separation margin y at initialization. In the latter case
we have provided partial evidence of optimality by showing
that our analysis has an m = Q(y~2logn) lower bound, as
well as a candidate hard instance for any possible algorithm.
Another future direction is to extend our results to more
than two layers, which may be possible by increasing m by
apoly (L) factor, where L denotes the network depth (Chen
et al., 2019). We note that this also has not been done in
earlier work (Ji & Telgarsky, 2020).
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Appendix
A. Probability Tools

In this section we introduce the probability tools that we use in our proofs. Lemma A.1, A.2 and A.3 concern tail bounds for
random scalar variables. Lemma A.4 concerns the cumulative density function of the Gaussian distribution. Finally, Lemma
A.5 concerns a concentration result for random matrices.

Lemma A.1 (Chernoff bound (Chernoff, 1952)). Let X = Z;;l X;, where X; = 1 with probability p; and X; = 0 with
probability 1 — p;, and all X; are independent. Let v = E[X] = Y"1 p;. Then

1. Pr[X > (14 0)u] < exp(—6241/3), V6 >0

2. Pr[X < (1 —96)u] <exp(—d62u/2),V0 < 6§ < 1.

Lemma A.2 (Hoeffding bound (Hoeffding, 1963)). Let X1,-- - , X,, denote n independent bounded variables in [a;, b;].
Let X =Y, X,. Then we have

212
Pr[|X —E[X]| >t <2 ——— | .
(| (X[ >t < eXp( lel(bi—ai)2>
Lemma A.3 (Bernstein’s inequality (Bernstein, 1924)). Let X1, --- , X, be independent zero-mean random variables.

Suppose that | X;| < M almost surely, for all i. Then, for all positive t,

n t2/2
Pr [ZXi > t] < exp (‘Z'Jr}_l IE[XJQ] _|-Mt/3> .

i=1

Lemma A.4 (Anti-concentration of the Gaussian distribution). Let X ~ N (0, 02), that is, the probability density function

12
of X is given by ¢(z) = \/2;76_27. Then

2t 41t
Prl|X|<tle|=z—=-— ).
ixi<de (32.22)

Lemma A.5 (Matrix Bernstein, Theorem 6.1.1 in (Tropp, 2015)). Consider a finite sequence {X1,--- , X, } C R™"1*"2 of
independent, random matrices with common dimension ni X ns. Assume that

E[X,] = 0,Vi € [m] and || Xi|| < M,Vi € [m].

Let Z =" | X;. Let Var|Z|] be the matrix variance statistic of the sum.:

Var[Z] = max{” iE[XiXiT] ) iE[XiTXz‘]

} |

E[||Z]] < (2Var[Z] - log(ny 4 n2))Y? 4+ M -log(ny + n2)/3.

Then

Furthermore, for all t > 0,

Pr{|Z]] = ] < (n1 +n2) - exp (‘vfﬂzt}fMt/:) ‘

Lemma A.6 ((Feller, 1943)). Let Z be a sum of independent random variables, each attaining values in [0, 1], and let
o =+/Var(Z) > 200. Then for all t € |0, %] we have

Pr[X > E[X] +1t] > ¢ exp(—t?/(30?))

where ¢ > 0 is some fixed constant.
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B. Preliminaries for log width under logistic loss

We consider a set of data points 1, . . ., 2, € R? with ||2;||2 = 1 and labels y1, . . ., y, € {—1,1}. The two layer network
is parameterized by m € N,a € R™ and W € R™*4 as follows: we set the output function

f(x.W,a) = % S ((ws, 7))

which is scaled by a factor 1/y/m compared to the presentation in the main body to simplify notation, and to be more
closely comparable to (Ji & Telgarsky, 2020). The changed initialization yields initial output of 0, independent of the
normalization, and thus, consistent with the introduction, we could as well omit the normalization here and instead use
it only in the learning rate. The main improvement of the network width comes from the fact that the learning rate is no
compromise between the right normalization in the initial state and the appropriate progress in the gradient iterations, but
can be adjusted to ensure the latter independent of the former. In the output function, ¢(v) = max{0, v} denotes the ReLU
function for v € R. To simplify notation we set f;(WW) = f(z;, W, a). Further we set {(v) = In(1 + exp(—v)) to be the
logistic loss function. We use a random initialization Wy, ag given in Definition 2.1. Our goal is to minimize the empirical
loss of W given by

n

ROV) = = 3" L))

i=1

To accomplish this, we use a standard gradient descent algorithm. More precisely for £ > 0 we set
Wt+1 = Wt — T]VR(Wt)

for some step size 7). Further, it holds that
1 n
= - iV i U (yifi .
VRY) = SV AV (7))

Moreover, we use the following notation

W) = (V (W), W)

K2

and

ROW) = Zﬁ (yifi(t)(w)) .

=1

Note that % = ﬁasl[(ws, x;) > 0]x;. In particular the gradient is independent of |w;||2, which will be crucial in

our improved analysis.
C. Main assumption and examples

C.1. Main assumption

Here, we define the parameter v > 0 which was also used in (Ji & Telgarsky, 2020). Intuitively, « determines the separation
margin of the NTK. Let B = B = {x € R? | ||z|2 < 1} be the unit ball in d dimensions. We set Fp to be the set of
functions f mapping from dom(f) = R? to range(f) = B. Let u denote the Gaussian measure on R?, specified by the
Gaussian density with respect to the Lebesgue measure on R,

Definition C.1. Given a data set (X,Y) € R"*? x R" and a map v € Fp we set

o =95 Y) = min s [ (0(), 20010, 2) > 0] dua(2).

i1€[n]

We say that v is optimal if vz = v(X,Y) := maxy c 5y V-
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We note that maxy e 7, Y57 always exists since Fp is a set of bounded functions on a compact subset of R?. We make the
following assumption, which is also used in (Ji & Telgarsky, 2020):

Assumption C.1. It holds that v = v(X,Y) > 0.

Before we prove our main results we show some properties of v to develop a better understanding of our assumption. The
following lemma shows that the integral can be viewed as a finite sum over certain cones in R?. Given U C {1,2,...,n} =
[n] we define the cone

CU) :={x € RY| (x,z;) > 0if and only if i € U}.

Note that C(()) = {z € R? | (x,z;) < Oforalli € [n]} and that R¢ = UUC[n]C(U). Further we set P(U) to be the
probability that a random Gaussian is an element of C(U) and Py to be the probability measure of random Gaussians
z ~ N(0,1) restricted to the event that z € C(U). The following lemma shows that we do not have to consider each
mapping in Fp but it suffices to focus on a specific subset. More precisely we can assume that v is constant on the cones
C(U). In particular this means we can assume ¥(z) = ¥(cz) for any z € R¢ and scalar ¢ > 0 and that ¥ is locally constant.

Lemma C.2. Let v € Fp. Then there exists V' such that vz = vz and v’ is constant on C(U) for any U C [n).

Proof. Observe that for any distinct U, U’ C [n] the cones C(U) and C(U’) are disjoint since for any x € R¢ the cone
C(Us) containing x is given by U, = {i € [n] | (z,x;) > 0}. Further we have that ;¢ (,; C(U) = R since any = € R?
is included in some C'(U,). Thus for any ¢ € [n] we have

" / @), 1@ 2) > 0 dun(z) =5 3 P(U) / (0(z),2)1[(xi, 2) > 0] dPy(2)

UC(n]

—u . PO [ dPu)

UC[n],icU

=y >, PU) / B(z) dPy(2)).

UC[n]i€U

Hence defining v'(z) = P(U,) [7(z) dPy, (z) satisfies
i [ @) tlfai,2) > 0] dun(a) =i [ @), i1l 2) > 0] da(2)
and since ||7(2)||2 < 1 it follows that ||[7(2)||2 < 1 for all z € R%. O

Next we give an idea how the dimension d can impact . We show that in the simple case, where R? can be divided into
orthogonal subspaces, such that each data point z; is an element of one of the subspaces, there is a helpful connection
between a mapping v € Fp and the mapping that ¥ induces on the subspaces.

Lemma C.3. Assume there exist orthogonal subspaces V1, ...V of R? with R = @ j<s Vj such that for each i € [n]
there exists j € [s] such that x; € V. Then the following two statements hold: B

Part 1. Assume that for each j € [s] there exists vv; > 0 and U; € Fp such that for all x; € V; we have
i [ i) > 0] dun(2) =
Then for each p € R® with ||p|la = 1 there exists T € Fp with

m[ln] Yi /(ﬁ(z)wﬁl[(xi,z) > 0] dup(z) > ml[n] P
1€|n JElS
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Part 2. Assume that U maximizes the term

3 =iy [0, 10,2) > 0 duna),

i1€[n]

and that v* > 0. Given any vector z € R we denote by pj(z) € V; the projection of z onto V;. Let p} =
_ p;(0(2)
Py

J

max,cga |pj (U(2))||2. Then for all j € [s] the mapping U;(z) maximizes

3= min o (@) 1l(ai,2) > 0] du(z)
Z; j

and it holds that ||v;(2)||2 < 1 for all z € R%. In other words if U is optimal for (X,Y') then v; is optimal for (X;,Y;)

where X; = {x; € V; | i € [n]} with the corresponding labels, i.e., y,, = yi.

Proof. Part 1.

Since applying the projection p; onto V; to any point z € R? does not change the scalar product of z and z; € Vi, ie.,
(xi,2) = (xi,pj(2)), we can assume that for all z € R? we have 7;(2) € V;. Let z € R?. We define v(z) := Y7, p;v;(2).
Then by orthogonality

S s
B3 =D plvs(ls <D p-1=1.
Jj=1 j=1

Thus it holds that T € Fp. Further we have (z;,0(z)) = > 7 _; pr{®i, Uk(2)) = p;{z;,7;(2)) for x; € V; again by
orthogonality it holds that

yi/@(Z)@iﬂK%Z) > 0] dun(2) = Pjyi/@(Z),wi)l[(%Z) >0l dun(2) = pj;-

Part 2.

For the sake of contradiction assume that there are k¥ < s and v}, € Fp such that

Vi = min yi/@k(z),xi>1[<xi,z> > 0] dpn(2) = 74 + €

for some ¢ > 0. Using Part 1. we can construct a new mapping 7' € Fp by using the mappings 7, defined in the
lemma for j # k, and exchange vy, by U}. Also as in Part 1 let p; = p}; + ¢ for j # k and py = pj, — 2;—6,/ with
X k

2
Pk €
4(yi+e)s

’2
¢ = min{Zx, }. Then we have
S

i
2s + s€’ + 482% < 4s.
Pk

Subtracting 4s and multiplying with ¢’ gives us
/ 2
2s¢’ + 52 — dse’ +4 (Sf> <0.
Pk

Hence it holds that

IN

N2
z:(p;2 +2€ +€?) | +pf —4se +4 (Sf>
ik Pr

E} I\ 2 s

E p7 | 4 2s€ + s’ — ds€ + 4 (86,> < E p7 < 1
— Py,
Jj=1

S
>
j=1

IN
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For any x; € V; with j # k we have by orthogonality as in Part 1.

yi/<5/(2)7l‘i>1[<xiaz> > 0] dupr(2) = pjy /<5j(2)7$i>1[<$i,2> > 0] dunr(2)
= (0 + o [ (@302, )1l 2) > 0] ().

Further we have

x{nEl‘I/Ik yi/(@’(z),xi>1[<aﬁi,z> > 0] dpw(2) = pri

We conclude again by orthogonality that

i [ @) atllenz) > 0 dun(z) = pios [ )wtlfes.2) > 0] dun()
> min pjy;

*

=7

and thus 7’ contradicts the maximizing choice of v. O

As a direct consequence we get that the problem of finding an optimal ¥ for the whole data set can be reduced to finding an
optimal v; for each subspace.

Corollary C.4. Assume there exist orthogonal subspaces V1, ...V, of R with R? = P i<s V such that for each i € [n]
there exists j € [s] with x; € V;. For j € [s] let (X;,Y;) denote the data set consisting of all data points (xz;,y;) where
x; € V. Then@ is optimal for (X,Y') if and only if for all j € [s] the mapping v; defined in Lemma C.3 is optimal for
(X;,Y;) and 5 = 3¢5 jp; where p* = argmax ,c g.—1 minje(s) p;7;.

Proof. One direction follows immediately by Lemma C.3 2) the other direction is a direct consequence of the formula given
in Lemma C.3 1). O]

The following bound for ~ simplifies calculations in some cases of interest. It also gives us a natural candidate for an optimal
T € Fp. Given an instance (X, Y) recall that U, = {i € [n] | (z,z;) > 0}. We set

_ Yicinu. Tivi
l Eie[n]mUz Tiyill2

vo(2) Y
We note that Ty (2) is not optimal in general but if instances have certain symmetry properties, then Ty (z) is optimal.

Lemma C.5. For any subset S C [n] it holds that

Z ZiYi

1€SNU

1< Y P

Ucin] |

2

Proof. By Lemma C.2 there exists an optimal ¥ that is constant on C'(U) for all U C [n]. For € U let zy = (z). Then
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by using an averaging argument and the Cauchy—Schwarz inequality we get

1< 2 ZyZ/ e 1l{ei,2) > 0] dp ()

i€S

Zyz S PU)ai )

1€S UC[n],icU

= §| Z P(U){ Z YiTi, 2U)

UCn] iesnU
< D PO | X ww
UC[n] iesnU

Finally we give an idea of how two points and their distance impacts the cones and their hitting probabilities.

Lemma C.6. Let 1,72 € S4™1 be two points with (x1,22) > 0 and ||x1 — z3||2 = b > 0. Set Vi ={z eR?| (zy,2) >
0 > (x2,x)}. Then for a random Gaussian z we have z € V| with probability P(V) where <P(V)< b . Further for
any z with ||z||a = 1 it holds that |{(x1, z) — (@9, 2)| < b.

Proof. We define V) = {x € R | (x1,x) > 0}. Then P(V1) = 5 since for a random Gaussian z it holds that (x1,z) > 0
with probability % Since the space spanned by z; and x5 is 2- d1mens10nal we can assume that 1’1 and 29 are on the unit
circle and that z; = (1,0) and z5 = (cos(¢),sin(p)) for ¢ < Z. Note that P(V}) is given by 2 _ where b’ = ¢ is the
length of the arc connecting z; and x, on the circle. Since b is the Euchdean distance and thus the shortest distance between
x1 and 29 we have b < V', Further it holds that

o' @ %
h(p) == — = —— = :
b T A —cos(9)? +smeP 2 2cos(y)
Then h'(p) is positive on (0, 5], so h(y) is monotonously non-decreasing, and thus h(p) < h(5) = (7://52) = % and
b <b- 75 Consequently for PVY]) = 21’7 we have that
b b b 7 b
< V)< — . —— <.
7S SPVD s o V85
For the second part we note that for any z with ||z||s = 1 we get
[(z,21) — (z,22)| = {2, 21 — 22)| < [|z]2l|1 — 22f2 =1+
by using the Cauchy—Schwarz inequality. O
C.2. Example 1: Orthogonal unit vectors
Let us start with a simple example first: let e; € R? be the i-th unit vector. Let n = 2d, x; = e; fori < d and z; = —e;_q

otherwise with arbitrary labels. First consider the instance (X;,Y;) created by the points x; and z;,4 for i < d. Then
we note that T; sending any point z with (z, e;) > 0 to e;y; and any other point to —e;y;+4 is optimal since it holds that
Yi =75 (X;,Y;) = [1-1[(z;,2) > 0] duar(z) = 1. Since the subspaces V; = span{e;} are orthogonal we can apply

Corollary C.4 with vector p = (ﬁ)d. Thus the optimal  for our instance is 2\1/3.
C.3. Example 2: Two differently labeled points at distance b
The next example is a set of two points z1,7o € R? with y; = 1 = —yy and (z1,20) > 0. Let U; = {1},Uy =

)
{2},U = {1,2} and V; = {z € R | (z1,2) > 0}. Then P(U) = P(Vy) — P(U;) > & — £ by Lemma C.6 and
P(Uy) = P(Uy) = P(V}) — P(U) < 3 — (3 — &) = L. For an illustration see Figure 2.

)
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C(th)

C(Us)

Figure 2. a) Two points 1 and z2 on the sphere. C'(U) is the cone consisting of vectors having positive scalar product with both points.
The cone C(U;) consists of vectors having positive scalar product with z; but negative scalar product with the other point. b) The
probability P(U;) of a random Gaussian being in the cone C(U;) is exactly the length of the shortest arc on the circle (which is close to
the Euclidean distance) connecting the points, divided by 27.

By Lemma C.2 we can assume that there exists an optimal ¥ which is constant on C'(U) and constant on C(U;) fori € {1, 2},
ie., thatt(z) =2’ € Bforallz € C(U) andv(z) = 2" € Bforall z € C(Uy).

By Lemma C.6 we have |(x1, 2’) — (3, 2")| < b. Consequently since x; and z2 have different labels there exists at least one
1 € {1,2} with (2/, x;)y; < b/2since (z',x1) > b/2implies — (2, o) < — (', x1)+|{x1,2")— (29, 2")| < —b/2+b =b/2
. Then by Lemma C.2 we have

Ui /(E(z),xi>1[(xi,z> > 0] dun(2) < P(U) - (2, 2;) + P(U;) - (2", x;)

b b
o1
2+5

IA

IN
DN SN =

C.4. Example 3: Constant labels

Let X be any data set and let Y be the all 1s vector. Then for 7(2) Z— it holds that

BREE

z * 1
o [ 01l > 0l dun(e) = o [ (i allenz) > 0 gt 2 0 ().
12112 vd
Thus we have y(X,Y) = Q2 (ﬁ) We note that * is a well-known fact, see Blum et al. (2020). Since we consider only a

fixed z;, we can assume that y;z; equals the first standard basis vector e;. We are interested in the expected projection of a
uniformly random unit vector m in the same halfspace as e;.

We give a short proof for completeness: note that W = (21,-.-,24)/ Z?:l 22 with z; ~ N(0,1), is a uniformly

)
random unit vector u. By Jensen’s inequality we have E[\/Z?:l 22] <\ JE[XL 22) = \/Z?:1 E[2?] = V/d. Thus, with
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probability at least 3/4 it holds that \/Zle g2 < 4+/d, by a Markov bound. Also, |z;| > v/2 - erf~!(1/2) holds with
probability at least 1/2, since the right hand side is the median of the half-normal distribution, i.e., the distribution of |z;],
where z; ~ N(0,1). Here erf denotes the the Gauss error function.

By a union bound over the two events it follows with probability at least 1 — 3 — = 1 that

d
|uil = |zil/ 222 > V2 erf™!(1/2)/(4Vd).

Consequently E[|w;|] > % - V2 erf7'(1/2)/(4v/d) = Q(1/v/d) and thus

yi/<z,xi> 1[(xi, z) > 0] dua(2) = %EH%H = Q(1/Vd).

[12]]2

C.5. Example 4: The hypercube

In the following example we use x; for the i-th coordinate of x € R rather than for the i-th data point. We consider the
hypercube X = {— ,—&—f}d with different labelings. Givenz € X we set S, = {i € [d] | z; = —%} and o(z) = |S;|.
C.5.1. MAJORITY LABELS

First we consider the data set X' = X \ {z € X | o(2) = 4} and assign y, = —1if o(2) > S and y, = —1if o(z) < 4.
Note that d — 20 (z) < 0 holds if and only if y, = —1. Let 2. € X be the constant vector that has all coordinates equal to
1/+/d. Now, if we fix T(z) = .. for any z, then for all z € X’ we have that

e [ )11 2) > 0] dpn(z) = 2 L2 5

Q.M—‘

Hence it follows that (X', Y) > 5

C.5.2. PARITY LABELS

Second we consider the case where y,, = (—1)?(®). Then we get the following bounds for ~y:

Lemma C.7. Consider the hypercube with parity labels.

1) Ifdis odd, then v = 0.
2) Ifdis even, then vy > Q.

Proof. 1): First note that the set Z = {z € R? | 3z € X with (z, z) = 0} is a null set with respect to the Gaussian
measure /. Fix any coordinate ¢ < d. W.lo.g. leti # 1. Givenx € M := {%} X {*ﬁv ﬁ}d” consider the

set S(z) = {(ﬁ,x), (—%7:5), (ﬁ, —z), (—\% —x)}. Note that X is the disjoint union X = (J,.,,S(x). Further
since d — 1 is even, it holds that Ydw) = Ydoma) = Y—L—o) = “Y(-Za) Letz € Zandlet U, = {2/ €
X | (z,2') > 0}. WlLo.g. let (z, (ﬁ,x)) > 0. Then we have (z,z’) > 0 for exactly one z’ € {(fﬁ,w), (ﬁ, —x)}
and (z, (—ﬁ, —x)) < 0. Now since y(ﬁm(ﬁ,x)i = —yr (-Lz)i = —y(ﬁ’z)(L —x); we conclude that for all
x € M it holds that

> (@)= % + (f%) -0

z’'e€S(z)NU,

and thus we get

Z (yz)i Z Z (zy): = 0.

zeXNU, zeM z’'eS(z)NU,
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Thus by Corollary C.5 it holds that v = 0.

2): Consider the set M comprising the middle points of the edges, i.e., M = {z € {— \/g’ }d | & =
0 for exactly one coordinate ¢ € [d]}. Observe that for any x € X and z € M the dot product d - (:v z) is an odd

integer and thus |(z, z)| > 1/d. Hence, for the cone C'(U,) containing z we have P(U,) > 0.

Now fix z € M and let i € [d] be the coordinate with z; = 0. Recall o(z) = |[{k € [d] | zr = —%H and set

B(z) = e; - 0(2) - (=1)¥?*1, Let j € [d] be any coordinate other than i and consider the pairs {v,w} C X where v € X
with v; = z;, (v,2) > 1/d and w = v — 2v;e;. We denote the union of all those pairs by V. The points v and w have the
same entry at coordinate ¢ but different labels. Hence it holds that Z wyev’ Vil 4+ WY = 0.

Next consider the set of remaining vectors with (v, z) > 0 whichis givenby V = {x € X | z; = z; and (=, z) = 1/d}. For

allz € V withx; = % itholds that o(z) = o'(2) — (£ —1) = o(2)-(—1)%2** since the projection of z to R%~! that results
from removing the i-th entry of x, has Hamming distance (g — 1) to 2z projected to R, and vice versa for all z € V with

x; = —1/v/d we have that o () = o(z)-(—1)%2. Hence for z € V itholds that y,7(z) = e;-0(2)-(—1)%?*! = ¢;-sgn(z;)

and thus we have
Z yx xZ, U Z yx Z Yo <1},f(2)> + 7Jw<w75(2’)>

zeXNU, zeV (v,w)ev’
= Z sgn(z;){x,e;) + 0
zeV
Z ( -1 > 1
zeV \[ d/2 -1 \/a
since the number of elements = € V' with #; = 1/1/d is the same as the number of elements 2’ € V with 2}, = —1/+/d.

More specifically, it equals the number of points with Hamming distance (% — 1) to the projection of z onto R?~!, which
is ( d?;jl) since the i-th coordinate is fixed and we need to choose d/2 — 1 coordinates that differ from the remaining

coordinates of z. Let P > 0 be the probability that a random Gaussian is in the same cone C(U) as z for some z € M.

Then by symmetry it holds that 75 = P - 2(d/2 nE ﬁ \Xl > 0. O

D. Lower bounds for log width
D.1. Example 5: Alternating points on a circle

Next consider the following set of n points for n divisible by 4:

z), = (cos (2£7) sin (2’“”)) and y = (—1)*. Intuitively, defining ¥ to send z € R to the closest point of our data set X
multiplied by its label, gives us a natural candidate for v. However, applying Lemma C.2 gives us a better mapping that also
follows from Equation (11), and which is optimal by Lemma C.5:

Define the set S = {z € R? | 3z; € X,a > 0: x = ax;} Now, for any z € R?\ S there exists a unique i, such that
z € Cone({z;,,x; +1}). Wesetr, = Ziz¥i=tTiz41Viz41 We define the function 7 : R¢ — R? by

iz —@i +1ll2

B(z) = 0 ze S
| (=1)"/4*1r,  otherwise.

Observe that for 7 = 7, we have

Figure 3 shows how ¥(z) is constructed for n = 12. We note that T = Ty holds almost surely, which in particular implies
the optimality of v, cf. Equation (11). For computing v we need the following lemma.

We found the result in a post on math.stackexchange.com but could not find it in published literature and so we
reproduce the full proof from (StEx, 2011) for completeness of presentation.
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C(U:)
+

Figure 3. The left picture shows how T(z) is constructed: we subtract the vector xz which is labeled —1 from the vector x5 which is
labeled 1. We obtain r. after rescaling to unit norm. Since n/4 = 3 is odd we have T(z) = r.. The right picture demonstrates the
values of v(z) that are relevant for computing y; [(v(z), z:)1[{zs, z) > 0]dux(z) for the single point z; = (0, 1). Here we have

yi{®i, 9(z;)) = (1) cos (%) . The same argument can be repeated on the left side of the half circle.

Lemma D.1 ((StEx, 2011)). For any a,b € R and n € N it holds that

n71 -~ . o~
—1)b/2 b/2
ZCOS(G-I-kb) _ cos(a + (n : )b/2) sin(nb/ )
k=0 sin(b/2)
Proof. We use i to denote the imaginary unit defined by the property i2 = —1. From Euler’s identity we know that

cos(a + kb) = Re(el(*+*) and sin(a + kb) = Im(el(@+*), Then

n—1 n—1
Z cos(a + kb) = Z Re (ei(a+kb))
k=0 k=0

n—1
— Re (Z ei(a+kb)>
k=0
n—1
— Re (ela Z(elb)k>
k=0
1 6ibﬁ
—Re(e"——
(i)
~ Re eia eib%'.z/Q(e—i{)ﬁ/2 _ e.ibﬁ/Q)
elb/2(€71b/2 _ elb/2)

cos(a + (n — 1)b/2) sin(nb/2)
sin(b/2) '

Lemma D.2. Foralli € [n] it holds that

" /<@<z),mi>1[<xi,z> > 0ldpn(2) = O (1) .

n

Proof. We set n’ = n/4. Note that by symmetry the value of the given integral is the same for all i € [n]. Thus
it suffices to compute y; [(0(2), z;)1[(x;,2) > Oldua(2) = 7 for z; = (0,1), and note that i = n/4 for this
special choice. See Figure 3 for an illustration of the following argument. For a fixed z € R? consider the cone
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Cone({z;_,x; 41} = Cone({z;,zj41}) C {z € R* | (2,(0,1)) > 0}. Then j € [0,% — 1] and (v(2), ;) =

(=)Ao, ) = (1) A (=1)IF! cos(%) since y; = (—1)"/4. Further, for j < 2 — 1 it holds that

(@(2), 2;) = (=1)"*(=1)’ cos (W) = yi(~1) cos (W) ’

and by using the symmetry of cos we get

(—1)™/4(=1) (/2731 cos <(2(”/2) — % ”2”) — ys(—1y ( cos (W»

2n 2n

, 254+ 1)27
= y;(—1) cos <(]2n)> .
Now assume w.l.o.g. that n > 8. Further we set 72 = (n’ —1)/2 and b = 4* = T By using Lemma D.1 and the Taylor
series expansion of cos(+) and sin(-) we get
1 (& (2k — 1)7 -
= — 2 _— —
v= Z cos ( T ) (-1
k=1
_2 r(nf/ﬂ o ((4I<; + 1)7r> B “”f/” o ((4I<; + 3)71')
n 4n/ 4n/
k=0 k=0
N 2 (cos(m/n+ (0 —1)b/2)sin(nb/2)  cos(3m/n + (n —1)b/2)sin(nb/2)
~n sin(b/2) sin(b/2)
=0(b) =1-0O(b)
o po 7
_ 2| (cos(m/n+ (0 —1)b/2) — cos(3m/n + (n — 1)b/2)) sin(nb/2)
n sin(b/2)
2 (O() 2 .
=2 (27) = Ze) = @),
2 (5)) - 2em =
* when n’ is odd then we have an exact equality. O

D.2. Lower Bounds

Lemma D.3. If m = o(nlog(n)) then with constant probability over the random initialization of Wy it holds for any
weights V€ R™*? that y;(V, V fi:(Wy)) < 0 for at least one i € [n).

Proof. We set x_; := x,_; for i > 0. Consider the set {z;, ©;+1, Ti+2, ¥;+3} for i withi mod 4 = 0. For any s let A; ;
denote the event that

L[(zi,ws) > 0] = 1[(@ig1, ws) > 0] = L[(@ita, ws) > 0] = 1[(2iys3, ws) > 0].
If there exists ¢ € {0,4,...,n — 4} such that for all s € [m] the event A, , is true then at least one of the points
Ti, Ti+1, Tit+2, Ti+3 1S misclassified. To see this, note that there exists p € Rio such that p1z; + psxire — (poziv1 +

paxiy3) = 0 since the line connecting x; and x;3 crosses the line segment between x; o and x; 4. Now let S = {s €
[m] | (z;, ws) > 0}. If the event A; 4 is true for all s € [m] then it holds that

0= Z (P12i + p3Tive — (P2Tit1 + PaTits), ws)
s€[m],(z;,ws)>0

3
=) > PiYiti (Titss Ws)
J=0s€[m],(z;,ws)>0
3
Pj Z Yitj (Titj Ws)

3=0 s€lm],(@iqj,ws)>0
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and since p; > O it must hold 3~ (., (isgw)>0 Vit (®i+j, ws) <0 foratleastone j € {0,...,3}.

Note that A, , is false with probability 2 - namely if Toil H is between the point x; /4 and ;43,4 Or between the
points z; /4 and x;;3_, /4. We denote the union of these areas by Z;. Further these areas are disjoint for different
i,i" € {0,4,...n/4}. Now, as we have discussed above, we need at least one A;  to be false for each i. This occurs only
if for each 4 there exists at least one s such that H;UW € Z;. Let T be the minimum number of trials needed to hit every
one of the n’ := n/4 regions Z;. This is the coupon collector’s problem for which it is known (Erdés & Rényi, 1961) that
for arbitrary ¢ € R it holds that Pr[T" < n'logn’ + en'] = exp(— exp(—c)) as n’ — oo. Thus for sufficiently large n’ and
c = —1 we have

Pr[T > n'logn’ —n'] >1—¢e°>0.09.

Indeed we can show an even stronger result:

Lemma D.4. Ler e > 0. Any two-layer ReLU neural network with width m < (1 — €)n/6 — 2 misclassifies more than en /3
points of the alternating points on the circle example.

Proof. Set D = {z € R? | ||z|; = 1}. Given parameters W and a consider the function f : R?> — R given by
f(z) = \/% Yoot as¢ ((ws, z)). Note that the points z; = T € D do not change their order along the £, sphere and
thus by definition of (z;,y;) have alternating labels. Also note that f(x;) > 0 if and only if f(z}) > 0. Further note that the
restriction of f to D denoted f|p is a piecewise linear function. More precisely the gradient 57 9 — ﬁ Yo asl{ws, ) >

0Jws can only change at the points (1,0), (0,1), (—1,0), (0, —1) and at points orthogonal to some wy for s < m. Since
for each w; there are exactly two points on D that are orthogonal to w; this means the gradient changes at most 2m + 4
times. Now for ¢ divisible by 3 consider the points x;, x;41, T;12. If the gradient does not change in the interval induced by
x; and z;4o then at least one of the three points is misclassified. Hence if 2m + 4 < (1 — e) then strictly more than an
(e/3)-fraction of the n points is misclassified. O

E. Upper bound for log width

We use the following initialization, see Definition 2.1: we set m = 2m/’ for some natural number m’. Put w, g = Ws4m/ 0 =
Bw!, where w!, ~ N(0,1;), 8 € R is an appropriate scaling factor to be defined later and a; = 1 for i < m’ and a; = —1
for ¢ > m’/. We note that to simplify notations the a; are permuted compared to Definition 2.1, which does not make a

difference. Further note that ;T = a% .

The goal of this section is to show our main theorem:

Theorem E.1. Given an error parameter ¢ € (0,1/10) and any failure probability § € (0,1/10), let p=2-~~1 -In(4/e).
Then if
m =2m’ >2y72-8In(2n/s),

ﬁh: 4';:’52 e’g\/[; Z;ldf = 1 we have with probability at most 1 — 36 over the random initialization that * T f 0 R(Wt) <e
where T = [2p

Before proving Theorem E.1 we need some helpful lemmas. Our first lemma shows that with high probability there is a
good separator at initialization, similar to (Ji & Telgarsky, 2020).

Lemma E.1. [fm’ > %2"/5) then there exists U € R™*? with |lus|o < \/—%for all s <m, and |U||r < 1, such that
with probability at least 1 — 0 it holds simultaneously for all i < n that

0) 2
Proof. We define U by us = ;%E(ws_,o). Observe that
pi= B [yi@w), z)]1 [{zi,w) > 0] >y

w~N(0,14)
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by assumption. Further since w9 = Wsym/,0 = pw’, 0 and af = 1, we have a5ty = Qsqm/Ustm for s < m’. Also by
Lemma C.2 we can assume that 5(w; o) = T(w} q). Thus

yz Zyl ws 0 >1 [(xi7w8,0> > 0]

is the empirical mean of i.i.d. random variables supported on [—1, 4+1] with mean p;. Therefore by Hoeffding’s inequality
(Lemma A.2), using m’ > % it holds that

Priy () < ) < PrllyfO0) — il = 1)

2
212m’ /4
<2 -t
= 4exp ( m' -4
2,/
§2e><p(—7 m) Sé
8 n
Applying the union bound proves the lemma. O

Lemma E.2. With probability 1 — ¢ it holds that |(x;, ws )| > %for alli € [n] and s € [m]

Proof. By anti-concentration of the Gaussian distribution (Lemma A.4), we have for any ¢

2p? ]

2p2]
S am

PI‘[|<-T1‘7 ws,0> ﬁex/m

= Pr{|(zi,w )| <

< 2p% 4
~ Bey/m5
)
S -
mn
Thus applying the union bound proves the lemma. O

Lemma E.3. Forall i € [n] it holds that f;(Wy) =0

Proof. Since ay = —as.y,, We have

= Z %asﬁﬁ ((ws,0,7)) = Z %(as + astm )¢ ((ws,0,2i)) = 0.

m

3

s=1 s=1

Further we need the following lemma proved in (Ji & Telgarsky, 2020).
Lemma E.4 (Lemma 2.6 in (Ji & Telgarsky, 2020)). For anyt > 0 and W, ifn; < 1 then

mR(W;) < |Wy = W% — [Wigr — W% + 20, RY (W).

Consequently, if we use a constant step sizen < 1 for 0 < 7 < t, then

1Y RW,) <0 RW,;)+|[W, = W3 < [[Wo - W% +20 > ROW).

T<t T<t T<t

Now we are ready to prove the main theorem:
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Proof of Theorem E.1. With probability at least 1 — 20 there exists U as in Lemma E.1 and also the statement of Lemma

E.2 holds. We set W = W, + pU. First we show that for any ¢ < 7T and any s € [m] we have |Jws ¢ — ws o2 < 62\’/’;.
Observe that |[¢'(v)| = |1;€T_jv| < 1since e”¥ > 0 for all v € R. Thus for any ¢ > 0 we have

of
s~ weolls < 372 Z‘” WiV 'Haws,t

T<t

1 t
1o < ——
N I
Consequently we have ||ws ¢ — ws,oll2 < 2\5» fort <T = [2” 1.
Next we prove that for any ¢t < T we have R®) (W) < ¢/4. Since In(1 + r) < r for any r, the logistic loss satisfies
0(z) = In(1 + exp(—2)) < exp(—2), and it is sufficient to prove that for any 1 < i < n we have
— €

vV LW, W) > 1In (7).

Note that

vfz(Wt)7W>

AV (W), Wo) + yip(V f: (W), U)

iV [i(We), Wo) + yi(V fi(Wo), Wo) — yi{V fi(Wo), Wo) + yip(V fi(W4), U)
(Vfi(Wo), Wo) + yi(V fi( W) = V fi(Wo), Wo) + yip(V fi(Wh), U).

/\

|
S

For the first term we have y,(V f;(Wy), Wo) = w:fi(Wo) = 0 by Lemma E.3. For the second term we note that

2
(i, ws,0) — (i, ws,p)| = |<Ii,wso ws,o)| < Jzillzllws,o —wsells < 2om. Thus 1 [(wi, ws0) > 0] # 1 ({5, wy,e) > 0]
can only hold if |(z;, ws 0)| < W which is false for all 7, s by Lemma E.2. Hence it holds that

Ofi = Lasl [z, wse) > 0)x; =

1
8w37t \/7% \/7%

and consequently V f;(W;) = V f;(Wy). It follows for the second term that

ofi

8w510

as1 [(z;, ws0) > 0] z; =

yi(Vfi(Wy) = V fi(Wo), Wo) = 0.

Moreover by Lemma E.1 for the third term it follows
g
Yir(V fi(W), U) = yip(V f;(Wo), U) = Py

Thus y;(V fi(W), W) > pZ > In(4/e€) since p = 2y~! - In(4/¢). Consequently it holds that R®) (W) < €/4.
Now using 7' = [ ] applying Lemma E.4 with step size 7 = 1 gives us the desired result:

1 [Wo - W% | 2 (t) (77

TZR(WQS 7‘*‘?2}3 (W)

T
t<T 7<T

||PU||F Z R(t

7'<T

INA
N ol e
N

IN
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F. On the construction of U

F.1. Tightness of the construction of U

We note that for the construction of U used in the upper bound of Lemma E.1 m/ > M

sense: For U € Fp, the natural estimator of v is given by the empirical mean -1 ZS 1 yt< (ws.0), Ti)|1 [{zs, ws,0) > 0]

The following lemma shows that using this estimator, the bound given in Lemma E.1 is tight with respect to the squared
dependence on - up to a constant factor. In particular we need m = Q(y~21log(n)) if we want to use the union bound over
all data points.

is tight in the following

Lemma F.1. Fix the choice of us = %E(ws)for s € [m]. Then for each y € (0, 1) there exists an instance (X,Y) and

©(z) € Fp, such that for each i € [n] it holds with probability at least P,, = cexp (—8m/ 2/ 3) for an absolute constant
¢ > 0 that

uif " (U Zyz T(ws,0), @)1 (215 ws0) > 0] < 0.

Proof of Lemma F.1. Consider Example D.1. Recall that v(X,Y") = ©(1/n). Choose a sufficiently large n, divisible by 8,
such that (X, Y") < ~,. Note that the mapping T that we constructed has a high variance since for any ¢, the probability that

arandom Gaussian z satisfies (U(z), z;)1[{x;, 2) > O] \/5 as well as the probability that (v(z2), z;)1[{z;, z) > 0] < f\%

are equal to §. To see this, note that |(v(2), z;)| > = 75 1f (z,2) < 7 and in thls case (U(z), ;) is negative with probability

-2 = {. Observe that the random variable

o
Z; = 1(1 — Z,) attains values in [0, 1]. Further the expected value of Z, is £(1 — ~), and the variance is at least 5.

Now set Z = ZT:II Z' and note that yz-fi(o)(U) =Ly yi(wso), @ )]1 [{zi, ws,0) > 0] < 0 holds if and only if
Z > ™ — E(Z) + ™. By Lemma D.4 we know that y; /) (U) = L 7, (0(ws0), 2:)]1 [, ws0) > 0] < O is
true for at least one 7 € [n] if m < § — 3. Now choosing n large enough this implies we only need to show the result for
m’ > 2002 - 32. Hence we can apply Lemma A.6 to Z and get

5. Thus the variance of Z; = y; (T(ws,0), 2;)]1 [(:v27 ws ) > 0] is at least

/

Pr[Z > E(Z)+ m2’y] > cexp (m'Q’yz/ <4 '332m >) = cexp (78m’72/3)

or equivalently v < which holds if n is large enough. O

1 m’
= 100 32 1600

Thus we need that m = Q(=—4~ 1“("/ 9)) for the given error probability if we construct U as in Lemma E.1.

F.2. The two dimensional case (upper bound)

In the following we show how we can improve the construction of U in the special case of d = 2 such that
m =0 (v"! (In(4n/8) + In(4/e€)))

suffices for getting the same result as in Theorem E.1. We note that the only place where we have a dependence on y~2 is in
Lemma E.1. It thus suffices to replace it by the following lemma that improves the dependence to ! in the special case of
d=2:

LemmaF.2. Let (X,Y) be an instance in d = 2 dimensions. Then there exists a constant K > 1 such that for m >
with probability 1 — 25 there exists U € R™*% with ||us]|2 < \/—%for all s <m, and |U||r < 1, such that

Kln(n/d)
Y

uif VW) 2 5

forall i <n.
Proof. The proof consists of three steps. The first step is to construct a net X’ that consists only of ‘large cones of positive

volume’ such that for each data point 2 there exists a point 2’ € X’ whose distance from z on the circle is at most b = 7:
Let n’ = [27/b] and consider the set

" ={z € R? |z = (cos(j/n’),sin(j/n’)),j € N}.
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Given x € X we define g(z) € argmin, ¢y ||z — 2'[|2 and h(z) € argmin, ¢ x\ f4(2)3 /|17 — 2’[|2, Where ties are broken
arbitrarily. We set X’ = {g(z) | € X}U{h(x) | z € X}. We note that the distance on the circle between two neighboring
points in X’ is a multiple of i—’f This implies that for any cone C' (V') between consecutive points in X’ with P(V') > 0 we
have P(V) > 1/n’ > b/7 and ||z — g(z)||]> < . Further note that there are at most | X’| < 2n cones of this form.

The second step is to construct a separator (us)s<m € R™*4: Let v € Fp be optimal for (X,Y),ie., v =v(X,Y) =
~5. As in Lemma C.2 construct ' € Fp with E[(¥'(2),2') | = € C(V)] = E[(v(2),2") | z € C(V)] where v’ is
constant for any cone of the form C(V'). Using the Chernoff bound (A.1) we get with failure probability at most
2exp(% - £-m') = 2exp(55; - v - m/) that the number ny of points w;,o in C(V') lies in the interval [P(V)m 2P(V)m].
Now using m’ > 224~y~! log( ) and applying a union bound we get that this holds for all cones of the form C (V') with

failure probability at most 28. For w; € C'(V') we define u; = a; E\(/Iﬂ) w. Since ny € [P(‘;) ,2P(V')m] it follows

that [[u;|2 < % <

1
> and consequently U]l F < 1. Moreover we have

Z asus = P(V)m v (V),

1
s€[m],ws,0€C(V) 2\/%
where we set 7' (V) to be equal to 7’ (z), which is constant for any z € C(V).
The third step is to prove that U is a good separator for (X,Y): To this end, let z € X and 2’ = g(z;).

If z; = 2’ then

O 0) =i 3ol 1 ) > 0

ﬂ\

as(us, ;)
z’'€V s€[m],ws 0€C(V)

Z
Z P(V)ym - (@ (V),z;)

VCX' .z eV

E[(W(2), z)1 [(zs, 2) > 0]]

.
-3

I
<
3

I
<
S

@W(2), x)1 (x5, 2) > 0]duar(z) >

Il

<

S : :
ROl — o= R

—

M\Q

Otherwise if ; # 2’ then there is exactly one cone C(V;) with z € C'(V1) such that (2’, z) < 0 and (x;, z) > 0 and exactly
one cone C(Vz) with z € C(V2) such that (2/, z) > 0 and (z, z) < 0. Recall that P(V;) = -5 < bfori = 1,2. We set
M={V Cn|a eV,V ¢ {Vi,V2}}. Then it holds that

m

yzf Z usa‘rz xuws,O> > 0}

m

1
= NG Z Yilus, Ti) — > [(us, 4)]
m VeM selm 0€EC(V) s€[m],ws,0€C (V1)
1 1
= Jm > Yilus, i) + >, [(us, )| — > [(us, 2i)| = %P(Vl)m
VeM se[m]ws,0eC(V) s€[m],ws,0€C(V2) s€[m],ws,0€C(Va2)
1 [(Vm 1 1
> — (X" Ry )1 [(x; - ——P - —P
> = (Y Bl 1 [0 > 0] — =P a)m — o P(Vi)m )
1 1 v vy
—(E N1 [(x; —2)> = (y— =) =-.
= 5 (Elyi(3(=), 21 (w0, 2) > 0] =20) 2 5 (v= 3 ) = 1



Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

G. Width under squared loss
G.1. Analysis: achieving concentration

We first present a high-level overview. In Lemma G.1, we prove that the initialization (kernel) matrix H is close to the
neural tangent kernel (NTK). In Lemma G.2, we bound the spectral norm change of H, given that the weight matrix W
does not change much. In Section H.1 we consider the (simplified) continuous case, where the learning rate is infinitely
small. This provides most of the intuition. In Section H.2 we consider the discretized case where we have a finite learning
rate. This follows the same intuition as in the continuous case, but we need to deal with a second order term given by the
gradient descent algorithm.

The high level intuition of the proof is to recursively prove the following:

1. The weight matrix does not change much.

2. Given that the weight matrix does not change much, the prediction error decays exponentially.

Given (1) we prove (2) as follows. The intuition is that the kernel matrix does not change much, since the weights do not
change much, and it is close to the initial value of the kernel matrix, which is in turn close to the NTK matrix (involving the
entire Gaussian distribution rather than our finite sample), that has a lower bound on its minimum eigenvalue. Thus, the
prediction loss decays exponentially.

Given (2) we prove (1) as follows. Since the prediction error decays exponentially, one can show that the change in weights
is upper bounded by the prediction loss, and thus the change in weights also decays exponentially and the total change is
small.

G.2. Bounding the difference between the continuous and discrete case

In this section, we show that when the width m is sufficiently large, then the continuous version and discrete version of the
Gram matrix of the input points are spectrally close. We prove the following Lemma, which is a variation of Lemma 3.1 in
(Song & Yang, 2019) and also of Lemma 3.1 in (Du et al., 2019¢).

Lemma G.1 (Formal statement of Lemma 4.1). Let {wy,wa, ..., w,} C R? denote a collection of vectors constructed as
in Definition 2.1. We define H°*, HYs ¢ R"*" g5 follows

cts . _ T,..
Hi’j T ww/\IfE(O,I) [‘rz 'IL‘J]'wTa:iZOA,wT:L’jZO] 3
m
dis ,__ 1 T
Hij = — DREZETS DR
r=1

Let A = Apin (H®). If mg = Q(A\"2n2%log(nB/d)), we have that

. i A is
”Hdls o Hcts”F < 27 and )\min(Hdlb) > %)\
holds with probability at least 1 — 0.

Proof. For every fixed pair (4, j), H, S ijs’b (b € [B]) is an average of independent random variables, i.e.,

1 &2

E T
ij mo £ Ti Ty wszizo,wszjzoa

and H, Zd;s is the average of all sampled Gaussian vectors:

mo B

18 1
dis __ dis,b __ T,..
HP =5 HT == > 0] lyr vs0ul,e,20
b=1

r=1b=1
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The expectation of H, Sijs is

dis,b T
E[H, > :—E E [xx T T ]
i > o>
[ b } mv‘_lwr,bNN(O,Id) EI Ty @i 20w, 75 20
= E I‘TLU]. Te.>0w T z:>0
wNN(O,Id)[ i Y)rw! i 20w x> ]
cts
=H;;.

Therefore,

dis,b is cts
E[Hzg | = E[szj] = Hzti :

For r € [mo, let 2, = - ;1,7 5047, 0, >0- Then 2 is a random function of w.;, and hence, the {2, },¢[m,] are

mutually independent. Moreover, —m%) <z < m%) By Hoeffding’s inequality (Lemma A.2), we have that for all £ > 0,

. 2t2
dis,b cts
Pr [|Hi’j —Hi)j| Zt} §2exp(—4/m0)

= 2exp(—mot?/2).

Setting ¢ = (%2 log(2n2B/§))'/2, we can apply a union bound over b and all pairs (4, j) to get that with probability at
least 1 — 0, for all 4, j € [n],

. 2 1/2
dis _ prets) < (2 2 <
s — et < (mo log(2n B/a)) < 4(

- Log(nB/O ™2,

Mo

Thus, we have
”Hdis o Hcts||2 < ”Hdis o HCtS”%
n n
SR
i=1 j=1

1
< —16n”log(nB/s).
< olén og(nB/0)
Hence, if mg = Q(A~2n2log(nB/§)), we have the desired result. O

G.3. Bounding changes of H when w is in a small ball

In this section, we bound the change of H when w is in a small ball. We define the event
Air = {HU lu—well2 <R, 1@@20 # 1zjuzo} .

Note this event happens if and only if |, z;| < R. Recall that w, ~ N(0,I). By anti-concentration of the Gaussian
distribution (Lemma A.4), we have
2R

Pr[A;,]= P R < ——. 12
)= Pro k<K< = (1)

We prove the following perturbation Lemma, which is a variation of Lemma 3.2 in (Song & Yang, 2019) and Lemma 3.2 in
(Du et al., 2019c¢).

Lemma G.2 (Formal version of Lemma 4.2). Let R € (0, 1). Let {w1,wa, ..., w,} denote a collection of weight vectors
constructed as in Definition 2.1. For any set of weight vectors W1, ..., W, € R? that satisfy that for any r € [m],
W, — w,||2 < R, consider the map H : R™*% — R™"*" defined by

m

1
_ T
H(w)ij = —; 2 Y 157 0,:50,67 5, 20-
r=1
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Then we have that
| H(w) — H(w)||p < 2nR,

holds with probability at least 1 — n? - B - exp(—moR/10).

Proof. The random variable we care about is

n n

SO H(@)i ; — H(w)i 41
i=1 j=1
. 2
<Z 1gre,>0w7 2,20 = Lwle,>0wl 2, 20)

T
2
( ST,iJ) )

where the last step follows from defining, for each r, ¢, 7,

1
m2

SI/\
NE
NE

i

Il
-
<.

Il
-

1
m2

SH
-
NE
NE

Il
-
<.
Il
-
Il
—

r

Srig = 1T e, >0,@7 2,20 = LwTe;>0wlz;>0-

Now consider that 7, j are fixed. We simplify s, ; ; to s,.
Then s, is a random variable that only depends on w,..

If events —A; , and —A; . happen, then

1157 2:50,a7 2,50 — LwTai>0,wT 2;50| = 0.
If A;, or A;, happens, then

llﬁjxizo,a:zgo - 1w:mi20,wjazj20’ <L

Thus we have

and

IN - IA

& FE
— w
— \V)

— S
>

R}

<

>

N

IN

We also have |s,.| < 1.
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Fix b € B and consider s1, . .., Sm,,5. Applying Bernstein’s inequality (Lemma A.3), we get that for all ¢ > 0,

mo
Pr [Z Srp > 2moR 4+ mot

r=1

IN

Pr l%(snb —E[srp]) > mot]

r=1

. mat? /2
X I ——— .
P\ " 2moR + mot/3

IN

Choosing t = R, we get that

mo
Pr lz Spp > 3moR

r=1

<oy [ TOR2
= P\ TR + moR/3

exp (—moR/10).

IN

Thus, we have

1 mo T
Pr [m Z sr > 3R| < exp(—moR/10).
0 r=1

Next, taking a union bound over B such events,

pr| LS s ar| b LS LS, s am
UL T - _B b—1 05 "=
[ B 1 mo
= Pr -;%;5,.7b23R-B

This completes the proof. O

H. Analysis: convergence
H.1. The continuous case

We first consider the continuous case, in which the learning rate 7 is sufficiently small. This provides an intuition for the
discrete case.

For any s € [0, t], we define the kernel matrix H(s) € R™*":

m

1
H(S)z}j = E Z xiij1w7.(s)7zi20,w,,.(s)7wj20'

r=1

We consider the following dynamics of a gradient update:

o n2 OW(t)

oW () 1 LW (1)

13)

The dynamics of prediction can be written as follows, which is a simple calculation:
Fact H1. Su(t)= ZH(t)- (y — u(t)).

Proof. For each i € [n], we have
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d
_ N/ Of(W(t),a,7;) dw,(t)

z‘;< ow.(t) 7 dt >
e <5f<W(f>‘”f> _1.<WW>

=\ ow ) dw()
-y <W =Y (W, a0) = i)araiLurs,z0)
LR s JOF W (), a,xi) DF(W (1), a,x))
m;(%w”;'< e, A s >
= - (yﬂ_uJ(t))% H(t)7.]

where the first step follows from the chain rule, the second step follows from Eq. (13), the third step uses Eq. (5), the fourth
step uses Eq. (2), and the last step uses the definition of the matrix H. O

Lemma H.2. Suppose for 0 < s < t, Apin(H(w(s))) > A/2. Let Deis be defined as Dy := w. Then we have
1. lwy-(t) — w-(0)]|2 < Des, Vr € [m],
2. ly —u(®)[|5 < exp(=At) - ly — u(0)]3.

Proof. Recall that we can write the dynamics of prediction as

d
Sult) = 7 H®) - (y — u(t))

We can calculate the loss function dynamics

m

Ly~ w03 = 2y — )T 2 H(E) - (g~ u(t))

m
< - Dly - u() .

Thus we have 5 (exp(Z2At)|ly — u(t)[|3) < 0 and that exp(Z3 At) ||y — u(t)||3 is a decreasing function with respect to ¢.

Using this fact, we can bound the loss by
2 m 2
ly = u(®)]lz2 < exp(=—5At)lly — u(0)Il2. (14)

Now, we can bound the gradient norm. For 0 < s < ¢,

n

d
‘ G , n? 1_1(«” — i) - ar®i - Ly, ()72, 20 2
1 n
72 Z Yi — Uz
< WIIy—u(s)llz (15)

1 m
<~ exp(— 3 s)ly — u(0)
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where the first step follows from Eq. (5) and Eq. (13), the second step follows from the triangle inequality and a,, = +1 for
r € [m] and ||a;||]2 = 1 for i € [n], the third step follows from the Cauchy-Schwarz inequality, and the last step follows
from Eq. (14).

Integrating the gradient, we can bound the distance from the initialization

t
H%@—W@MS/ S i (9) s
0 s 2
_ Villy = u®)
< — .
O
Lemma H.3. If D.is < R. then for all t > 0, Apin (H (t)) > %)\ Moreover,
L. [, (t) = wr(0)[|2 < Degs, Vr € [m],
2. ly —u(®)]3 < eXP(—*M) ly — u(0)]13.

Proof. Assume the conclusion does not hold at time ¢. We argue that there must be some s < ¢ so that Amin (H (s)) < 3.
If Amin (H (£)) < £, then we can simply take s = ¢.
Otherwise since the conclusion does not hold, there exists r so that

[[wr(t) = wr(0)[| = Dets

or

ly = w(@®)lI3 > exp(=—5M)lly — u(0)]3.

Then by Lemma H.2, there exists s < ¢ such that

1
Amin (H(8)) < 5)\.
By Lemma G.2, there exists to > 0 defined as

to = inf {t >0: max l|w,(t) — w,(0)]|3 > R} .

re(m

Thus at time to, there exists 7 € [m] satisfying ||w,(to) — w,(0)||3 = R.
By Lemma G.2,

1
Amin(H(#)) = 5V < o

However, by Lemma H.2, this implies
||w7"(t0) - wr(O)HZ S Dcts < R7

which is a contradiction. O

Combining Lemma H.2 and Lemma H.3, we get that for a linear convergence to hold, it suffices to guarantee that

4vnlly — u(0)])2
rt+1) —w(0)]s L ———————= <R
Jwr(t +1) = w, (O)] o <
which implies
4 _

mA\
Note that the first step holds since ||y — u(0)[|2 = O(y/n) (see Claim L1).

Z > -2
n:>m O(n*\7?)
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H.2. The discrete case

We next move to the discrete case. The major difference from the continuous case is that the learning rate is not negligible
and there is a second order term for gradient descent which we need to handle.

Theorem H.4 (Formal version of Theorem 3.6). Suppose there are n input data points in d-dimensional space. Recall that
A = Anin(H®) > 0. Suppose the width of the neural network satisfies that

m = Q(A"2n%log®(n/s)).
We initialize W € R¥*™ and a € R™ as in Definition 2.1, and we set the step size, also called the learning rate, to be
1= O0(X/(n*m)).
Then with probability at least 1 — § over the random initialization, we have for k = 0,1,2, ... that
lu(t) =yl < (1 —mnA/2)* - [[u(0) - ylI3. (16)

Further, for any accuracy parameter € € (0, 1), if we choose the number of iterations

T= @(M> = A"?*n?%log(n/e),

mnA
then
lu(T) = yl3 < e
Correctness We prove Theorem H.4 by induction. The base case is ¢ = 0 and it is trivially true. Assume fori =0,...,k

we have proved Eq. (16) to be true. We want to show that Eq. (16) holds for ¢ = k£ + 1.

From the induction hypothesis, we have the following Lemma (see proof in Section I) stating that the weights should not
change too much. Note that the Lemma is a variation of Corollary 4.1 in (Du et al., 2019c).

Lemma H.5. If Eq. (16) holds fori =0, ..., k, then we have for all r € [m]

L < Wl uO)ls

(e + 1) = w,(0) —

Next, we calculate the difference of predictions between two consecutive iterations, analogous to the d“di# term in Fact H.1.
For each ¢ € [n], we have

wilt+1) —wi(t) = 3 ar - (St + 1) as) — dlwn(t) T,)

m
= E Ay * Z4 -
r=1

where

Zip =@ ((wr(t) — nW)Tm) — (b(wr(t)—r;ci).

Here we divide the right hand side into two parts. vy ; represents the terms for which the pattern does not change, while v ;
represents the terms for which the pattern may change. For each i € [n], we define the set .S; C [m] as

Si:={re[m]:Vwe R?s.t. lw —w:(0)|l2 <R, 1y (0)T2;50 = LuTa>0}-
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Then we define vy ; and v, ; as follows

Vi, - § QrZi

res;
Vo = Z QrZj p-
resS;
Define H and H+ € R™*" as
1 m
H(t)iyj = E Z x;rxj 1w7~(t)TziZOJUT(t)T-TJ 20 1n
r=1
1
H(t)l{_j = m Z x;rlewr(t)-rici207107~(t)-r50120' (1%
Tegi
and
Cy:= —2n(y — u(t))TH(t)(y —u(t)),
Cy = + 21y — u(t)) "H(t)*(y — u(t)),
03 = — Z(y — U(t) TUQ,
Cy = |Jut +1) — u(t)|3.

Then we have (the proof is deferred to Section I)
Claim H.6.

ly = u(t+ D3 = lly —u@®)l3 + C1 + C2 + C5 + Cu.

Applying Claim 1.2, 1.3, I.4 and L.5 gives

lly —u(t+1)|2 < |ly — u(®)||3- (1 — mnX + 8mnnR + 8mynR + m*n*n?).

Choice of n and R. Next, we want to choose 77 and R such that

(1 — mnA + 8mnnR + 8mnnR + m?n*n?) < (1 — mn)/2). (19)
If wesetn = ﬁ and R = ﬁ, we have

S8R + 8nynR = 16nnR < nA/4, and m?*n*n? < mn)/4.
This implies
ly =t +1)I3 < lly —u(@)l3 - (1 —mnA/2)

holds with probability at least 1 — poly(n, B) - exp(—mR/10).

Over-parameterization size, lower bound on m. We require

o Al @l _ A
mA\ 64n

and
poly(n, B) - exp(—mR/10) < 4.
By Claim 1.1, it is sufficient to choose

m = Q(A"2n?log(m/d) log*(n/s)).
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Table 2. Nt. stands for notation. m is the width of the neural network. n is the number of input data points. ¢ is the failure probability.

Nt. Choice Place Comment

A = Amin (H®) Lemma G.1 Data-dependent

R A/n Eq. (19) Maximal allowed movement of weight

Dt W Lemma H.2 Actual distance moved of weight, continuous case
D an‘anw Lemma H.5 Actual distance moved of weight, discrete case

n A (n’m) Eq. (19) Step size of gradient descent

mo | > A"?n?log(Bn/§) | Lemma G.1 Bounding discrete H and continuous H

mg | > R Tlog(Bn/f) Lemma G.2 Bounding discrete H (w) and discrete H (w + Aw)

mo | > R log(Bn/d) Lemma 1.2
mg | > R~ Tlog(Bn/f) Lemma 1.3
mo | > R~ log(Bn/d) Lemma 1.4
m | A2n2log®(mn/d) | LemmaH.3,Claim L1 | D < Rand ||y — u(0)||2 = O(n)

mo m/2 The number of different Gaussian vectors
B 2 Size of each block

T A~ ZnZ%log(1/¢)

I. Technical claims
I.1. Proof of Lemma H.5

Proof. We use the norm of the gradient to bound this distance,

k
lwy (k+ 1) = w(0)]2 <y

2

©
I
o
.
I
—

<y Va(l—mnA/2)"?|ly = u(0)|2
=0

<y V(L —mnA/2)2 |y — u(0)]2
=0
_ 4Vnlly = u(0)]2

mA

)

where the first step follows from Eq. (6), the second step follows from the expression of the gradient (see Eq. (15)), the third
step follows from |a,| = 1, [|[z;[|2 = 1 and 1y, (s),2,y>0 < 1, the fourth step follows from the Cauchy-Schwarz inequality,
the fifth step follows from the induction hypothesis, the sixth step relaxes the summation to an infinite summation, and the

last step follows from 372 (1 — mn)/2)¥/2 = ﬁ

Thus, we complete the proof. O
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1.2. Proof of Claim H.6

Proof. We can rewrite u(k + 1) — u(k) € R™ in the following sense

u(k +1) —u(k) = v1 + va.

Then, we can rewrite v ; € R with the notation of H and H €

vl’L = —T’ E Cﬂ fﬂ] E 1wr(k)-r1'1>0 wr(k)TxJ>0
res;

:_mnz wj = y;)(Hi (k) = H(k)),

which means vector v1 € R™ can be written as

v =m-n(y —u(k) " (H(k) = H* (k). (20)

We can rewrite ||y — u(k + 1)||3 as follows:

ly — u(k + D)3
= lly = u(k) = (u(k +1) = u(k))|3
= [ly = (k)3 =2(y — uk)) " (ulk +1) = u(k)) + Julk + 1) — u(k)||3.
:=C1+C2+C3 :=Cy

We can rewrite the second term in the above equation in the following sense,

(y = u(k)) " (ulk +1) = u(k))
= (y —u(k)) " (v1 + v2)
(

= (y —u(k)) o1 + (y — u(k)) vz
= +mn(y —u(k)) " H(k)(y — u(k))
—-C1/2
—m(y —u(k)) " H (k)" (y — u(k))
—C3/2

+(y — u(k)) s,
—_———

703 /2
where the third step follows from Eq. (20).

Thus, we have

lly — u(k +1)[3
= |ly — u(k)||5 + C1 + C2 + C3 + C4
< |ly — u(k)[|3(1 — mnA + 8mnnR + 8mnnR + m*n°n?)

where the last step follows from Claims 1.2, 1.3, 1.4 and 1.5, whose proofs are given later. O

L.3. Proof of Claim 1.1
Claim L1. For 0 < 6 < 1, with probability at least 1 — 6,

ly — u(0)[13 = O(nlog(m/6)log*(n/3)).
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Proof. Due to the way we choose w and a, it is easy to see that i(0) = 0 € R™. Thus

ly = w()[13 = llyll3 = O(n),

where the last step follows from |y;| = O(1) and y € R".

L.4. Proof of Claim 1.2
Claim L.2. Let Cy = —2mn(y — u(k)) " H(k)(y — u(k)). We have that
C1 < —mnA - |ly — u(k)|l3

holds with probability at least 1 — n? - B - exp(—moR/10).

Proof. By Lemma G.2 and our choice of R < 2=, we have || H(0) — H(k)||p < 2n- 2~ = 3. Recall that A = Ayin (H(0)).
Therefore

Amin(H (k) 2 Amin (H(0)) — [|1H(0) — H(k)[ = A/2.
Then we have
(y —u(k)) "H(k)(y — u(k)) = [ly — u(k)[3 - /2.
Thus, we complete the proof. O
L.5. Proof of Claim 1.3
Claim 1.3. Let Co = 2m - n(y — u(k)) " H(k)* (y — u(k)). We have that
Cy < 8m-nnR - |y — u(k)|l3
holds with probability 1 — n - B - exp(—mgR).

Proof. Note that
Cs < 21lly — u(k) |31 H (k).

We thus need an upper bound on || H (k)*||. Since || - | < || - || ., it suffices to upper bound || - || .

For each ¢ € [n], we define y; as follows

For each i € [n], b € [B], we define
mo
b
Yi = Z 17“651,'
r=1

Using Fact 1.6, we have ||H (k)12 < 2 S0 y2.

Fix i € [n]. Our plan is to use Bernstein’s inequality (Lemma A.3) to upper bound y; with high probability.
First by Eq. (12) we have E[1, .5 ] < R. We also have

E [(1r€§i - ]E[lrégiDQ] = E[liegi] - E[lregi]Q

A IA
> =
oy

[ V]
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Finally we have |1

Notice that {17'63 0, are mutually independent, since 1 . ¢g, only depends on wy-(0). Hence from Bernstein’s inequality
(Lemma A.3) we have for all t > 0,

res; 7E[ res; ]| <L

Prly; > R+t <e t2/2
Ty, > mg - <exp| ———= .
yi = mo P\ o R+ t/3
By setting ¢t = 3mR, we have
Pr [yf > 4m0R] < exp(—moR). 2D

Since we have B such copies of the above inequality, it follows that

B
Prly; > 4mR] = Pr lz y? > 4moR- B| < B-exp(—mgR)

b=1

Hence by a union bound, with probability at least 1 — n - B - exp(—mgR),
n
| H(k)* )% < 5 (4mR)* = 16n°R>.
Putting it all together we have
IH (k) || < [1H (k)| < 4nR

with probability at least 1 — n - B - exp(—mgoR).

I.6. Proof of Claim 1.4
Claim L4. Let C3 = —2(y — u(k)) "vo. Then we have
C3 < 8mnR - |y — u(k)|l3

with probability at least 1 — n - B - exp(—mgoR).

Proof. Using the Cauchy-Schwarz inequality, we have C5 < 2|jy — u(k)||2 - ||[v2]|2. We can upper bound ||vs]|2 in the

following way
(awv(k)))T ,, )
Ow, (k)

()

2

lv2l3 < Z

reS;
n m

= 772 Z (Z 1T'E§i
=1 \r=1

OL(W(F))

ow, (k)

2
<Z 1TES¢>

)

(4mR)?

NE

< 77 - max
re(m]

1

o
Il

- (Vallu(k) = yll2)*

M:
NE
H
&

h
Il

—
Il

-

M:

< - (Vllu(k) = yll2)* - ‘

= 16m*n? R*n?||u(k) — y||2,

1
-

where the first step follows from the definition of vy, the fourth step follows from max, [y, | OLW(k)) | < V- flu(k) —yll2,

Ow, (k)
and the fifth step follows from ) " | 1 < 4mR which holds with probability at least 1 — n - B - exp(—mqoR). O

g Ggi
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L.7. Proof of Claim L5
Claim L.5. Let Cy = |lu(k + 1) — u(k)||3. Then we have

Ca <m?-i°n® - |ly — u(k)]3.

Proof. We have

c4<n22<ZH BTk H) < o’y — u(k)]3:

where the first step follows from Eq. (6) and the last step follows from Eq. (15).

L.8. Proof of Fact 1.6
Fact 1.6. Let H(k)* be defined as in Eq. (10). Then we have

n

IH (k) |2 < Z

Proof. We have

IHEAE = SOS (H kL)

i=1 j=1
n n 1 N 9
(Y et o)
i=1 j=1 €S,
1 2
= ZZ (m Z'r 33] wy (k) Tz >0,w, (k) T2; >0 ° 1'r€S )
=1 j=1
aciTacj = 2
S () (S e L
i=1 j=1 r=1
n n m 9
< m2 Z Z ( 1w, k)Tax;>0,w,(k)Txz;>0 " 1r€§i>
i=1j=1 r=1
n & m 9
=5 (Z 1@1-)
i=1 r=1

n

_n 2

- m2 4 Yi -
=1

where the only inequality follows from ||z;||2, |22 < 1.



