
Learning-Augmented Binary Search Trees

Honghao Lin * 1 Tian Luo * 1 David P. Woodruff * 1

Abstract

A treap is a classic randomized binary search tree

data structure that is easy to implement and sup-

ports O(log n) expected time access. However,

classic treaps do not take advantage of the in-

put distribution or patterns in the input. Given

recent advances in algorithms with predictions,

we propose pairing treaps with machine advice

to form a learning-augmented treap. We are the

first to propose a learning-augmented data struc-

ture that supports binary search tree operations

such as range-query and successor functionali-

ties. With the assumption that we have access

to advice from a frequency estimation oracle, we

assign learned priorities to the nodes to better

improve the treap’s structure. We theoretically an-

alyze the learning-augmented treap’s performance

under various input distributions and show that un-

der those circumstances, our learning-augmented

treap has stronger guarantees than classic treaps

and other classic tree-based data structures. Fur-

ther, we experimentally evaluate our learned treap

on synthetic datasets and demonstrate a perfor-

mance advantage over other search tree data struc-

tures. We also present experiments on real world

datasets with known frequency estimation oracles

and show improvements as well.

1. Introduction

Querying ordered elements is a fundamental problem in

computer science. Classically, hash tables and various tree-

based data structures such as Red-Black Trees, AVL Trees,

and Treaps have been used to efficiently solve this prob-

lem. While hash tables are very efficient and extensively

used in practice, trees are more memory-efficient and can

*Equal contribution 1Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, USA. Corre-
spondence to: Honghao Lin <honghaol@andrew.cmu.edu>,
Tian Luo <tianl1@andrew.cmu.edu>, David P. Woodruff
<dwoodruf@andrew.cmu.edu>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

dynamically resize with greater convenience. Additionally,

search trees can offer extra functionality over hash tables

in the form of successor/predecessor, minimum/maximum,

order statistics, and range query capabilities. In practice,

self-balancing binary search trees are used in routing tables,

database indexing (B-Trees), the Linux kernel (Red-Black

Trees), and various implementations of collections, sets, and

dictionaries in standard libraries.

Classic binary search tree data structures often support these

functionalities in O(log n) time. However, most binary

search tree implementations, such as Red-Black Trees and

AVL Trees, do not leverage patterns in the data to improve

performance; instead, they provide a worst-case of O(log n)
time per access. Splay Trees are able to implicitly take

advantage of the underlying input distribution without any

information about the distribution as they are, up to a con-

stant factor, statically optimal and conjectured to be dynam-

ically optimal (Sleator & Tarjan, 1985). Unfortunately, each

access is accompanied by a series of rotations that is pro-

portional to the number of nodes visited during the access,

which increases the access time by a possibly large constant

factor. On the other hand, if the underlying distribution is

known, then one can generate a statically optimal tree in

O(n2) time (Knuth, 1971) or an approximately statically

optimal tree in O(n log n) time (Mehlhorn, 1971); how-

ever, these methods do not allow for dynamic insertion and

deletion operations.

A natural idea that arises is to use patterns in data to improve

the efficiency of these data structures. In recent years, the

field of learning-augmented algorithms has blossomed (see

(Mitzenmacher & Vassilvitskii, 2020) for a survey). Given a

predictor that can output useful properties of the dataset, we

can then leverage these predictions to optimize the perfor-

mance of the algorithm based on the predicted patterns. In

this paper, we present a learning-augmented binary search

tree that is the first to support efficient range queries and

order statistics.

In summary, we present the following contributions:

• We introduce a learning-augmented Treap structure

which exploits a rank prediction oracle to decrease the

number of comparisons needed to find an element.

• We analyze our learning-augmented Treap and provide

Learning-Augmented Binary Search Trees

theoretical guarantees for various distributions. We fur-

ther show that our learning-augmented Treap is robust

under a reasonable amount of noise from the oracle and

that it performs no worse than a random Treap when

the oracle is inaccurate, for any input distribution D,

up to an additive constant.

• We experimentally evaluate the performance of our

learning-augmented Treap over synthetic distributions

and real world datasets. On synthetic distributions, we

show improvements of over 25% compared to the best

classical binary search trees. On real world datasets,

we show that the performance is comparable to the best

among popular classical binary search trees and show

significant improvements over non-learned Treaps.

1.1. Motivation for Learning-Augmented Treaps

In a binary search tree, more frequently accessed items

should appear closer to the root to reduce the average num-

ber of comparisons in order to retrieve the item. However,

Red-Black Trees, AVL Trees, and non-learned Treaps do not

take advantage of this property, while Splay Trees exploit

this only to the extent that more recent items are placed near

the root.

Given an oracle that predicts the ranks of elements, it is natu-

ral to build a tree in which the top-ranked items are near the

root. These oracles are indeed realistic; for example, we can

use frequency estimators to approximately rank the elements.

Hashing-based approaches, such as Count-Min (Cormode

& Muthukrishnan, 2005) and Count-Sketch (Cormode &

Hadjieleftheriou, 2008), have been shown to be efficient

and effective in this regard. Further, recent advances in the

learning-augmented space have spurred the development of

learning-augmented frequency estimators (Hsu et al., 2019).

In our experiments, we use the trained machine learning

oracle from Hsu et al. (2019) as our frequency estimator.

With the availability of such a predictor, the motivation of

augmenting a classic binary search tree data structure with a

learned oracle is clear. Red-Black Trees and AVL Trees are

uniquely determined by the insertion order of the elements

and while it is feasible to insert the elements in such an

order such that the top-ranked items are near the root, it is

not clear how to support insertions and deletions to maintain

this property. On the other hand, the order of insertions mat-

ters less for a Splay Tree, especially over a long sequence

of operations, as it is self-adjusting. Our attempts at produc-

ing a learning-augmented Splay Tree have been unfruitful;

this was largely due to the high overhead associated with

rotations and difficulties in determining whether to splay an

element. Instead of a Splay Tree, statically optimal trees

could also be built with a frequency estimation oracle; how-

ever, these trees are unable to support insertions or deletions

after initialization.

Treaps are simpler to analyze and can naturally be adapted in

the learning-augmented setting. Indeed, Treaps are uniquely

determined by the priorities of each key (given that all prior-

ities are unique) and elements with higher priority appear

closer to the root of tree. In this paper, we suggest assigning

learned priorities to the Treap instead of priorities being

drawn from a distribution D; specifically, we assign the

learned frequency as the priority. With this adjustment,

we are able to efficiently support insertions and deletions,

among other tree operations, while improving access time.

We note that in the paper that introduced Treaps (Aragon

& Seidel, 1989), a modification was suggested where every

time an element was accessed, the new priority of the ele-

ment was set to be the maximum of the old priority and a

new draw from D. We are the first to learn the priorities

using a machine learning oracle.

1.2. Related Work

This paper follows the long line of research in the growing

field of algorithms with predictions. Learning-augmented

algorithms have been applied to a variety of online algo-

rithms, such as the ski rental problem and job scheduling

(Purohit et al., 2018). Further, caches (Lykouris & Vassil-

vitskii, 2020), Bloom filters (Mitzenmacher, 2019), index

structures (Kraska et al., 2018), and Count-Min and Count-

Sketch (Hsu et al., 2019) are among the many data structures

that have had a learning-augmented counterpart suggested.

In particular, Kraska et al. (2018) suggests replacing B-

Trees (or any other index structure) with trained models

for querying databases. In their work, instead of traversing

the B-Tree to access the position of a record, they use a

neural net to directly point towards the record. Our work is

different from theirs since it keeps the search tree and instead

optimizes the structure of the tree for faster queries; through

this, we are able to support common additional tree-based

operations such as traversal, order statistics, merge/join, etc.

Our work uses the frequency estimation oracle trained in

Hsu et al. (2019) on a search query dataset (AOL) and an

IP traffic dataset. Since then, other papers have used these

predictions as the basis of their learned structures (Jiang

et al., 2020). Furthermore, Du et al. (2021) has shown an

improved oracle for the IP dataset, which shows significant

improvements in accuracy.

2. Preliminaries

We use [n] to denote the set {1, . . . , n}; further, we identify

the set of keys in our binary tree with [n]. For a sequence

of m queries, we let ei ∈ [n] be the ith most frequent

item with frequency fi, breaking ties randomly. In our

analysis, we also assume that the input distribution is the

same throughout the duration of the query sequence and that

Learning-Augmented Binary Search Trees

the frequency observed in the sequence of m queries exactly

reflects its true distribution, as in element ei occurs with

probability pi =
fi
m

. We will define the rank of element ei
to be i and the ranking ordering to be e1, . . . , en.

Treaps: Treaps are binary search trees that also hold an

additional field per node that stores the priority of that node.

For node i, we denote the priority of the node to be wi. At

the end of any operation, in addition to the binary search tree

order invariant, a Treap always satisfies the heap invariant,

that is, if node x is an ancestor of node y, then wx ≥
wy. Classically, the priorities of a Treap are drawn from

a continuous distribution so as to not have any duplicate

priorities.

Insertion in a Treap is simple. We insert the new node by

attaching it as a leaf in the appropriate position (i.e., satisfy-

ing the order invariant) in the Treap. Then, we repeatedly

rotate the new node and its parent until the heap invariant

is satisfied. Deletion is achieved by rotating the node down

until it is a leaf and detaching the node; we pick the child

with the greater priority to perform the rotation.

We will refer to a Treap where priorities are assigned based

on the rank or frequency of the element as a learned Treap,

while a classic random Treap will be referred to as a random

Treap.

Throughout the analysis, we make the assumption that the

rank order of the keys is random, as in, e1, . . . , en is a ran-

dom permutation of [n]. Section 3.6 shows how to remove

this assumption; however, we keep this assumption for ease

of the analysis. Furthermore, we will also assume for con-

venience that the frequencies of the keys are unique, as in

fi = fj if and only if i = j. To remove this assumption, we

can break ties randomly. If elements x and y have the same

frequency and the tie is broken in favour of x, we will say

that x has lower rank than y.

Zipfian Distribution: In our analysis, we analyze the per-

formance of a Treap under the Zipfian distribution. Specif-

ically, the Zipfian distribution with parameter α has fre-

quencies fi =
m

iαHn,α
where Hn,α =

∑n
i=1

1

iα
is the nth

generalized harmonic number of order α.

3. Learning Augmented Treaps

In the following sections, we assume access to a perfect ora-

cle and analyze the theoretical performance of our learned

Treaps versus random Treaps. In Section 3.4, we discuss

the robustness and performance guarantees of our learned

Treaps when we are given a noisy oracle. In Section 3.5,

we explore performance guarantees of our oracle if given

a less powerful oracle. Finally, in Section 3.6 we explore

a modified version of the learned Treap that removes the

assumption that the rank ordering is a random permutation.

3.1. Treap Operations

3.1.1. TREAP INITIALIZATION

Given a predictor that outputs the frequency rank of an

element, we assign a priority equal to the frequency rank of

the element and insert the element into the Treap. Similarly,

if we had a frequency estimation oracle instead of a rank-

estimation oracle, we can insert the element into the Treap

with priority equal to the frequency estimate.

3.1.2. ACCESS

We present the following theorem that bounds the expected

depth of ei in a learned Treap.

Theorem 3.1. The expected depth of ei in a learned Treap

is 2Hi − 1, where Hi is the i-th Harmonic number.

Proof. Consider the set of elements with higher priority,

i.e., S = {ek | k ≤ i}. Notice that only elements in S
can be ancestors of ei and ei cannot be an ancestor of any

element in S. Since e1, . . . , en is a random permutation of

[n], e1, . . . , ei is a random permutation of {e1, . . . , ei}.

Under these assumptions, the number of comparisons

needed to access ei is equivalent to the number of com-

parisons needed to correctly insert a random element x ∈ [i]
in a sorted array of elements [i] \ {x} using binary search,

where pivots are chosen randomly. Here, the pivots are

analogous to the ancestors of ei.

This motivates the following recurrence for computing the

expected depth of ei:

T (i) =

{

1 i = 1

1 + 2

i−1

∑i−1

k=1

(

k
i
T (k)

)

otherwise

which simplifies to

T (i) =

{

1 i = 1
2

i
+ T (i− 1) otherwise

This recurrence evaluates to T (i) = 2Hi − 1.

Theorem 3.2. The expected depth of ei in a learned Treap

is O(log i) with high probability.

Proof. Again, we analyze the depth of element ei by exam-

ining the number of comparisons needed to insert a random

element x ∈ [i] in a sorted array of [i]\x use random binary

search. We employ a similar technique to the classic high

probability analysis of QuickSort.

Suppose on iteration k, the size of the array being searched

is Xk. With probability 1

2
, the randomized pivot is situated

Learning-Augmented Binary Search Trees

in the range [1
4
Xk,

3

4
Xk]. In this case, Xk+1 ≤ 3

4
Xk. Oth-

erwise, if the pivot does not land in this range, we know that

Xk+1 ≤ Xk trivially. We get the following:

E[Xk] ≤
1

2
Xk−1 +

3

8
Xk−1 =

7

8
Xk−1

Since X0 ≤ i, we have

E[Xk] ≤

(

7

8

)k

X0 ≤

(

7

8

)k

i

The probability that the randomized binary search uses more

than k iterations is exactly Pr{Xk ≥ 1}. Using Markov’s

Inequality and setting k = c log 8

7

i for some constant c gives

Pr{Xk ≥ 1} ≤ E[Xk] ≤
1

ic−1

Therefore, setting c ≥ 2 implies that the expected depth of

ei is O(log i) with high probability.

Theorem 3.3. With constant probability, for every i, ei
has depth O(log i). In other words, the entire tree is well-

balanced.

Proof. Again, let Xi be the depth of element ei. Notice

that X1 and X2 are 1 and 2, respectively, with probability

1. From Theorem 3.1, for i ≥ 3, Xi ≤ O(log i) with

probability at most 1

ic−1 for some constant c. Applying a

union bound over elements Xi for i ≥ 3 gives

Pr{

n
⋃

i=3

Xi ≤ O(log i)} ≤

n
∑

i=3

1

ic−1

For c = 3,
∑n

i=3
1

ic−1 ≤ π2

6
− 1.25 ≈ 0.39.

3.1.3. INSERTION/DELETION AND PRIORITY UPDATES

Corollary 3.4. The expected time of an insertion, deletion

or priority update is O(log n).

Proof. Suppose during the insertion process of a node x,

we attach x to node y as a leaf. Then by Theorem 3.1, the

depth of y is O(log n) in expectation. Similarly, suppose

during the deletion process of node x, we detach node x
when it is a child of node y. By Theorem 3.1, the time it

takes is O(log n).

Similarly, a priority update takes at most O(log n) time.

3.1.4. OTHER OPERATIONS

Our learned Treap could also be optimized for other tree-

based operations. Under these modifications, the following

operations could be supported by a learned Treap with time

similar to that of an access on a learned Treap.

Range Queries: Consider the simple operation of count-

ing the number of elements between keys x and y. This

operation is commonly implemented by augmenting every

node with a field that stores the size of the subtree rooted at

the node. Counting the number of elements in the ranges

reduces to traversing from the root to x and from the root

to y, which is similar to the process of accessing x and y.

Thus, the predictor can learn the frequency distribution of

the boundaries of the range query to optimize our Treap.

Other such operations may include the standard RangeSum

operation, which outputs the sum of the values stored in

each key of the tree.

Successor/Predecessor: On a query to the successor of

key x, the output would be the smallest key greater than x.

Among the many ways to implement this functionality, a

simple way is to keep a pointer that points to the succes-

sor/predecessor. When finding the successor of key x, we

simply access x in the Treap and use the stored pointer to

access the successor. Our predictor can learn the frequency

distribution of successor queries to x and set the priority of

x accordingly in the learned Treap.

When supporting this operation, insertion and deletion be-

come more complicated. When inserting element x, we

must change the pointers of both the successor and prede-

cessor of x accordingly; however, this requires at most a

constant number of pointer changes.

3.2. General Distributions

In this section, we analyze the expected cost per access of a

learned Treap and a random Treap for an arbitrary frequency

distribution D.

Lemma 3.5. The expected cost of a single access on a

learned Treap is
∑n

i=1
pi(2Hi − 1).

Proof. This follows immediately from Theorem 3.1.

Since the expected cost of a single access is known to be

at most O(log n) (Aragon & Seidel, 1989), we provide a

lower bound on this expectation.

Theorem 3.6. The expected cost of a single access on a

random Treap is at least 2Hn+1 − 4 for any frequency

distribution.

Proof. The expected depth of key i is well-known to be

Hi +Hn−i+1 − 2 (Aragon & Seidel, 1989). Let X be the

depth of an access and let Xij be the depth of key i if it is

Learning-Augmented Binary Search Trees

the jth-ranked item, and 0 otherwise.

E[X] =

n
∑

i=1

1

n

n
∑

j=1

E[Xij]

=
n
∑

i=1

1

n

n
∑

j=1

pj(Hi +Hn−i+1 − 2)

=

n
∑

i=1

1

n
(Hi +Hn−i+1 − 2)

=
2

n

n
∑

i=1

Hi − 1

=
2

n
((n+ 1)Hn+1 − 2n)

> 2Hn+1 − 4

3.3. Zipfian Distributions

In this section, we analyze the expected cost of an access of

a learned Treap where pi ∝
1

iα
for a parameter α.

Theorem 3.7. The expected cost of a single access on a

learned Treap is
∑n

i=1
1

iαHn,α
(2Hi − 1).

Proof. From Lemma 3.5, it is immediate that the expected

cost is
∑n

i=1
1

iαHn,α
(2Hi − 1).

Lemma 3.8. The expected cost of an access for α = 1 is at

most Hn.

Proof. For α = 1, the expected cost is
∑n

i=1
1

iHn
(2Hi− 1)

by Theorem 3.7.

Consider the sum C =
∑n

i=1
1

i
(Hi). Observe by expanding

this summation that it evaluates to 1

2
((Hn)

2 +Hn,2). The

expected cost can then be expressed as 2C
Hn

− 1 = Hn +
Hn,2

2Hn
− 1. This approaches Hn − 1 as n increases.

Corollary 3.9. The expected cost of an access for a learned

Treap on a Zipfian distribution with parameter α = 1 is

approximately a factor 2 less than that of an access on a

random Treap.

Lemma 3.10. The expected cost of an access for α > 1 is

constant.

Proof. For α > 1, the expected cost is
∑n

i=1
1

iαHn,α
(2Hi−

1) by Theorem 3.7.

Consider the series ai =
Hi

iε
and bi =

1

iα−ε for some ε > 0.

Observe the following properties:

• Since Hn ≤ ln(n) + 1, limn→∞ an = 0. Further,

{an} is monotonically decreasing for large n.

• Since α > 1, there exists ε such that α − ε > 1 and

thus,
∑n

i=1
bi ≤ c for some constant c.

Recall Dirichlet’s test: if {an} is a monotonically decreas-

ing sequence whose limit approaches 0 and {bn} is a se-

quence such that
∑

∞

i=1
bi is bounded by a constant, then

∑

∞

i=1
aibi converges as well.

By these two observations and using Dirichlet’s test,
∑n

i=1
anbn =

∑n
i=1

Hn

nα converges to a constant. The ex-

pected cost here is 2

Hn,α
(
∑n

i=1
anbn)− 1. Therefore, the

expected cost is bounded from above by a constant.

Theorem 3.11. The learned Treap is statically optimal in

expectation for α ≥ 1.

Proof. First, consider α = 1. The Shannon entropy, H , of

this distribution is an asymptotic lower bound for a statically

optimal tree, namely, Mehlhorn shows that for any binary

tree, the weighted path length must be at least H
3

(Mehlhorn,

1971). The Shannon entropy for the Zipfian distribution

with α = 1 is

n
∑

i=0

−pi log (pi) =

n
∑

i=0

1

iHn

log (iHn)

=

n
∑

i=0

1

iHn

(log (i) + log(Hn)) ≥

n
∑

i=0

1

iHn

log (i)

Clearly, this is within a constant factor of the expected cost

of our learned Treap. Since the expected cost for the learned

Treap is within a constant factor of the Shannon entropy, we

are statically optimal up to a constant factor.

For α > 1, the expected cost is constant; therefore, it is

immediate that we are at most a constant factor more than

the statically optimal binary search tree.

3.4. Noisy Oracles and Robustness to Errors

In this section, we will prove that given an accurate rank

prediction oracle subject to a reasonable amount of noise

and error, our learned Treap’s performance matches that of

a perfect rank prediction oracle up to an additive constant

per access.

Given element i, let ri be the real rank of i and let r̂i be

the predicted rank of i. We will call an oracle noisy if

r̂i ≤ εr + δ for some constants ε, δ ≥ 1.

Theorem 3.12. Using predictions from a noisy oracle, the

learned Treap’s performance matches that of a learned

Treap with a perfect oracle up to an additive constant.

Proof. The expected cost of a single access on the learned

Treap with a noisy oracle is at most
∑n

i=1
pi(2Hεi+δ − 1).

Learning-Augmented Binary Search Trees

The difference between the expected cost of a learned Treap

with a noisy oracle and a learned Treap with a perfect oracle

is
∑n

i=1
2pi(Hεi+δ −Hi).

Using that ln(n) ≤ Hn ≤ ln(n) + 1 for

the nth Harmonic number Hn, the differ-

ence is at most
∑n

i=1
2pi

(

1 + ln
(

ε+ δ
i

))

≤
∑n

i=1
2pi (1 + ln (ε+ δ)) = 2 (1 + ln (ε+ δ)) ≤ c,

for some constant c. Therefore, under a noisy oracle, the

learned Treap is at most an additive constant worse than a

learned Treap with a perfect oracle.

We remark that for frequency estimation oracles, it might

be natural to consider an error bound of 1

∆
fi ≤ f̂i ≤ ∆fi

instead; however, if the underlying distribution is Zipfian,

a frequency estimation error bound of 1

∆
fi ≤ f̂i ≤ ∆fi is

equivalent to a rank estimation error bound of r̂i ∈ ri ±∆2.

We will call an oracle inaccurate if there exist no constants

ε, δ ≥ 1 such that r̂i ≤ εr + δ. Further, we will define

the notion of an adversarial oracle as an oracle that out-

puts a rank ordering that is adversarial; more specifically,

given a distribution D with a random rank ordering, a non-

adversarial oracle would output a random rank ordering that

is not necessarily the same as the rank ordering of D.

Theorem 3.13. A learned Treap based on an inaccurate

but non-adversarial oracle has expected performance no

worse than that of a random Treap, up to a small additive

constant.

Proof. Since the oracle is non-adversarial, the expected

depth of any element is still bounded by 2Hn − 1 by

Theorem 3.1. Therefore, the expected cost is at most
∑n

i=1
pi(2Hn − 1) = 2Hn − 1.

3.5. Oracles with Limited Capabilities

In certain circumstances, it may be impossible or inconve-

nient to obtain an oracle that predicts the full rank ordering

of the elements. Instead, it may be easier to obtain an oracle

that predicts the top k elements only.

In this case, we will assign the top k elements random posi-

tive real-valued priorities and the remaining elements will

be assigned random negative real-valued priorities. Hence,

the top k elements are ancestors of the remaining elements.

Again, here, we will assume that the underlying rank order-

ing is a random permutation of [n]. Further, suppose that

the top k items account for p percent of the queries.

Theorem 3.14. With an oracle that predicts only the top k
elements, the expected depth of an access is at most 2(pHk+
(1− p)Hn)− 1.

Proof. For the top k elements, the expected depth is at most

2Hk − 1 and for the rest of the elements, the expected depth

is at most 2Hn − 1. Therefore, the expected depth of an

access is at most 2(pHk + (1− p)Hn)− 1.

For small k and significant p, this results in a large constant

factor reduction in expected access depth. Similarly, if we

were given an oracle that can only accurately predict the

frequencies of the top k items, we can assign priorities of

the top k items to the frequency and assign random negative

real-valued priorities to the remaining n− k items.

3.6. Removing Assumption of Random Rank Ordering

In real world datasets, it might not be the case that the

rank ordering is a random permutation. For example, in

search queries, certain queries are lexicographically close

to misspelled versions of the query; however, misspelled

versions of the query have a significantly reduced frequency

compared to the correctly spelled query. Furthermore, it

may be the case that the oracle is adversarial. In this case, we

would want to remove the assumption that the rank ordering

is a random permutation.

One natural idea is to map the identities of the elements to

a random real number. For key i, we will use si to denote

this random real. The idea is to use a random Treap (or any

other self-balancing binary search tree) and a learned Treap

together. The random Treap will use the actual identity

of the element as the key and the learned Treap will use

the random real as the key. For each node in the learned

Treap, we keep a pointer to the corresponding node in the

random Treap. It immediately follows that the rank ordering

on the keys of the learned Treap is equivalent to a random

permutation. Furthermore, we keep a map that maps the

identity of the element to its corresponding random real. We

show an example of this modified learned treap in Figure 1.

5

2

1 3

6

4

7

s7

s3

s5 s2

s4

s1

s6

Figure 1. An example of the learned Treap modification. White

nodes form the learned Treap and grey nodes form the ran-

dom Treap. The red arrows are the pointers from nodes in the

learned Treap to the corresponding node in the random Treap.

One possible assignment of [s1, . . . , s7] for this Treap could be

[1, 5, 3, 6, 2, 7, 4].

We describe each tree operation below:

Access: For an access operation to element i, we query si

Learning-Augmented Binary Search Trees

in the learned Treap and use the pointer to access element i
in the random Treap.

Insertion: To insert element i, we generate si and store si
in our map. Then we insert i into the random Treap with a

random priority and insert si into the learned Treap with the

learned priority. We set the pointer in the node containing

si to point to i.

Deletions: To delete element i, we delete i from the random

Treap, si from the learned Treap, and remove i and si from

the map.

Successor/Predecessor: To support successor and prede-

cessor functionalities, we apply the same technique as de-

scribed in Section 3.1.4 on the random Treap.

Unfortunately, under this modification, there is no easy

method of optimizing for range queries; however we note

that this operation still takes at most O(log n) time in ex-

pectation because this is the expected sum of depths of the

two nodes that we access. The main issue arises from the

fact that range queries require access to the path from the

root to the queried node on the random Treap; however,

to remove the random rank ordering, we intentionally cir-

cumvent this path by traversing the learned Treap instead.

For all accesses and successor/predecessor operations, we

increase the cost of an operation by at most an additive con-

stant related to accessing the map and a constant amount of

pointer accesses. For insertions and deletions, we maintain

the expected O(log n) bound since every node has expected

depth at most O(log n).

In practice, there might be a desire to avoid implementing a

map; instead, using a hash function to implicitly store the

map may be a more attractive alternative. We will show that

using a 4-wise independent hash function with range (0, 1)
would suffice. We choose to implement the hash function in

poly(n) precision so that with high probability, there are no

collisions and such a hash function requires O(log n) bits

to store and only increases the cost of operations by at most

an additive constant.

Theorem 3.15. Given si = h(ei) where h is drawn from a

4-wise universal hash family with range (0, 1), the expected

depth of si is O(log i).

To achieve this, the following observation is crucial.

Fact 3.16. Suppose that sj is an ancestor of si where j < i.
Then in the ordering of {si|x ∈ {1, . . . , j, i}}, si and sj are

adjacent.

Proof of Theorem 3.15. Since the priorities of each key do

not change, only elements in {e1, . . . , ei−1} can potentially

be ancestors of ei. We proceed with an analysis similar to

Knudsen and StÈockel’s (2015) analysis of quicksort under

limited independence.

From Lemma 4 of (Knudsen & StÈockel, 2015), we have the

following lemma: given hash function h : X −→ (0, 1)
drawn from a 4-universal hash family and disjoint sets

A,B ⊆ X with |A| ≤ |B|, then

E[|{a ∈ A|h(a) ≤ min
b∈B

h(b)}|] = O(1) .

Similarly, E[|{a ∈ A|h(a) ≥ maxb∈B h(b)}|] = O(1).

Consider the set Sj = {sj |1 ≤ j ≤ i− 1}. From Fact 3.16

we get that if sj is an ancestor of si for some j < i , then

for all j′ < j, sj′ < min{si, sj} or sj′ > max{si, sj}.

For k = 1, 2, ..., log i, define

Bk = [2k−1] and Ak =
(

[2k] ∩ [i]
)

/[2k−1] .

Suppose that sj is an ancestor of si for some j ∈ Ak.

Without loss of generality, we assume that sj < si. Then

we have that for each j′ ∈ Bk, sj′ < sj or sj′ > si.
Consider the hash function H : X −→ (−(1− si), si) such

that H(x) = h(x) if h(x) < si and H(x) = h(x) − 1 if

h(x) > si. Notice that H is also a 4-wise independent hash

function. This implies that H(j) > maxb∈Bk
H(b). From

the lemma above, there are an expected O(1) such elements

in Ak and since there are only O(log i) values of k for

which Ak is non-empty, it follows immediately by linearity

of expectation that the expected number of ancestors of si is

O(log i) and thus, the expected depth of ei is O(log i).

4. Experiments

In this section, we present experimental results that com-

pare the performance of our learned Treap to classical self-

balancing binary search tree data structures. Specifically,

we examined Red-Black Trees, AVL Trees, Splay Trees,

B-Trees of order 3, and random Treaps. For binary search

trees sensitive to insertion order, we insert all keys in a ran-

dom order. For these experiments, we only consider query

operations and report the total number of comparisons made

by each data structure. We note that although the number of

comparisons is not a precise measurement of actual runtime,

with the exception of Splay Trees, traversing the tree is ex-

tremely similar across all data structures, and for all data

structures tested except B-Trees, the number of comparisons

is exactly the access depth. For Splay Trees, we can expect

a constant factor more in actual runtime due to the rotations

involved.

4.1. Synthetic Datasets

We consider synthetic datasets where elements appear ac-

cording to a Zipfian distribution with parameter α. As with

section 3, we assume that the rank order of the elements is a

random permutation. For each experiment, we consider a

sequence of length 105.

Learning-Augmented Binary Search Trees

Figure 2. Total number of comparisons of

classical binary search tree data structures

and the learned Treap on the Zipfian Distri-

bution with parameter α = 1

Figure 3. Total number of comparisons of

classical binary search tree data structures

and the learned Treap on the Zipfian Distri-

bution with parameter α = 1.25.

Figure 4. Total number of comparisons of

Splay Tree and learned Treaps for varying

Zipfian parameter α.

We report experimental results where we vary n, the number

of keys, for α = 1 in Figure 2 and for α = 1.25 in Figure 3.

Notice that for both α = 1 and α = 1.25, the learned

Treap performs approximately 25% better than Splay Trees

and a bit over 30% better than AVL and Red-Black Trees

in terms of the number of comparisons. For α = 1, the

factor-2 savings shown in Corollary 3.9 is exhibited and for

α = 1.25, we can see that the cost of an access is constant,

as shown in Lemma 3.10.

In Figure 4, we show the effects of varying α; in this set

of experiments, we fix the number of keys to be 104 and

only show results for the statically optimal trees, as in Splay

Trees and learned Treaps. The learned Treap performs be-

tween approximately 27%−51% better than the Splay Tree.

The greatest improvement was at α = 3 and the least im-

provement was observed when α = 1.

4.2. Real World Datasets

In this section, we used machine learning models trained by

Hsu et al. (2019) as our frequency estimation oracle. We

present 4 versions of our learned Treap. We consider the

performance of our learned Treap with the trained frequency

estimation oracle and with a perfect oracle; for both of these

instances, we also test the performance if we remapped the

keys to a random permutation (i.e., similar to the idea of

Section 3.6). We call the remapped versions of the learned

Treap ªshuffledº. To make the data more presentable, among

classical binary search tree data structures, we only show

the results of Red-Black Trees and Treaps; we remark that

the relative performance of all classical binary search tree

data structures in these datasets was similar to that in the

synthetic datasets.

4.2.1. INTERNET TRAFFIC DATA

Various forms of self-balancing binary search trees and

skip lists have been suggested to be used in routing tables

(Sklower, 1991). In this experiment, we measure the perfor-

Figure 5. Total number of comparisons of Red-Black Trees, ran-

dom Treaps, and learned Treaps on the 20th test minute

Figure 6. Total number of comparisons of Red-Black Trees, ran-

dom Treaps, and learned Treaps on the 50th day.

mance of the binary search trees if we had to query every

packet in the internet traffic logs.

Data: The internet traffic data was collected by CAIDA

using a commercial backbone link (Tier 1 ISP) (CAIDA,

2016). Following Hsu et al. (2019), we used the internet

traffic recorded from Chicago outgoing to Seattle recorded

on 2016-01-21 13:00-14:00 UTC. Each minute recorded

approximately 30 million and 1 million unique flows.

Model: We used the prediction made by Hsu et al. (2019).

In their paper, an RNN was used to encode the source and

destination IP addresses, ports, and protocol type, and a

separate RNN was used to predict the number of packets

Learning-Augmented Binary Search Trees

Figure 7. Performance of learned Treap under oracles with different errors

from the traffic flow based on the encoding. The first 7

minutes of the dataset was used as training sets with the

next 2 minutes used as the validation sets. The rest of the

dataset was used for testing. See Hsu et al. (2019) for

details.

Results: In Figure 5, we plot the performances of the vari-

ous data structures. We consider three variants of the dataset:

a subset with the top 33% of the most frequent queries, a

subset of the top 50% of the most frequent queries, and the

full dataset. We show the results on the 20th test minute

(2016-01-21 13:29 UTC).

In all cases, the shuffled versions of the learned Treap per-

form significantly better than that of the non-shuffled ver-

sions, and the learned Treaps perform better than random

Treaps. We note that using the oracle from Hsu et al. (2019),

we are unable to beat Red-Black Trees; however, the shuf-

fled learned Treap with the learned oracle is comparable

and with a better oracle, it could be possible to outperform

a Red-Black Tree.

4.2.2. SEARCH QUERY DATA

Data: This dataset contains approximately 21 million

queries on AOL collected over 90 days in 2006. The distri-

bution follows Zipf’s Law (see Hsu et al. (2019)).

Model: Again, we use the predictions from Hsu et al.

(2019). They use an RNN with LSTM cells to encode

the queries character by character. The encoding is then fed

into a fully connected layer to predict the frequency of each

query. The first 5 days were used for training while the 6th

day was used as the validation set.

Results: As with the Internet traffic dataset, we show the

performance of the learned Treaps, a Red-Black Tree, and a

random Treap in Figure 6. For this dataset, we consider the

top 1%, 2%, and 5% of the most frequent queries as our set

of keys. We show the results for the 50th day.

Similar to the internet traffic dataset, the shuffled version of

the learned Treaps performed better and all learned Treaps

performed better than the random Treap. For this dataset,

the shuffled learned Treap with the frequency estimator

from Hsu et al. (2019) performed well and is comparable to

the performance of a Red-Black Tree. Furthermore, unlike

the internet traffic dataset, the performance of the learned

Treaps with the machine learning model was close to that

of the learned Treap with a perfect oracle.

4.3. Performance under Oracles with Different Errors

In this section, we study the performance of the learned

Treap under oracles with certain errors on both synthetic

and real-world data. In Figure 7 we show experimental re-

sults on synthetic and real-world data that show a graceful

degradation as error grows. Here the prediction, f̂i, of the

frequency satisfies f̂i ≤ ∆fi. We note that if the under-

lying distribution is Zipfian, then the error bounds for the

rank-estimation oracle are stronger than the bounds for a

frequency estimation oracle; if a given frequency estimation

oracle has the error bound of 1

∆
fi ≤ f̂i ≤ ∆fi, then under

a Zipfian distribution with α ≥ 1, then r̂i ∈ ri ±∆2.

5. Conclusion

We introduced the concept of learning-augmented algo-

rithms into the class of binary search tree data structures that

support additional operations beyond B-trees. The learned

Treap is able to support various useful tree-based opera-

tions, such as range-queries, successor/predecessor, and

order statistic queries and can be optimized for such oper-

ations. We proved that the learned Treap is robust under

rank-estimation oracles with reasonable error and under

modifications, is no worse than a random Treap regardless

of the accuracy of the oracle and the underlying input dis-

tribution. Further, we presented experimental evidence that

suggests a learned Treap may be useful in practice. In the fu-

ture, it may be interesting to explore whether advanced tree

data structures, such as van Emde Boas Trees or Biased Skip

Lists, can also benefit from machine learning techniques.

Acknowledgements.

Honghao Lin and David Woodruff would like to thank for

partial support from the National Science Foundation (NSF)

under Grant No. CCF-1815840.

Learning-Augmented Binary Search Trees

References

Aragon, C. R. and Seidel, R. G. Randomized search trees.

In Proceedings of the 30th Annual Symposium on Foun-

dations of Computer Science, SFCS ’89, pp. 540±545,

USA, 1989. IEEE Computer Society. ISBN 0818619821.

doi: 10.1109/SFCS.1989.63531. URL https://doi.

org/10.1109/SFCS.1989.63531.

CAIDA. The caida ucsd anonymized internet traces - 2016,

2016. URL https://www.caida.org/catalog/

datasets/passive_dataset.

Cormode, G. and Hadjieleftheriou, M. Finding frequent

items in data streams. Proc. VLDB Endow., 1:1530±1541,

2008.

Cormode, G. and Muthukrishnan, S. An improved data

stream summary: the count-min sketch and its applica-

tions. Journal of Algorithms, 55(1):58±75, 2005. ISSN

0196-6774. doi: https://doi.org/10.1016/j.jalgor.2003.12.

001. URL https://www.sciencedirect.com/

science/article/pii/S0196677403001913.

Du, E., Wang, F., and Mitzenmacher, M. Putting the ªlearn-

ingº into learning-augmented algorithms for frequency

estimation. In Meila, M. and Zhang, T. (eds.), Pro-

ceedings of the 38th International Conference on Ma-

chine Learning, volume 139 of Proceedings of Machine

Learning Research, pp. 2860±2869. PMLR, 18±24 Jul

2021. URL https://proceedings.mlr.press/

v139/du21d.html.

Hsu, C.-Y., Indyk, P., Katabi, D., and Vakilian, A. Learning-

based frequency estimation algorithms. In International

Conference on Learning Representations, 2019.

Jiang, T., Li, Y., Lin, H., Ruan, Y., and Woodruff, D. P.

Learning-augmented data stream algorithms. In In-

ternational Conference on Learning Representations,

2020. URL https://openreview.net/forum?

id=HyxJ1xBYDH.

Knudsen, M. B. T. and StÈockel, M. Quicksort, largest

bucket, and min-wise hashing with limited indepen-

dence. In Bansal, N. and Finocchi, I. (eds.), Algo-

rithms - ESA 2015 - 23rd Annual European Sympo-

sium, Patras, Greece, September 14-16, 2015, Proceed-

ings, volume 9294 of Lecture Notes in Computer Sci-

ence, pp. 828±839. Springer, 2015. doi: 10.1007/

978-3-662-48350-3\ 69. URL https://doi.org/

10.1007/978-3-662-48350-3_69.

Knuth, D. E. Optimum binary search trees. Acta Inf., 1

(1):14±25, mar 1971. ISSN 0001-5903. doi: 10.1007/

BF00264289. URL https://doi.org/10.1007/

BF00264289.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Poly-

zotis, N. The case for learned index structures. In

Proceedings of the 2018 International Conference on

Management of Data, SIGMOD ’18, pp. 489±504,

New York, NY, USA, 2018. Association for Comput-

ing Machinery. ISBN 9781450347037. doi: 10.1145/

3183713.3196909. URL https://doi.org/10.

1145/3183713.3196909.

Lykouris, T. and Vassilvitskii, S. Competitive caching with

machine learned advice, 2020.

Mehlhorn, K. Nearly optimal binary search trees. Acta

Informatica, v.5, 287-295 (1975), 5, 01 1971. doi: 10.

1007/BF00264563.

Mitzenmacher, M. A model for learned bloom fil-

ters, and optimizing by sandwiching. arXiv preprint

arXiv:1901.00902, 2019.

Mitzenmacher, M. and Vassilvitskii, S. Algorithms with

predictions. arXiv preprint arXiv:2006.09123, 2020.

Purohit, M., Svitkina, Z., and Kumar, R. Improving

online algorithms via ml predictions. In Bengio,

S., Wallach, H., Larochelle, H., Grauman, K., Cesa-

Bianchi, N., and Garnett, R. (eds.), Advances in Neural

Information Processing Systems, volume 31. Curran As-

sociates, Inc., 2018. URL https://proceedings.

neurips.cc/paper/2018/file/

73a427badebe0e32caa2e1fc7530b7f3-Paper.

pdf.

Sklower, K. A tree-based packet routing table for berkeley

unix. In USENIX Winter, 1991.

Sleator, D. D. and Tarjan, R. E. Self-adjusting binary search

trees. J. ACM, 32(3):652±686, jul 1985. ISSN 0004-5411.

doi: 10.1145/3828.3835. URL https://doi.org/

10.1145/3828.3835.

