Learning-Augmented Binary Search Trees

Honghao Lin“! Tian Luo”' David P. Woodruff *'

Abstract

A treap is a classic randomized binary search tree
data structure that is easy to implement and sup-
ports O(logn) expected time access. However,
classic treaps do not take advantage of the in-
put distribution or patterns in the input. Given
recent advances in algorithms with predictions,
we propose pairing treaps with machine advice
to form a learning-augmented treap. We are the
first to propose a learning-augmented data struc-
ture that supports binary search tree operations
such as range-query and successor functionali-
ties. With the assumption that we have access
to advice from a frequency estimation oracle, we
assign learned priorities to the nodes to better
improve the treap’s structure. We theoretically an-
alyze the learning-augmented treap’s performance
under various input distributions and show that un-
der those circumstances, our learning-augmented
treap has stronger guarantees than classic treaps
and other classic tree-based data structures. Fur-
ther, we experimentally evaluate our learned treap
on synthetic datasets and demonstrate a perfor-
mance advantage over other search tree data struc-
tures. We also present experiments on real world
datasets with known frequency estimation oracles
and show improvements as well.

1. Introduction

Querying ordered elements is a fundamental problem in
computer science. Classically, hash tables and various tree-
based data structures such as Red-Black Trees, AVL Trees,
and Treaps have been used to efficiently solve this prob-
lem. While hash tables are very efficient and extensively
used in practice, trees are more memory-efficient and can

“Equal contribution 'Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, USA. Corre-
spondence to: Honghao Lin <honghaol@andrew.cmu.edu>,
Tian Luo <tianll @andrew.cmu.edu>, David P. Woodruff
<dwoodruf @andrew.cmu.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

dynamically resize with greater convenience. Additionally,
search trees can offer extra functionality over hash tables
in the form of successor/predecessor, minimum/maximum,
order statistics, and range query capabilities. In practice,
self-balancing binary search trees are used in routing tables,
database indexing (B-Trees), the Linux kernel (Red-Black
Trees), and various implementations of collections, sets, and
dictionaries in standard libraries.

Classic binary search tree data structures often support these
functionalities in O(logn) time. However, most binary
search tree implementations, such as Red-Black Trees and
AVL Trees, do not leverage patterns in the data to improve
performance; instead, they provide a worst-case of O(log n)
time per access. Splay Trees are able to implicitly take
advantage of the underlying input distribution without any
information about the distribution as they are, up to a con-
stant factor, statically optimal and conjectured to be dynam-
ically optimal (Sleator & Tarjan, 1985). Unfortunately, each
access is accompanied by a series of rotations that is pro-
portional to the number of nodes visited during the access,
which increases the access time by a possibly large constant
factor. On the other hand, if the underlying distribution is
known, then one can generate a statically optimal tree in
O(n?) time (Knuth, 1971) or an approximately statically
optimal tree in O(nlogn) time (Mehlhorn, 1971); how-
ever, these methods do not allow for dynamic insertion and
deletion operations.

A natural idea that arises is to use patterns in data to improve
the efficiency of these data structures. In recent years, the
field of learning-augmented algorithms has blossomed (see
(Mitzenmacher & Vassilvitskii, 2020) for a survey). Given a
predictor that can output useful properties of the dataset, we
can then leverage these predictions to optimize the perfor-
mance of the algorithm based on the predicted patterns. In
this paper, we present a learning-augmented binary search
tree that is the first to support efficient range queries and
order statistics.

In summary, we present the following contributions:
* We introduce a learning-augmented Treap structure

which exploits a rank prediction oracle to decrease the
number of comparisons needed to find an element.

* We analyze our learning-augmented Treap and provide

Learning-Augmented Binary Search Trees

theoretical guarantees for various distributions. We fur-
ther show that our learning-augmented Treap is robust
under a reasonable amount of noise from the oracle and
that it performs no worse than a random Treap when
the oracle is inaccurate, for any input distribution D,
up to an additive constant.

* We experimentally evaluate the performance of our
learning-augmented Treap over synthetic distributions
and real world datasets. On synthetic distributions, we
show improvements of over 25% compared to the best
classical binary search trees. On real world datasets,
we show that the performance is comparable to the best
among popular classical binary search trees and show
significant improvements over non-learned Treaps.

1.1. Motivation for Learning-Augmented Treaps

In a binary search tree, more frequently accessed items
should appear closer to the root to reduce the average num-
ber of comparisons in order to retrieve the item. However,
Red-Black Trees, AVL Trees, and non-learned Treaps do not
take advantage of this property, while Splay Trees exploit
this only to the extent that more recent items are placed near
the root.

Given an oracle that predicts the ranks of elements, it is natu-
ral to build a tree in which the top-ranked items are near the
root. These oracles are indeed realistic; for example, we can
use frequency estimators to approximately rank the elements.
Hashing-based approaches, such as Count-Min (Cormode
& Muthukrishnan, 2005) and Count-Sketch (Cormode &
Hadjieleftheriou, 2008), have been shown to be efficient
and effective in this regard. Further, recent advances in the
learning-augmented space have spurred the development of
learning-augmented frequency estimators (Hsu et al., 2019).
In our experiments, we use the trained machine learning
oracle from Hsu et al. (2019) as our frequency estimator.

With the availability of such a predictor, the motivation of
augmenting a classic binary search tree data structure with a
learned oracle is clear. Red-Black Trees and AVL Trees are
uniquely determined by the insertion order of the elements
and while it is feasible to insert the elements in such an
order such that the top-ranked items are near the root, it is
not clear how to support insertions and deletions to maintain
this property. On the other hand, the order of insertions mat-
ters less for a Splay Tree, especially over a long sequence
of operations, as it is self-adjusting. Our attempts at produc-
ing a learning-augmented Splay Tree have been unfruitful;
this was largely due to the high overhead associated with
rotations and difficulties in determining whether to splay an
element. Instead of a Splay Tree, statically optimal trees
could also be built with a frequency estimation oracle; how-
ever, these trees are unable to support insertions or deletions
after initialization.

Treaps are simpler to analyze and can naturally be adapted in
the learning-augmented setting. Indeed, Treaps are uniquely
determined by the priorities of each key (given that all prior-
ities are unique) and elements with higher priority appear
closer to the root of tree. In this paper, we suggest assigning
learned priorities to the Treap instead of priorities being
drawn from a distribution D; specifically, we assign the
learned frequency as the priority. With this adjustment,
we are able to efficiently support insertions and deletions,
among other tree operations, while improving access time.
We note that in the paper that introduced Treaps (Aragon
& Seidel, 1989), a modification was suggested where every
time an element was accessed, the new priority of the ele-
ment was set to be the maximum of the old priority and a
new draw from D. We are the first to learn the priorities
using a machine learning oracle.

1.2. Related Work

This paper follows the long line of research in the growing
field of algorithms with predictions. Learning-augmented
algorithms have been applied to a variety of online algo-
rithms, such as the ski rental problem and job scheduling
(Purohit et al., 2018). Further, caches (Lykouris & Vassil-
vitskii, 2020), Bloom filters (Mitzenmacher, 2019), index
structures (Kraska et al., 2018), and Count-Min and Count-
Sketch (Hsu et al., 2019) are among the many data structures
that have had a learning-augmented counterpart suggested.

In particular, Kraska et al. (2018) suggests replacing B-
Trees (or any other index structure) with trained models
for querying databases. In their work, instead of traversing
the B-Tree to access the position of a record, they use a
neural net to directly point towards the record. Our work is
different from theirs since it keeps the search tree and instead
optimizes the structure of the tree for faster queries; through
this, we are able to support common additional tree-based
operations such as traversal, order statistics, merge/join, etc.

Our work uses the frequency estimation oracle trained in
Hsu et al. (2019) on a search query dataset (AOL) and an
IP traffic dataset. Since then, other papers have used these
predictions as the basis of their learned structures (Jiang
et al., 2020). Furthermore, Du et al. (2021) has shown an
improved oracle for the IP dataset, which shows significant
improvements in accuracy.

2. Preliminaries

We use [n] to denote the set {1, ..., n}; further, we identify
the set of keys in our binary tree with [n]. For a sequence
of m queries, we let e; € [n] be the i'" most frequent
item with frequency f;, breaking ties randomly. In our
analysis, we also assume that the input distribution is the
same throughout the duration of the query sequence and that

Learning-Augmented Binary Search Trees

the frequency observed in the sequence of m queries exactly
reflects its true distribution, as in element e; occurs with
probability p; = fﬁ We will define the rank of element e;
to be ¢ and the ranking ordering to be eq, ..., e,.

Treaps: Treaps are binary search trees that also hold an
additional field per node that stores the priority of that node.
For node ¢, we denote the priority of the node to be w;. At
the end of any operation, in addition to the binary search tree
order invariant, a Treap always satisfies the heap invariant,
that is, if node z is an ancestor of node y, then w, >
wy. Classically, the priorities of a Treap are drawn from
a continuous distribution so as to not have any duplicate
priorities.

Insertion in a Treap is simple. We insert the new node by
attaching it as a leaf in the appropriate position (i.e., satisfy-
ing the order invariant) in the Treap. Then, we repeatedly
rotate the new node and its parent until the heap invariant
is satisfied. Deletion is achieved by rotating the node down
until it is a leaf and detaching the node; we pick the child
with the greater priority to perform the rotation.

We will refer to a Treap where priorities are assigned based
on the rank or frequency of the element as a learned Treap,
while a classic random Treap will be referred to as a random
Treap.

Throughout the analysis, we make the assumption that the
rank order of the keys is random, as in, e1, ..., e, is a ran-
dom permutation of [r]. Section 3.6 shows how to remove
this assumption; however, we keep this assumption for ease
of the analysis. Furthermore, we will also assume for con-
venience that the frequencies of the keys are unique, as in
fi = f;if and only if © = j. To remove this assumption, we
can break ties randomly. If elements x and y have the same
frequency and the tie is broken in favour of z, we will say
that = has lower rank than y.

Zipfian Distribution: In our analysis, we analyze the per-
formance of a Treap under the Zipfian distribution. Specif-
ically, the Zipfian distribution with parameter « has fre-
quencies f; = p— where Hy o = Y1, L is the n'"
generalized harmonic number of order c.

3. Learning Augmented Treaps

In the following sections, we assume access to a perfect ora-
cle and analyze the theoretical performance of our learned
Treaps versus random Treaps. In Section 3.4, we discuss
the robustness and performance guarantees of our learned
Treaps when we are given a noisy oracle. In Section 3.5,
we explore performance guarantees of our oracle if given
a less powerful oracle. Finally, in Section 3.6 we explore
a modified version of the learned Treap that removes the
assumption that the rank ordering is a random permutation.

3.1. Treap Operations
3.1.1. TREAP INITIALIZATION

Given a predictor that outputs the frequency rank of an
element, we assign a priority equal to the frequency rank of
the element and insert the element into the Treap. Similarly,
if we had a frequency estimation oracle instead of a rank-
estimation oracle, we can insert the element into the Treap
with priority equal to the frequency estimate.

3.1.2. ACCESS

We present the following theorem that bounds the expected
depth of e; in a learned Treap.

Theorem 3.1. The expected depth of e; in a learned Treap
is 2H; — 1, where H; is the i-th Harmonic number.

Proof. Consider the set of elements with higher priority,
ie., S = {er | ¥ < i}. Notice that only elements in S
can be ancestors of e; and e; cannot be an ancestor of any
element in S. Since e, .. ., e, is a random permutation of
[n], e1,...,e; is a random permutation of {e,...,€;}.

Under these assumptions, the number of comparisons
needed to access e; is equivalent to the number of com-
parisons needed to correctly insert a random element = € [i]
in a sorted array of elements [¢] \ {z} using binary search,
where pivots are chosen randomly. Here, the pivots are
analogous to the ancestors of e;.

This motivates the following recurrence for computing the
expected depth of e;:

1 1=1
T() = ;
(@) {1 + 250 (5T(k)) otherwise

which simplifies to

. 1 i1=1
(1) =1, . .
=+ T(i—1) otherwise

This recurrence evaluates to 7'(i) = 2H; — 1. O

Theorem 3.2. The expected depth of e; in a learned Treap
is O(log i) with high probability.

Proof. Again, we analyze the depth of element e; by exam-
ining the number of comparisons needed to insert a random
element = € [i] in a sorted array of [¢] \ « use random binary
search. We employ a similar technique to the classic high
probability analysis of QuickSort.

Suppose on iteration k, the size of the array being searched
is X}. With probability %, the randomized pivot is situated

Learning-Augmented Binary Search Trees

in the range [%Xk, %Xk]. In this case, Xpy1 < %Xk. Oth-
erwise, if the pivot does not land in this range, we know that
Xi+1 < X trivially. We get the following:

1 3 7
EX:] < =X5_ —Xp_1==-Xp_
[k],2k1+8k1 8k1

Since X < 7, we have

s () s (1)

The probability that the randomized binary search uses more
than k iterations is exactly Pr{ X} > 1}. Using Markov’s
Inequality and setting k = clog 8 1 for some constant c gives

1
Pr{X; > 1} <E[X;] < prom

Therefore, setting ¢ > 2 implies that the expected depth of
e; is O(log 7) with high probability. O

Theorem 3.3. With constant probability, for every i, e;
has depth O(log1). In other words, the entire tree is well-
balanced.

Proof. Again, let X; be the depth of element e;. Notice
that X; and X, are 1 and 2, respectively, with probability
1. From Theorem 3.1, for i > 3, X; < O(logi) with
probability at most 1%1 for some constant c¢. Applying a
union bound over elements X; for 7 > 3 gives

n n
_ 1
PT{U X; < O(log 7')} < Z je—1
1=3 =3
Fore=3,30 , =y < T — 1.25 ~ 0.39. O

3.1.3. INSERTION/DELETION AND PRIORITY UPDATES

Corollary 3.4. The expected time of an insertion, deletion
or priority update is O(logn).

Proof. Suppose during the insertion process of a node =,
we attach x to node y as a leaf. Then by Theorem 3.1, the
depth of y is O(logn) in expectation. Similarly, suppose
during the deletion process of node =, we detach node z
when it is a child of node y. By Theorem 3.1, the time it
takes is O(log n).

Similarly, a priority update takes at most O(log n) time. [

3.1.4. OTHER OPERATIONS

Our learned Treap could also be optimized for other tree-
based operations. Under these modifications, the following

operations could be supported by a learned Treap with time
similar to that of an access on a learned Treap.

Range Queries: Consider the simple operation of count-
ing the number of elements between keys x and y. This
operation is commonly implemented by augmenting every
node with a field that stores the size of the subtree rooted at
the node. Counting the number of elements in the ranges
reduces to traversing from the root to x and from the root
to y, which is similar to the process of accessing x and y.
Thus, the predictor can learn the frequency distribution of
the boundaries of the range query to optimize our Treap.
Other such operations may include the standard RangeSum
operation, which outputs the sum of the values stored in
each key of the tree.

Successor/Predecessor: On a query to the successor of
key z, the output would be the smallest key greater than z.
Among the many ways to implement this functionality, a
simple way is to keep a pointer that points to the succes-
sor/predecessor. When finding the successor of key x, we
simply access x in the Treap and use the stored pointer to
access the successor. Our predictor can learn the frequency
distribution of successor queries to x and set the priority of
x accordingly in the learned Treap.

When supporting this operation, insertion and deletion be-
come more complicated. When inserting element x, we
must change the pointers of both the successor and prede-
cessor of x accordingly; however, this requires at most a
constant number of pointer changes.

3.2. General Distributions

In this section, we analyze the expected cost per access of a
learned Treap and a random Treap for an arbitrary frequency
distribution D.

Lemma 3.5. The expected cost of a single access on a
learned Treap is >, pi(2H; — 1).

Proof. This follows immediately from Theorem 3.1. [J

Since the expected cost of a single access is known to be
at most O(logn) (Aragon & Seidel, 1989), we provide a
lower bound on this expectation.

Theorem 3.6. The expected cost of a single access on a
random Treap is at least 2H,, 1 — 4 for any frequency
distribution.

Proof. The expected depth of key i is well-known to be
H,+ H,_;+1 — 2 (Aragon & Seidel, 1989). Let X be the
depth of an access and let X;; be the depth of key 4 if it is

Learning-Augmented Binary Search Trees

-ranked item, and O otherwise.
n 1 n
SIS
i=1 " j=1
n 1 n
= Zl - lej(Hi + Hp—it1—2)
1= Jj=

n

1
= Z E(Hi + Hp—iy1 —2)

=1
2 n
:E;Hi—l

2
= =((n+ 1) Hye1 — 20)
> 2H, 1 —4 O

the jt"

3.3. Zipfian Distributions

In this section, we analyze the expected cost of an access of
a learned Treap where p; %a for a parameter a.

Theorem 3.7. The expected cost of a single access on a
learned Treap is ., WH (2H 1).

Proof. From Lemma 3.5, it is immediate that the expected
costis > 1, WH (2H 1). O

Lemma 3.8. The expected cost of an access for o« = 1 is at
most H,,.

Proof. For a = 1, the expected costis -
by Theorem 3.7.

Consider the sum C' = """ | +(H;

;). Observe by expanding
this summation that it evaluates to 3 ((H,)? + Hy,2). The

expected cost can then be expressed as ?{—C —-1=H,+
H,
2HL

i= 12H (2H _1)

— 1. This approaches H,, — 1 as n increases. O

Corollary 3.9. The expected cost of an access for a learned
Treap on a Zipfian distribution with parameter o = 1 is
approximately a factor 2 less than that of an access on a
random Treap.

Lemma 3.10. The expected cost of an access for o > 1 is
constant.

Proof. For a > 1, the expected costis Y ., QH (2H —

1) by Theorem 3.7.
Consider the series a; = % and b; = Z%E for some € > 0.

Observe the following properties:

e Since H,, < In(n) + 1, lim, 00 a, = 0. Further,
{a,} is monotonically decreasing for large n.

e Since o > 1, there exists € such that « — ¢ > 1 and
thus, Z?:l b; < ¢ for some constant c.

Recall Dirichlet’s test: if {a,, } is a monotonically decreas-
ing sequence whose limit approaches 0 and {b,} is a se-
quence such that ZLO; b; is bounded by a constant, then
Z;’il a;b; converges as well.

By these two observations and using Dirichlet’s test,
S anbn, = >.r; = converges to a constant. The ex-
n

pected cost here is 72— (37", anby) — 1. Therefore, the
expected cost is bounded from above by a constant. O

Theorem 3.11. The learned Treap is statically optimal in
expectation for o > 1.

Proof. First, consider o = 1. The Shannon entropy, H, of
this distribution is an asymptotic lower bound for a statically
optimal tree, namely, Mehlhorn shows that for any binary
tree, the weighted path length must be at least % (Mehlhorn,
1971). The Shannon entropy for the Zipfian distribution
witha = 11is

> —pilog (p:) Z H,)
i=0 =0
1
= f(lOg()‘FlOg(n) >Z H (4)
i=0 " i=0

Clearly, this is within a constant factor of the expected cost
of our learned Treap. Since the expected cost for the learned
Treap is within a constant factor of the Shannon entropy, we
are statically optimal up to a constant factor.

For o« > 1, the expected cost is constant; therefore, it is
immediate that we are at most a constant factor more than
the statically optimal binary search tree. O

3.4. Noisy Oracles and Robustness to Errors

In this section, we will prove that given an accurate rank
prediction oracle subject to a reasonable amount of noise
and error, our learned Treap’s performance matches that of
a perfect rank prediction oracle up to an additive constant
per access.

Given element 4, let r; be the real rank of 7 and let 7; be
the predicted rank of . We will call an oracle noisy if
7; < er + § for some constants €, > 1.

Theorem 3.12. Using predictions from a noisy oracle, the
learned Treap’s performance matches that of a learned
Treap with a perfect oracle up to an additive constant.

Proof. The expected cost of a single access on the learned
Treap with a noisy oracle is at most Y., p;(2H.;4+5 — 1).

Learning-Augmented Binary Search Trees

The difference between the expected cost of a learned Treap
with a noisy oracle and a learned Treap with a perfect oracle

is Z?:l 2pi(H5i+6 — Hz)

Using that In(n) < H, < In(n) + 1 for
the n!* Harmonic number H,, the differ-
ence is at most ».. 2p; (1+In(c+ %)) <
Sri2pi(14+4In(e+9d)) = 2(1+In(e+4) < ¢
for some constant c. Therefore, under a noisy oracle, the
learned Treap is at most an additive constant worse than a

learned Treap with a perfect oracle. [

We remark that for frequency estimation oracles, it might
be natural to consider an error bound of i fi < fl < Af;
instead; however, if the underlying distribution is Zipfian,
a frequency estimation error bound of % fi < f; < Af;is
equivalent to a rank estimation error bound of 7; € r; + A2,

We will call an oracle inaccurate if there exist no constants
€,0 > 1 such that #; < er 4+ §. Further, we will define
the notion of an adversarial oracle as an oracle that out-
puts a rank ordering that is adversarial; more specifically,
given a distribution D with a random rank ordering, a non-
adversarial oracle would output a random rank ordering that
is not necessarily the same as the rank ordering of D.

Theorem 3.13. A learned Treap based on an inaccurate
but non-adversarial oracle has expected performance no
worse than that of a random Treap, up to a small additive
constant.

Proof. Since the oracle is non-adversarial, the expected
depth of any element is still bounded by 2H, — 1 by
Theorem 3.1. Therefore, the expected cost is at most
Z?zl pi(2H, — 1) =2H,, — 1. O]

3.5. Oracles with Limited Capabilities

In certain circumstances, it may be impossible or inconve-
nient to obtain an oracle that predicts the full rank ordering
of the elements. Instead, it may be easier to obtain an oracle
that predicts the top k elements only.

In this case, we will assign the top k elements random posi-
tive real-valued priorities and the remaining elements will
be assigned random negative real-valued priorities. Hence,
the top k elements are ancestors of the remaining elements.
Again, here, we will assume that the underlying rank order-
ing is a random permutation of [n]. Further, suppose that
the top k items account for p percent of the queries.

Theorem 3.14. With an oracle that predicts only the top k
elements, the expected depth of an access is at most 2(pHj, +
(1 - p)Hn) -1

Proof. For the top k elements, the expected depth is at most
2H}, — 1 and for the rest of the elements, the expected depth

is at most 2H,, — 1. Therefore, the expected depth of an
access is at most 2(pHy + (1 — p)H,,) — 1. O

For small k and significant p, this results in a large constant
factor reduction in expected access depth. Similarly, if we
were given an oracle that can only accurately predict the
frequencies of the top k items, we can assign priorities of
the top k items to the frequency and assign random negative
real-valued priorities to the remaining n — k items.

3.6. Removing Assumption of Random Rank Ordering

In real world datasets, it might not be the case that the
rank ordering is a random permutation. For example, in
search queries, certain queries are lexicographically close
to misspelled versions of the query; however, misspelled
versions of the query have a significantly reduced frequency
compared to the correctly spelled query. Furthermore, it
may be the case that the oracle is adversarial. In this case, we
would want to remove the assumption that the rank ordering
is a random permutation.

One natural idea is to map the identities of the elements to
a random real number. For key i, we will use s; to denote
this random real. The idea is to use a random Treap (or any
other self-balancing binary search tree) and a learned Treap
together. The random Treap will use the actual identity
of the element as the key and the learned Treap will use
the random real as the key. For each node in the learned
Treap, we keep a pointer to the corresponding node in the
random Treap. It immediately follows that the rank ordering
on the keys of the learned Treap is equivalent to a random
permutation. Furthermore, we keep a map that maps the
identity of the element to its corresponding random real. We
show an example of this modified learned treap in Figure 1.

Figure 1. An example of the learned Treap modification. White
nodes form the learned Treap and grey nodes form the ran-
dom Treap. The red arrows are the pointers from nodes in the
learned Treap to the corresponding node in the random Treap.
One possible assignment of [s1, . .., s7] for this Treap could be
[1,5,3,6,2,7,4].

We describe each tree operation below:

Access: For an access operation to element ¢, we query s;

Learning-Augmented Binary Search Trees

in the learned Treap and use the pointer to access element ¢
in the random Treap.

Insertion: To insert element ¢, we generate s; and store s;
in our map. Then we insert ¢ into the random Treap with a
random priority and insert s; into the learned Treap with the
learned priority. We set the pointer in the node containing
s; to point to 7.

Deletions: To delete element 7, we delete 7 from the random
Treap, s; from the learned Treap, and remove 7 and s; from
the map.

Successor/Predecessor: To support successor and prede-
cessor functionalities, we apply the same technique as de-
scribed in Section 3.1.4 on the random Treap.

Unfortunately, under this modification, there is no easy
method of optimizing for range queries; however we note
that this operation still takes at most O(log n) time in ex-
pectation because this is the expected sum of depths of the
two nodes that we access. The main issue arises from the
fact that range queries require access to the path from the
root to the queried node on the random Treap; however,
to remove the random rank ordering, we intentionally cir-
cumvent this path by traversing the learned Treap instead.
For all accesses and successor/predecessor operations, we
increase the cost of an operation by at most an additive con-
stant related to accessing the map and a constant amount of
pointer accesses. For insertions and deletions, we maintain
the expected O(log n) bound since every node has expected
depth at most O(log n).

In practice, there might be a desire to avoid implementing a
map; instead, using a hash function to implicitly store the
map may be a more attractive alternative. We will show that
using a 4-wise independent hash function with range (0, 1)
would suffice. We choose to implement the hash function in
poly(n) precision so that with high probability, there are no
collisions and such a hash function requires O(log n) bits
to store and only increases the cost of operations by at most
an additive constant.

Theorem 3.15. Given s; = h(e;) where h is drawn from a
4-wise universal hash family with range (0, 1), the expected
depth of s; is O(log).

To achieve this, the following observation is crucial.

Fact 3.16. Suppose that s; is an ancestor of s; where j < 1.
Then in the ordering of {s;|x € {1,...,4,1}}, s; and s; are
adjacent.

Proof of Theorem 3.15. Since the priorities of each key do
not change, only elements in {e1, ..., e;_1 } can potentially
be ancestors of e;. We proceed with an analysis similar to
Knudsen and Stockel’s (2015) analysis of quicksort under
limited independence.

From Lemma 4 of (Knudsen & Stockel, 2015), we have the
following lemma: given hash function h : X — (0,1)
drawn from a 4-universal hash family and disjoint sets
A, B C X with |A| < |B|, then

E[|{a € Alh(a) < pin h(3)}] = O(1)

Similarly, E[|{a € A|h(a) > maxyep h(b)}]] = O(1).

Consider the set S; = {s;|1 < j <4 — 1}. From Fact 3.16
we get that if s; is an ancestor of s; for some j < i, then
forall j' < j, sj» < min{s;,s;} ors;; > max{s;,s;}.

For k =1,2,...,1og, define
By = [2""" and A, = (2] N [i]) /[257) .

Suppose that s; is an ancestor of s; for some j € Aj.
Without loss of generality, we assume that s; < s;. Then
we have that for each j' € By, sj < s; or 551 > s;.
Consider the hash function H : X — (—(1 — s;), 8;) such
that H(x) = h(x) if h(x) < s; and H(z) = h(z) — 1 if
h(z) > s;. Notice that H is also a 4-wise independent hash
function. This implies that H (j) > maxpep, H(b). From
the lemma above, there are an expected O(1) such elements
in Ay, and since there are only O(logi) values of k for
which Ay, is non-empty, it follows immediately by linearity
of expectation that the expected number of ancestors of s; is
O(log 7) and thus, the expected depth of e; is O(logé). O

4. Experiments

In this section, we present experimental results that com-
pare the performance of our learned Treap to classical self-
balancing binary search tree data structures. Specifically,
we examined Red-Black Trees, AVL Trees, Splay Trees,
B-Trees of order 3, and random Treaps. For binary search
trees sensitive to insertion order, we insert all keys in a ran-
dom order. For these experiments, we only consider query
operations and report the total number of comparisons made
by each data structure. We note that although the number of
comparisons is not a precise measurement of actual runtime,
with the exception of Splay Trees, traversing the tree is ex-
tremely similar across all data structures, and for all data
structures tested except B-Trees, the number of comparisons
is exactly the access depth. For Splay Trees, we can expect
a constant factor more in actual runtime due to the rotations
involved.

4.1. Synthetic Datasets

We consider synthetic datasets where elements appear ac-
cording to a Zipfian distribution with parameter o. As with
section 3, we assume that the rank order of the elements is a
random permutation. For each experiment, we consider a
sequence of length 10°.

Learning-Augmented Binary Search Trees

Red-Black Tree
m— AVL Tree
= Splay Tree
= B-Tree
Learned Treap
Random Treap

1000 5000 10000

Red-Black Tree
- AVL Tree
== Splay Tree
20 mem BTree
Learned Treap
Random Treap

S

]

15

5
5

Total Number of Comparisons (*10°4)
“

Total Number of Comparisons (*10°4)

50000 100000

°

°

6

4
I| ‘ I| ‘ ‘I | || OJ I l |
1000 5000 10000 50000 1 125 15 2

Splay Tree
mm Learned Treap

Total Number of Comparisons (+*10°4)

Number of Keys (n)

Figure 2. Total number of comparisons of
classical binary search tree data structures
and the learned Treap on the Zipfian Distri-
bution with parameter o = 1

We report experimental results where we vary n, the number
of keys, for « = 1 in Figure 2 and for v = 1.25 in Figure 3.

Notice that for both « = 1 and o = 1.25, the learned
Treap performs approximately 25% better than Splay Trees
and a bit over 30% better than AVL and Red-Black Trees
in terms of the number of comparisons. For o = 1, the
factor-2 savings shown in Corollary 3.9 is exhibited and for
«a = 1.25, we can see that the cost of an access is constant,
as shown in Lemma 3.10.

In Figure 4, we show the effects of varying «; in this set
of experiments, we fix the number of keys to be 10* and
only show results for the statically optimal trees, as in Splay
Trees and learned Treaps. The learned Treap performs be-
tween approximately 27% — 51% better than the Splay Tree.
The greatest improvement was at & = 3 and the least im-
provement was observed when o = 1.

4.2. Real World Datasets

In this section, we used machine learning models trained by
Hsu et al. (2019) as our frequency estimation oracle. We
present 4 versions of our learned Treap. We consider the
performance of our learned Treap with the trained frequency
estimation oracle and with a perfect oracle; for both of these
instances, we also test the performance if we remapped the
keys to a random permutation (i.e., similar to the idea of
Section 3.6). We call the remapped versions of the learned
Treap “shuffled”. To make the data more presentable, among
classical binary search tree data structures, we only show
the results of Red-Black Trees and Treaps; we remark that
the relative performance of all classical binary search tree
data structures in these datasets was similar to that in the
synthetic datasets.

4.2.1. INTERNET TRAFFIC DATA

Various forms of self-balancing binary search trees and
skip lists have been suggested to be used in routing tables
(Sklower, 1991). In this experiment, we measure the perfor-

Number of Keys (n)

100000
Parameter alpha

Figure 3. Total number of comparisons of Figure 4. Total number of comparisons of
classical binary search tree data structures
and the learned Treap on the Zipfian Distri-
bution with parameter o = 1.25.

Splay Tree and learned Treaps for varying
Zipfian parameter a.

30.00

Red-Black Tree

wmm Learned Treap

| wmm Learned Treap shuffled

w== Random Treap

29.50- mmm Learned Treap with Perfect Oracle
Learned Treap with Perfect Oracle Shuffled

N
2
S

29.25

29.00

28.75

28.50

28.25

Total Number of Comparisons (logscale base 2)

28.00

33 50 100
Top x% of Most Frequent Queries

Figure 5. Total number of comparisons of Red-Black Trees, ran-
dom Treaps, and learned Treaps on the 20" test minute

21.0

Red-Black Tree
mmm Learned Treap
20,5 ™= Learned Treap Shuffled
m== Random Treap
mes Learned Treap with Perfect Oracle

S5 Learned Treap with Perfect Oracle Shuffled

19.5

19.0

18.5

Total Number of Comparisons (logscale base 2)

18.0

1 2 5
Top x% of Most Frequent Queries

Figure 6. Total number of comparisons of Red-Black Trees, ran-
dom Treaps, and learned Treaps on the 50" day.

mance of the binary search trees if we had to query every
packet in the internet traffic logs.

Data: The internet traffic data was collected by CAIDA
using a commercial backbone link (Tier 1 ISP) (CAIDA,
2016). Following Hsu et al. (2019), we used the internet
traffic recorded from Chicago outgoing to Seattle recorded
on 2016-01-21 13:00-14:00 UTC. Each minute recorded
approximately 30 million and 1 million unique flows.

Model: We used the prediction made by Hsu et al. (2019).
In their paper, an RNN was used to encode the source and
destination IP addresses, ports, and protocol type, and a
separate RNN was used to predict the number of packets

Learning-Augmented Binary Search Trees

Parameter Delta on Synthetic Data (Zipfian with alpha = 1)

Parameter Delta on top 1% of AOL Search Queries (50th Day)

Parameter Delta on top 33% of CAIDA Internet Traffic Data

1975

1950

Average Number of Comparisons (+10°4)
8

18.25

Total Number of Comparisons (logscale base 2)
8

6 18.00
2 2 5 10 25 50 Red-Black Splay Random 1 5 10
Tree Tree Treap
Parameter Delta

Parameter Delta

30.00

29.75

29.50

(logscale base 2)

7 2925

on:

& 29.00

8 0B
3 3

28.25

Total Number of Comp:

28.00
25 Red-Black Splay Random A 5 10 25 RedBlack Splay Random
Tree Tree Treap Tree Tree Treap

Parameter Delta

Figure 7. Performance of learned Treap under oracles with different errors

from the traffic flow based on the encoding. The first 7
minutes of the dataset was used as training sets with the
next 2 minutes used as the validation sets. The rest of the
dataset was used for testing. See Hsu et al. (2019) for
details.

Results: In Figure 5, we plot the performances of the vari-
ous data structures. We consider three variants of the dataset:
a subset with the top 33% of the most frequent queries, a
subset of the top 50% of the most frequent queries, and the
full dataset. We show the results on the 20" test minute
(2016-01-21 13:29 UTC).

In all cases, the shuffled versions of the learned Treap per-
form significantly better than that of the non-shuffled ver-
sions, and the learned Treaps perform better than random
Treaps. We note that using the oracle from Hsu et al. (2019),
we are unable to beat Red-Black Trees; however, the shuf-
fled learned Treap with the learned oracle is comparable
and with a better oracle, it could be possible to outperform
a Red-Black Tree.

4.2.2. SEARCH QUERY DATA

Data: This dataset contains approximately 21 million
queries on AOL collected over 90 days in 2006. The distri-
bution follows Zipf’s Law (see Hsu et al. (2019)).

Model: Again, we use the predictions from Hsu et al.
(2019). They use an RNN with LSTM cells to encode
the queries character by character. The encoding is then fed
into a fully connected layer to predict the frequency of each
query. The first 5 days were used for training while the 6"
day was used as the validation set.

Results: As with the Internet traffic dataset, we show the
performance of the learned Treaps, a Red-Black Tree, and a
random Treap in Figure 6. For this dataset, we consider the
top 1%, 2%, and 5% of the most frequent queries as our set
of keys. We show the results for the 50 day.

Similar to the internet traffic dataset, the shuffled version of
the learned Treaps performed better and all learned Treaps
performed better than the random Treap. For this dataset,
the shuffled learned Treap with the frequency estimator

from Hsu et al. (2019) performed well and is comparable to
the performance of a Red-Black Tree. Furthermore, unlike
the internet traffic dataset, the performance of the learned
Treaps with the machine learning model was close to that
of the learned Treap with a perfect oracle.

4.3. Performance under Oracles with Different Errors

In this section, we study the performance of the learned
Treap under oracles with certain errors on both synthetic
and real-world data. In Figure 7 we show experimental re-
sults on synthetic and real-world data that show a graceful
degradation as error grows. Here the prediction, fi, of the
frequency satisfies ﬁ < Af;. We note that if the under-
lying distribution is Zipfian, then the error bounds for the
rank-estimation oracle are stronger than the bounds for a
frequency estimation oracle; if a given frequency estimation
oracle has the error bound of % fi < fz < Af;, then under
a Zipfian distribution with a > 1, then 7#; € r; + A2,

5. Conclusion

We introduced the concept of learning-augmented algo-
rithms into the class of binary search tree data structures that
support additional operations beyond B-trees. The learned
Treap is able to support various useful tree-based opera-
tions, such as range-queries, successor/predecessor, and
order statistic queries and can be optimized for such oper-
ations. We proved that the learned Treap is robust under
rank-estimation oracles with reasonable error and under
modifications, is no worse than a random Treap regardless
of the accuracy of the oracle and the underlying input dis-
tribution. Further, we presented experimental evidence that
suggests a learned Treap may be useful in practice. In the fu-
ture, it may be interesting to explore whether advanced tree
data structures, such as van Emde Boas Trees or Biased Skip
Lists, can also benefit from machine learning techniques.

Acknowledgements.

Honghao Lin and David Woodruff would like to thank for
partial support from the National Science Foundation (NSF)
under Grant No. CCF-1815840.

Learning-Augmented Binary Search Trees

References

Aragon, C. R. and Seidel, R. G. Randomized search trees.
In Proceedings of the 30th Annual Symposium on Foun-
dations of Computer Science, SFCS ’89, pp. 540-545,
USA, 1989. IEEE Computer Society. ISBN 0818619821.

doi: 10.1109/SFCS.1989.63531. URL https://doi.

org/10.1109/SFCS.1989.63531.

CAIDA. The caida ucsd anonymized internet traces - 2016,
2016. URL https://www.caida.org/catalog/
datasets/passive_dataset.

Cormode, G. and Hadjieleftheriou, M. Finding frequent
items in data streams. Proc. VLDB Endow., 1:1530-1541,
2008.

Cormode, G. and Muthukrishnan, S. An improved data
stream summary: the count-min sketch and its applica-
tions. Journal of Algorithms, 55(1):58-75, 2005. ISSN
0196-6774. doi: https://doi.org/10.1016/j.jalgor.2003.12.
001. URL https://www.sciencedirect.com/
science/article/pii/S0196677403001913.

Du, E., Wang, F., and Mitzenmacher, M. Putting the “learn-
ing” into learning-augmented algorithms for frequency
estimation. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 2860-2869. PMLR, 18-24 Jul
2021. URL https://proceedings.mlr.press/
v139/du2ld.html.

Hsu, C.-Y., Indyk, P., Katabi, D., and Vakilian, A. Learning-
based frequency estimation algorithms. In International
Conference on Learning Representations, 2019.

Jiang, T., Li, Y., Lin, H., Ruan, Y., and Woodruff, D. P.
Learning-augmented data stream algorithms. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=HyxJ1xBYDH.

Knudsen, M. B. T. and Stockel, M. Quicksort, largest
bucket, and min-wise hashing with limited indepen-
dence. In Bansal, N. and Finocchi, I. (eds.), Algo-
rithms - ESA 2015 - 23rd Annual European Sympo-
sium, Patras, Greece, September 14-16, 2015, Proceed-
ings, volume 9294 of Lecture Notes in Computer Sci-
ence, pp. 828-839. Springer, 2015. doi: 10.1007/
978-3-662-48350-3_69. URL https://doi.org/
10.1007/978-3-662-48350-3_609.

Knuth, D. E. Optimum binary search trees. Acta Inf., 1
(1):14-25, mar 1971. ISSN 0001-5903. doi: 10.1007/
BF00264289. URL https://doi.org/10.1007/
BEF00264289.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Poly-
zotis, N. The case for learned index structures. In
Proceedings of the 2018 International Conference on
Management of Data, SIGMOD 18, pp. 489-504,
New York, NY, USA, 2018. Association for Comput-
ing Machinery. ISBN 9781450347037. doi: 10.1145/
3183713.3196909. URL https://doi.org/10.
1145/3183713.31969009.

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice, 2020.

Mehlhorn, K. Nearly optimal binary search trees. Acta
Informatica, v.5, 287-295 (1975), 5, 01 1971. doi: 10.
1007/BF00264563.

Mitzenmacher, M. A model for learned bloom fil-
ters, and optimizing by sandwiching.
arXiv:1901.00902, 2019.

arXiv preprint

Mitzenmacher, M. and Vassilvitskii, S. Algorithms with
predictions. arXiv preprint arXiv:2006.09123, 2020.

Purohit, M., Svitkina, Z., and Kumar, R. Improving
online algorithms via ml predictions. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
73a427badebele32caal2elfc7530b7£f3-Paper.
pdf.

Sklower, K. A tree-based packet routing table for berkeley
unix. In USENIX Winter, 1991.

Sleator, D. D. and Tarjan, R. E. Self-adjusting binary search
trees. J. ACM, 32(3):652-686, jul 1985. ISSN 0004-5411.
doi: 10.1145/3828.3835. URL https://doi.org/
10.1145/3828.3835.

