
Bounding the Width of Neural Networks via Coupled Initialization

– A Worst Case Analysis –

Alexander Munteanu 1 Simon Omlor 2 Zhao Song 3 David P. Woodruff 4

Abstract

A common method in training neural networks

is to initialize all the weights to be independent

Gaussian vectors. We observe that by instead

initializing the weights into independent pairs,

where each pair consists of two identical Gaus-

sian vectors, we can significantly improve the

convergence analysis. While a similar technique

has been studied for random inputs [Daniely,

NeurIPS 2020], it has not been analyzed with

arbitrary inputs. Using this technique, we show

how to significantly reduce the number of neu-

rons required for two-layer ReLU networks, both

in the under-parameterized setting with logistic

loss, from roughly γ−8 [Ji and Telgarsky, ICLR

2020] to γ−2, where γ denotes the separation

margin with a Neural Tangent Kernel, as well as

in the over-parameterized setting with squared

loss, from roughly n4 [Song and Yang, 2019] to

n2, implicitly also improving the recent running

time bound of [Brand, Peng, Song and Weinstein,

ITCS 2021]. For the under-parameterized setting

we also prove new lower bounds that improve

upon prior work, and that under certain assump-

tions, are best possible.

1. Introduction

Deep learning has achieved state-of-the-art performance

in many areas, e.g., computer vision (LeCun et al., 1998;

Krizhevsky et al., 2012; Szegedy et al., 2015; He et al.,

*Equal contribution 1Dortmund Data Science Center,
Faculties of Statistics and Computer Science, TU Dort-
mund University, Dortmund, Germany 2Faculty of Statis-
tics, TU Dortmund University, Dortmund, Germany 3Adobe
Research 4Department of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA, USA. Correspondence to:
Alexander Munteanu <alexander.munteanu@tu-dortmund.de>, Si-
mon Omlor <simon.omlor@tu-dortmund.de>, David Woodruff
<dwoodruf@cs.cmu.edu>, Zhao Song <zsong@adobe.com>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2016), natural language processing (Collobert et al., 2011;

Devlin et al., 2018), self-driving cars, games (Silver et al.,

2016; 2017), and so on. A beautiful work connected the

convergence of training algorithms for over-parameterized

neural networks to kernel ridge regression, where the kernel

is the Neural Tangent Kernel (NTK) (Jacot et al., 2018).

The convergence results motivated by NTK mainly require

two assumptions: (1) the kernel matrix K formed by the in-

put data points has a sufficiently large minimum eigenvalue

λmin(K) ≥ λ > 0, which is implied by the separability of

the input point set (Oymak & Soltanolkotabi, 2020), and (2)

the neural network is over-parameterized. Mathematically,

the latter means that the width of the neural network is a suf-

ficiently large polynomial in the other parameters of the net-

work, such as the number of input points, the data dimension,

etc. The major weakness of such convergence results is that

the neural network has to be sufficiently over-parameterized.

In other words, the over-parameterization is a rather large

polynomial, which is not consistent with architectures for

neural networks used in practice, cf. (Kawaguchi & Huang,

2019).

Suppose m is the width of the neural network, which is the

number of neurons in a hidden layer, and n is the number

of input data points. In an attempt to reduce the number

of neurons for binary classification, a recent work (Ji &

Telgarsky, 2020) has shown that a polylogarithmic depen-

dence on n suffices to achieve arbitrarily small training

error. Their width, however, depends on the separation mar-

gin γ in the RKHS (Reproducing Kernel Hilbert Space)

induced by the NTK. More specifically they show an up-

per bound of m = O(γ−8log n) and a lower bound of

m = Ω(γ−1/2) relying on the NTK technique. Our new

analysis in this regime significantly improves the upper

bound to m = O(γ−2 log n).

We complement this result with a series of lower bounds.

Without relying on any assumptions we show m = Ω(γ−1)
is necessary. Assuming we need to rely on the NTK tech-

nique as in (Ji & Telgarsky, 2020), we can improve their

lower bound to m = Ω(γ−1log n). Finally, assuming we

need to rely on a special but natural choice for estimating

an expectation by its empirical mean in the analysis of Ji

& Telgarsky (2020), which we have adopted in our general

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

upper bound, we can even prove that m = Θ(γ−2log n),
i.e., that our analysis is tight. However, in the 2-dimensional

case we can construct a better estimator yielding a linear up-

per bound of m = O(γ−1log n), so the above assumption

seems strong for very low dimensions, though it is a seem-

ingly natural method that works in arbitrary dimensions.

We also present a candidate hard instance in Θ(log γ−1) di-

mensions which could potentially give a matching Ω(γ−2)
lower bound, up to logarithmic factors.

For regression with target variable y with |y| ∈ O(1) we

consider a two-layer neural network with squared loss and

ReLU as the activation function, which is standard and

popular in the study of deep learning. Du et al. (2019c)

show that m = O(λ−4n6) suffices (suppressing the depen-

dence on remaining parameters). Further, Song & Yang

(2019) improve this bound to m = O(λ−4n4). The trivial

information-theoretic lower bound is Ω(n), since the model

has to memorize1 the n input data points arbitrarily well.

There remains a huge gap between n and n4. In this work,

we improve the upper bound, showing that m = O(λ−2n2)
suffices for gradient descent to get arbitrarily close to 0
training error. We summarize our results and compare with

previous work in Table 1.

1.1. Related Work

The theory of neural networks is a huge and quickly growing

field. Here we only give a brief summary of the work most

closely related to ours.

Convergence results for neural networks with random

inputs. Assuming the input data points are sampled from a

Gaussian distribution is often done for proving convergence

results (Zhong et al., 2017b; Li & Yuan, 2017; Zhong et al.,

2017a; Ge et al., 2018; Bakshi et al., 2019; Chen et al., 2020).

A more closely related work is the work of Daniely (2020)

who introduced the coupled initialization technique, and

showed that Õ(n/d) hidden neurons can memorize all but

an ǫ fraction of n random binary labels of points uniformly

distributed on the sphere. Similar results were obtained

for random vertices of a unit hypercube and for random

orthonormal basis vectors. In contrast to our work, this

reference uses stochastic gradient descent, where the nice

assumption on the input distribution gives rise to the 1/d
factor; however, this reference achieves only an approximate

memorization. We note that full memorization of all input

points is needed to achieve our goal of an error arbitrarily

close to zero, and Ω(n) neurons are needed for worst case

inputs. Similarly, though not necessarily relying on random

inputs, Bubeck et al. (2020) shows that for well-dispersed

inputs, the neural tangent kernel (with ReLU network) can

memorize the input data with Õ(n/d) neurons. However,

1Here, by memorize, we mean that the network has zero error
on every input point.

their training algorithm is neither a gradient descent nor a

stochastic gradient descent algorithm, and also their network

consists of complex weights rather than real weights. One

motivation of our work is to analyze standard algorithms

such as gradient descent. In this work, we do not make any

input distribution assumptions; therefore, these works are

incomparable to ours. In particular, random data sets are

often well-dispersed inputs that allow smaller width and

tighter concentration, but are hardly realistic. In contrast,

we conduct worst case analyses to cover all possible inputs,

which might not be well-dispersed in practice.

Convergence results of neural networks in the under-

parameterized setting. When considering classification

with cross-entropy (logistic) loss, the analogue of the mini-

mum eigenvalue parameter of the kernel matrix is the maxi-

mum separation margin γ (see Assumption 3.1 for a formal

definition) in the RKHS of the NTK. Previous separability

assumptions on an infinite-width two-layer ReLU network

in (Cao & Gu, 2019b;a) and on smooth target functions in

(Allen-Zhu et al., 2019a) led to polynomial dependencies

between the width m and the number n of input points. The

work of (Nitanda et al., 2019) relies on the NTK separation

mentioned above and improved the dependence, but was

still polynomial.

A recent work of (Ji & Telgarsky, 2020) gives the first

convergence result based on an NTK analysis where the

direct dependence on n, i.e., the number of points, is only

poly-logarithmic. Specifically, they show that as long as the

width of the neural network is polynomially larger than 1/γ
and log n, then gradient descent can achieve zero training

loss.

Convergence results for neural networks in the over-

parameterized setting. There is a body of work study-

ing convergence results of over-parameterized neural net-

works (Li & Liang, 2018; Du et al., 2019c; Allen-Zhu et al.,

2019c;b; Du et al., 2019b; Allen-Zhu et al., 2019a; Song

& Yang, 2019; Arora et al., 2019b;a; Cao & Gu, 2019b;

Zou & Gu, 2019; Du et al., 2019a; Lee et al., 2020; Huang

& Yau, 2020; Chen & Xu, 2020; Brand et al., 2021; Li

et al., 2021; Song et al., 2021). One line of work explic-

itly works on the neural tangent kernel (Jacot et al., 2018)

with kernel matrix K. This line of work shows that as long

as the width of the neural network is polynomially larger

than n/λmin(K), then one can achieve zero training error.

Another line of work instead assumes that the input data

points are not too “collinear”, where this is formalized by

the parameter δ = mini 6=j{‖xi − xj‖2, ‖xi + xj‖2}2 (Li

& Liang, 2018; Oymak & Soltanolkotabi, 2020). These

works show that as long as the width of the neural network

is polynomially larger than 1/δ and n, then one can train the

neural network to achieve zero training error. The work of

2This is also sometimes called the separability of data points.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Song & Yang (2019) shows that the over-parameterization

m = Ω(λ−4n4) suffices for the same regime we consider3.

Additional work claims that even a linear dependence is pos-

sible, though it is in a different setting. E.g., (Kawaguchi &

Huang, 2019) show that for any neural network with nearly

linear width, there exists a trainable data set. Although their

width is small, this work does not provide a general conver-

gence result. Similarly, Zhang et al. (2021) use a coupled

LeCun initialization scheme that also forces the output at

initalization to be 0. This is shown to improve the width

bounds for shallow networks below n neurons. However,

their convergence analysis is local and restricted to cases

where it remains unclear how to find globally optimal or

even approximate solutions. We instead focus on cases

where gradient descent provably optimizes up to arbitrary

small error, for which we give a lower bound of Ω(n).

Other than considering over-parameterization in first-order

optimization algorithms, such as gradient descent, Brand

et al. (2021) show convergence results via second-order

optimization, such as Newton’s method. Their running time

also relies on m = Ω(λ−4n4), which is the state-of-the-art

width for first-order methods (Song & Yang, 2019), and

it was noted that any improvement to m would yield an

improved running time bound.

Our work presented in this paper continues and improves

those lines of research on understanding two-layer ReLU

networks.

Roadmap. In Section 2, we introduce our problem for-

mulations and present our main ideas. In Section 3, we

present our main results. In Section 4, we present a tech-

nical overview of our core analysis for the convergence

of the gradient descent algorithm in both of our studied

regimes and give a hard instance and the intuition behind

our lower bounds. In Section 5, we conclude our paper with

a summary and some discussion.

We defer all detailed technical proofs to the appendix. The

details for the logarithmic width networks under logistic loss

are given in Appendices B-F, whereas the polynomial width

networks with squared loss are analyzed in Appendices G-I.

2. Problem Formulation and Initialization

Scheme

We follow the standard problem formulation (Du et al.,

2019c; Song & Yang, 2019; Ji & Telgarsky, 2020). One

3Although the title of (Song & Yang, 2019) is quadratic, n2

is only achieved when the finite sample kernel matrix deviates
from its limit in norm only by a constant α w.h.p., and the inputs
are well-dispersed with constant θ, i.e., |〈xi, xj〉| ≤ θ/

√
n for all

i 6= j. In general, (Song & Yang, 2019) only achieve a bound of
n4.

major difference of our formulation with the previous work

is that we do not have a 1/
√
m normalization factor in

what follows. We note that only removing the normal-

ization does not give any improvement in the amount of

over-parameterization required of the previous bounds. The

output function of our network is given by

f(W,x, a) =
m∑

r=1

arφ(w
⊤
r x), (1)

where φ(z) = max{z, 0} denotes the ReLU activation func-

tion4, x ∈ R
d is an input point, w1, . . . , wm ∈ R

d are

weight vectors in the first (hidden) layer, and a1, . . . , am ∈
{−1,+1} are weights in the second layer. We only optimize

W and keep a fixed, which suffices to achieve zero error.

Also previous work shows how to extend the analysis to

include a in the optimization, cf. (Du et al., 2019c).

Definition 2.1 (Coupled Initialization). We initialize the

network weights as follows:

• For each r = 2i − 1, we choose wr to be a random

Gaussian vector drawn from N (0, I).

• For each r = 2i − 1, we sample ar from {−1,+1}
uniformly at random.

• For each r = 2i, we choose wr = wr−1.

• For each r = 2i, we choose ar = −ar−1.

We note this coupled initialization appeared before in

(Daniely, 2020) for analyzing well-spread random inputs on

the sphere. The initialization is chosen in such a way as to

ensure that for each of the n input points, the initial value

of the network is 0. Here we present an independent and

novel analysis, where this property is leveraged repeatedly

to bound the iterations of the optimization, which yields sig-

nificantly improved worst case bounds for any input. This

is crucial for our analysis, and is precisely what allows us to

remove the 1/
√
m factor that multiplies the right-hand-side

of (1) in previous work. Indeed, that factor was there pre-

cisely to ensure that the initial value of the network is small.

One might worry that our initialization causes the weights

to be dependent. Indeed, each weight vector occurs exactly

twice in the hidden layer. We are able to show that this

dependence does not cause problems for our analysis. In

particular, the minimum eigenvalue bounds of the associated

kernel matrix and the separation margin in the NTK-induced

feature space required for convergence in previous work can

be shown to still hold, since such analyses are loose enough

to accommodate such dependencies. Now, we have a similar

initialization as in previous work, but since we no longer

4We note that our analysis can be extended to Lipschitz contin-
uous, positively homogeneous activations.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

need a 1/
√
m factor in (1), we can show that we can change

the learning rate of gradient descent from that in previous

work and it no longer needs to be balanced with the initial

value, since the latter is 0. This ultimately allows for us to

use a smaller over-parameterization (i.e., value of m) in our

analyses. For r ∈ [m], we have5

∂f(W,x, a)

∂wr
= arx1w⊤

r x≥0 (2)

independent of the loss function that we aim to minimize.

2.1. Loss Functions

In this work, we mainly focus on two different types of loss

functions. The binary cross-entropy (logistic) loss and the

squared loss. These loss functions are arguably the most

well-studied for binary classification and for regression tasks

with low numerical error, respectively.

We are given a set of n input data points and corresponding

labels, denoted by

{(x1, y1), . . . , (xn, yn)} ⊂ R
d × R.

We make a standard normalization assumption, as in (Du

et al., 2019c; Song & Yang, 2019; Ji & Telgarsky, 2020).

In the case of logistic loss, the labels are restricted to yi ∈
{−1,+1}. In the case of squared loss, the labels are |yi| =
O(1). In both cases, as in prior work and for simplicity, we

assume that ‖xi‖2 = 16, ∀i ∈ [n]. We also define the output

function on input xi to be fi(W) = f(W,xi, a). At time

t, let u(W (t)) = (u1(W (t)), . . . , un(W (t))) ∈ R
n be the

prediction vector, where each ui(W (t)) is defined to be

ui(W (t)) = f(W (t), xi, a). (3)

For simplicity, we use u(t) to denote u(W (t)) in later dis-

cussion.

We consider the objective function L:

L(W) =

n∑

i=1

ℓ(yi, ui(W))

where the individual logistic loss is defined as ℓ(v1, v2) =
ln(1+exp(−v1v2)), and the individual squared loss is given

by ℓ(v1, v2) =
1
2 (v1 − v2)

2.

5Note that ReLU is not continuously differentiable. Slightly
abusing notation, one can view ∂f/∂wr as a valid (sub)gradient
given in the RHS of (2). This extends to ∂L/∂wr as the RHS of
(4) and (5) which yields the update rule (6) commonly used in
practice and in related theoretical work, cf. (Du et al., 2019c).

6We adopt the assumption for a concise presentation, but we
note it can be resolved by weaker constant bounds 0 < lb ≤
‖xi‖ ≤ ub, introducing a constant ub/lb factor, cf. (Du et al.,
2019c), or otherwise the data can be rescaled and padded with an
additional coordinate to ensure ‖xi‖ = 1, cf. (Allen-Zhu et al.,
2019a).

For logistic loss, we can compute the gradient5 of L in terms

of wr ∈ R
d

∂L(W)

∂wr
=

n∑

i=1

− exp(−yif(W,xi, a))

1 + exp(−yif(W,xi, a))
yiarxi1w⊤

r xi≥0

(4)

For squared loss, we can compute the gradient5 of L in

terms of wr ∈ R
d

∂L(W)

∂wr
=

n∑

i=1

(f(W,xi, a)− yi)arxi1w⊤
r xi≥0. (5)

We apply gradient descent to optimize the weight matrix W
with the following standard update rule,

W (t+ 1) = W (t)− η
∂L(W (t))

∂W (t)
, (6)

where 0 < η ≤ 1 determines the step size.

In our analysis, we assume that W consists of m0 blocks of

Gaussian vectors, where in each block, there are B identical

copies of the same Gaussian vector. Thus, we have m =
m0 ·B. Ultimately we show it already suffices to set m0 =
m/2 and B = 2. We use wr,b to denote the b-th row of the

r-th block, where b ∈ [B] and r ∈ [m0]. When there is

no confusion, we also use wr to denote the r-th row of W ,

r ∈ [m].

3. Our Results

Our results are summarized and compared to previous work

in Table 1. Our first main result is an improved general

upper bound for the width of a neural network for binary

classification, where training is performed by minimizing

the cross-entropy (logistic) loss. We need the following as-

sumption which is standard in previous work in this regime

(Ji & Telgarsky, 2020).

Assumption 3.1 (informal version of Definition C.1 and

Assumption C.1). We assume that there exists a mapping

v with ‖v(z)‖2 ≤ 1 for all z ∈ R
d and margin γ > 0 such

that

min
i∈[n]

E
w∼N (0,Id)

[yi〈v(w), xi〉1[〈w, xi〉 > 0]] > γ .

Our theorem improves the previous best upper bound of Ji &

Telgarsky (2020) from O(γ−8log n) to only O(γ−2log n).
As a side effect, we also remove the dependence of the

number n of iterations.

Theorem 3.1 (informal version of Theorem E.1). Given n
labeled data points in d-dimensional space, consider a two-

layer ReLU neural network with width m = Ω(γ−2log n).

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Table 1. Summary of our results and comparison to previous work. The improvements are mainly in the dependence on the parameters

λ, γ, n affecting the width m. None of the results depend on the dimension d, except the lower bounds, which require d ≥ 2. In both

regimes the dependence on ǫ is the same as in previous literature. We note that the difference between regimes comes from different

properties of the loss functions that affect the convergence rate, cf. (Nitanda et al., 2019). We want to remark that our squared loss result

also implicitly improves the dependence on m in the running time bound of Brand et al. (2021) (see Theorem 1.1, Remark 1.2, and Table

1 in (Brand et al., 2021)).

References Width m Iterations T Loss function

(Ji & Telgarsky, 2020) O(γ−8 log n) O(ǫ−1γ−2(
√
log n+ log(1/ǫ))2) logistic loss

Our work O(γ−2 log n) O(ǫ−1γ−2log2(1/ǫ)) logistic loss

(Ji & Telgarsky, 2020) Ω(γ−1/2) N/A logistic loss

Our work Ω(γ−1 log n) N/A logistic loss

(Du et al., 2019c) O(λ−4n6) O(λ−2n2 log(1/ǫ)) squared loss

(Song & Yang, 2019) O(λ−4n4) O(λ−2n2 log(1/ǫ)) squared loss

Our work O(λ−2n2) O(λ−2n2 log(1/ǫ)) squared loss

Starting from a coupled initialization (Def. 2.1), for any ac-

curacy ǫ ∈ (0, 1), we can ensure the cross-entropy (logistic)

training loss is less than ǫ when running gradient descent

for T = O(ǫ−1γ−2log2(1/ǫ)) iterations.

As a corollary of Theorem 3.1, we immediately obtain the

same significant improvement from O(γ−8log n) to only

O(γ−2log n) for the generalization results of Ji & Telgarsky

(2020). To this end, we first extend Assumption 3.1 to hold

for any data generating distribution instead of a fixed input

data set:

Assumption 3.2. (Ji & Telgarsky, 2020) We assume that

there exists a mapping v with ‖v(z)‖2 ≤ 1 for all z ∈ R
d

and margin γ > 0 such that

E
w∼N (0,Id)

[y〈v(w), x〉1[〈w, x〉 > 0]] > γ

for almost all (x, y) sampled from the data distribution D.

By simply replacing the main result, Theorem 2.2 of Ji &

Telgarsky (2020) by our Theorem 3.1 in their proof6, we

obtain the following improved generalization bounds with

full gradient descent:

Corollary 3.1. Given a distribution D over labeled data

points in d-dimensional space, consider a two-layer ReLU

neural network with width m = Ω(γ−2log n). Starting

from a coupled initialization (Def. 2.1), with constant prob-

ability over the data samples from D and over the random

initialization, it holds for an absolute constant C > 1 that

Pr
(x,y)∼D

[yf(Wk, x, a) ≤ 0] ≤ 2ǫ+
8 ln(4/ǫ)

γ2
√
n

+6

√
ln(2C)

2n
,

where k denotes the step attaining the smallest empirical

risk before T = O(ǫ−1γ−2log2(1/ǫ)) iterations.

6We note that in Theorem 3.1 we did not bound the distance
between the weights at each step t ≤ T compared to the initializa-
tion t = 0. Since this can be done exactly as in Theorem 2.2 of Ji
& Telgarsky (2020), we omit this detail for brevity of presentation.

Corollary 3.1 can then be used exactly as in (Ji & Telgarsky,

2020) to obtain:

Corollary 3.2. Under Assumption 3.2, given ǫ > 0, and

a uniform random sample of size n = Ω̃(γ−4ǫ−2) and

m = Ω(γ−2log n) it holds with constant probability that

Pr(x,y)∼D [yf(Wk, x, a) ≤ 0] ≤ ǫ where k denotes the

step attaining the smallest empirical risk before T =
O(ǫ−1γ−2log2(1/ǫ)) iterations.

We finally note that the improved generalization bound can

be further extended exactly as in (Ji & Telgarsky, 2020) to

work for stochastic gradient descent.

Next, we turn our attention to lower bounds. We provide an

unconditional linear lower bound, and note that Lemma D.4

yields an m = Ω(n) lower bound for any loss function, in

particular also for squared loss; see Sec. 4.2.

Theorem 3.2 (informal version of Lemma D.4). There ex-

ists a data set in 2-dimensional space, such that any two-

layer ReLU neural network with width m = o(γ−1) neces-

sarily misclassifies at least Ω(n) points.

Next, we impose the same assumption as in (Ji & Telgarsky,

2020), namely, that separability is possible at initialization

of the NTK analysis. Formally, this means that there exists

V ∈ R
m×d such that no i ∈ [n] has yi〈∇fi(W0), V 〉 ≤ 0.

Under this condition we improve their lower bound of m =
Ω(γ−1/2) to m = Ω(γ−1log n):

Theorem 3.3 (informal version of Lemma D.3). There

exists a data set of size n in 2-dimensional space, such

that for any two-layer ReLU neural network with width

m = o(γ−1log n) it holds with constant probability over

the random initialization of W0 that for any weights V ∈
R

m×d there exists at least one index i ∈ [n] such that

yi〈∇fi(W0), V 〉 ≤ 0.

As pointed out in (Ji & Telgarsky, 2020) this does not neces-

sarily mean that gradient descent cannot achieve arbitrarily

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

small training error for lower width, but the NTK analysis

fails in this case.

An even stronger assumption is that we must rely on the

finite dimensional separator U in the analysis of Ji & Telgar-

sky (2020) that mimics the NTK separator v in the RKHS

achieving a margin of γ > 0. In this case we can show that

our upper bound is indeed tight, i.e., for this natural choice

of U and the necessity of a union bound over n points, we

have m = Θ(γ−2 log n), which follows from the following

lemma.

Lemma 3.4 (informal version of Lemma F.1). There exists

a data set in 2-dimensional space, such that for the two-

layer ReLU neural network with parameter matrix U and

width m = o(γ−2 log n), with constant probability there

exists an i ∈ [n] such that yi〈∇fi(W0), U〉 ≤ 0.

In fact, this is also the only place in our improved analysis

where the width m depends on poly(log n, 1/γ); every-

where else it only depends on log(1/ǫ). Our linear upper

bound for the 2-dimensional space gets around this lower

bound by defining a different U in Lemma F.2:

Lemma 3.5 (follows directly using Lemma F.2 in the anal-

ysis of Theorem 3.1). Given n labeled data points in

2-dimensional space, consider a two-layer ReLU neural

network with width m = Ω(γ−1log n). Starting from a

coupled initialization (Def. 2.1), for arbitrary accuracy

ǫ ∈ (0, 1) , we can ensure the cross-entropy (logistic) train-

ing loss is less than ǫ when running gradient descent for

T = O(ǫ−1γ−2log2(1/ǫ)) iterations.

However, the construction in Lemma F.2 / 3.5 uses a net

argument of size (1/γ)d−1 to discretize the points on the

sphere, and that – already in 3 dimensions – matches the

quadratic general upper bound and becomes worse in higher

dimensions. It thus remains an open question whether there

are better separators in dimensions d ≥ 3 or if the quadratic

lower bound is indeed tight. We also present a candidate

hard instance, for which we conjecture that it has an Ω(γ−2)
lower bound, up to logarithmic factors, for any algorithm;

see Sec. 4.2.

Next, we move on to the analysis of the squared loss. We

first state our assumption that is standard in the literature on

the width of neural networks, and is necessary to guarantee

the existence of an arbitrarily accurate parameterization (Du

et al., 2019c; Song & Yang, 2019).

Assumption 3.3. Let K be the NTK kernel matrix where

for each i, j ∈ [n] we have that Ki,j equals

K(xi, xj) = E
w∼N (0,Id)

[x⊤
i xj1[〈xi, w〉 > 0, 〈xj , w〉 > 0]].

We assume in the following that the smallest eigenvalue

λ(K) of K satisfies λ(K) > λ, for some value λ > 0.

We state our main result for squared loss as follows:

Theorem 3.6 (informal version of Theorem H.4). Given n
input data points in d-dimensional space, consider a two-

layer neural network with width m = Ω(λ−2n2). Starting

from a coupled initialization (Def. 2.1) and for any accuracy

ǫ ∈ (0, 1), the squared training loss is smaller than ǫ after

T = O(λ−2n2 log(1/ǫ)) iterations of gradient descent.

4. Technical Overview

4.1. Logarithmic Width for Logistic Loss, Upper

Bound

The work of (Ji & Telgarsky, 2020) shows that we can bound

the actual logistic loss averaged over T gradient descent

iterations Wt, t ∈ [T] using any reference parameterization

W in the following NTK bound:

1

T

T∑

t=1

L(Wt) ≤
1

T
‖W0 −W‖2F +

2

T

T∑

t=1

L(t)(W), (7)

where L(t)(W) :=
∑n

i=1 ℓ
(
yi, 〈∇fi(Wt),W 〉

)
. It seems

very natural to choose W = W0 + ρU where U is a rea-

sonably good separator for the NTK points with bounded

norm ‖U‖F ≤ 1, meaning that for all i it holds that

yi〈∇fi(W0), U〉 = Ω(γ). It thus has the same margin

as in the infinite case up to constants. This already im-

plies that the first term of Eq. (7) is sufficiently small when

we choose roughly T = ρ2/ǫ iterations. Now, in order to

bound the second term, Ji & Telgarsky (2020) propose to

show L(t)(W) ≤ ǫ for every t ≤ T , which is implied if for

each index i ∈ [n] we have that

yi〈∇fi(Wt),W 〉 = yi〈∇fi(W0),W0〉
+ yi〈∇fi(Wt)−∇fi(W0),W0〉+ ρyi〈∇fi(Wt), U〉

is sufficiently large. Here, we can leverage the coupled

initialization scheme (Def. 2.1) to prove Theorem 3.1:

bounding the first term for random Gaussian parameters,

this results in roughly the value
√
log n, but now since

for each Gaussian vector there is another identical Gaus-

sian with opposite signs, those simply cancel and we have

yi〈∇fi(W0),W0〉 = 0 in the initial state.

To bound the second term, the previous analysis (Ji & Tel-

garsky, 2020) relied on a proper scaling with respect to

the parameters m, ρ, and γ, where the requirement that

m ≥ ρ2/γ6 led to a bound of roughly m ≥ γ−8 log n.

Using the coupled initialization, however, the terms again

cancel in such a way that the scaling does not matter,

and in particular does not need to be balanced among the

variables. Another crucial insight is that the gradient is

entirely independent of the scale of the parameter vec-

tors in W0. This implies ∇fi(Wt) = ∇fi(W0) and thus

yi〈∇fi(Wt)−∇fi(W0),W0〉 = 0 again, notably without

any implications for the width of the neural network!

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Indeed, the only place in the analysis where the width is con-

strained by roughly m ≥ γ−2 log n occurs when bounding

the contribution of the third term by ρyi〈∇fi(Wt), U〉 =
ρyi〈∇fi(W0), U〉 = Ω(ργ). This is done exactly as in (Ji &

Telgarsky, 2020) by a Hoeffding bound to relate the separa-

tion margin of the finite subsample to the separation margin

of the infinite width case, i.e.,

yi
1

m

m∑

j=1

〈v(zj), xi〉1[〈zj , xi〉 > 0]

≈ yi

∫
〈v(z), xi〉1[〈z, xi〉 > 0] dµN (z) ≥ γ (8)

followed by a union bound over all n input points.

The special and natural choice of U such that uj =
ajv(zj)/

√
m yields Eq. (8) above, where notably the LHS

equals the RHS in expectation. We will discuss this particu-

lar choice again in our lower bounds section 4.2.

4.2. Logarithmic Width for Logistic Loss, Lower

Bounds

Our assumption on the separation margin is formally defined

in Section C where we also give several examples and useful

lemmas to bound γ. Our lower bounds in Section D are

based on the following hard instance in 2 dimensions. The

points are equally spaced and with alternating labels on the

unit circle.

Formally, let n be divisible by 4. We define the alter-

nating points on the circle data set to be X = {xk :=(
cos
(
2kπ
n

)
, sin

(
2kπ
n

))
| k ∈ [n]} ⊂ R

2, and we put

yk = (−1)k for each k ∈ [n].

A natural choice for v would send any z ∈ R
d to its closest

point in our data set X , multiplied by its label. However,

applying Lemma C.2 gives us the following improved map-

ping, which is even optimal by Lemma C.5: note that for

any z ∈ R
d that is not collinear with any input point, there

exists a unique iz such that z ∈ Cone({xiz , xiz+1}). In-

stead of mapping to the closest input point, in what follows,

we map to a point that is nearly orthogonal to z,

rz :=
xizyiz + xiz+1yiz+1

‖xiz − xiz+1‖2
.

More precisely we define v : Rd → R
d by

v(z) =

{
0 , if ∃xi ∈ X, τ ≥ 0 : z = τxi

(−1)n/4+1rz , otherwise.

See Fig. 1 for an illustration. We show in Lemma D.2 that

γv = γ(X,Y) = Ω(n−1) and consequently n = Ω(γ−1).
Now we can derive our lower bounds under increasingly

stronger assumptions as follows:

Figure 1. The picture shows how v(z) is constructed: we subtract

the vector x3 which is labeled −1 from the vector x2 which is

labeled 1. We obtain rz after rescaling to unit norm. Since n/4 =
3 is odd we have v(z) = rz .

+

-

+

-

+

-

+

-

+

-

+

-

z

C(Uz)

v̄(z)

For the first unconditional bound, Theorem 3.2, we map the

input points on the unit circle by contraction to the unit ℓ1
ball and note that by doing so, the labels remain in alter-

nating order. Next we note that the output function f of

our network restricted to the ℓ1 ball is a piecewise linear

function of x and thus its gradient ∂f
∂x can only change in the

vertices of the ball or where x is orthogonal to one of the pa-

rameter vectors ws, i.e., at most O(m) times. Now consider

any triple of consecutive points. Since they have alternating

labels, the gradient needs to change at least once for each

triple. Consequently m = Ω(n) = Ω(γ−1), improving

the Ω(γ−1/2) conditional lower bound in (Ji & Telgarsky,

2020). We remark that since the argument only depends on

the output function but not on the loss function, Lemma D.4

yields an m = Ω(n) lower bound for any loss function, in

particular also for squared loss.

Now consider any argument that relies on an NTK analysis,

where the fist step is to show that for our choice of the

width m, we have separability at initialization; this is how

the argument in (Ji & Telgarsky, 2020) proceeds. Formally,

assume that there exists W ∈ R
m×d such that for all i ∈ [n],

we have yi〈∇fi(W0),W 〉 > 0. This condition enables us

to show an improved lower bound, Theorem 3.3, as follows.

Partition our data set into tuples, each consisting of four

consecutive points. Now consider the event that there exists

a point xi such that all parameter vectors ws satisfy

1[〈xi, ws〉 > 0] = 1[〈xi+1, ws〉 > 0]

= 1[〈xi+2, ws〉 > 0] = 1[〈xi+3, ws〉 > 0],

which implies that at least one of the points in

{xi, xi+2, xi+3, xi+4} is misclassified. To avoid this, it

means that our initialization necessarily needs to include, for

each i divisible by 4, a vector ws that hits the areas orthogo-

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

nal to the cones separating two points out of the quadruple.

There are O(n) quadruples to hit, each succeeding with

probability Ω(n−1) with respect to the Gaussian measure.

This is exactly the coupon collector’s problem, where the

coupons are the quadruples, and it is known (Erdős & Rényi,

1961) that m = Ω(n log n) = Ω(γ−1 log n) are necessary

to collect all O(n) items with constant probability, which

yields our improved lower bound for this style of analysis.

One thus needs a different approach beyond NTK to break

this barrier, cf. (Ji & Telgarsky, 2020).

For the upper bound, Theorem 3.1, we further note that

the existence of an NTK separator W as above is not suffi-

cient, i.e., we need to construct a separator U satisfying the

separability condition. Moreover, to achieve a reasonable

bound in terms of the margin parameter γ−1 we also need

that U achieves a separation margin of Ω(γ). To do so, it

seems natural to construct U such that uj = ajv(wj)/
√
m

for all j ∈ [m]. Indeed, this is the most natural choice

because the resulting separation margin in the finite case is

exactly the empirical mean estimator for the infinite case

and thus standard concentration bounds (Hoeffing’s bound)

yield the necessary proximity of the margins between the

two cases, cf. Eq. (8). Let us assume we fix this choice

of U . This condition enables us to prove a quadratic lower

bound, Lemma 3.4, which shows that our analysis of the

upper bound is actually tight: for our alternating points on a

circle example, the summands have high variance, and there-

fore Hoeffding’s bound is tight by a matching lower bound

(Feller, 1943). Consequently, m = Ω(γ2 log n), and one

would need a different definition of U and a non-standard

estimation of γ to break this barrier.

Finally, we conjecture that the quadratic upper bound is

actually tight in general. Specifically, we conjecture the

following: take n = 1/γ2 random points on the sphere

in Θ(log(1/γ)) dimensions and assign random labels yi ∈
{−1, 1}. Then the NTK margin is Ω(γ).

If the conjecture is true, we obtain an Ω(1/γ2) lower

bound for m, up to logarithmic factors.7 Indeed, we can

round the weights to the nearest vectors in a net of size

poly(1/γ)O(log(1/γ)), which only changes γ by a constant

factor. Then, if we could classify with zero error, we would

encode n = 1/γ2 random labels using m logO(1)(1/γ) bits,

which implies m ≥ Ω(1/(γ2 logO(1)(1/γ))). We note that

Ji & Telgarsky (2020) gave an O(1/
√
n) upper bound for

the margin of any data with random labels, but we would

need a matching Ω(1/
√
n) lower bound for this instance in

order for this argument to work.

7This might be confusing, since we argued before that such data
is particularly mild for the squared loss function. This may be due
to the different loss functions, but regardless, it does not contradict

the Õ(n/d) bound of (Daniely, 2020) for the same data distribution
in the squared loss regime, since n/d = Θ(1/(γ2 log(1/γ))).

4.3. Polynomial Width for Squared Loss

The high level intuition of our proof of Theorem 3.6 is to

recursively prove the following: (1) the weight matrix does

not change much, and (2) given that the weight matrix does

not change much, the prediction error, measured by the

squared loss, decays exponentially.

Given (1) we prove (2) as follows. The intuition is that

the kernel matrix does not change much, since the weights

do not change much, and it is close to the initial value

of the kernel matrix, which is in turn close to the NTK

matrix, involving the entire Gaussian distribution rather

than our finite sample. The NTK matrix has a lower bound

on its minimum eigenvalue by Assumption 3.3. Thus, the

prediction loss decays exponentially.

Given (2) we prove (1) as follows. Since the prediction

error decays exponentially, one can show that the change in

weights is upper bounded by the prediction loss, and thus

the change in weights also decays exponentially and the

total change is small.

First, we show a concentration lemma for initialization:

Lemma 4.1 (Informal version of Lemma G.1). Let m =
m0B. Let {w1, w2, . . . , wm} ⊂ R

d denote a collection

of vectors constructed as in Definition 2.1. We define

Hcts, Hdis ∈ R
n×n as follows

Hcts
i,j := E

w∼N (0,I)

[
x⊤
i xj1w⊤xi≥0,w⊤xj≥0

]
,

Hdis
i,j :=

1

m

m∑

r=1

[
x⊤
i xj1w⊤

r xi≥0,w⊤
r xj≥0

]
.

Let λ = λmin(H
cts). If m0 = Ω(λ−2n2 log(nB/δ)), we

have that

‖Hdis −Hcts‖F ≤ λ

4
, and λmin(H

dis) ≥ 3

4
λ

holds with probability at least 1− δ.

Second, we can show a perturbation bound for random

weights.

Lemma 4.2 (Informal version of Lemma G.2). Let

R ∈ (0, 1). Let {w1, w2, . . . , wm} denote a collec-

tion of weight vectors constructed as in Definition 2.1.

For any set of weight vectors w̃1, . . . , w̃m ∈ R
d that

satisfy that for any r ∈ [m], ‖w̃r − wr‖2 ≤ R,

consider the map H : R
m×d → R

n×n defined by

H(w)i,j := 1
mx⊤

i xj

∑m
r=1 1w̃⊤

r xi≥0,w̃⊤
r xj≥0. Then we

have that ‖H(w)−H(w̃)‖F < 2nR holds with probability

at least 1− n2 ·B · exp(−m0R/10).

Next, we have the following lemma (see Section I for a

formal proof) stating that the weights should not change too

much. Note that the lemma is a variation of Corollary 4.1 in

(Du et al., 2019c).

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Lemma 4.3. If Eq. (16) holds for i = 0, . . . , k, then we

have for all r ∈ [m]

‖wr(t+ 1)− wr(0)‖2 ≤ 4
√
n‖y − u(0)‖2

mλ
:= D.

Next, we calculate the difference of predictions between

two consecutive iterations, analogous to the
dui(t)

dt term in

Fact H.1. For each i ∈ [n], we have

ui(t+ 1)− ui(t) =

m∑

r=1

ar ·
(
φ(wr(t+ 1)⊤xi)

−φ(wr(t)
⊤xi)

)
=

m∑

r=1

ar · zi,r.

where

zi,r := φ

((
wr(t)− η

∂L(W (t))

∂wr(t)

)⊤
xi

)
− φ(wr(t)

⊤xi).

Here we divide the right hand side into two parts. First, v1,i
represents the terms for which the pattern does not change,

while v2,i represents the terms for which the pattern may

change. For each i ∈ [n], we define the set Si ⊂ [m] as

Si := {r ∈ [m] : ∀w ∈ R
d s.t. ‖w − wr(0)‖2 ≤ R,

and 1wr(0)⊤xi≥0 = 1w⊤xi≥0}.
Then we define v1,i and v2,i as follows

v1,i :=
∑

r∈Si

arzi,r, v2,i :=
∑

r∈Si

arzi,r.

Define H and H⊥ ∈ R
n×n as

H(t)i,j :=
1

m

m∑

r=1

x⊤
i xj1wr(t)⊤xi≥0,wr(t)⊤xj≥0, (9)

H(t)⊥i,j :=
1

m

∑

r∈Si

x⊤
i xj1wr(t)⊤xi≥0,wr(t)⊤xj≥0, (10)

and

C1 := − 2η(y − u(t))⊤H(t)(y − u(t)),

C2 := + 2η(y − u(t))⊤H(t)⊥(y − u(t)),

C3 := − 2(y − u(t))⊤v2,

C4 := ‖u(t+ 1)− u(t)‖22.
Then we have that (see Section I for a formal proof)

Claim 4.4. ‖y − u(t+ 1)‖22 = ‖y − u(t)‖22 + C1 + C2 +
C3 + C4.

Applying Claim I.2, I.3, I.4 and I.5 with the appropriate

choice of parameters, we can show that the ℓ2 norm shrinks

in each iteration t: ‖y−u(t+1)‖22 ≤ ‖y−u(t)‖22 ·α, where

α = (1−mηλ+ 8mηnR+ 8mηnR+m2η2n2).

5. Discussion

We present a novel worst case analysis using an initializa-

tion scheme for neural networks involving coupled weights.

This technique is versatile and can be applied in many dif-

ferent settings. We give an improved analysis based on this

technique to reduce the parameterization required to show

the convergence of 2-layer neural networks with ReLU acti-

vations in the under-parameterized regime for the logistic

loss to m = O(γ−2 log n), which significantly improves

the prior O(γ−8 log n) bound. We further introduce a new

unconditional lower bound of m = Ω(γ−1) as well as con-

ditional bounds to narrow the gap in this regime. We also

reduce the amount of over-parameterization required for the

standard squared loss function to roughly m = O(λ−2n2),
improving the prior O(λ−4n4) bound, and coming closer to

the Ω(n) lower bound. We believe this is a significant theo-

retical advance towards explaining the behavior of 2-layer

neural networks in different settings. It is an intriguing open

question to close the gaps between upper and lower bounds

in both the under and over-parameterized settings. We note

that the quadratic dependencies arise for several fundamen-

tal reasons in our analysis, and are already required to show

a large minimum eigenvalue λ of our kernel matrix, or a

large separation margin γ at initialization. In the latter case

we have provided partial evidence of optimality by showing

that our analysis has an m = Ω(γ−2 log n) lower bound, as

well as a candidate hard instance for any possible algorithm.

Another future direction is to extend our results to more

than two layers, which may be possible by increasing m by

a poly(L) factor, where L denotes the network depth (Chen

et al., 2019). We note that this also has not been done in

earlier work (Ji & Telgarsky, 2020).

Acknowledgements

We thank the anonymous reviewers and Binghui Peng for

their valuable comments. Alexander Munteanu and Simon

Omlor were supported by the German Research Foundation

(DFG), Collaborative Research Center SFB 876, project C4

and by the Dortmund Data Science Center (DoDSc). David

Woodruff would like to thank NSF grant No. CCF-1815840,

NIH grant 5401 HG 10798-2, ONR grant N00014-18-1-

2562, and a Simons Investigator Award.

References

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and gener-

alization in overparameterized neural networks, going

beyond two layers. In Advances in neural information

processing systems, pp. 6155–6166, 2019a.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory

for deep learning via over-parameterization. In ICML,

2019b.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Allen-Zhu, Z., Li, Y., and Song, Z. On the convergence rate

of training recurrent neural networks. In NeurIPS, 2019c.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and

Wang, R. On exact computation with an infinitely wide

neural net. In NeurIPS. arXiv preprint arXiv:1904.11955,

2019a.

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. Fine-

grained analysis of optimization and generalization for

overparameterized two-layer neural networks. In ICML.

arXiv preprint arXiv:1901.08584, 2019b.

Bakshi, A., Jayaram, R., and Woodruff, D. P. Learning two

layer rectified neural networks in polynomial time. In

Conference on Learning Theory (COLT), pp. 195–268.

PMLR, 2019.

Bernstein, S. On a modification of chebyshev’s inequality

and of the error formula of laplace. Ann. Sci. Inst. Sav.

Ukraine, Sect. Math, 1(4):38–49, 1924.

Blum, A., Hopcroft, J., and Kannan, R. Foundations of Data

Science. Cambridge University Press, 2020.

Brand, J. v. d., Peng, B., Song, Z., and Weinstein, O. Train-

ing (overparametrized) neural networks in near-linear

time. In ITCS, 2021.

Bubeck, S., Eldan, R., Lee, Y. T., and Mikulincer, D. Net-

work size and size of the weights in memorization with

two-layers neural networks. In NeurIPS, 2020.

Cao, Y. and Gu, Q. A generalization theory of gradient

descent for learning over-parameterized deep relu net-

works. CoRR, abs/1902.01384, 2019a. URL http:

//arxiv.org/abs/1902.01384.

Cao, Y. and Gu, Q. Generalization bounds of stochastic

gradient descent for wide and deep neural networks. In

NeurIPS, pp. 10835–10845, 2019b.

Chen, L. and Xu, S. Deep neural tangent kernel and

laplace kernel have the same rkhs. arXiv preprint

arXiv:2009.10683, 2020.

Chen, S., Klivans, A. R., and Meka, R. Learning deep

relu networks is fixed-parameter tractable. arXiv preprint

arXiv:2009.13512, 2020.

Chen, Z., Cao, Y., Zou, D., and Gu, Q. How much over-

parameterization is sufficient to learn deep relu networks?

CoRR, abs/1911.12360, 2019. URL http://arxiv.

org/abs/1911.12360.

Chernoff, H. A measure of asymptotic efficiency for tests

of a hypothesis based on the sum of observations. The

Annals of Mathematical Statistics, pp. 493–507, 1952.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,

Kavukcuoglu, K., and Kuksa, P. Natural language pro-

cessing (almost) from scratch. Journal of machine learn-

ing research, 12(ARTICLE):2493–2537, 2011.

Daniely, A. Neural networks learning and memorization

with (almost) no over-parameterization. In Advances in

Neural Information Processing Systems 33, (NeurIPS),

2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805,

2018.

Du, S. S., Hou, K., Póczos, B., Salakhutdinov, R., Wang,

R., and Xu, K. Graph neural tangent kernel: Fusing

graph neural networks with graph kernels. arXiv preprint

arXiv:1905.13192, 2019a.

Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. Gradient

descent finds global minima of deep neural networks. In

International Conference on Machine Learning (ICML).

https://arxiv.org/pdf/1811.03804, 2019b.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient de-

scent provably optimizes over-parameterized neural net-

works. In ICLR. https://arxiv.org/pdf/1810.

02054, 2019c.

Erdős, P. and Rényi, A. On a classical problem of probability

theory. Magyar Tud. Akad. Mat. Kutató Int. Közl., 6:215–

220, 1961.

Feller, W. Generalization of a probability limit theorem of

cramér. Trans. Am. Math. Soc., 54:361–372, 1943.

Ge, R., Lee, J. D., and Ma, T. Learning one-hidden-layer

neural networks with landscape design. In ICLR, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition

(CVPR), pp. 770–778, 2016.

Hoeffding, W. Probability inequalities for sums of bounded

random variables. Journal of the American Statistical

Association, 58(301):13–30, 1963.

Huang, J. and Yau, H.-T. Dynamics of deep neural networks

and neural tangent hierarchy. In International Conference

on Machine Learning (ICML), pp. 4542–4551. PMLR,

2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:

convergence and generalization in neural networks. In

Proceedings of the 32nd International Conference on

Neural Information Processing Systems (NeurIPS), pp.

8580–8589, 2018.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Ji, Z. and Telgarsky, M. Polylogarithmic width suffices

for gradient descent to achieve arbitrarily small test error

with shallow relu networks. In ICLR, 2020.

Kawaguchi, K. and Huang, J. Gradient descent finds global

minima for generalizable deep neural networks of prac-

tical sizes. In 2019 57th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), pp.

92–99. IEEE, 2019.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks.

Advances in neural information processing systems, 25:

1097–1105, 2012.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

Lee, J. D., Shen, R., Song, Z., Wang, M., and Yu, Z. Gen-

eralized leverage score sampling for neural networks. In

NeurIPS, 2020.

Li, X., Jiang, M., Zhang, X., Kamp, M., and Dou, Q. Fedbn:

Federated learning on non-iid features via local batch

normalization. In International Conference on Learn-

ing Representations (ICLR). https://openreview.

net/forum?id=6YEQUn0QICG, 2021.

Li, Y. and Liang, Y. Learning overparameterized neural

networks via stochastic gradient descent on structured

data. In NeurIPS, 2018.

Li, Y. and Yuan, Y. Convergence analysis of two-layer

neural networks with ReLU activation. In Advances in

neural information processing systems (NIPS), pp. 597–

607, 2017.

Nitanda, A., Chinot, G., and Suzuki, T. Gradient de-

scent can learn less over-parameterized two-layer neu-

ral networks on classification problems. arXiv preprint

arXiv:1905.09870, 2019.

Oymak, S. and Soltanolkotabi, M. Toward moderate overpa-

rameterization: Global convergence guarantees for train-

ing shallow neural networks. IEEE Journal on Selected

Areas in Information Theory, 1(1):84–105, 2020.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,

Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,

Panneershelvam, V., Lanctot, M., et al. Mastering the

game of go with deep neural networks and tree search.

nature, 529(7587):484–489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,

I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,

Bolton, A., et al. Mastering the game of go without

human knowledge. nature, 550(7676):354–359, 2017.

Song, Z. and Yang, X. Quadratic suffices for over-

parametrization via matrix chernoff bound. arXiv preprint

arXiv:1906.03593, 2019.

Song, Z., Yang, S., and Zhang, R. Does preprocessing help

training over-parameterized neural networks? Advances

in Neural Information Processing Systems (NeurIPS), 34,

2021.

StEx, S. How can we sum up sin and cos se-

ries when the angles are in arithmetic progres-

sion? https://math.stackexchange.com/

questions/17966/, 2011. Accessed: 2021-05-21.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,

A. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern

recognition, pp. 1–9, 2015.

Tropp, J. A. An introduction to matrix concentration inequal-

ities. Foundations and Trends® in Machine Learning, 8

(1-2):1–230, 2015.

Zhang, J., Zhang, Y., Hong, M., Sun, R., and Luo, Z. When

expressivity meets trainability: Fewer than n neurons can

work. In Advances in Neural Information Processing

Systems 34 (NeurIPS), pp. 9167–9180, 2021.

Zhong, K., Song, Z., and Dhillon, I. S. Learning non-

overlapping convolutional neural networks with multiple

kernels. arXiv preprint arXiv:1711.03440, 2017a.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,

I. S. Recovery guarantees for one-hidden-layer neural

networks. In ICML, 2017b.

Zou, D. and Gu, Q. An improved analysis of training over-

parameterized deep neural networks. In NeurIPS, pp.

2053–2062, 2019.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Appendix

A. Probability Tools

In this section we introduce the probability tools that we use in our proofs. Lemma A.1, A.2 and A.3 concern tail bounds for

random scalar variables. Lemma A.4 concerns the cumulative density function of the Gaussian distribution. Finally, Lemma

A.5 concerns a concentration result for random matrices.

Lemma A.1 (Chernoff bound (Chernoff, 1952)). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi and Xi = 0 with

probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then

1. Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0 ;

2. Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.

Lemma A.2 (Hoeffding bound (Hoeffding, 1963)). Let X1, · · · , Xn denote n independent bounded variables in [ai, bi].
Let X =

∑n
i=1 Xi. Then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma A.3 (Bernstein’s inequality (Bernstein, 1924)). Let X1, · · · , Xn be independent zero-mean random variables.

Suppose that |Xi| ≤ M almost surely, for all i. Then, for all positive t,

Pr

[
n∑

i=1

Xi > t

]
≤ exp

(
− t2/2∑n

j=1 E[X
2
j] +Mt/3

)
.

Lemma A.4 (Anti-concentration of the Gaussian distribution). Let X ∼ N (0, σ2), that is, the probability density function

of X is given by φ(x) = 1√
2πσ2

e−
x2

2σ2 . Then

Pr[|X| ≤ t] ∈
(
2

3

t

σ
,
4

5

t

σ

)
.

Lemma A.5 (Matrix Bernstein, Theorem 6.1.1 in (Tropp, 2015)). Consider a finite sequence {X1, · · · , Xm} ⊂ R
n1×n2 of

independent, random matrices with common dimension n1 × n2. Assume that

E[Xi] = 0, ∀i ∈ [m] and ‖Xi‖ ≤ M, ∀i ∈ [m].

Let Z =
∑m

i=1 Xi. Let Var[Z] be the matrix variance statistic of the sum:

Var[Z] = max

{∥∥∥
m∑

i=1

E[XiX
⊤
i]
∥∥∥,
∥∥∥

m∑

i=1

E[X⊤
i Xi]

∥∥∥
}
.

Then

E[‖Z‖] ≤ (2Var[Z] · log(n1 + n2))
1/2 +M · log(n1 + n2)/3.

Furthermore, for all t ≥ 0,

Pr[‖Z‖ ≥ t] ≤ (n1 + n2) · exp
(
− t2/2

Var[Z] +Mt/3

)
.

Lemma A.6 ((Feller, 1943)). Let Z be a sum of independent random variables, each attaining values in [0, 1], and let

σ =
√

Var(Z) ≥ 200. Then for all t ∈ [0, σ2

100] we have

Pr[X ≥ E[X] + t] ≥ c · exp(−t2/(3σ2))

where c > 0 is some fixed constant.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

B. Preliminaries for log width under logistic loss

We consider a set of data points x1, . . . , xn ∈ R
d with ‖xi‖2 = 1 and labels y1, . . . , yn ∈ {−1, 1}. The two layer network

is parameterized by m ∈ N, a ∈ R
m and W ∈ R

m×d as follows: we set the output function

f(x,W, a) =
1√
m

m∑

s=1

asφ (〈ws, x〉) ,

which is scaled by a factor 1/
√
m compared to the presentation in the main body to simplify notation, and to be more

closely comparable to (Ji & Telgarsky, 2020). The changed initialization yields initial output of 0, independent of the

normalization, and thus, consistent with the introduction, we could as well omit the normalization here and instead use

it only in the learning rate. The main improvement of the network width comes from the fact that the learning rate is no

compromise between the right normalization in the initial state and the appropriate progress in the gradient iterations, but

can be adjusted to ensure the latter independent of the former. In the output function, φ(v) = max{0, v} denotes the ReLU

function for v ∈ R. To simplify notation we set fi(W) = f(xi,W, a). Further we set ℓ(v) = ln(1 + exp(−v)) to be the

logistic loss function. We use a random initialization W0, a0 given in Definition 2.1. Our goal is to minimize the empirical

loss of W given by

R(W) =
1

n

n∑

i=1

ℓ (yifi(W)) .

To accomplish this, we use a standard gradient descent algorithm. More precisely for t ≥ 0 we set

Wt+1 = Wt − η∇R(Wt)

for some step size η. Further, it holds that

∇R(W) =
1

n

n∑

i=1

yi∇fi(W)ℓ′ (yifi(W)) .

Moreover, we use the following notation

f
(t)
i (W) := 〈∇fi(Wt),W 〉

and

R(t)(W) :=

n∑

i=1

ℓ
(
yif

(t)
i (W)

)
.

Note that
∂fi(W)
∂ws

= 1√
m
as1[〈ws, xi〉 > 0]xi. In particular the gradient is independent of ‖ws‖2, which will be crucial in

our improved analysis.

C. Main assumption and examples

C.1. Main assumption

Here, we define the parameter γ > 0 which was also used in (Ji & Telgarsky, 2020). Intuitively, γ determines the separation

margin of the NTK. Let B = Bd = {x ∈ R
d | ‖x‖2 ≤ 1} be the unit ball in d dimensions. We set FB to be the set of

functions f mapping from dom(f) = R
d to range(f) = B. Let µN denote the Gaussian measure on R

d, specified by the

Gaussian density with respect to the Lebesgue measure on R
d.

Definition C.1. Given a data set (X,Y) ∈ R
n×d × R

n and a map v ∈ FB we set

γv = γv(X,Y) := min
i∈[n]

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dµN (z).

We say that v is optimal if γv = γ(X,Y) := maxv′∈FB
γv′ .

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

We note that maxv′∈FB
γv′ always exists since FB is a set of bounded functions on a compact subset of Rd. We make the

following assumption, which is also used in (Ji & Telgarsky, 2020):

Assumption C.1. It holds that γ = γ(X,Y) > 0.

Before we prove our main results we show some properties of v to develop a better understanding of our assumption. The

following lemma shows that the integral can be viewed as a finite sum over certain cones in R
d. Given U ⊆ {1, 2, . . . , n} =

[n] we define the cone

C(U) := {x ∈ R
d | 〈x, xi〉 > 0 if and only if i ∈ U}.

Note that C(∅) = {x ∈ R
d | 〈x, xi〉 ≤ 0 for all i ∈ [n]} and that Rd =

⋃̇
U⊆[n]C(U). Further we set P (U) to be the

probability that a random Gaussian is an element of C(U) and PU to be the probability measure of random Gaussians

z ∼ N (0, I) restricted to the event that z ∈ C(U). The following lemma shows that we do not have to consider each

mapping in FB but it suffices to focus on a specific subset. More precisely we can assume that v is constant on the cones

C(U). In particular this means we can assume v(z) = v(cz) for any z ∈ R
d and scalar c > 0 and that v is locally constant.

Lemma C.2. Let v ∈ FB . Then there exists v′ such that γv′ = γv and v′ is constant on C(U) for any U ⊆ [n].

Proof. Observe that for any distinct U,U ′ ⊆ [n] the cones C(U) and C(U ′) are disjoint since for any x ∈ R
d the cone

C(Ux) containing x is given by Ux = {i ∈ [n] | 〈x, xi〉 > 0}. Further we have that
⋃

U⊆[n] C(U) = R
d since any x ∈ R

d

is included in some C(Ux). Thus for any i ∈ [n] we have

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dµN (z) = yi

∑

U⊆[n]

P (U)

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dPU (z)

= yi
∑

U⊆[n],i∈U

P (U)

∫
〈v(z), xi〉 dPU (z)

= yi
∑

U⊆[n],i∈U

P (U) 〈xi,

∫
v(z) dPU (z)〉.

Hence defining v′(x) = P (Ux)
∫
v(z) dPUx

(z) satisfies

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dµN (z) = yi

∫
〈v′(z), xi〉1[〈xi, z〉 > 0] dµN (z)

and since ‖v(z)‖2 ≤ 1 it follows that ‖v′(z)‖2 ≤ 1 for all z ∈ R
d.

Next we give an idea how the dimension d can impact γ. We show that in the simple case, where R
d can be divided into

orthogonal subspaces, such that each data point xi is an element of one of the subspaces, there is a helpful connection

between a mapping v ∈ FB and the mapping that v induces on the subspaces.

Lemma C.3. Assume there exist orthogonal subspaces V1, . . . Vs of Rd with R
d =

⊕
j≤s Vj such that for each i ∈ [n]

there exists j ∈ [s] such that xi ∈ Vj . Then the following two statements hold:

Part 1. Assume that for each j ∈ [s] there exists γj > 0 and vj ∈ FB such that for all xi ∈ Vj we have

yi

∫
〈vj(z), xi〉1[〈xi, z〉 > 0] dµN (z) ≥ γj .

Then for each ρ ∈ R
s with ‖ρ‖2 = 1 there exists v ∈ FB with

min
i∈[n]

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dµN (z) ≥ min

j∈[s]
ρjγj .

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Part 2. Assume that v maximizes the term

γ∗ = min
i∈[n]

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dµN (z),

and that γ∗ > 0. Given any vector z ∈ R
d we denote by pj(z) ∈ Vj the projection of z onto Vj . Let ρ′j =

maxz∈Rd ‖pj(v(z))‖2. Then for all j ∈ [s] the mapping vj(z) =
pj(v(z))

ρ′
j

maximizes

γj = min
xi∈Vj

yi

∫
〈vj(z), xi〉1[〈xi, z〉 > 0] dµN (z)

and it holds that ‖vj(z)‖2 ≤ 1 for all z ∈ R
d. In other words if v is optimal for (X,Y) then vj is optimal for (Xj , Yj)

where Xj = {xi ∈ Vj | i ∈ [n]} with the corresponding labels, i.e., yxi
= yi.

Proof. Part 1.

Since applying the projection pj onto Vj to any point z ∈ R
d does not change the scalar product of z and xi ∈ Vj , i.e.,

〈xi, z〉 = 〈xi, pj(z)〉, we can assume that for all z ∈ R
d we have vj(z) ∈ Vj . Let z ∈ R

d. We define v(z) :=
∑s

j=1 ρjvj(z).
Then by orthogonality

‖v(z)‖22 =
s∑

j=1

ρ2j‖vj(z)‖22 ≤
s∑

j=1

ρ2j · 1 = 1.

Thus it holds that v ∈ FB . Further we have 〈xi, v(z)〉 =
∑s

k=1 ρk〈xi, vk(z)〉 = ρj〈xi, vj(z)〉 for xi ∈ Vj again by

orthogonality it holds that

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dµN (z) = ρjyi

∫
〈vj(z), xi〉1[〈xi, z〉 > 0] dµN (z) ≥ ρjγj .

Part 2.

For the sake of contradiction assume that there are k ≤ s and v∗k ∈ FB such that

γ∗
k = min

xi∈Vk

yi

∫
〈vk(z), xi〉1[〈xi, z〉 > 0] dµN (z) = γk + ǫ

for some ǫ > 0. Using Part 1. we can construct a new mapping v′ ∈ FB by using the mappings vj defined in the

lemma for j 6= k, and exchange vk by v∗k. Also as in Part 1 let ρj = ρ′j + ǫ′ for j 6= k and ρk = ρ′k − 2 sǫ′

ρ′
k

with

ǫ′ = min{ρ′2
k

4s ,
ρ′2
k ǫ

4(γk+ǫ)s}. Then we have

2s+ sǫ′ + 4s2
ǫ′

ρ′2k
≤ 4s.

Subtracting 4s and multiplying with ǫ′ gives us

2sǫ′ + sǫ′2 − 4sǫ′ + 4

(
sǫ′

ρ′k

)2

≤ 0.

Hence it holds that

s∑

j=1

ρ2j ≤



∑

j 6=k

(ρ′2j + 2ǫ′ + ǫ′2)


+ ρ′2k − 4sǫ′ + 4

(
sǫ′

ρ′k

)2

≤




s∑

j=1

ρ′2j


+ 2sǫ′ + sǫ′2 − 4sǫ′ + 4

(
sǫ′

ρ′k

)2

≤
s∑

j=1

ρ′2j ≤ 1.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

For any xi ∈ Vj with j 6= k we have by orthogonality as in Part 1.

yi

∫
〈v′(z), xi〉1[〈xi, z〉 > 0] dµN (z) = ρjyi

∫
〈vj(z), xi〉1[〈xi, z〉 > 0] dµN (z)

= (ρ′j + ǫ′)yi

∫
〈vj(z), xi〉1[〈xi, z〉 > 0] dµN (z).

Further we have

min
xi∈Vk

yi

∫
〈v′(z), xi〉1[〈xi, z〉 > 0] dµN (z) = ρkγ

∗
k

= (ρ′k − 2
s

ρk
ǫ′)(γk + ǫ)

≥ ρ′kγk − 2s

ρ′k
· ρ′2k ǫ
4(γk + ǫ)s

(γk + ǫ) + ρ′kǫ

= ρ′kγk +
ρ′kǫ
2

.

We conclude again by orthogonality that

yi

∫
〈v′(z), xi〉1[〈xi, z〉 > 0] dµN (z) = ρjyi

∫
〈v′j(z), xi〉1[〈xi, z〉 > 0] dµN (z)

> min
j

ρ′jγj

= γ∗

and thus v′ contradicts the maximizing choice of v.

As a direct consequence we get that the problem of finding an optimal v for the whole data set can be reduced to finding an

optimal vj for each subspace.

Corollary C.4. Assume there exist orthogonal subspaces V1, . . . Vs of Rd with R
d =

⊕
j≤s Vj such that for each i ∈ [n]

there exists j ∈ [s] with xi ∈ Vj . For j ∈ [s] let (Xj , Yj) denote the data set consisting of all data points (xi, yi) where

xi ∈ Vj . Then v is optimal for (X,Y) if and only if for all j ∈ [s] the mapping vj defined in Lemma C.3 is optimal for

(Xj , Yj) and γv =
∑

j∈[s] γjρ
∗
j where ρ∗ = argmaxρ∈Ss−1 minj∈[s] ρjγj .

Proof. One direction follows immediately by Lemma C.3 2) the other direction is a direct consequence of the formula given

in Lemma C.3 1).

The following bound for γ simplifies calculations in some cases of interest. It also gives us a natural candidate for an optimal

v ∈ FB . Given an instance (X,Y) recall that Uz = {i ∈ [n] | 〈z, xi〉 > 0}. We set

v0(z) =

∑
i∈[n]∩Uz

xiyi

‖∑i∈[n]∩Uz
xiyi‖2

. (11)

We note that v0(z) is not optimal in general but if instances have certain symmetry properties, then v0(z) is optimal.

Lemma C.5. For any subset S ⊆ [n] it holds that

γ ≤
∑

U⊆[n]

P (U)
1

|S|

∥∥∥∥∥
∑

i∈S∩U

xiyi

∥∥∥∥∥
2

Proof. By Lemma C.2 there exists an optimal v that is constant on C(U) for all U ⊆ [n]. For x ∈ U let zU = v(x). Then

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

by using an averaging argument and the Cauchy–Schwarz inequality we get

γ ≤ 1

|S|
∑

i∈S

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dµN (z)

=
1

|S|
∑

i∈S

yi
∑

U⊆[n],i∈U

P (U)〈xi, zU 〉

=
1

|S|
∑

U⊆[n]

P (U)〈
∑

i∈S∩U

yixi, zU 〉

≤
∑

U⊆[n]

P (U)
1

|S|

∥∥∥∥∥
∑

i∈S∩U

xiyi

∥∥∥∥∥
2

.

Finally we give an idea of how two points and their distance impacts the cones and their hitting probabilities.

Lemma C.6. Let x1, x2 ∈ Sd−1 be two points with 〈x1, x2〉 > 0 and ‖x1 − x2‖2 = b > 0. Set V ′
1 = {x ∈ R

d | 〈x1, x〉 >
0 ≥ 〈x2, x〉}. Then for a random Gaussian z we have z ∈ V ′

1 with probability P (V ′
1) where b

7 ≤ P (V ′
1) ≤ b

5 . Further for

any z with ‖z‖2 = 1 it holds that |〈x1, z〉 − 〈x2, z〉| ≤ b.

Proof. We define V1 = {x ∈ R | 〈x1, x〉 > 0}. Then P (V1) =
1
2 since for a random Gaussian z it holds that 〈x1, z〉 > 0

with probability 1
2 . Since the space spanned by x1 and x2 is 2-dimensional, we can assume that x1 and x2 are on the unit

circle and that x1 = (1, 0) and x2 = (cos(ϕ), sin(ϕ)) for ϕ ≤ π
2 . Note that P (V ′

1) is given by b′

2π where b′ = ϕ is the

length of the arc connecting x1 and x2 on the circle. Since b is the Euclidean distance and thus the shortest distance between

x1 and x2 we have b ≤ b′. Further it holds that

h(ϕ) :=
b′

b
=

ϕ√
(1− cos(ϕ))2 + sin(ϕ)2

=
ϕ√

2− 2 cos(ϕ)
.

Then h′(ϕ) is positive on (0, π
2], so h(ϕ) is monotonously non-decreasing, and thus h(ϕ) ≤ h(π2) = (π/2)√

2
= π√

8
and

b′ ≤ b · π√
8

. Consequently for P (V ′
1) =

b′

2π we have that

b

7
≤ b

2π
≤ P (V ′

1) ≤
b

2π
· π√

8
≤ b

5
.

For the second part we note that for any z with ‖z‖2 = 1 we get

|〈z, x1〉 − 〈z, x2〉| = |〈z, x1 − x2〉| ≤ ‖z‖2‖x1 − x2‖2 = 1 · b

by using the Cauchy–Schwarz inequality.

C.2. Example 1: Orthogonal unit vectors

Let us start with a simple example first: let ei ∈ R
d be the i-th unit vector. Let n = 2d, xi = ei for i ≤ d and xi = −ei−d

otherwise with arbitrary labels. First consider the instance (Xi, Yi) created by the points xi and xi+d for i ≤ d. Then

we note that vi sending any point z with 〈z, ei〉 > 0 to eiyi and any other point to −eiyi+d is optimal since it holds that

γi = γvi
(Xi, Yi) =

∫
1 · 1[〈xi, z〉 > 0] dµN (z) = 1

2 . Since the subspaces Vi = span{ei} are orthogonal we can apply

Corollary C.4 with vector ρ = (1√
d
)d. Thus the optimal γ for our instance is 1

2
√
d

.

C.3. Example 2: Two differently labeled points at distance b

The next example is a set of two points x1, x2 ∈ R
d with y1 = 1 = −y2 and 〈x1, x2〉 > 0. Let U1 = {1}, U2 =

{2}, U = {1, 2} and V1 = {x ∈ R | 〈x1, x〉 > 0}. Then P (U) = P (V1) − P (U1) ≥ 1
2 − b

5 by Lemma C.6 and

P (U1) = P (U2) = P (V1)− P (U) ≤ 1
2 − (12 − b

5) =
b
5 . For an illustration see Figure 2.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

x1

x2

C(U1)

C(U2)

C(U)

Figure 2. a) Two points x1 and x2 on the sphere. C(U) is the cone consisting of vectors having positive scalar product with both points.

The cone C(Ui) consists of vectors having positive scalar product with xi but negative scalar product with the other point. b) The

probability P (Ui) of a random Gaussian being in the cone C(Ui) is exactly the length of the shortest arc on the circle (which is close to

the Euclidean distance) connecting the points, divided by 2π.

By Lemma C.2 we can assume that there exists an optimal v which is constant on C(U) and constant on C(Ui) for i ∈ {1, 2},

i.e., that v(z) = z′ ∈ B for all z ∈ C(U) and v(z) = z′′ ∈ B for all z ∈ C(U1).

By Lemma C.6 we have |〈x1, z
′〉− 〈x2, z

′〉| ≤ b. Consequently since x1 and x2 have different labels there exists at least one

i ∈ {1, 2} with 〈z′, xi〉yi ≤ b/2 since 〈z′, x1〉 ≥ b/2 implies −〈z′, x2〉 ≤ −〈z′, x1〉+|〈x1, z
′〉−〈x2, z

′〉| ≤ −b/2+b = b/2
. Then by Lemma C.2 we have

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dµN (z) ≤ P (U) · 〈z′, xi〉+ P (Ui) · 〈z′′, xi〉

≤ 1

2
· b
2
+

b

5
· 1

≤ b

2
.

C.4. Example 3: Constant labels

Let X be any data set and let Y be the all 1s vector. Then for v(z) = z
‖z‖2

it holds that

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0] dµN (z) = yi

∫ 〈
z

‖z‖2
, xi

〉
1[〈xi, z〉 > 0] dµN (z)

∗
= Ω

(
1√
d

)
.

Thus we have γ(X,Y) = Ω
(

1√
d

)
. We note that ∗ is a well-known fact, see Blum et al. (2020). Since we consider only a

fixed xi, we can assume that yixi equals the first standard basis vector e1. We are interested in the expected projection of a

uniformly random unit vector z
‖z‖2

in the same halfspace as e1.

We give a short proof for completeness: note that z
‖z‖2

= (z1, . . . , zd)/
√∑d

i=1 z
2
i with zi ∼ N (0, 1), is a uniformly

random unit vector u. By Jensen’s inequality we have E[
√∑d

i=1 z
2
i] ≤

√
E[
∑d

i=1 z
2
i] =

√∑d
i=1 E[z

2
i] =

√
d. Thus, with

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

probability at least 3/4 it holds that

√∑d
i=1 g

2
i ≤ 4

√
d, by a Markov bound. Also, |zi| ≥

√
2 · erf−1(1/2) holds with

probability at least 1/2, since the right hand side is the median of the half-normal distribution, i.e., the distribution of |zi|,
where zi ∼ N (0, 1). Here erf denotes the the Gauss error function.

By a union bound over the two events it follows with probability at least 1− 1
2 − 1

4 = 1
4 that

|ui| = |zi|/

√√√√
d∑

i=1

z2i ≥
√
2 · erf−1(1/2)/(4

√
d).

Consequently E[|ui|] ≥ 1
4 ·

√
2 · erf−1(1/2)/(4

√
d) = Ω(1/

√
d) and thus

yi

∫ 〈
z

‖z‖2
, xi

〉
1[〈xi, z〉 > 0] dµN (z) =

1

2
E[|ui|] = Ω(1/

√
d).

C.5. Example 4: The hypercube

In the following example we use xi for the i-th coordinate of x ∈ R
d rather than for the i-th data point. We consider the

hypercube X = {− 1√
d
,+ 1√

d
}d with different labelings. Given x ∈ X we set Sx = {i ∈ [d] | xi = − 1√

d
} and σ(x) = |Si|.

C.5.1. MAJORITY LABELS

First we consider the data set X ′ = X \ {x ∈ X | σ(x) = d
2} and assign yx = −1 if σ(x) > d

2 and yx = −1 if σ(x) < d
2 .

Note that d− 2σ(x) < 0 holds if and only if yx = −1. Let xc ∈ X be the constant vector that has all coordinates equal to

1/
√
d. Now, if we fix v(z) = xc for any z, then for all x ∈ X ′ we have that

yx

∫
〈v(z), x〉1[〈x, z〉 > 0] dµN (z) =

yx
2

· d− 2σ(x)

d
≥ 1

2
· 1
d
.

Hence it follows that γ(X ′, Y) ≥ 1
2d

C.5.2. PARITY LABELS

Second we consider the case where yx = (−1)σ(x). Then we get the following bounds for γ:

Lemma C.7. Consider the hypercube with parity labels.

1) If d is odd, then γ = 0.

2) If d is even, then γ > 0.

Proof. 1): First note that the set Z = {z ∈ R
d | ∃x ∈ X with 〈x, z〉 = 0} is a null set with respect to the Gaussian

measure µN . Fix any coordinate i ≤ d. W.l.o.g. let i 6= 1. Given x ∈ M := { 1√
d
} × {− 1√

d
, 1√

d
}d−2 consider the

set S(x) = {(1√
d
, x), (− 1√

d
, x), (1√

d
,−x), (− 1√

d
,−x)}. Note that X is the disjoint union X =

⋃̇
x∈MS(x). Further

since d − 1 is even, it holds that y(1√
d
,x) = y(1√

d
,−x) = −y(− 1√

d
,−x) = −y(− 1√

d
,x). Let z ∈ Z and let Uz = {x′ ∈

X | 〈z, x′〉 > 0}. W.l.o.g. let 〈z, (1√
d
, x)〉 > 0. Then we have 〈z, x′〉 > 0 for exactly one x′ ∈ {(− 1√

d
, x), (1√

d
,−x)}

and 〈z, (− 1√
d
,−x)〉 < 0. Now since y(1√

d
,x)(

1√
d
, x)i = −y(1√

d
,x)(−1, x)i = −y(1√

d
,x)(1,−x)i we conclude that for all

x ∈ M it holds that

∑

x′∈S(x)∩Uz

(x′yx′)i =
1√
d
+ (− 1√

d
) = 0

and thus we get

∑

x∈X∩Uz

(xyx)i =
∑

x∈M

∑

x′∈S(x)∩Uz

(xyx)i = 0.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Thus by Corollary C.5 it holds that γ = 0.

2): Consider the set M comprising the middle points of the edges, i.e., M = {x ∈ {− 1√
d
, 0, 1√

d
}d | xi =

0 for exactly one coordinate i ∈ [d]}. Observe that for any x ∈ X and z ∈ M the dot product d · 〈x, z〉 is an odd

integer and thus |〈x, z〉| ≥ 1/d. Hence, for the cone C(Uz) containing z we have P (Uz) > 0.

Now fix z ∈ M and let i ∈ [d] be the coordinate with zi = 0. Recall σ(z) = |{k ∈ [d] | zk = − 1√
d
}| and set

v(z) = ei · σ(z) · (−1)d/2+1. Let j ∈ [d] be any coordinate other than i and consider the pairs {v, w} ⊂ X where v ∈ X
with vj = zj , 〈v, z〉 > 1/d and w = v − 2vjej . We denote the union of all those pairs by V ′. The points v and w have the

same entry at coordinate i but different labels. Hence it holds that
∑

(v,w)∈V ′ viyv + wiyw = 0.

Next consider the set of remaining vectors with 〈v, z〉 > 0 which is given by V = {x ∈ X | xj = zj and 〈x, z〉 = 1/d}. For

all x ∈ V with xi =
1√
d

it holds that σ(x) = σ(z)−(d2−1) = σ(z)·(−1)d/2+1 since the projection of x to R
d−1 that results

from removing the i-th entry of x, has Hamming distance (d2 − 1) to z projected to R
d−1, and vice versa for all x ∈ V with

xi = −1/
√
d we have that σ(x) = σ(z)·(−1)d/2. Hence for x ∈ V it holds that yxv(z) = ei·σ(z)·(−1)d/2+1 = ei·sgn(xi)

and thus we have
∑

x∈X∩Uz

yx〈x, v(z)〉 =
∑

x∈V

yx〈x, v(z)〉 +
∑

(v,w)∈V ′

yv〈v, v(z)〉+ yw〈w, v(z)〉

=
∑

x∈V

sgn(xi)〈x, ei〉 + 0

=
∑

x∈V

1√
d
= 2

(
d− 1

d/2− 1

)
1√
d

since the number of elements x ∈ V with xi = 1/
√
d is the same as the number of elements x′ ∈ V with x′

i = −1/
√
d.

More specifically, it equals the number of points with Hamming distance (d2 − 1) to the projection of z onto R
d−1, which

is
(

d−1
d/2−1

)
since the i-th coordinate is fixed and we need to choose d/2 − 1 coordinates that differ from the remaining

coordinates of z. Let P > 0 be the probability that a random Gaussian is in the same cone C(U) as z for some z ∈ M .

Then by symmetry it holds that γv = P · 2
(

d−1
d/2−1

)
· 1√

d
· 1
|X| > 0.

D. Lower bounds for log width

D.1. Example 5: Alternating points on a circle

Next consider the following set of n points for n divisible by 4:

xk =
(
cos
(
2kπ
n

)
, sin

(
2kπ
n

))
and yk = (−1)k. Intuitively, defining v to send z ∈ R

d to the closest point of our data set X
multiplied by its label, gives us a natural candidate for v. However, applying Lemma C.2 gives us a better mapping that also

follows from Equation (11), and which is optimal by Lemma C.5:

Define the set S = {x ∈ R
2 | ∃xi ∈ X,α ≥ 0: x = αxi} Now, for any z ∈ R

d \ S there exists a unique iz such that

z ∈ Cone({xiz , xiz+1}). We set rz =
xizyiz+xiz+1yiz+1

‖xiz−xiz+1‖2
. We define the function v : Rd → R

d by

v(z) =

{
0 z ∈ S

(−1)n/4+1rz otherwise.

Observe that for i = iz we have

rz =

(
cos

(
2π

2n
· (i− n

2
+ 1)

)
, sin

(
2π

2n
· (i− n

2
+ 1)

))

= (−1)i
(
sin

(
(i+ 1)2π

2n

)
,− cos

(
(i+ 1)2π

2n

))
.

Figure 3 shows how v(z) is constructed for n = 12. We note that v = v0 holds almost surely, which in particular implies

the optimality of v, cf. Equation (11). For computing γ we need the following lemma.

We found the result in a post on math.stackexchange.com but could not find it in published literature and so we

reproduce the full proof from (StEx, 2011) for completeness of presentation.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

+

-

+

-

+

-

+

-

+

-

+

-

z

C(Uz)

v̄(z)

x0

x1

x2

x3

x4

v̄(z1)

v̄(z2)

v̄(z3)

v̄(z4)

C(x0, x1)

C(x1, x2)

C(x2, x3)

C(x3, x4)

z1

z2

z3
z4

.
.
.

.
.
.

Figure 3. The left picture shows how v(z) is constructed: we subtract the vector x3 which is labeled −1 from the vector x2 which is

labeled 1. We obtain rz after rescaling to unit norm. Since n/4 = 3 is odd we have v(z) = rz . The right picture demonstrates the

values of v(z) that are relevant for computing yi
∫
〈v(z), xi〉1[〈xi, z〉 > 0]dµN (z) for the single point xi = (0, 1). Here we have

yi〈xi, v(zj)〉 = (−1)j−1 cos
(

(2j−1)π
2n

)
. The same argument can be repeated on the left side of the half circle.

Lemma D.1 ((StEx, 2011)). For any a, b ∈ R and ñ ∈ N it holds that

ñ−1∑

k=0

cos(a+ kb) =
cos(a+ (ñ− 1)b/2) sin(ñb/2)

sin(b/2)
.

Proof. We use i to denote the imaginary unit defined by the property i
2 = −1. From Euler’s identity we know that

cos(a+ kb) = Re(ei(a+kb)) and sin(a+ kb) = Im(ei(a+kb)). Then

ñ−1∑

k=0

cos(a+ kb) =
ñ−1∑

k=0

Re
(
ei(a+kb)

)

= Re

(
ñ−1∑

k=0

ei(a+kb)

)

= Re

(
eia

ñ−1∑

k=0

(eib)k

)

= Re

(
eia

1− eibñ

1− eib

)

= Re

(
eia

eibñ/2(e−ibñ/2 − eibñ/2)

eib/2(e−ib/2 − eib/2)

)

=
cos(a+ (ñ− 1)b/2) sin(ñb/2)

sin(b/2)
.

Lemma D.2. For all i ∈ [n] it holds that

yi

∫
〈v(z), xi〉1[〈xi, z〉 > 0]dµN (z) = Ω

(
1

n

)
.

Proof. We set n′ = n/4. Note that by symmetry the value of the given integral is the same for all i ∈ [n]. Thus

it suffices to compute yi
∫
〈v(z), xi〉1[〈xi, z〉 > 0]dµN (z) = γ for xi = (0, 1), and note that i = n/4 for this

special choice. See Figure 3 for an illustration of the following argument. For a fixed z ∈ R
2 consider the cone

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Cone({xiz , xiz+1} = Cone({xj , xj+1}) ⊂ {x ∈ R
2 | 〈x, (0, 1)〉 > 0}. Then j ∈ [0, n

2 − 1] and 〈v(z), xi〉 =

(−1)n/4+1〈rz, xi〉 = (−1)n/4+1(−1)j+1 cos((2j+1)2π
2n) since yi = (−1)n/4. Further, for j ≤ n

4 − 1 it holds that

〈v(z), xi〉 = (−1)n/4(−1)j cos

(
(2j + 1)2π

2n

)
= yi(−1)j cos

(
(2j + 1)2π

2n

)
,

and by using the symmetry of cos we get

(−1)n/4(−1)(n/2)−j−1 cos

(
(2(n/2)− 2j − 1)2π

2n

)
= yi(−1)j+1

(
− cos

(
(2j + 1)2π

2n

))

= yi(−1)j cos

(
(2j + 1)2π

2n

)
.

Now assume w.l.o.g. that n ≥ 8. Further we set ñ = (n′ − 1)/2 and b = 4π
n = 4π

4n′ . By using Lemma D.1 and the Taylor

series expansion of cos(·) and sin(·) we get

γ =
1

n


2

n′∑

k=1

cos

(
(2k − 1)π

4n′

)
(−1)k−1




=
2

n




⌈(n′−1)/2⌉∑

k=0

cos

(
(4k + 1)π

4n′

)
−

⌊(n′−1)/2⌋∑

k=0

cos

(
(4k + 3)π

4n′

)


∗
≥ 2

n

(
cos(π/n+ (ñ− 1)b/2) sin(ñb/2)

sin(b/2)
− cos(3π/n+ (ñ− 1)b/2) sin(ñb/2)

sin(b/2)

)

=
2

n




=Θ(b)︷ ︸︸ ︷
(cos(π/n+ (ñ− 1)b/2)− cos(3π/n+ (ñ− 1)b/2))

=1−Θ(b)︷ ︸︸ ︷
sin(ñb/2)

sin(b/2)




=
2

n

(
Θ(b)

Θ(b)

)
=

2

n
Θ(1) = Ω(n−1).

∗ when n′ is odd then we have an exact equality.

D.2. Lower Bounds

Lemma D.3. If m = o(n log(n)) then with constant probability over the random initialization of W0 it holds for any

weights V ∈ R
m×d that yi〈V,∇fi(W0)〉 ≤ 0 for at least one i ∈ [n].

Proof. We set x−i := xn−i for i ≥ 0. Consider the set {xi, xi+1, xi+2, xi+3} for i with i mod 4 = 0. For any s let Ai,s

denote the event that

1[〈xi, ws〉 > 0] = 1[〈xi+1, ws〉 > 0] = 1[〈xi+2, ws〉 > 0] = 1[〈xi+3, ws〉 > 0].

If there exists i ∈ {0, 4, . . . , n − 4} such that for all s ∈ [m] the event Ai,s is true then at least one of the points

xi, xi+1, xi+2, xi+3 is misclassified. To see this, note that there exists ρ ∈ R
4
>0 such that ρ1xi + ρ3xi+2 − (ρ2xi+1 +

ρ4xi+3) = 0 since the line connecting xi and xi+3 crosses the line segment between xi+2 and xi+4. Now let S = {s ∈
[m] | 〈xi, ws〉 > 0}. If the event Ai,s is true for all s ∈ [m] then it holds that

0 =
∑

s∈[m],〈xi,ws〉>0

〈ρ1xi + ρ3xi+2 − (ρ2xi+1 + ρ4xi+3), ws〉

=
3∑

j=0

∑

s∈[m],〈xi,ws〉>0

ρjyi+j〈xi+j , ws〉

=
3∑

j=0

ρj
∑

s∈[m],〈xi+j ,ws〉>0

yi+j〈xi+j , ws〉

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

and since ρj > 0 it must hold
∑

s∈[m],〈xi+j ,ws〉>0 yi+j〈xi+j , ws〉 ≤ 0 for at least one j ∈ {0, . . . , 3}.

Note that Ai,s is false with probability 2 · 3
n , namely if ws

‖ws‖2
is between the point xi+n/4 and xi+3+n/4 or between the

points xi−n/4 and xi+3−n/4. We denote the union of these areas by Zi. Further these areas are disjoint for different

i, i′ ∈ {0, 4, . . . n/4}. Now, as we have discussed above, we need at least one Ai,s to be false for each i. This occurs only

if for each i there exists at least one s such that ws

‖ws‖2
∈ Zi. Let T be the minimum number of trials needed to hit every

one of the n′ := n/4 regions Zi. This is the coupon collector’s problem for which it is known (Erdős & Rényi, 1961) that

for arbitrary c ∈ R it holds that Pr[T < n′ log n′ + cn′] = exp(− exp(−c)) as n′ → ∞. Thus for sufficiently large n′ and

c = −1 we have

Pr[T > n′ log n′ − n′] > 1− e−e > 0.9.

Indeed we can show an even stronger result:

Lemma D.4. Let ǫ ≥ 0. Any two-layer ReLU neural network with width m < (1− ǫ)n/6− 2 misclassifies more than ǫn/3
points of the alternating points on the circle example.

Proof. Set D = {x ∈ R
2 | ‖x‖1 = 1}. Given parameters W and a consider the function f : R

2 → R given by

f(x) = 1√
m

∑m
s=1 asφ (〈ws, x〉). Note that the points x′

i =
xi

‖xi‖1
∈ D do not change their order along the ℓ1 sphere and

thus by definition of (xi, yi) have alternating labels. Also note that f(xi) > 0 if and only if f(x′
i) > 0. Further note that the

restriction of f to D denoted f|D is a piecewise linear function. More precisely the gradient ∂f
∂x = 1√

m

∑m
s=1 as1[〈ws, x〉 >

0]ws can only change at the points (1, 0), (0, 1), (−1, 0), (0,−1) and at points orthogonal to some ws for s ≤ m. Since

for each ws there are exactly two points on D that are orthogonal to ws this means the gradient changes at most 2m+ 4
times. Now for i divisible by 3 consider the points xi, xi+1, xi+2. If the gradient does not change in the interval induced by

xi and xi+2 then at least one of the three points is misclassified. Hence if 2m+ 4 < (1− ǫ)n3 then strictly more than an

(ǫ/3)-fraction of the n points is misclassified.

E. Upper bound for log width

We use the following initialization, see Definition 2.1: we set m = 2m′ for some natural number m′. Put ws,0 = ws+m′,0 =
βw′

s where w′
s ∼ N (0, Id), β ∈ R is an appropriate scaling factor to be defined later and ai = 1 for i < m′ and ai = −1

for i ≥ m′. We note that to simplify notations the ai are permuted compared to Definition 2.1, which does not make a

difference. Further note that ∂f
∂ws

= ∂f
∂w′

s
.

The goal of this section is to show our main theorem:

Theorem E.1. Given an error parameter ǫ ∈ (0, 1/10) and any failure probability δ ∈ (0, 1/10), let ρ = 2 · γ−1 · ln(4/ǫ).
Then if

m = 2m′ ≥ 2γ−2 · 8 ln(2n/δ),

β = 4·2ρ2n
√
m

5ǫδ and η = 1 we have with probability at most 1− 3δ over the random initialization that 1
T

∑T−1
t=0 R(Wt) ≤ ǫ,

where T = ⌈2ρ2/ǫ⌉.

Before proving Theorem E.1 we need some helpful lemmas. Our first lemma shows that with high probability there is a

good separator at initialization, similar to (Ji & Telgarsky, 2020).

Lemma E.1. If m′ ≥ 8 ln(2n/δ)
γ2 then there exists U ∈ R

m×d with ‖us‖2 ≤ 1√
m

for all s ≤ m, and ‖U‖F ≤ 1, such that

with probability at least 1− δ it holds simultaneously for all i ≤ n that

yif
(0)
i (U) ≥ γ

2

Proof. We define U by us =
as√
m
v(ws,0). Observe that

µi = E
w∼N (0,Id)

[yi〈v(w), xi〉]1 [〈xi, w〉 > 0]] ≥ γ

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

by assumption. Further since ws,0 = ws+m′,0 = βw′
s,0 and a2s = 1, we have asus = as+m′us+m′ for s ≤ m′. Also by

Lemma C.2 we can assume that v(ws,0) = v(w′
s,0). Thus

yif
(0)
i (U) =

1

m′

m′∑

s=1

yi〈v(ws,0), xi〉1 [〈xi, ws,0〉 > 0]

is the empirical mean of i.i.d. random variables supported on [−1,+1] with mean µi. Therefore by Hoeffding’s inequality

(Lemma A.2), using m′ ≥ 8 ln(2n/δ)
γ2 it holds that

Pr[yif
(0)
i (U) ≤ γ

2
] ≤ Pr[|yif (0)

i (U)− µi| ≥
µi

2
]

≤ 2 exp

(
−2µ2

im
′2/4

m′ · 4

)

≤ 2 exp

(
−γ2m′

8

)
≤ δ

n

Applying the union bound proves the lemma.

Lemma E.2. With probability 1− δ it holds that |〈xi, ws,0〉| > 2ρ2

ǫ
√
m

for all i ∈ [n] and s ∈ [m]

Proof. By anti-concentration of the Gaussian distribution (Lemma A.4), we have for any i

Pr[|〈xi, ws,0〉| ≤
2ρ2

ǫ
√
m
] = Pr[|〈xi, w

′
s,0〉| ≤

2ρ2

βǫ
√
m
]

≤ 2ρ2

βǫ
√
m

4

5

≤ δ

mn
.

Thus applying the union bound proves the lemma.

Lemma E.3. For all i ∈ [n] it holds that fi(W0) = 0

Proof. Since as = −as+m′ we have

fi(W0) =

m∑

s=1

1√
m
asφ (〈ws,0, xi〉) =

m′∑

s=1

1√
m
(as + as+m′)φ (〈ws,0, xi〉) = 0.

Further we need the following lemma proved in (Ji & Telgarsky, 2020).

Lemma E.4 (Lemma 2.6 in (Ji & Telgarsky, 2020)). For any t ≥ 0 and W , if ηt ≤ 1 then

ηtR(Wt) ≤ ‖Wt −W‖2F − ‖Wt+1 −W‖2F + 2ηtR
(t)(W).

Consequently, if we use a constant step size η ≤ 1 for 0 ≤ τ < t, then

η
∑

τ<t

R(Wτ) ≤ η
∑

τ<t

R(Wτ) + ‖Wt −W‖2F ≤ ‖W0 −W‖2F + 2η
∑

τ<t

R(τ)(W).

Now we are ready to prove the main theorem:

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Proof of Theorem E.1. With probability at least 1− 2δ there exists U as in Lemma E.1 and also the statement of Lemma

E.2 holds. We set W = W0 + ρU . First we show that for any t < T and any s ∈ [m] we have ‖ws,t − ws,0‖2 ≤ 2ρ2

ǫ
√
m

.

Observe that |ℓ′(v)| = | −e−v

1+e−v | ≤ 1 since e−v > 0 for all v ∈ R. Thus for any t ≥ 0 we have

‖ws,t − ws,0‖2 ≤
∑

τ<t

1

n

n∑

i=1

|ℓ′(yifi(Wτ))|
∥∥∥∥

∂fi
∂ws,t

∥∥∥∥
2

≤
∑

τ<t

1

n

n∑

i=1

1 · 1√
m

≤ t√
m
.

Consequently we have ‖ws,t − ws,0‖2 ≤ 2ρ2

ǫ
√
m

for t < T = ⌈ 2ρ2

ǫ ⌉.

Next we prove that for any t < T we have R(t)(W) < ǫ/4. Since ln(1 + r) ≤ r for any r, the logistic loss satisfies

ℓ(z) = ln(1 + exp(−z)) ≤ exp(−z), and it is sufficient to prove that for any 1 ≤ i ≤ n we have

yi〈∇fi(Wt),W 〉 ≥ ln
(ǫ
4

)
.

Note that

yi〈∇fi(Wt),W 〉
= yi〈∇fi(Wt),W0〉+ yiρ〈∇fi(Wt), U〉
= yi〈∇fi(Wt),W0〉+ yi〈∇fi(W0),W0〉 − yi〈∇fi(W0),W0〉+ yiρ〈∇fi(Wt), U〉
= yi〈∇fi(W0),W0〉+ yi〈∇fi(Wt)−∇fi(W0),W0〉+ yiρ〈∇fi(Wt), U〉.

For the first term we have yi〈∇fi(W0),W0〉 = yifi(W0) = 0 by Lemma E.3. For the second term we note that

|〈xi, ws,0〉−〈xi, ws,t〉| = |〈xi, ws,0−ws,t〉| ≤ ‖xi‖2‖ws,0−ws,t‖2 ≤ 2ρ2

ǫ
√
m

. Thus 1 [〈xi, ws,0〉 > 0] 6= 1 [〈xi, ws,t〉 > 0]

can only hold if |〈xi, ws,0〉| ≤ 2ρ2

ǫ
√
m

which is false for all i, s by Lemma E.2. Hence it holds that

∂fi
∂ws,t

=
1√
m
as1 [〈xi, ws,t〉 > 0]xi =

1√
m
as1 [〈xi, ws,0〉 > 0]xi =

∂fi
∂ws,0

and consequently ∇fi(Wt) = ∇fi(W0). It follows for the second term that

yi〈∇fi(Wt)−∇fi(W0),W0〉 = 0.

Moreover by Lemma E.1 for the third term it follows

yiρ〈∇fi(Wt), U〉 = yiρ〈∇fi(W0), U〉 ≥ ρ
γ

2
.

Thus yi〈∇fi(Wt),W 〉 ≥ ργ
2 ≥ ln(4/ǫ) since ρ = 2γ−1 · ln(4/ǫ). Consequently it holds that R(t)(W) < ǫ/4.

Now using T = ⌈ 2ρ2

ǫ ⌉ applying Lemma E.4 with step size η = 1 gives us the desired result:

1

T

∑

t<T

R(Wt) ≤
‖W0 −W‖2F

T
+

2

T

∑

τ<T

R(t)(W)

=
‖ρU‖2F

T
+

2

T

∑

τ<T

R(t)(W)

≤ ǫ

2
+

ǫ

2
≤ ǫ.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

F. On the construction of U

F.1. Tightness of the construction of U

We note that for the construction of U used in the upper bound of Lemma E.1 m′ ≥ 8 ln(2n/δ)
γ2 is tight in the following

sense: For v ∈ FB , the natural estimator of γ is given by the empirical mean 1
m

∑m′

s=1 yi〈v(ws,0), xi〉]1 [〈xi, ws,0〉 > 0].
The following lemma shows that using this estimator, the bound given in Lemma E.1 is tight with respect to the squared

dependence on γ up to a constant factor. In particular we need m = Ω(γ−2 log(n)) if we want to use the union bound over

all data points.

Lemma F.1. Fix the choice of us =
as√
m
v(ws) for s ∈ [m]. Then for each γ0 ∈ (0, 1) there exists an instance (X,Y) and

v(z) ∈ FB , such that for each i ∈ [n] it holds with probability at least Pm = c exp
(
−8m′γ2/3

)
for an absolute constant

c > 0 that

yif
(0)
i (U) =

1

m′

m′∑

s=1

yi〈v(ws,0), xi〉]1 [〈xi, ws,0〉 > 0] ≤ 0.

Proof of Lemma F.1. Consider Example D.1. Recall that γ(X,Y) = Θ(1/n). Choose a sufficiently large n, divisible by 8,

such that γ(X,Y) ≤ γ0. Note that the mapping v that we constructed, has a high variance since for any i, the probability that

a random Gaussian z satisfies 〈v(z), xi〉1[〈xi, z〉 > 0] ≥ 1√
2

as well as the probability that 〈v(z), xi〉1[〈xi, z〉 > 0] ≤ − 1√
2

are equal to 1
8 . To see this, note that |〈v(z), xi〉| ≥ 1√

2
if 〈z, xi〉 < 1√

2
and in this case 〈v(z), xi〉 is negative with probability

1
2 . Thus the variance of Zs = yi〈v(ws,0), xi〉]1 [〈xi, ws,0〉 > 0] is at least 1√

2
2 · 2

8 = 1
8 . Observe that the random variable

Z ′
s = 1

2 (1 − Zs) attains values in [0, 1]. Further the expected value of Z ′
s is 1

2 (1 − γ), and the variance is at least 1
32 .

Now set Z =
∑m′

s=1 Z
′
s and note that yif

(0)
i (U) = 1

m′

∑m′

s=1 yi〈v(ws,0), xi〉]1 [〈xi, ws,0〉 > 0] ≤ 0 holds if and only if

Z ≥ m′

2 = E(Z) + m′γ
2 . By Lemma D.4 we know that yif

(0)
i (U) = 1

m′

∑m′

s=1 yi〈v(ws,0), xi〉]1 [〈xi, ws,0〉 > 0] ≤ 0 is

true for at least one i ∈ [n] if m ≤ n
6 − 3. Now choosing n large enough this implies we only need to show the result for

m′ ≥ 2002 · 32. Hence we can apply Lemma A.6 to Z and get

Pr[Z ≥ E(Z) +
m′γ
2

] ≥ c exp

(
−m′2γ2/

(
4 · 3m′

32

))
= c exp

(
−8m′γ2/3

)

for m′γ
2 ≤ 1

100
m′

32 or equivalently γ ≤ 1
1600 which holds if n is large enough.

Thus we need that m = Ω(ln(n/δ)γ2) for the given error probability if we construct U as in Lemma E.1.

F.2. The two dimensional case (upper bound)

In the following we show how we can improve the construction of U in the special case of d = 2 such that

m = O
(
γ−1 (ln(4n/δ) + ln(4/ǫ))

)

suffices for getting the same result as in Theorem E.1. We note that the only place where we have a dependence on γ−2 is in

Lemma E.1. It thus suffices to replace it by the following lemma that improves the dependence to γ−1 in the special case of

d = 2:

Lemma F.2. Let (X,Y) be an instance in d = 2 dimensions. Then there exists a constant K > 1 such that for m ≥ Kln(n/δ)
γ

with probability 1− 2δ there exists U ∈ R
m×d with ‖us‖2 ≤ 1√

m
for all s ≤ m, and ‖U‖F ≤ 1, such that

yif
(0)
i (U) ≥ γ

4

for all i ≤ n.

Proof. The proof consists of three steps. The first step is to construct a net X ′ that consists only of ‘large cones of positive

volume’ such that for each data point x there exists a point x′ ∈ X ′ whose distance from x on the circle is at most b = γ
4 :

Let n′ = ⌈2π/b⌉ and consider the set

X ′′ = {x ∈ R
2 | x = (cos(j/n′), sin(j/n′)), j ∈ N}.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Given x ∈ X we define g(x) ∈ argminx′∈X′′‖x− x′‖2 and h(x) ∈ argminx′∈X′′\{g(x)}‖x− x′‖2, where ties are broken

arbitrarily. We set X ′ = {g(x) | x ∈ X}∪{h(x) | x ∈ X}. We note that the distance on the circle between two neighboring

points in X ′ is a multiple of 2π
n′ . This implies that for any cone C(V) between consecutive points in X ′ with P (V) > 0 we

have P (V) ≥ 1/n′ ≥ b/7 and ‖x− g(x)‖2 ≤ b
2 . Further note that there are at most |X ′| ≤ 2n cones of this form.

The second step is to construct a separator (us)s≤m ∈ R
m×d: Let v ∈ FB be optimal for (X,Y), i.e., γ = γ(X,Y) =

γv. As in Lemma C.2 construct v′ ∈ FB with E[〈v′(z), x′〉 | z ∈ C(V)] = E[〈v(z), x′〉 | z ∈ C(V)] where v′ is

constant for any cone of the form C(V). Using the Chernoff bound (A.1) we get with failure probability at most

2 exp(18 · b
7 ·m′) = 2 exp(1

224 · γ ·m′) that the number nV of points wj,0 in C(V) lies in the interval [P (V)m
2 , 2P (V)m].

Now using m′ ≥ 224γ−1 log(2nδ) and applying a union bound we get that this holds for all cones of the form C(V) with

failure probability at most 2δ. For wj ∈ C(V) we define uj = aj
v′(wj)√

m
· P (V)m

2nV
. Since nV ∈ [P (V)m

2 , 2P (V)m] it follows

that ‖uj‖2 ≤ ‖v′(wj)‖2√
m

≤ 1√
m

and consequently ‖U‖F ≤ 1. Moreover we have

∑

s∈[m],ws,0∈C(V)

asus = P (V)m · 1

2
√
m

· v′(V),

where we set v′(V) to be equal to v′(z), which is constant for any z ∈ C(V).

The third step is to prove that U is a good separator for (X,Y): To this end, let x ∈ X and x′ = g(xi).

If xi = x′ then

yif
(0)
i (U) = yi

1√
m

m∑

s=1

as〈us, xi〉1 [〈xi, ws,0〉 > 0]

= yi
1√
m

∑

V⊆X′,x′∈V

∑

s∈[m],ws,0∈C(V)

as〈us, xi〉

= yi
1

2m

∑

V⊆X′,x′∈V

P (V)m · 〈v′(V), xi〉

= yi
1

2
E[〈v(z), xi〉1 [〈xi, z〉 > 0]]

= yi
1

2

∫
〈v(z), xi〉1[〈xi, z〉 > 0]dµN (z) ≥ γ

2
.

Otherwise if xi 6= x′ then there is exactly one cone C(V1) with z ∈ C(V1) such that 〈x′, z〉 < 0 and 〈xi, z〉 > 0 and exactly

one cone C(V2) with z ∈ C(V2) such that 〈x′, z〉 > 0 and 〈x, z〉 < 0. Recall that P (Vi) =
1
n′ ≤ b for i = 1, 2. We set

M = {V ⊆ [n′] | x′ ∈ V, V /∈ {V1, V2}}. Then it holds that

yif
(0)
i (U) =

1√
m

m∑

s=1

yi〈us, xi〉1 [〈xi, ws,0〉 > 0]

≥ 1√
m



∑

V ∈M

∑

s∈[m],ws,0∈C(V)

yi〈us, xi〉 −
∑

s∈[m],ws,0∈C(V1)

|〈us, xi〉|




≥ 1√
m



∑

V ∈M

∑

s∈[m],ws,0∈C(V)

yi〈us, xi〉+
∑

s∈[m],ws,0∈C(V2)

|〈us, xi〉| −
∑

s∈[m],ws,0∈C(V2)

|〈us, xi〉| −
1

2
√
m
P (V1)m




≥ 1√
m

(√
m

2
E[yi〈v(z), xi〉1 [〈xi, z〉 > 0]] − 1

2
√
m
P (V2)m − 1

2
√
m
P (V1)m

)

=
1

2
(E[yi〈v(z), xi〉1 [〈xi, z〉 > 0]]− 2b) ≥ 1

2

(
γ − γ

2

)
=

γ

4
.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

G. Width under squared loss

G.1. Analysis: achieving concentration

We first present a high-level overview. In Lemma G.1, we prove that the initialization (kernel) matrix H is close to the

neural tangent kernel (NTK). In Lemma G.2, we bound the spectral norm change of H , given that the weight matrix W
does not change much. In Section H.1 we consider the (simplified) continuous case, where the learning rate is infinitely

small. This provides most of the intuition. In Section H.2 we consider the discretized case where we have a finite learning

rate. This follows the same intuition as in the continuous case, but we need to deal with a second order term given by the

gradient descent algorithm.

The high level intuition of the proof is to recursively prove the following:

1. The weight matrix does not change much.

2. Given that the weight matrix does not change much, the prediction error decays exponentially.

Given (1) we prove (2) as follows. The intuition is that the kernel matrix does not change much, since the weights do not

change much, and it is close to the initial value of the kernel matrix, which is in turn close to the NTK matrix (involving the

entire Gaussian distribution rather than our finite sample), that has a lower bound on its minimum eigenvalue. Thus, the

prediction loss decays exponentially.

Given (2) we prove (1) as follows. Since the prediction error decays exponentially, one can show that the change in weights

is upper bounded by the prediction loss, and thus the change in weights also decays exponentially and the total change is

small.

G.2. Bounding the difference between the continuous and discrete case

In this section, we show that when the width m is sufficiently large, then the continuous version and discrete version of the

Gram matrix of the input points are spectrally close. We prove the following Lemma, which is a variation of Lemma 3.1 in

(Song & Yang, 2019) and also of Lemma 3.1 in (Du et al., 2019c).

Lemma G.1 (Formal statement of Lemma 4.1). Let {w1, w2, . . . , wm} ⊂ R
d denote a collection of vectors constructed as

in Definition 2.1. We define Hcts, Hdis ∈ R
n×n as follows

Hcts
i,j := E

w∼N (0,I)

[
x⊤
i xj1w⊤xi≥0,w⊤xj≥0

]
,

Hdis
i,j :=

1

m

m∑

r=1

[
x⊤
i xj1w⊤

r xi≥0,w⊤
r xj≥0

]
.

Let λ = λmin(H
cts). If m0 = Ω(λ−2n2 log(nB/δ)), we have that

‖Hdis −Hcts‖F ≤ λ

4
, and λmin(H

dis) ≥ 3

4
λ

holds with probability at least 1− δ.

Proof. For every fixed pair (i, j), Hdis,b
i,j (b ∈ [B]) is an average of independent random variables, i.e.,

Hdis,b
i,j =

1

m0

m0∑

r=1

x⊤
i xj1w⊤

r,b
xi≥0,w⊤

r,b
xj≥0,

and Hdis
i,j is the average of all sampled Gaussian vectors:

Hdis
i,j =

1

B

B∑

b=1

Hdis,b
i,j =

1

m

m0∑

r=1

B∑

b=1

x⊤
i xj1w⊤

r,b
xi≥0,w⊤

r,b
xj≥0.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

The expectation of Hdis
i,j is

E[Hdis,b
i,j] =

1

m

m0∑

r=1

E
wr,b∼N (0,Id)

[
x⊤
i xj1w⊤

r,b
xi≥0,w⊤

r,b
xj≥0

]

= E
w∼N (0,Id)

[
x⊤
i xj1w⊤xi≥0,w⊤xj≥0

]

= Hcts
i,j .

Therefore,

E[Hdis,b
i,j] = E[Hdis

i,j] = Hcts
i,j .

For r ∈ [m0], let zr = 1
m0

x⊤
i xj1w⊤

r,b
xi≥0,w⊤

r,b
xj≥0. Then zr is a random function of wr,b, and hence, the {zr}r∈[m0] are

mutually independent. Moreover, − 1
m0

≤ zr ≤ 1
m0

. By Hoeffding’s inequality (Lemma A.2), we have that for all t > 0,

Pr
[
|Hdis,b

i,j −Hcts
i,j | ≥ t

]
≤ 2 exp

(
− 2t2

4/m0

)

= 2 exp(−m0t
2/2).

Setting t = (1
m0

2 log(2n2B/δ))1/2, we can apply a union bound over b and all pairs (i, j) to get that with probability at

least 1− δ, for all i, j ∈ [n],

|Hdis
i,j −Hcts

i,j | ≤
(2

m0
log(2n2B/δ)

)1/2
≤ 4
(log(nB/δ)

m0

)1/2
.

Thus, we have

‖Hdis −Hcts‖2 ≤ ‖Hdis −Hcts‖2F

=

n∑

i=1

n∑

j=1

|Hdis
i,j −Hcts

i,j |2

≤ 1

m0
16n2 log(nB/δ).

Hence, if m0 = Ω(λ−2n2 log(nB/δ)), we have the desired result.

G.3. Bounding changes of H when w is in a small ball

In this section, we bound the change of H when w is in a small ball. We define the event

Ai,r =
{
∃u : ‖u− w̃r‖2 ≤ R,1x⊤

i
w̃r≥0 6= 1x⊤

i
u≥0

}
.

Note this event happens if and only if |w̃⊤
r xi| < R. Recall that w̃r ∼ N (0, I). By anti-concentration of the Gaussian

distribution (Lemma A.4), we have

Pr[Ai,r] = Pr
z∼N (0,1)

[|z| < R] ≤ 2R√
2π

. (12)

We prove the following perturbation Lemma, which is a variation of Lemma 3.2 in (Song & Yang, 2019) and Lemma 3.2 in

(Du et al., 2019c).

Lemma G.2 (Formal version of Lemma 4.2). Let R ∈ (0, 1). Let {w1, w2, . . . , wm} denote a collection of weight vectors

constructed as in Definition 2.1. For any set of weight vectors w̃1, . . . , w̃m ∈ R
d that satisfy that for any r ∈ [m],

‖w̃r − wr‖2 ≤ R, consider the map H : Rm×d → R
n×n defined by

H(w)i,j =
1

m
x⊤
i xj

m∑

r=1

1w̃⊤
r xi≥0,w̃⊤

r xj≥0.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Then we have that

‖H(w)−H(w̃)‖F < 2nR,

holds with probability at least 1− n2 ·B · exp(−m0R/10).

Proof. The random variable we care about is

n∑

i=1

n∑

j=1

|H(w̃)i,j −H(w)i,j |2

≤ 1

m2

n∑

i=1

n∑

j=1

(
m∑

r=1

1w̃⊤
r xi≥0,w̃⊤

r xj≥0 − 1w⊤
r xi≥0,w⊤

r xj≥0

)2

=
1

m2

n∑

i=1

n∑

j=1

(m∑

r=1

sr,i,j

)2
,

where the last step follows from defining, for each r, i, j,

sr,i,j := 1w̃⊤
r xi≥0,w̃⊤

r xj≥0 − 1w⊤
r xi≥0,w⊤

r xj≥0.

Now consider that i, j are fixed. We simplify sr,i,j to sr.

Then sr is a random variable that only depends on wr.

If events ¬Ai,r and ¬Aj,r happen, then

∣∣1w̃⊤
r xi≥0,w̃⊤

r xj≥0 − 1w⊤
r xi≥0,w⊤

r xj≥0

∣∣ = 0.

If Ai,r or Aj,r happens, then

∣∣1w̃⊤
r xi≥0,w̃⊤

r xj≥0 − 1w⊤
r xi≥0,w⊤

r xj≥0

∣∣ ≤ 1.

Thus we have

E
w̃r

[sr] ≤ E
w̃r

[
1Ai,r∨Aj,r

]
≤ Pr[Ai,r] + Pr[Aj,r]

≤ 4R√
2π

≤ 2R,

and

E
w̃r

[(
sr − E

w̃r

[sr]

)2
]
= E

w̃r

[s2r]− E
w̃r

[sr]
2

≤ E
w̃r

[s2r]

≤ E
w̃r

[(
1Ai,r∨Aj,r

)2]

≤ 4R√
2π

≤ 2R.

We also have |sr| ≤ 1.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Fix b ∈ B and consider s1,b, . . . , sm0,b. Applying Bernstein’s inequality (Lemma A.3), we get that for all t > 0,

Pr

[
m0∑

r=1

sr,b ≥ 2m0R+m0t

]

≤ Pr

[
m0∑

r=1

(sr,b − E[sr,b]) ≥ m0t

]

≤ exp

(
− m2

0t
2/2

2m0R+m0t/3

)
.

Choosing t = R, we get that

Pr

[
m0∑

r=1

sr,b ≥ 3m0R

]
≤ exp

(
− m2

0R
2/2

2m0R+m0R/3

)

≤ exp (−m0R/10) .

Thus, we have

Pr

[
1

m0

m0∑

r=1

sr ≥ 3R

]
≤ exp(−m0R/10).

Next, taking a union bound over B such events,

Pr

[
1

m

m∑

r=1

sr ≥ 3R

]
= Pr

[
1

B

B∑

b=1

1

m0

m0∑

r=1

sr,b ≥ 3R

]

= Pr

[
B∑

b=1

1

m0

m0∑

r=1

sr,b ≥ 3R ·B
]

≤ B · exp(−m0R/10).

This completes the proof.

H. Analysis: convergence

H.1. The continuous case

We first consider the continuous case, in which the learning rate η is sufficiently small. This provides an intuition for the

discrete case.

For any s ∈ [0, t], we define the kernel matrix H(s) ∈ R
n×n:

H(s)i,j =
1

m

m∑

r=1

x⊤
i xj1wr(s)⊤xi≥0,wr(s)⊤xj≥0.

We consider the following dynamics of a gradient update:

∂W (t)

∂t
=

1

n2

∂L(W (t))

∂W (t)
(13)

The dynamics of prediction can be written as follows, which is a simple calculation:

Fact H.1. d

dtu(t) =
m
n2H(t) · (y − u(t)).

Proof. For each i ∈ [n], we have

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

d

dt
ui(t)

=

m∑

r=1

〈
∂f(W (t), a, xi)

∂wr(t)
,
dwr(t)

dt

〉

=

m∑

r=1

〈
∂f(W (t), a, xi)

∂wr(t)
,− 1

n2
· ∂L(w(t), a)

∂wr(t)

〉

=
1

n2

m∑

r=1

〈∂f(W (t), a, xi)

∂wr(t)
,−

n∑

j=1

(f(W,xj , ar)− yi)arxj1w⊤
r xj≥0

〉

=
1

n2

n∑

j=1

(yj − uj(t))

m∑

r=1

·
〈
∂f(W (t), a, xi)

∂wr(t)
,
∂f(W (t), a, xj)

∂wr(t)

〉

=
n∑

j=1

(yj − uj(t))
m

n2
·H(t)i,j

where the first step follows from the chain rule, the second step follows from Eq. (13), the third step uses Eq. (5), the fourth

step uses Eq. (2), and the last step uses the definition of the matrix H .

Lemma H.2. Suppose for 0 ≤ s ≤ t, λmin(H(w(s))) ≥ λ/2. Let Dcts be defined as Dcts :=
√
n‖y−u(0)‖2

mλ . Then we have

1. ‖wr(t)− wr(0)‖2 ≤ Dcts, ∀r ∈ [m],

2. ‖y − u(t)‖22 ≤ exp(−λt) · ‖y − u(0)‖22.

Proof. Recall that we can write the dynamics of prediction as

d

dt
u(t) =

m

n2
·H(t) · (y − u(t)).

We can calculate the loss function dynamics

d

dt
‖y − u(t)‖22 = − 2(y − u(t))⊤ · m

n2
·H(t) · (y − u(t))

≤ − m

n2
λ‖y − u(t)‖22.

Thus we have d

dt (exp(
m
n2λt)‖y − u(t)‖22) ≤ 0 and that exp(m

n2λt)‖y − u(t)‖22 is a decreasing function with respect to t.

Using this fact, we can bound the loss by

‖y − u(t)‖22 ≤ exp(−m

n2
λt)‖y − u(0)‖22. (14)

Now, we can bound the gradient norm. For 0 ≤ s ≤ t,

∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

=
1

n2

∥∥∥∥∥

n∑

i=1

(yi − ui) · arxi · 1wr(s)⊤xi≥0

∥∥∥∥∥
2

≤ 1

n2

n∑

i=1

|yi − ui(s)|

≤ 1

n3/2
‖y − u(s)‖2 (15)

≤ 1

n3/2
exp(−m

n2
λs)‖y − u(0)‖2.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

where the first step follows from Eq. (5) and Eq. (13), the second step follows from the triangle inequality and ar = ±1 for

r ∈ [m] and ‖xi‖2 = 1 for i ∈ [n], the third step follows from the Cauchy-Schwarz inequality, and the last step follows

from Eq. (14).

Integrating the gradient, we can bound the distance from the initialization

‖wr(t)− wr(0)‖2 ≤
∫ t

0

∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

ds

≤
√
n‖y − u(0)‖2

mλ
.

Lemma H.3. If Dcts < R. then for all t ≥ 0, λmin(H(t)) ≥ 1
2λ. Moreover,

1. ‖wr(t)− wr(0)‖2 ≤ Dcts, ∀r ∈ [m],

2. ‖y − u(t)‖22 ≤ exp(−m

n2
λt) · ‖y − u(0)‖22.

Proof. Assume the conclusion does not hold at time t. We argue that there must be some s ≤ t so that λmin(H(s)) < 1
2λ.

If λmin(H(t)) < 1
2λ, then we can simply take s = t.

Otherwise since the conclusion does not hold, there exists r so that

‖wr(t)− wr(0)‖ ≥ Dcts

or

‖y − u(t)‖22 > exp(−m

n2
λt)‖y − u(0)‖22.

Then by Lemma H.2, there exists s ≤ t such that

λmin(H(s)) <
1

2
λ.

By Lemma G.2, there exists t0 > 0 defined as

t0 = inf

{
t > 0 : max

r∈[m]
‖wr(t)− wr(0)‖22 ≥ R

}
.

Thus at time t0, there exists r ∈ [m] satisfying ‖wr(t0)− wr(0)‖22 = R.

By Lemma G.2,

λmin(H(t′)) ≥ 1

2
λ, ∀t′ ≤ t0.

However, by Lemma H.2, this implies

‖wr(t0)− wr(0)‖2 ≤ Dcts < R,

which is a contradiction.

Combining Lemma H.2 and Lemma H.3, we get that for a linear convergence to hold, it suffices to guarantee that

‖wr(t+ 1)− wr(0)‖2 ≤ 4
√
n‖y − u(0)‖2

mλ
< R

which implies

4
√
n
√
n

mλ
<

λ

n
⇒ m ≥ O(n2λ−2)

Note that the first step holds since ‖y − u(0)‖2 = O(
√
n) (see Claim I.1).

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

H.2. The discrete case

We next move to the discrete case. The major difference from the continuous case is that the learning rate is not negligible

and there is a second order term for gradient descent which we need to handle.

Theorem H.4 (Formal version of Theorem 3.6). Suppose there are n input data points in d-dimensional space. Recall that

λ = λmin(H
cts) > 0. Suppose the width of the neural network satisfies that

m = Ω(λ−2n2 log3(n/δ)).

We initialize W ∈ R
d×m and a ∈ R

m as in Definition 2.1, and we set the step size, also called the learning rate, to be

η = O(λ/(n2m)).

Then with probability at least 1− δ over the random initialization, we have for k = 0, 1, 2, . . . that

‖u(t)− y‖22 ≤ (1−mηλ/2)k · ‖u(0)− y‖22. (16)

Further, for any accuracy parameter ǫ ∈ (0, 1), if we choose the number of iterations

T = Θ
(log(n/ǫ)

mηλ

)
= λ−2n2 log(n/ǫ),

then

‖u(T)− y‖22 ≤ ǫ.

Correctness We prove Theorem H.4 by induction. The base case is i = 0 and it is trivially true. Assume for i = 0, . . . , k
we have proved Eq. (16) to be true. We want to show that Eq. (16) holds for i = k + 1.

From the induction hypothesis, we have the following Lemma (see proof in Section I) stating that the weights should not

change too much. Note that the Lemma is a variation of Corollary 4.1 in (Du et al., 2019c).

Lemma H.5. If Eq. (16) holds for i = 0, . . . , k, then we have for all r ∈ [m]

‖wr(t+ 1)− wr(0)‖2 ≤ 4
√
n‖y − u(0)‖2

mλ
:= D.

Next, we calculate the difference of predictions between two consecutive iterations, analogous to the
dui(t)

dt term in Fact H.1.

For each i ∈ [n], we have

ui(t+ 1)− ui(t) =

m∑

r=1

ar ·
(
φ(wr(t+ 1)⊤xi)− φ(wr(t)

⊤xi)
)

=

m∑

r=1

ar · zi,r.

where

zi,r := φ

((
wr(t)− η

∂L(W (t))

∂wr(t)

)⊤
xi

)
− φ(wr(t)

⊤xi).

Here we divide the right hand side into two parts. v1,i represents the terms for which the pattern does not change, while v2,i
represents the terms for which the pattern may change. For each i ∈ [n], we define the set Si ⊂ [m] as

Si := {r ∈ [m] : ∀w ∈ R
d s.t. ‖w − wr(0)‖2 ≤ R, 1wr(0)⊤xi≥0 = 1w⊤xi≥0}.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Then we define v1,i and v2,i as follows

v1,i :=
∑

r∈Si

arzi,r,

v2,i :=
∑

r∈Si

arzi,r.

Define H and H⊥ ∈ R
n×n as

H(t)i,j :=
1

m

m∑

r=1

x⊤
i xj1wr(t)⊤xi≥0,wr(t)⊤xj≥0, (17)

H(t)⊥i,j :=
1

m

∑

r∈Si

x⊤
i xj1wr(t)⊤xi≥0,wr(t)⊤xj≥0. (18)

and

C1 := − 2η(y − u(t))⊤H(t)(y − u(t)),

C2 := + 2η(y − u(t))⊤H(t)⊥(y − u(t)),

C3 := − 2(y − u(t))⊤v2,

C4 := ‖u(t+ 1)− u(t)‖22.

Then we have (the proof is deferred to Section I)

Claim H.6.

‖y − u(t+ 1)‖22 = ‖y − u(t)‖22 + C1 + C2 + C3 + C4.

Applying Claim I.2, I.3, I.4 and I.5 gives

‖y − u(t+ 1)‖22 ≤ ‖y − u(t)‖22 · (1−mηλ+ 8mηnR+ 8mηnR+m2η2n2).

Choice of η and R. Next, we want to choose η and R such that

(1−mηλ+ 8mηnR+ 8mηnR+m2η2n2) ≤ (1−mηλ/2). (19)

If we set η = λ
4n2m and R = λ

64n , we have

8ηnR+ 8ηnR = 16ηnR ≤ ηλ/4, and m2η2n2 ≤ mηλ/4.

This implies

‖y − u(t+ 1)‖22 ≤ ‖y − u(t)‖22 · (1−mηλ/2)

holds with probability at least 1− poly(n,B) · exp(−mR/10).

Over-parameterization size, lower bound on m. We require

D =
4
√
n‖y − u(0)‖2

mλ
< R =

λ

64n
,

and

poly(n,B) · exp(−mR/10) ≤ δ.

By Claim I.1, it is sufficient to choose

m = Ω(λ−2n2 log(m/δ) log2(n/δ)).

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Table 2. Nt. stands for notation. m is the width of the neural network. n is the number of input data points. δ is the failure probability.

Nt. Choice Place Comment

λ := λmin(H
cts) Lemma G.1 Data-dependent

R λ/n Eq. (19) Maximal allowed movement of weight

Dcts

√
n‖y−u(0)‖2

mλ Lemma H.2 Actual distance moved of weight, continuous case

D 4
√
n‖y−u(0)‖2

mλ Lemma H.5 Actual distance moved of weight, discrete case

η λ/(n2m) Eq. (19) Step size of gradient descent

m0 ≥ λ−2n2 log(Bn/δ) Lemma G.1 Bounding discrete H and continuous H
m0 ≥ R−1 log(Bn/δ) Lemma G.2 Bounding discrete H(w) and discrete H(w +∆w)
m0 ≥ R−1 log(Bn/δ) Lemma I.2

m0 ≥ R−1 log(Bn/δ) Lemma I.3

m0 ≥ R−1 log(Bn/δ) Lemma I.4

m λ−2n2 log3(mn/δ) Lemma H.3, Claim I.1 D < R and ‖y − u(0)‖22 = Õ(n)
m0 m/2 The number of different Gaussian vectors

B 2 Size of each block

T λ−2n2 log(1/ǫ)

I. Technical claims

I.1. Proof of Lemma H.5

Proof. We use the norm of the gradient to bound this distance,

‖wr(k + 1)− wr(0)‖2 ≤ η

k∑

i=0

∥∥∥∥
∂L(W (i))

∂wr(i)

∥∥∥∥
2

≤ η

k∑

i=0

∥∥∥
n∑

j=1

(yj − u(i)j) · arxj · 1〈wr(s),xj〉≥0

∥∥∥
2

≤
k∑

i=0

n∑

j=1

|yj − u(i)j |

≤ η
k∑

i=0

√
n‖y − u(i)‖2

≤ η

k∑

i=0

√
n(1−mηλ/2)i/2‖y − u(0)‖2

≤ η

∞∑

i=0

√
n(1−mηλ/2)i/2‖y − u(0)‖2

=
4
√
n‖y − u(0)‖2

mλ
,

where the first step follows from Eq. (6), the second step follows from the expression of the gradient (see Eq. (15)), the third

step follows from |ar| = 1, ‖xj‖2 = 1 and 1〈wr(s),xj〉≥0 ≤ 1, the fourth step follows from the Cauchy-Schwarz inequality,

the fifth step follows from the induction hypothesis, the sixth step relaxes the summation to an infinite summation, and the

last step follows from
∑∞

i=0(1−mηλ/2)i/2 = 2
mηλ .

Thus, we complete the proof.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

I.2. Proof of Claim H.6

Proof. We can rewrite u(k + 1)− u(k) ∈ R
n in the following sense

u(k + 1)− u(k) = v1 + v2.

Then, we can rewrite v1,i ∈ R with the notation of H and H⊥

v1,i = − η
n∑

j=1

x⊤
i xj(uj − yj)

∑

r∈Si

1wr(k)⊤xi≥0,wr(k)⊤xj≥0

= −mη

n∑

j=1

(uj − yj)(Hi,j(k)−H⊥
i,j(k)),

which means vector v1 ∈ R
n can be written as

v1 = m · η(y − u(k))⊤(H(k)−H⊥(k)). (20)

We can rewrite ‖y − u(k + 1)‖22 as follows:

‖y − u(k + 1)‖22
= ‖y − u(k)− (u(k + 1)− u(k))‖22
= ‖y − u(k)‖22 −2(y − u(k))⊤(u(k + 1)− u(k))︸ ︷︷ ︸

:=C1+C2+C3

+ ‖u(k + 1)− u(k)‖22︸ ︷︷ ︸
:=C4

.

We can rewrite the second term in the above equation in the following sense,

(y − u(k))⊤(u(k + 1)− u(k))

= (y − u(k))⊤(v1 + v2)

= (y − u(k))⊤v1 + (y − u(k))⊤v2

= +mη(y − u(k))⊤H(k)(y − u(k))︸ ︷︷ ︸
−C1/2

−mη(y − u(k))⊤H(k)⊥(y − u(k))︸ ︷︷ ︸
−C2/2

+(y − u(k))⊤v2︸ ︷︷ ︸
−C3/2

,

where the third step follows from Eq. (20).

Thus, we have

‖y − u(k + 1)‖22
= ‖y − u(k)‖22 + C1 + C2 + C3 + C4

≤ ‖y − u(k)‖22(1−mηλ+ 8mηnR+ 8mηnR+m2η2n2)

where the last step follows from Claims I.2, I.3, I.4 and I.5, whose proofs are given later.

I.3. Proof of Claim I.1

Claim I.1. For 0 < δ < 1, with probability at least 1− δ,

‖y − u(0)‖22 = O(n log(m/δ) log2(n/δ)).

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Proof. Due to the way we choose w and a, it is easy to see that i(0) = 0 ∈ R
n. Thus

‖y − u(0)‖22 = ‖y‖22 = O(n),

where the last step follows from |yi| = O(1) and y ∈ R
n.

I.4. Proof of Claim I.2

Claim I.2. Let C1 = −2mη(y − u(k))⊤H(k)(y − u(k)). We have that

C1 ≤ −mηλ · ‖y − u(k)‖22
holds with probability at least 1− n2 ·B · exp(−m0R/10).

Proof. By Lemma G.2 and our choice of R < λ
8n , we have ‖H(0)−H(k)‖F ≤ 2n · λ

8n = λ
4 . Recall that λ = λmin(H(0)).

Therefore

λmin(H(k)) ≥ λmin(H(0))− ‖H(0)−H(k)‖ ≥ λ/2.

Then we have

(y − u(k))⊤H(k)(y − u(k)) ≥ ‖y − u(k)‖22 · λ/2.

Thus, we complete the proof.

I.5. Proof of Claim I.3

Claim I.3. Let C2 = 2m · η(y − u(k))⊤H(k)⊥(y − u(k)). We have that

C2 ≤ 8m · ηnR · ‖y − u(k)‖22
holds with probability 1− n ·B · exp(−m0R).

Proof. Note that

C2 ≤ 2η‖y − u(k)‖22‖H(k)⊥‖.

We thus need an upper bound on ‖H(k)⊥‖. Since ‖ · ‖ ≤ ‖ · ‖F , it suffices to upper bound ‖ · ‖F .

For each i ∈ [n], we define yi as follows

yi =
m∑

r=1

1r∈Si
.

For each i ∈ [n], b ∈ [B], we define

ybi =

m0∑

r=1

1r∈Si
.

Using Fact I.6, we have ‖H(k)⊥‖2 ≤ n
m2

∑n
i=1 y

2
i .

Fix i ∈ [n]. Our plan is to use Bernstein’s inequality (Lemma A.3) to upper bound yi with high probability.

First by Eq. (12) we have E[1r∈Si
] ≤ R. We also have

E
[
(1r∈Si

− E[1r∈Si
])2
]
= E[12

r∈Si
]− E[1r∈Si

]2

≤ E[12
r∈Si

]

≤ R.

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

Finally we have |1r∈Si
− E[1r∈Si

]| ≤ 1.

Notice that {1r∈Si
}m0

r=1 are mutually independent, since 1r∈Si
only depends on wr(0). Hence from Bernstein’s inequality

(Lemma A.3) we have for all t > 0,

Pr [yi > m0 ·R+ t] ≤ exp

(
− t2/2

m0 ·R+ t/3

)
.

By setting t = 3m0R, we have

Pr
[
ybi > 4m0R

]
≤ exp(−m0R). (21)

Since we have B such copies of the above inequality, it follows that

Pr [yi > 4mR] = Pr

[
B∑

b=1

ybi > 4m0R ·B
]
≤ B · exp(−m0R)

Hence by a union bound, with probability at least 1− n ·B · exp(−m0R),

‖H(k)⊥‖2F ≤ n

m2
· n · (4mR)2 = 16n2R2.

Putting it all together we have

‖H(k)⊥‖ ≤ ‖H(k)⊥‖F ≤ 4nR

with probability at least 1− n ·B · exp(−m0R).

I.6. Proof of Claim I.4

Claim I.4. Let C3 = −2(y − u(k))⊤v2. Then we have

C3 ≤ 8mηnR · ‖y − u(k)‖22
with probability at least 1− n ·B · exp(−m0R).

Proof. Using the Cauchy-Schwarz inequality, we have C3 ≤ 2‖y − u(k)‖2 · ‖v2‖2. We can upper bound ‖v2‖2 in the

following way

‖v2‖22 ≤
n∑

i=1


η

∑

r∈Si

∣∣∣∣∣

(
∂L(W (k))

∂wr(k)

)⊤
xi

∣∣∣∣∣




2

= η2
n∑

i=1

(
m∑

r=1

1r∈Si

∣∣∣∣∣

(
∂L(W (k))

∂wr(k)

)⊤
xi

∣∣∣∣∣

)2

≤ η2 · max
r∈[m]

∣∣∣∣
∂L(W (k))

∂wr(k)

∣∣∣∣
2

·
n∑

i=1

(
m∑

r=1

1r∈Si

)2

≤ η2 · (√n‖u(k)− y‖2)2 ·
n∑

i=1

(
m∑

r=1

1r∈Si

)2

≤ η2 · (√n‖u(k)− y‖2)2 ·
n∑

i=1

(4mR)2

= 16m2n2R2η2‖u(k)− y‖22,

where the first step follows from the definition of v2, the fourth step follows from maxr∈[m] |∂L(W (k))
∂wr(k)

| ≤ √
n · ‖u(k)−y‖2,

and the fifth step follows from
∑m

r=1 1r∈Si
≤ 4mR which holds with probability at least 1− n ·B · exp(−m0R).

Bounding the Width of Neural Networks via Coupled Initialization - A Worst Case Analysis

I.7. Proof of Claim I.5

Claim I.5. Let C4 = ‖u(k + 1)− u(k)‖22. Then we have

C4 ≤ m2 · η2n2 · ‖y − u(k)‖22.

Proof. We have

C4 ≤ η2
n∑

i=1

(
m∑

r=1

∥∥∥
∂L(W (k))

∂wr(k)

∥∥∥
2

)2

≤ m2 · η2n2‖y − u(k)‖22.

where the first step follows from Eq. (6) and the last step follows from Eq. (15).

I.8. Proof of Fact I.6

Fact I.6. Let H(k)⊥ be defined as in Eq. (10). Then we have

‖H(k)⊥‖2 ≤ n

m2

n∑

i=1

y2i .

Proof. We have

‖H(k)⊥‖2F =

n∑

i=1

n∑

j=1

(H(k)⊥i,j)
2

=

n∑

i=1

n∑

j=1

(1

m

∑

r∈Si

x⊤
i xj1wr(k)⊤xi≥0,wr(k)⊤xj≥0

)2

=

n∑

i=1

n∑

j=1

(1

m

m∑

r=1

x⊤
i xj1wr(k)⊤xi≥0,wr(k)⊤xj≥0 · 1r∈Si

)2

=

n∑

i=1

n∑

j=1

(
x⊤
i xj

m

)2 (m∑

r=1

1wr(k)⊤xi≥0,wr(k)⊤xj≥0 · 1r∈Si

)2

≤ 1

m2

n∑

i=1

n∑

j=1

(m∑

r=1

1wr(k)⊤xi≥0,wr(k)⊤xj≥0 · 1r∈Si

)2

=
n

m2

n∑

i=1

(m∑

r=1

1r∈Si

)2

=
n

m2

n∑

i=1

y2i .

where the only inequality follows from ‖xi‖2, ‖xj‖2 ≤ 1.

