
Quantum-Inspired Algorithms from Randomized Numerical

Linear Algebra

Nadiia Chepurko 1 Kenneth L. Clarkson 2 Lior Horesh 2 Honghao Lin 3 David P. Woodruff 3

Abstract

We create classical (non-quantum) dynamic data

structures supporting queries for recommender

systems and least-squares regression that are

comparable to their quantum analogues. De-

quantizing such algorithms has received a flurry

of attention in recent years; we obtain sharper

bounds for these problems. More significantly, we

achieve these improvements by arguing that the

previous quantum-inspired algorithms for these

problems are doing leverage or ridge-leverage

score sampling in disguise; these are powerful

and standard techniques in randomized numerical

linear algebra. With this recognition, we are able

to employ the large body of work in numerical

linear algebra to obtain algorithms for these prob-

lems that are simpler or faster (or both) than ex-

isting approaches. Our experiments demonstrate

that the proposed data structures also work well

on real-world datasets.

1. Introduction
In recent years, quantum algorithms for various problems in

numerical linear algebra have been proposed, with applica-

tions including least-squares regression and recommender

systems (Harrow et al., 2009; Lloyd et al., 2016; Rebentrost

et al., 2014; Gilyén et al., 2019; Zhao et al., 2019; Brandão

et al., 2019; van Apeldoorn & Gilyén, 2019; Lloyd et al.,

2014; Cong & Duan, 2016; Berry et al., 2015). Some of

these algorithms have the striking property that their run-

ning times do not depend on the input size. That is, for a

given matrix A ∈ R
n×d with nnz(A) nonzero entries, the

1Department of Computer Science, Massachusetts In-
stitute of Technology, Cambridge, MA, USA 2IBM Re-
search, USA 3Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA. Correspondence
to: Kenneth Clarkson <klclarks@us.ibm.com>, Hong-
hao Lin <honghaol@andrew.cmu.edu>, David Woodruff
<dwoodruf@andrew.cmu.edu>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

running times for these proposed quantum algorithms are at

most polylogarithmic in n and d, and polynomial in other

parameters of A, such as rank(A), the condition number

κ(A), or Frobenius norm ‖A‖F .

However, as observed by Tang (Tang, 2019) and others,

there is a catch: these quantum algorithms depend on a

particular input representation of A, which is a simple data

structure that allowsA to be employed for quick preparation

of a quantum state suitable for further quantum computa-

tions. This data structure, which is a collection of weighted

complete binary trees, also supports rapid weighted random

sampling of A, for example, sampling the rows of A with

probability proportional to their squared Euclidean lengths.

So, if an “apples to apples” comparison of quantum to clas-

sical computation is to be made, it is reasonable to ask

what can be accomplished in the classical realm using the

sampling that the given data structure supports.

A recent line of work analyzes the speedups of these quan-

tum algorithms by developing classical counterparts that

exploit these restrictive input and output assumptions, and

shows that previous quantum algorithms do not give an

exponential speedup. In this setting, it has recently been

shown that sublinear time is sufficient for least-squares re-

gression using a low-rank design matrix A (Gilyén et al.,

2018; Chia et al., 2018), for computing a low-rank approx-

imation to input matrix A (Tang, 2019), and for solving

ridge regression problems (Gilyén et al., 2020), using clas-

sical (non-quantum) methods, assuming the data structure

of trees has already been constructed. Further, the results

obtained in (Tang, 2019; Gilyén et al., 2018; 2020) serve as

appropriate comparisons of the power of quantum to classi-

cal computing, due to their novel input-output model: data

structures are input, then sublinear-time computations are

done, yielding data structures as output.

The simple weighted-sampling data structure used in these

works to represent the input can be efficiently constructed

and stored: it uses O(nnz(A)) space, with a small con-

stant overhead, and requires O(nnz(A)) time to construct,

in the static case where the matrix A is given in its en-

tirety, and can support updates and queries to individual

entries of A in O(log(nd)) time. However, the existing

reported sublinear bounds are high-degree polynomials in

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

the parameters involved: for instance, the sublinear term

in the running time for low-rank least-squares regression is

Õ(rank(A)6‖A‖6Fκ(A)16/ε6); see also more recent work

for ridge regression (Gilyén et al., 2020). This combination

of features raises the following question:

Question 1: Can the sublinear terms in the run-

ning time be reduced significantly while preserv-

ing the leading order dependence of O(nnz(A))
and O(log(nd)) per update (dynamic)?

Perhaps a question of greater importance is the connection

between quantum-inspired algorithms and the vast body of

work in randomized numerical linear algebra: see the sur-

veys (Kannan & Vempala, 2009; Mahoney, 2011; Woodruff,

2014). There are a large number of randomized algorithms

based on sampling and sketching techniques for problems in

linear algebra. Yet prior to our work, none of the quantum-

inspired algorithms, which are sampling-based, have dis-

cussed the connection to leverage scores, for example, which

are a powerful and standard tool.

Question 2: Can the large body of work in ran-

domized numerical linear algebra be applied ef-

fectively in the setting of quantum-inspired algo-

rithms?

1.1. Our Results

We answer both of the questions above affirmatively. In fact,

we answer Question 1 by answering Question 2. Namely, we

obtain significant improvements in the sublinear terms, and

our analysis relies on simulating leverage score sampling

and ridge leverage score sampling, using the aforemen-

tioned data structure to sample rows proportional to squared

Euclidean norms. Additionally, we empirically demonstrate

the speedup we achieve on real-world and synthetic datasets

(see Section 6).

Connection to Classical Linear Algebra and Dynamic

Data Structures. The work on quantum-inspired algo-

rithms builds data structures for sampling according to the

squared row and column lengths of a matrix. This is also

a common technique in randomized numerical linear alge-

bra - see the recent survey on length-squared sampling by

Kannan and Vempala (Kannan & Vempala, 2017). However,

it is well-known that leverage score sampling often gives

stronger guarantees than length-squared sampling; leverage

score sampling was pioneered in the algorithms community

in (Drineas et al., 2006), and made efficient in (Drineas

et al., 2012) (see also analogous prior work in the ℓ1 setting,

starting with (Clarkson, 2005)).

Given an n × d matrix A, with n ≥ d, its (row) leverage

scores are the squared row norms of U , where U is an

orthonormal basis with the same column span asA. One can

show that any choice of basis gives the same scores. Writing

A = UΣV T in its thin singular value decomposition (SVD),

and letting Ai,∗ and Ui,∗ denote the i-th rows of A and U
respectively, we see that ‖Ai,∗‖ = ‖Ui,∗Σ‖. Consequently,

letting k = rank(A), and with σ1 and σk denoting the

maximum and minimum non-zero singular values of A, we

have ‖Ai,∗‖ ≥ ‖Ui,∗‖σk(A), and ‖Ai,∗‖ ≤ ‖Ui,∗‖σ1(A).
Thus, sampling according to the squared row norms of

A is equivalent to sampling from a distribution with ra-

tio distance at most κ2(A) = σ1(A)2

σk(A)2 from the leverage

score distribution, that is, sampling a row with probabil-

ity proportional to its leverage score. This is crucial, as

it implies using standard arguments (see, e.g., (Woodruff,

2014) for a survey) that if we oversample by a factor of

κ2(A), then we obtain the same guarantees for various

problems that leverage score sampling achieves. Notice

that the running times of quantum-inspired algorithms,

e.g., the aforementioned Õ(rank(A)6‖A‖6Fκ(A)16/ε6)
time for regression of (Gilyén et al., 2018) and the

Õ(‖A‖8Fκ(A)2/(σmin(A)6ε4)) time for regression of

(Gilyén et al., 2020), both take a number of squared-length

samples of A depending on κ(A), and thus are implicitly

doing leverage score sampling, or in the case of ridge re-

gression, ridge leverage score sampling.

Given the connection above, we focus on two central prob-

lems in machine learning and numerical linear algebra, ridge

regression (Problem 1.1) and low rank approximation (Prob-

lem 1.2). We show how to obtain simpler algorithms and

analysis than those in the quantum-inspired literature by

using existing approximate matrix product and subspace

embedding guarantees of leverage score sampling. In addi-

tion to improved bounds, our analysis de-mystifies what the

rather involved ℓ2-sampling arguments of quantum-inspired

work are doing, and decreases the gap between quantum

and classical algorithms for machine learning problems. We

begin by formally defining ridge regression and low-rank

approximation, and the dynamic data structure model we

focus on.

Problem 1.1 (Ridge Regression). Given an n × d matrix

A, n× d′ matrix B and a ridge parameter λ ≥ 0, the ridge

regression problem is defined as follows:

min
X∈Rd×d′

‖AX −B‖2F + λ‖X‖2F ,

where ‖ · ‖2F denotes the sum-of-squares of entries.

Problem 1.2 (Low-Rank Approximation). Given an n ×
d matrix A and a rank parameter k ∈ [d], the low-rank

approximation problem is defined as follows:

min
X∈Rn×d:rank(X)=k

‖A−X‖2F .

Definition 1.3 (Dynamic Data Structure Model). Given an

n × d matrix A, the dynamic data structure supports the

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

following operations in O(log(nd)) time: (a) sample row

Ai,∗ with probability ‖Ai,∗‖22/‖A‖
2
F , (b) sample entry j

in row i with probability A2
i,j/‖Ai,∗‖22 and (c) output the

(i, j)-th entry of A.

We note that in this input model, reading the entire matrix

would be prohibitive and the algorithms can only access the

matrix through the weighted sampling data structure.

We now describe our concrete results in more detail. At a

high level, our algorithm for ridge regression, Algorithm 2,

does the following: sample a subset of the rows of A via

length-squared sampling, and take a length-squared sample

of the columns of that subset. Then, solve a linear system

on the resulting small submatrix using the conjugate gra-

dient method. Our analysis of this algorithm results in the

following theorem. (Some of the (standard) matrix notation

used is given in Section 3.)

The residual error is bounded in the theorem using
1√
2λ
‖Uλ,⊥B‖F , where Uλ,⊥ denotes the bottom mS − p

left singular vectors of a sketch SA of A, where p is such

that λ is between σ2
p+1(SA) and σ2

p(SA). (Here we use

p = rankA when λ ≤ σ2
rankA.) We could write this roughly

as ‖A−pA
+
−pB‖/‖A−p‖, where A−p denotes A minus its

best rank p approximation. It is the part of B we are “giving

up” by including a ridge term. Proofs for this section are

deferred to Appendix B.

Theorem 1.4 (Dynamic Ridge Regression). Given an n×d
matrix A of rank k, an n × d′ matrix B, error parameter

ε > 0, and ridge parameter λ, let κ2λ = (λ+ σ2
1(A))/(λ+

σ2
k(A)) be the ridge condition number of A, and let ψλ =

‖A‖2F /(λ + σ2
k(A)). Further, let X∗ be the optimal ridge

regression solution, i.e., X∗ = argminX ‖AX −B‖2F +

λ‖X‖2F .

Then there is a data structure supporting turnstile updates

of the entries of A in O(log(nd)) time, and an algorithm

using that data structure that computes a sample SA of

m = O
(

κ2λψλ log(nd)/ε
2
)

rows of A, where S ∈ R
m×n

is a sampling matrix, and outputs X̃ ∈ R
m×d′ , such that

with probability 99/100,

‖A⊤S⊤X̃ −X∗‖F ≤ ε (1 + 2γ) ‖X∗‖F+
ε√
λ
‖Uk,⊥B‖F ,

where Uλ,⊥B is the projection of B onto the subspace cor-

responding to the singular values of SA less than
√
λ; and

γ2 =
‖B‖2

F

‖AA+X∗‖2
F

is a problem dependent parameter.

Further, the running time of the algorithm is

Õ
(

d′ε−4ψ2
λκ

2
λ log(d)

)

. Finally, for all i ∈ [d], and

j ∈ [d′], an entry (A⊤S⊤X̃)i,j can be computed in

O(m log(nd)) time.

We note that the “numerical” quantities κλ and ψλ are

decreasing in λ. When λ is within a constant factor of

‖A‖2, ψλ is within a constant factor of the stable rank

‖A‖2F /‖A‖
2
, where the stable rank is always at most

rank(A). We also note that in the theorem, and the re-

mainder of the paper, a row sampling matrix S has rows

that are multiples of natural basis vectors, so that SA is a

(weighted) sample of the rows of A. A column sampling

matrix is defined similarly.

Concurrent Work on Ridge Regression. In an indepen-

dent and concurrent work, Gilyén, Song and Tang (Gilyén

et al., 2020) obtain a roughly comparable classical algorithm

for regression, assuming access to the tree data structure,

which runs in time Õ
(

‖A‖6
F ‖A‖2

2

‖A+‖8
2ε

4

)

, or in the notation above,

Õ(ε−4ψ3
λκ

2), for the special case of d′ = 1. Their algo-

rithm is based on Stochastic Gradient Descent.

Next, we describe our results for low-rank approximation.

We obtain a dynamic algorithm (Algorithm 3) for approx-

imating A with a rank-k matrix, for a given k, and a data

structure for sampling from it, in the vein of (Tang, 2019).

At a high-level, as with our ridge regression algorithm, we

first sample rows proportional to their squared Euclidean

norm (length-squared sampling) and then sample a subset

of columns resulting in a small submatrix with Õ(ε−2k)
rows and columns. We then compute the SVD of this ma-

trix, and then work back up to A with more sampling and a

QR factorization. The key component in our algorithm and

analysis is using Projection-Cost Preserving sketches (see

Definition A.9). These enable us to preserve the Frobenius

cost of projections onto all rank-k subspaces simultaneously.

As a result, we obtain the following theorem:

Theorem 1.5 (Sampling from a low-rank approximation).

Given an n × d matrix A for which a sampling data

structure has been maintained, target rank k ∈ [d]
and error parameter ε > 0, we can find sampling

matrices S and R, and rank-k matrix W , such that

‖ARWSA−A‖F ≤ (1 + O(ε))‖A−Ak‖F . Further,

the running time is Õ(ε−6k3 + ε−4ψλ(ψλ + k2 + kψk)),

where ψλ is as in Theorem 1.4, and ψk =
‖A‖2

F

σk(A)2 .Given

j ∈ [d], a random index i ∈ [n] with probability distri-

bution (ARWSA)2ij/‖ARWSA)∗,j‖2 can be generated

in expected time Õ(ψk + k2ε−2κ2), where κ = σ1(A) ·
σrank(A)(A).

Here if the assumption ‖Ak‖2F ≥ ε‖A‖
2
F does not hold, the

trivial solution 0 satisfies the relative error target and we

assume the resulting approximation is not worth sampling:

‖A− 0‖2F ≤
1

1− ε (‖A‖
2
F−‖Ak‖

2
F) =

1

1− ε‖A−Ak‖
2
F .

This result is directly comparable to Tang’s algorithm (Tang,

2019) for recommender systems which again needs query

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

time that is a large polynomial in k, κ and ε−1. Our al-

gorithm returns a relative error approximation, a rank-k
approximation within 1 + ε of the best rank-k approxima-

tion; Tang’s algorithm has additive error, with a bound more

like ‖A−Ak‖F + ε‖A‖F . Finally, we note that ψk ≤ κ2

and for several settings of k can be significantly smaller.

For ease of comparison we summarize our results in Table

1.

1.2. Related Work

Matrix Sketching. The sketch and solve paradigm (Clark-

son & Woodruff, 2015; Woodruff, 2014) was designed to

reduce the dimensionality of a problem, while maintaining

enough structure such that a solution to the smaller problem

remains an approximate solution the original one. This ap-

proach has been pivotal in speeding up basic linear algebra

primitives such as least-squares regression (Sarlós, 2006;

Rokhlin & Tygert, 2008; Clarkson & Woodruff, 2015), ℓp
regression (Cohen & Peng, 2015; Wang & Woodruff, 2019),

low-rank approximation (Nelson & Nguyên, 2013; Cohen

et al., 2017; Li & Woodruff, 2020), linear and semi-definite

programming (Cohen et al., 2019; Jiang et al., 2020b;a)

and solving non-convex optimization problems such as ℓp
low-rank approximation (Song et al., 2017; 2019; Ban et al.,

2019) and training neural networks (Bakshi et al., 2019b;

Brand et al., 2020). For a comprehensive overview we re-

fer the reader to the aforementioned papers and citations

therein. Several applications use rank computation, finding

a full rank subset of rows/columns, leverage score sampling,

and computing subspace embeddings as key algorithmic

primitives.

Sublinear Algorithms and Quantum Linear Algebra.

Recently, there has been a flurry of work on sublinear time

algorithms for structured linear algebra problems (Musco &

Woodruff, 2017; Shi & Woodruff, 2019; Balcan et al., 2019;

Bakshi et al., 2020) and quantum linear algebra (Harrow

et al., 2009; Gilyén et al., 2019; Lloyd et al., 2014; Kerenidis

& Prakash, 2016; Dunjko & Wittek, 2020). The unifying

goal of these works is to avoid reading the entire input to

solve tasks such as linear system solving, regression and

low-rank approximation. The work on sublinear algorithms

assumes the input is drawn from special classes of matrices,

such as positive semi-definite matrices (Musco & Woodruff,

2017; Bakshi et al., 2019a), distance matrices (Bakshi &

Woodruff, 2018; Indyk et al., 2019) and Toeplitz matrices

(Lawrence et al., 2020), whereas the quantum algorithms

(and their de-quantized analogues) assume access to data

structures that admit efficient sampling (Tang, 2019; Gilyén

et al., 2018; Chia et al., 2020).

The work of Gilyén, Lloyd and Tang (Gilyén et al., 2018) on

low-rank least squares produces a data structure as output:

given index i ∈ [d] = {1, . . . , d}, the data structure returns

entry x′i of x′ ∈ R
d, which is an approximation to the

solution x∗ of min
x∈Rd

‖Ax− b‖, where b ∈ R
n. The error

bound is ‖x′ − x∗‖ ≤ ε‖x∗‖, for given ε > 0. This requires

the condition that ‖Ax∗ − b‖/‖Ax∗‖ is bounded above by

a constant. Subsequent work (Chia et al., 2020) removes

this requirement, and both results obtain data structures that

need space polynomial in rank(A), ε, κ(A),1 and other

parameters.

The work (Tang, 2019) also produces a data structure, that

supports sampling relevant to the setting of recommender

systems: the nonzero entries of the input matrix A are a

subset of the entries of a matrix P of, for example, user

preferences. An entry Aij ∈ [0, 1] is one if user j strongly

prefers product i, and zero if user j definitely does not like

product i. It is assumed that P is well-approximated by

a matrix of some small rank k. The goal is to estimate P
using A; one way to make that estimate effective, without

simply returning all entries of P , is to create a data structure

so that given j, a random index i is returned, where i is

returned with probability â2ij/‖Â∗,j‖
2
. Here Â∗,j is the

j’th column of Â (and âij an entry), where Â is a good

rank-k approximation toA, and therefore, under appropriate

assumptions, to P . The estimate Â is regarded as a good

approximation if ‖Â−A‖F ≤ (1+ε)‖A− [A]k‖F , where

[A]k is the matrix of rank k closest to A in Frobenius norm.

Here ε is a given error parameter. As shown in (Tang, 2019),

this condition (or indeed, a weaker one) implies that the

described sampler is useful in the context of recommender

systems.

2. Outline

The next section gives some notation and mathematical

preliminaries, in particular regarding leverage-score and

length-squared sampling. This is followed by descriptions

of our data structures and algorithms, and then by our com-

putational experiments. The appendices give some extensive

descriptions, proofs of theorems, and in Appendix D, some

additional experiments.

3. Preliminaries

LetX+ denote the Moore-Penrose pseudo-inverse of matrix

X , equal to V Σ−1U⊤ when X has thin SVD X = UΣV ⊤,

so that Σ is a square invertible matrix. We note that

X+ = (X⊤X)+X⊤ = X⊤(XX⊤)+ and X+XX⊤ =
X⊤, which is provable using the SVDs of X and X+. Also,

if X has full column rank, so that V is square, then X+

is a left inverse of X , that is, X+X = Id, where d is the

1Throughout, we define κ(A) = ‖A‖‖A+‖, that is, the ratio
of largest to smallest nonzero singular values of A, so that, in
particular, it will never be infinite or undefined.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Table 1. Comparison of our results and prior work. Let the target error be ε, target rank be k and let ψk = ‖A‖2
F
/σk(A)

2 , where σk is

the k-th singular value of the input matrix. Also, σ̂k ≤ 1/‖A+‖, σ̂1 ≥ ‖A‖, d′ is the number of columns of B for multiple-response,

and η denotes some numerical properties of A. To avoid numerous parameters, we state our results by setting λ = Θ(‖A‖22) in the

corresponding theorems.

Problem Time Prior Work

Update Query Update Query

Ridge

Regression
O(log(n)) Õ

(

d′κ3‖A‖2
F log(d)

ε4‖A‖2
2

)

O(log(n)) Õ
(

k6‖A‖6
Fκ

16

ε6

)

Thm. 1.4 (Gilyén et al., 2018)

Õ
(

‖A‖8
Fκ(A)2

(σ6
minε

4)

)

(Gilyén et al., 2020)

Low Rank

Sampling
O(log(n)) Õ





‖A‖2
F

(

‖A‖2F
‖A‖22

+k2+kψk

)

ε4‖A‖2
2

+ k3

ε6



 O(log(n)) Ω(poly(κkε−1η))

Thm. 1.5 (Tang, 2019)

number of columns of X . Let ‖X‖ denote the spectral

(operator) norm of X . Let κ(X) = ‖X+‖‖X‖ denote the

condition number of X . We write a ± b to denote the set

{c | |c − a| ≤ |b|}, and c = a ± b to denote the condition

that c is in the set a ± b. Let [m] = {1, 2, . . . ,m} for an

integer m.

As mentioned, nnz(A) is the number of nonzero entries

of A, and we assume nnz(A) ≥ n, which can be ensured

by removing any rows of A that only contain zeros. We let

[A]k or sometimesAk denote the best rank-k approximation

to A. Let 0a×b ∈ R
a×b have all entries equal to zero, and

similarly 0a ∈ R
a denotes the zero vector. Further, for an

n× d matrix A and a subset S of [n], we use the notation

A|S to denote the restriction of the rows of A to the subset

indexed by S. As mentioned, nω is the time needed to

multiply two n× n matrices.

Lemma 3.1 (Oblivious Subspace Embedding Theorem

7.4 (Chepurko et al., 2022)). For given matrix A ∈ R
n×d

with k = rank(A), there exists an oblivious sketching ma-

trix S that samples m = O(ε−2
0 k log k) rows of A such that

with probability at least 99/100, for all x ∈ R
d, S is an

ε0-subspace embedding, that is, ‖SAx‖ = (1± ε0)‖Ax‖.
Further, the matrix SA can be computed in O(nnz(A) +
kωpoly(log log(k)) + poly(1/ε0)k

2+o(1)) time.

We obtain the following data structure for leverage-score

sampling. We provide a statement of its properties below,

but defer the description of the algorithm and proof to the

supplementary material. While leverage-score sampling is

well-known, we give an algorithm for completeness; also,

our algorithm removes a log factor in some terms in the

runtime, due to our use of the sketch of Lemma 3.1.

Theorem 3.2 (Leverage Score Data Structure). Let k =
rank(A), and choose µs ≥ 1. Then, Algorithm 5

(LEVSAMPLE(A, µs, v)) uses spaceO(n+kω log log(nd)),

not counting the space to store A, and runs in time

O(µs nnz(A)+k
ωpoly(log log(k))+k2+o(1)+vkn1/µs),

and outputs a leverage score sketching matrix L, which

samples v rows of A with probability proportional to their

leverage scores. (It also outputs a column selector Λ, select-

ing an orthogonal basis of the column space of A.)

Definition 3.3 (Ridge Leverage-score Sample, Statistical

Dimension). Let A be such that k = rank(A), and sup-

pose A has thin SVD A = UΣV ⊤, implying Σ ∈ R
k×k.

For λ > 0, let A(λ) =
[

A√
λV V ⊤

]

and A(λ) has SVD

A(λ) =
[

UΣD√
λV D

]

D−1V ⊤, where D = (Σ2 + λIk)
−1/2.

Call S ⊂ [n] a ridge leverage-score sample of A if

each i ∈ S is chosen independently with probability at

least ‖Ui,∗ΣD‖2/sdλ(A), where the statistical dimension

sdλ(A) = ‖UΣD‖2F =
∑

i∈[d] σ
2
i /(λ+ σ2

i), recalling that

UΣD comprises the top n rows of the left singular matrix

of A(λ).

We can also use length-squared sampling to obtain subspace

embeddings. In Section 4 we will give a data structure and

algorithm that implements length-squared sampling. We

defer the analysis to Appendix A.

Definition 3.4 (Length-squared sample). Let A ∈ R
n×d,

λ ≥ 0, and A(λ) be as in Lemma A.5. For given m, let

matrix L ∈ R
m×n be chosen by picking each row of L to be

e⊤i /
√
pim, where ei ∈ R

n is the i’th standard basis vector,

and picking i ∈ [n] with probability pi ← ‖Ai,∗‖2/‖A‖2F .

We obtain the corresponding lemma for length-squared sam-

pling and defer the proof to Appendix A.

Lemma 3.5 (Length-squared sketch). Given a matrix A ∈
R
n×d and a sample size parameter v ∈ [n], let m =

O
(

v‖A+
(λ)‖

2‖A‖2F /sdλ(A)
)

. Then, with probability at

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

least 99/100, the set of m length-squared samples contains

a ridge leverage-score sample of A of size v.

4. Dynamic Data Structures for Ridge

Regression

In this section, we describe our dynamic data structures, and

then our algorithm for solving Ridge Regression problems.

Given an input matrix A ∈ R
n×d, our data structure can be

maintained under insertions and deletions (and changes) in

O(log(nd)) time, such that sampling a row or column with

probability proportional to its squared length can be done

in O(log(nd)) time. The data structure is used for solving

both ridge regression and LRA (Low-Rank Approximation)

problems.

First, we start with a simple folklore data structure.

Lemma 4.1. Given ℓ real values {ui}i∈[ℓ], there is a data

structure using storage O(ℓ), so that L =
∑

i∈[ℓ] u
2
i can be

maintained, and such that a random i can be chosen with

probability u2i /L in time O(log ℓ). Values can be inserted,

deleted, or changed in the data structure in time O(log ℓ).

The implementation of this data structure is discussed in

Appendix B. We use it in our data structure DYNSAMP(A),
given below, which is used in LENSQSAMPLE, Alg. 1, to

sample rows and columns of A.

Definition 4.2. DYNSAMP(A) is a data structure that, for

A ∈ R
n×d, comprises:

• For each row of A, the data structure of Lemma 4.1 for

the nonzero entries of the row or column.

• For the rows of A, the data structure of Lemma 4.1 for

their lengths.

• For given i, j, a data structure supporting access to the

value of entry aij of A in O(1) time.

Algorithm 1 LENSQSAMPLE(DS, S = null,mS ,mR)

Input: DS = DYNSAMP(A) (Def. 4.2) for A ∈ R
n×d,

sample sizes mS , mR

Output: Sampling matrices S ∈ R
mS×n, R ∈ R

d×mR

1: if S == null

Use DS to build row sampler S ∈ R
mS×n of A

2: Use DS and S to build column sampler Rd×mR of SA
{cf. Lemma 4.3}

3: return S,R

Lemma 4.3. DYNSAMP(A) can be maintained under

turnstile updates of A in O(log(nd)) time. Using

DYNSAMP(A), rows can be chosen at random with row i ∈
[n] chosen with probability ‖Ai,∗‖2/‖A‖2F in O(log(nd))
time.

Algorithm 2 RIDGEREGDYN(DS, B, σ̂k, σ̂1, ε, λ)

Input: DS = DYNSAMP(A), B ∈ R
n×d′ , σ̂k ≤ 1/‖A+‖,

σ̂1 ≥ ‖A‖, ε an error parameter, λ a ridge weight

Output: Data for approximate ridge regression solution A⊤S⊤X̃
where S is a sampling matrix

1: Zλ ← 1/
√

λ+ σ̂2
k, κ̂← Zλ

√

λ+ σ̂2
1

2: Choose mS = O(ε−2κ̂2Z2
λ‖A‖2F log(d)),

mR = O(m̂RZ
2
λ‖A‖2F), where m̂R = O(ε−2 logmS)

3: S,R← LENSQSAMPLE(DS,null,mS ,mR) {cf. Alg. 1;}
4: X̃ ← (SARR⊤A⊤S⊤ + λImS)

−1SB
{Solve using conjugate gradient}

5: return X̃ , S
{approximate ridge regression solution is A⊤S⊤X̃}

If S ∈ R
m×n is a sampling matrix, so that SA has rows

that are each a multiple of a row of A, then c columns

can be sampled from SA using DYNSAMP(A) in O((c +
m) log(nd)) time, with the column j ∈ [d] chosen with

probability ‖(SA)∗,j‖2/‖SA‖2F .

We designate the algorithm of Lemma 3.5 as

LENSQSAMPLE, as given at a high level in Algo-

rithm 1, and in more detail in the proof of Lemma 4.3 in

Appendix B.

This simple data structure and sampling scheme will be

used to solve ridge regression problems, via Algorithm 2. Its

analysis, which proves Theorem 1.4, is given in Appendix B.

5. Sampling from a Low-Rank

Approximation

Our algorithm for low-rank approximation is

BUILDLOWRANKFACTORS, Algorithm 3, given below.

As discussed in the introduction, it uses LENSQSAMPLE,

Algorithm 1, to reduce to a matrix whose size is inde-

pendent of the input size, beyond log factors, as well as

Projection-Cost Preserving sketches, QR factorization, and

leverage-score sampling. Its analysis, proving Theorem 1.5,

is given in Appendix C.

6. Experiments

We evaluate the empirical performance of our algorithm on

both synthetic and real-world datasets. All of our experi-

ments were done in Python and conducted on a laptop with

a 1.90GHz CPU and 16GB RAM. Prior work (Arrazola

et al., 2020) suggests the tree data structure is only faster

than the built-in sampling function when the matrix size

max{n, d} is larger than 106. Hence we follow the imple-

mentation in (Arrazola et al., 2020) that directly uses the

built-in function. For a fair comparison, we also modified

the code in (Arrazola et al., 2020), which reduces the time

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Algorithm 3 BUILDLOWRANKFACTORS

(DYNSAMPLER, k, σ̂k, σ̂k, ε, τ)

Input: DYNSAMPLER = DYNSAMP(A) (Def. 4.2) for

A ∈ R
n×d, k target rank, σ̂k ≤ 1/‖A+‖, σ̂k ≤ σk(A), ε an

error parameter, τ estimate of ‖A−Ak‖2F , where Ak is the best
rank-k approximation to A
Output: Small matrix W and sampling matrices S, R
so that rank(ARWSA) = k and
‖ARWSA−A‖ ≤ (1 + ε)‖A−Ak‖

1: λ← τ/k, Zλ ← 1/
√

λ+ σ̂2
k, Zk ← 1/σ̂k

2: Choose mR = mS = O(m̂SZ
2
λ‖A‖2F),

where m̂S = O(ε−2 log k)
3: S,R1 ← LENSQSAMPLE(DYNSAMPLER,null,mS ,mR)
4: Apply Alg. 1 and Thm. 1 of (Cohen et al., 2017) to SAR1,

get col. sampler R2 {mR2 = O(ε−2k log k)}
5: Apply Alg. 1 and Thm. 1 of (Cohen et al., 2017) to SAR1R2,

get row sampler S2 {mS2 = O(ε−2k log k)}
6: V ← top-k right singular matrix of S2SAR1R2

7: U, ← QR(SAR1R2V)
{U has orthonormal cols, SAR1R2V = UC for matrix C}

8: Choose mR3 = O(m̂R3ε
−1Z2

k‖A‖2F),
where m̂R3 = O(ε−2

0 log k + ε−1), ε0 a small constant
9: R3 ← LENSQSAMPLE(DYNSAMPLER, S,mS ,mR3)

10: Let f(k, C) be the function returning the value

mR4 = O(ε−2

0 k log k + ε−1k)

11: R⊤
4 , ← LEVSAMPLE((U⊤SAR3)

⊤, log(mR3), f())
{Alg. 5}

12: R← R3R4

13: W ← (U⊤SAR)+U⊤

14: return W , S, R

to maintain the data structure by roughly 30x. For each

experiment, we took an average over 10 independent trials.

We note that we do not compare with classical sketching

algorithms for several reasons. First, there is no classical

contender with the same functionality as ours. This is be-

cause our dynamic algorithms support operations not seen

elsewhere: sublinear work for regression and low-rank ap-

proximation, using simple fast data structures that allow, as

special cases, row-wise or column-wise updates. Second,

unlike dynamic algorithms where a sketch is maintained,

our algorithms are not vulnerable to updates based on prior

outputs, whether adversarially, or due to use in the inner

loop of an optimization problem. This is because our algo-

rithms are based on independent sampling from the exact

input matrix.

6.1. Low-Rank Approximation

We conduct experiments on the following datasets:

• KOS data.2 A word frequency dataset. The matrix rep-

resents word frequencies in blogs and has dimensions

2The Bag of Words Data Set from the UCI Machine Learning
Repository.

3430 × 6906 with 353160 non-zero entries.

• MovieLens 100K. (Harper & Konstan, 2016) A movie

ratings dataset, which consists of a preference ma-

trix with 100,000 ratings from 611 users across 9,724

movies.

We compare our algorithms with the implementations in (Ar-

razola et al., 2020), which are based on the algorithms

in (Frieze et al., 2004) and (Tang, 2019). We refer to

this algorithm as ADBL henceforth. For the KOS dataset,

we set the number of sampled rows and columns to be

(r, c) = (500, 700) for both algorithms. For the MovieLens

dataset we set (r, c) = (300, 500). We define the error ε =

‖A − Y ‖F /‖A − Ak‖F − 1, where Y is the algorithm’s

output and Ak is the best k-rank approximation. Since the

regime of interest is k ≪ n, we vary k among {10, 15, 20}.
The results are shown in Table 2. We first report the total

runtime, which includes the time to maintain the data struc-

ture and then compute the low-rank approximation. We also

report the query time, which excludes the time to maintain

the data structure. From the table we see that both algo-

rithms can achieve ε ≈ 0.05 in all cases. The query time of

ours is about 6x-faster than the ADBL algorithm in (Arra-

zola et al., 2020), and even for the total time, our algorithm

is much faster than the SVD. Although the accuracy of ours

is slightly worse, in Appendix D.1 we show by increasing

the sample size slightly, our algorithm achieves the same

accuracy as ADBL (Arrazola et al., 2020), but still has a

faster runtime.

We remark that the reason our algorithm only needs half

of the time to compute the sampling probabilities is that

we only need to sample rows or columns according to their

squared length, but the algorithm in (Arrazola et al., 2020)

also needs to sample entries for each sampled row according

to the squared values of the entries.

6.2. Ridge Regression

In this section, we consider the problem

X∗ := min
X∈Rd×d′

‖AX −B‖2F + λ‖X‖2F ,

where A ∈ R
n×d, B ∈ R

n×d′ . We do experiments on the

following dataset with λ = 1:

• Synthetic data. We generate the rank-k matrix A
as (Arrazola et al., 2020) do. Particularly, suppose the

SVD of A is A = UΣV ⊤. We first sample an n × k
Gaussian matrix, then we perform a QR-decomposition

G = QR, where Q is an n× k orthogonal matrix. We

then simply set U = Q and then use a similar way to

generate V . We set A ∈ R
7000×9000, B ∈ R

7000×1.

• YearPrediction.3 A dataset that collects 515345 songs

3YearPredictionMSD Data Set

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Table 2. Performance of our algorithm and ADBL on MovieLen

100K and KOS data, respectively.

k = 10 k = 15 k = 20
ε(Ours) 0.0416 0.0557 0.0653

ε(ADBL) 0.0262 0.0424 0.0538

Runtime
0.125s 0.131s 0.135s

(Ours, Query)

Runtime
0.181s 0.183s 0.184s

(Ours, Total)

Runtime
0.867s 0.913s 1.024s

(ADBL, Query)

Runtime
0.968s 1.003s 1.099s

(ADBL, Total)

Runtime of SVD 2.500s

k = 10 k = 15 k = 20
ε(Ours) 0.0397 0.0478 0.0581

ε(ADBL) 0.0186 0.0295 0.0350

Runtime
0.292s 0.296s 0.295s

(Ours, Query)

Runtime
0.452s 0.455s 0.452s

(Ours, Total)

Runtime
1.501s 1.643s 1.580s

(ADBL, Query)

Runtime
1.814s 1.958s 1.897s

(ADBL, Total)

Runtime of SVD 36.738s

and each song has 90 attributes. The task here is to

predict the release year of the song. A ∈ R
515345×90,

B ∈ R
515345×1.

• PEMS data. 4 The data describes the occupancy rate

of different car lanes of San Francisco bay area free-

ways. Each row is the time series for a single day. The

task on this dataset is to classify each observed day as

the correct day of the week, from Monday to Sunday.

A ∈ R
440×138672, B ∈ R

440×1.

We define the error ε = ‖X − X∗‖F /‖X∗‖F , given the

algorithm output X . For synthetic data, we set the number

of sampled rows and columns to be r and c. For the YearPre-

diction data, the number of columns is small, and hence we

only do row sampling, and likewise, for the PEMS data,

we only do column sampling. We did not find an imple-

mentation for the ridge regression problem in the previous

related work. Therefore, here we list the time to compute the

closed-form optimal solution X∗ = (A⊤A + λI)−1A⊤B
or X∗ = A⊤(AA⊤ + λI)−1B, as a reference.

The results are shown in Table 3 and 4. From the tables we

can see that for synthetic data, the algorithm can achieve an

error ε < 0.1 when only sampling less than 10% of the rows

4PEMS-SF Data Set

Table 3. Performance of our algorithm on synthetic data.

(r, c) 300, 500 500, 800 1000, 1500
ε(Ours) 0.1392 0.0953 0.0792

Runtime
0.021s 0.042s 0.148s

(Query)

Runtime
0.557s 0.568s 0.667s

(Total)

Exact X∗ 24.074s

and columns. Also, the total runtime is about 40x-faster than

computing the exact solution. For the YearPrediction and

PEMS data, the bottleneck of the algorithm becomes the

time to compute the sample probabilities, but the query time

is still very fast and we can achieve an error ε < 0.1 when

only sampling a small fraction of the rows or columns.

Table 4. Performance of our algorithm on YearPrediction data and

PEMS data, respectively.

r = 1000 3000 5000
ε(Ours) 0.1070 0.0633 0.0447

Runtime
0.031s 0.037s 0.059s

(Query)

Runtime
0.213s 0.229s 0.245s

(Total)

Exact X∗ 0.251s

c = 15000 25000 35000
ε(Ours) 0.1778 0.1397 0.1130

Runtime
0.234s 0.381s 0.532s

(Query)

Runtime
0.473s 0.628s 0.777s

(Total)

Exact X∗ 0.972s

Acknowledgements.

Honghao Lin and David Woodruff would like to thank for

partial support from the National Science Foundation (NSF)

under Grant No. CCF-1815840.

References

Arrazola, J. M., Delgado, A., Bardhan, B. R., and Lloyd,

S. Quantum-inspired algorithms in practice. Quan-

tum, 4:307, 2020. URL https://doi.org/10.22331/

q-2020-08-13-307.

Avron, H., Clarkson, K. L., and Woodruff, D. P.

Sharper bounds for regularized data fitting. In RAN-

DOM ’17: 21st International Workshop on Ran-

domization and Computation, 2017. URL https:

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

//arxiv.org/abs/1611.03225. Full version at

https://arxiv.org/abs/1611.03225.

Bakshi, A. and Woodruff, D. Sublinear time low-rank ap-

proximation of distance matrices. In Advances in Neural

Information Processing Systems, pp. 3782–3792, 2018.

Bakshi, A., Chepurko, N., and Woodruff, D. P. Robust and

sample optimal algorithms for psd low-rank approxima-

tion. arXiv preprint arXiv:1912.04177, 2019a.

Bakshi, A., Jayaram, R., and Woodruff, D. P. Learning two

layer rectified neural networks in polynomial time. In

Conference on Learning Theory, pp. 195–268. PMLR,

2019b.

Bakshi, A., Chepurko, N., and Jayaram, R. Testing positive

semi-definiteness via random submatrices. arXiv preprint

arXiv:2005.06441, 2020.

Balcan, M.-F., Li, Y., Woodruff, D. P., and Zhang, H. Testing

matrix rank, optimally. In Proceedings of the Thirtieth

Annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 727–746. SIAM, 2019.

Ban, F., Bhattiprolu, V., Bringmann, K., Kolev, P., Lee, E.,

and Woodruff, D. P. A PTAS for ℓp-low rank approxima-

tion. In Proceedings of the Thirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, pp. 747–766. SIAM,

2019.

Berry, D. W., Childs, A. M., and Kothari, R. Hamilto-

nian simulation with nearly optimal dependence on all

parameters. In 2015 IEEE 56th Annual Symposium on

Foundations of Computer Science, pp. 792–809, 2015.

Boutsidis, C., Woodruff, D. P., and Zhong, P. Optimal

principal component analysis in distributed and streaming

models. In Proceedings of the forty-eighth annual ACM

symposium on Theory of Computing, pp. 236–249, 2016.

Brand, J. v. d., Peng, B., Song, Z., and Weinstein, O. Train-

ing (overparametrized) neural networks in near-linear

time. arXiv preprint arXiv:2006.11648, 2020.

Brandão, F. G. S. L., Kalev, A., Li, T., Lin, C. Y.-Y.,

Svore, K. M., and Wu, X. Quantum SDP Solvers:

Large Speed-Ups, Optimality, and Applications to Quan-

tum Learning. In Baier, C., Chatzigiannakis, I., Floc-

chini, P., and Leonardi, S. (eds.), 46th International Col-

loquium on Automata, Languages, and Programming

(ICALP 2019), volume 132 of Leibniz International

Proceedings in Informatics (LIPIcs), pp. 27:1–27:14,

Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik. ISBN 978-3-95977-109-2. doi:

10.4230/LIPIcs.ICALP.2019.27. URL http://drops.

dagstuhl.de/opus/volltexte/2019/10603.

Chepurko, N., Clarkson, K. L., Kacham, P., and Woodruff,

D. P. Near-optimal algorithms for linear algebra in the

current matrix multiplication time. In Proceedings of

the 2022 Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pp. 3043–3068. SIAM, 2022.

Chia, N., Lin, H., and Wang, C. Quantum-inspired sublinear

classical algorithms for solving low-rank linear systems.

CoRR, abs/1811.04852, 2018. URL http://arxiv.org/

abs/1811.04852.

Chia, N.-H., Gilyén, A., Li, T., Lin, H.-H., Tang, E., and

Wang, C. Sampling-based sublinear low-rank matrix

arithmetic framework for dequantizing quantum machine

learning. In Proceedings of the 52nd Annual ACM

SIGACT Symposium on Theory of Computing, pp. 387–

400, 2020.

Chowdhury, A., Yang, J., and Drineas, P. An iterative,

sketching-based framework for ridge regression. In Inter-

national Conference on Machine Learning, pp. 989–998,

2018.

Clarkson, K. L. Subgradient and sampling algorithms for ℓ1
regression. In Symposium on Discrete Algorithms: Pro-

ceedings of the sixteenth annual ACM-SIAM symposium

on Discrete algorithms, volume 23, pp. 257–266, 2005.

Clarkson, K. L. and Woodruff, D. P. Low rank approxima-

tion and regression in input sparsity time. In STOC, 2013.

Full version at http://arxiv.org/abs/1207.6365.

Final version J. ACM, Vol 63, 2017,

http://doi.acm.org/10.1145/3019134.

Clarkson, K. L. and Woodruff, D. P. Input sparsity and hard-

ness for robust subspace approximation. In 2015 IEEE

56th Annual Symposium on Foundations of Computer

Science, pp. 310–329. IEEE, 2015.

Cohen, M. B. and Peng, R. Lp row sampling by Lewis

weights. In Proceedings of the forty-seventh annual ACM

symposium on Theory of computing, pp. 183–192. ACM,

2015.

Cohen, M. B., Elder, S., Musco, C., Musco, C., and Persu,

M. Dimensionality reduction for k-means clustering and

low rank approximation. In Proceedings of the forty-

seventh annual ACM symposium on Theory of computing,

pp. 163–172, 2015.

Cohen, M. B., Musco, C., and Musco, C. Input sparsity

time low-rank approximation via ridge leverage score

sampling. In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms, pp. 1758–

1777. SIAM, 2017.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Cohen, M. B., Lee, Y. T., and Song, Z. Solving linear

programs in the current matrix multiplication time. In

Proceedings of the 51st annual ACM SIGACT symposium

on theory of computing, pp. 938–942, 2019.

Cong, I. and Duan, L. Quantum discriminant analysis for

dimensionality reduction and classification. New Journal

of Physics, 18(7):073011, 2016.

Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Sub-

space sampling and relative-error matrix approximation:

Column-based methods. In APPROX-RANDOM, pp. 316–

326, 2006.

Drineas, P., Magdon-Ismail, M., Mahoney, M. W., and

Woodruff, D. P. Fast approximation of matrix coher-

ence and statistical leverage. The Journal of Machine

Learning Research, 13(1):3475–3506, 2012.

Dunjko, V. and Wittek, P. A non-review of quantum machine

learning: trends and explorations. Quantum Views, 4:32,

2020.

Frieze, A. M., Kannan, R., and Vempala, S. Fast Monte-

Carlo algorithms for finding low-rank approximations. J.

ACM, 51(6):1025–1041, 2004.

Gilyén, A., Lloyd, S., and Tang, E. Quantum-inspired low-

rank stochastic regression with logarithmic dependence

on the dimension. arXiv preprint arXiv:1811.04909,

2018.

Gilyén, A., Su, Y., Low, G. H., and Wiebe, N. Quantum

singular value transformation and beyond: exponential

improvements for quantum matrix arithmetics. In Pro-

ceedings of the 51st Annual ACM SIGACT Symposium

on Theory of Computing, pp. 193–204, 2019.

Gilyén, A., Song, Z., and Tang, E. An improved quantum-

inspired algorithm for linear regression. arXiv preprint

arXiv:2009.07268, 2020.

Gilyén, A., Song, Z., and Tang, E. An improved

quantum-inspired algorithm for linear regression. CoRR,

abs/2009.07268, 2020.

Harper, F. M. and Konstan, J. A. The movielens datasets:

History and context. ACM Trans. Interact. Intell. Syst.,

5(4):19:1–19:19, 2016. URL https://doi.org/10.

1145/2827872.

Harrow, A. W., Hassidim, A., and Lloyd, S. Quantum

algorithm for linear systems of equations. Physical review

letters, 103(15):150502, 2009.

Indyk, P., Vakilian, A., Wagner, T., and Woodruff, D.

Sample-optimal low-rank approximation of distance ma-

trices. arXiv preprint arXiv:1906.00339, 2019.

Jiang, H., Kathuria, T., Lee, Y. T., Padmanabhan, S., and

Song, Z. A faster interior point method for semidefinite

programming. arXiv preprint arXiv:2009.10217, 2020a.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H. Faster

dynamic matrix inverse for faster LPs. arXiv preprint

arXiv:2004.07470, 2020b.

Kannan, R. and Vempala, S. Randomized algorithms in

numerical linear algebra. Acta Numerica, 26:95, 2017.

Kannan, R. and Vempala, S. S. Spectral algorithms. Found.

Trends Theor. Comput. Sci., 4(3-4):157–288, 2009.

Kerenidis, I. and Prakash, A. Quantum recommendation

systems. arXiv preprint arXiv:1603.08675, 2016.

Laurent, B. and Massart, P. Adaptive estimation of a

quadratic functional by model selection. Ann. Statist., 28

(5):1302–1338, 10 2000. doi: 10.1214/aos/1015957395.

URL https://doi.org/10.1214/aos/1015957395.

Lawrence, H., Li, J., Musco, C., and Musco, C. Low-rank

toeplitz matrix estimation via random ultra-sparse rulers.

In ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp.

4796–4800. IEEE, 2020.

Li, Y. and Woodruff, D. Input-sparsity low rank approxima-

tion in Schatten norm. arXiv preprint arXiv:2004.12646,

2020.

Lloyd, S., Mohseni, M., and Rebentrost, P. Quantum princi-

pal component analysis. Nature Physics, 10(9):631–633,

2014.

Lloyd, S., Garnerone, S., and Zanardi, P. Quantum algo-

rithms for topological and geometric analysis of data.

Nature communications, 7(1):1–7, 2016.

Mahoney, M. W. Randomized algorithms for matrices and

data. Found. Trends Mach. Learn., 3(2):123–224, 2011.

Musco, C. and Woodruff, D. P. Sublinear time low-rank

approximation of positive semidefinite matrices. In 2017

IEEE 58th Annual Symposium on Foundations of Com-

puter Science (FOCS), pp. 672–683. IEEE, 2017.

Nelson, J. and Nguyên, H. L. OSNAP: Faster numerical lin-

ear algebra algorithms via sparser subspace embeddings.

In 2013 ieee 54th annual symposium on foundations of

computer science, pp. 117–126. IEEE, 2013.

Rebentrost, P., Mohseni, M., and Lloyd, S. Quantum support

vector machine for big data classification. Phys. Rev. Lett.,

113:130503, Sep 2014. doi: 10.1103/PhysRevLett.113.

130503. URL https://link.aps.org/doi/10.1103/

PhysRevLett.113.130503.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Rokhlin, V. and Tygert, M. A fast randomized algorithm

for overdetermined linear least-squares regression. Pro-

ceedings of the National Academy of Sciences, 105(36):

13212–13217, 2008.

Rudelson, M. and Vershynin, R. Sampling from large matri-

ces: An approach through geometric functional analysis.

J. ACM, 54(4), 2007.

Sarlós, T. Improved approximation algorithms for large

matrices via random projections. In FOCS, pp. 143–152,

2006.

Shi, X. and Woodruff, D. P. Sublinear time numerical linear

algebra for structured matrices. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33,

pp. 4918–4925, 2019.

Song, Z., Woodruff, D. P., and Zhong, P. Low rank approxi-

mation with entrywise ℓ1-norm error. In Proceedings of

the 49th Annual ACM SIGACT Symposium on Theory of

Computing, pp. 688–701, 2017.

Song, Z., Woodruff, D. P., and Zhong, P. Relative error

tensor low rank approximation. In Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pp. 2772–2789. Society for Industrial and Ap-

plied Mathematics, 2019.

Tang, E. A quantum-inspired classical algorithm for recom-

mendation systems. In Proceedings of the 51st Annual

ACM SIGACT Symposium on Theory of Computing, pp.

217–228. ACM, 2019.

van Apeldoorn, J. and Gilyén, A. Improvements in Quantum

SDP-Solving with Applications. In Baier, C., Chatzi-

giannakis, I., Flocchini, P., and Leonardi, S. (eds.),

46th International Colloquium on Automata, Languages,

and Programming (ICALP 2019), volume 132 of Leib-

niz International Proceedings in Informatics (LIPIcs),

pp. 99:1–99:15, Dagstuhl, Germany, 2019. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-

3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.99.

URL http://drops.dagstuhl.de/opus/volltexte/

2019/10675.

Vishnoi, N. Cargese lecture notes. 2015. URL

http://www.cs.yale.edu/homes/vishnoi/

CargeseLectures.pdf.

Wang, R. and Woodruff, D. P. Tight bounds for ℓp oblivious

subspace embeddings. In Proceedings of the Thirtieth

Annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 1825–1843. SIAM, 2019.

Woodruff, D. P. Sketching as a tool for numerical linear alge-

bra. Foundations and Trends® in Theoretical Computer

Science, 10(1–2):1–157, 2014.

Zhao, Z., Fitzsimons, J. K., and Fitzsimons, J. F. Quantum-

assisted gaussian process regression. Phys. Rev. A,

99:052331, May 2019. doi: 10.1103/PhysRevA.99.

052331. URL https://link.aps.org/doi/10.1103/

PhysRevA.99.052331.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

A. Preliminaries

In, this section, we provide proofs for our theorems in Section 3. We first provide the description of the leverage score

sampling data structure (Algorithm 5). We note that the advantage of the current version compared to the standard leverage

score sampling (see, e.g., Section 2.4 in the survey in (Woodruff, 2014)) is that it saves an O(log n) factor. We need the

following data structure.

Definition A.1 (Sampling Data Structure). Given a matrix A ∈ R
n×d, a column selection matrix Λ such that k =

rank(AΛ) = rank(A), and λs ≥ 1, the data structure SAMP(A,Λ, λs) consists of the following:

• SA, where S ∈ R
mS×n is a sketching matrix as in Lemma 3.1, with mS = O(k log(k)/ε20), chosen to be an

ε0-embedding with failure probability 1/100, for fixed ε0;

• C, where [Q,C]← QR(SAΛ), the QR decomposition of SAΛ, i.e., SAΛ = QC, Q has orthonormal columns and C
is triangular and invertible (since AΛ has full column rank);

• C0, where [Q0, C0]← QR(SA);

• The data structure of Lemma 4.1, built to enable sampling i ∈ [n] with probability pi ← ‖Zi,∗‖2/‖Z‖2F in O(log n)
time, where Z ← AΛ(C−1G), with G ∈ R

k×mG having independent N (0, 1/mG) entries, and mG = Θ(λs).

Algorithm 4 MATVECSAMPLER(A, SAMPLER,W, v, ν)

Input: A ∈ R
n×d, data structure SAMPLER (Def. A.1), W ∈ R

d×mW , desired number of samples v, normalizer ν, where ν = 1

6kn1/λs

by default if unspecified

Output: L ∈ R
v×d, encoding v draws from i ∈ [n] chosen with approx. probability qi

def
= ‖Ai,∗W‖2/‖AW‖2F

1: N ← ‖C0W‖2F , where C0 is from SAMPLER

2: if N == 0:
3: return UNIFORM(v, n) {Alternatively, raise an exception here}
4: L← 0v×n, z ← 0
5: while z < v:
6: Choose i ∈ [n] with probability pi using SAMPLER

7: q̃i ← ‖Ai,∗W‖2/N
8: With probability ν q̃i

pi
, accept i: set Lz,i = 1/

√
vq̃i; z ← z + 1

9: return L

Lemma A.2 (Sampling Data structure). The data structure SAMP(A,Λ, λs), from Definition A.1, can be constructed in

O(λs(nnz(A) + k2) + dω) time.

Proof. The time needed to compute SA isO(nnz(A)+kωpoly(log log(k))+k2+o(1)ε−2
0). Computing theQR factorization

of SA takes O(dω) time, by first computing (SA)⊤(SA) for the mS × d matrix SA, and then its Cholesky composition,

using “fast matrix” methods for both, and using mS ≤ d. This dominates the time for the similar factorization of SAΛ.

The Z matrix can be computed in O(λs(nnz(A) + k2)) time, by appropriate order of multiplication, and this dominates

the time needed for building the data structure of Lemma 4.1. Adding these terms, and using m ≤ nnz(A), the result

follows.

Lemma A.3 (MatVecSampler Analysis). Given constant c0 > 1 and small enough constant ε0 > 0, and SAMPLER for A,

there is an event E holding with failure probability at most 1/kc0 , so that if E holds, then when called with ν ← 1
6kn1/λs

, the

probability is (1±ε0)qi that the accepted index in Step 4 of MATVECSAMPLER is i ∈ [n], where qi
def
= ‖Ai,∗W‖2/‖AW‖2F .

The time taken is O(mW d(d+ vkn1/λs), where k = rank(A).

Proof. We need to verify that the quantity in question is a probability, that is, that ν q̃ipi ∈ (0, 1), when ν = 1
6kn1/λs

.

From Lemma 3.1, if mS = O(ε−2
0 k) for ε0 > 0, then with failure probability 1/kc0+1, S will be a subspace ε0-

embedding for im(A), that is, for AΛ and for A, using rank(A) = k. The event E includes the condition that S is

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

indeed an ε0-embedding. If this holds for S, then from standard arguments, AΛC−1 has singular values all in 1± ε0, and

‖Ai,∗ΛC−1‖2 = (1±O(ε0))τi, where again τi is the i’th leverage score.

(We have ‖AΛC−1x‖ = (1± ε0)‖SAΛC−1x‖ = (1± ε0)‖x‖, for all x, since SA = QC.) This implies that for Z,G in

the construction of SAMP(A,Λ, λs),

‖Z‖2F = ‖AΛC−1G‖2F ≤ (1 + ε0)‖G‖2F .

Since mG‖G‖2F is χ2 with kmG degrees of freedom, with failure probability at most exp(−
√
kλs/2) (using mG = Θ(λs),

it is at most 3kmG ((Laurent & Massart, 2000), Lemma 1), so ‖G‖2F ≤ 3k with that probability. Our event E also includes

the condition that this bound holds. Thus under this condition, ‖Z‖2F ≤ 3(1 + ε0)k.

From Lemma A.8 and the above characterization of τi, for the Z of SAMP(A,Λ, λs), ‖Zi,∗‖2 = ‖Ai,∗ΛC−1G‖2 ≥
(1−O(ε0))τi/n

1/λs .

Putting these together, we have

pi =
‖Zi,∗‖2F
‖Z‖2

≥ (1−O(ε0))
τi/n

1/λs

3k
. (1)

Using the ε0-embedding property of S,

‖C0W‖2F = ‖Q0C0W‖2F = ‖SAW‖2F = (1± 2ε0)‖AW‖2F , (2)

and so, letting A = UC1 for U with orthonormal columns, we have, for small enough ε0,

(1− 2ε0)q̃i ≤
‖Ai,∗W‖2

‖AW‖2F
=
‖Ui,∗C1W‖2

‖UC1W‖2F
=
‖Ui,∗C1W‖2

‖C1W‖2F
≤ ‖Ui,∗‖

2‖C1W‖2

‖C1W‖2F
≤ τi.

Putting this bound with (1) we have

q̃i
pi
≤ τi/(1− 2ε0)

(1−O(ε0))τi/n1/λs3(1 + ε0)k
≤ 3(1 +O(ε0))kn

1/λs .

so that ν q̃ipi = 1
6kn1/λs

q̃i
pi
≤ (1 + O(ε0))/2 ≤ 1 for small enough ε0. Using (2) we have q̃i = (1 ± 2ε0)qi. Thus the

correctness condition of the lemma follows, for small enough ε0.

Turning to time: the time to compute C0W is O(d2mW). Each iteration takes O(log n + dmW), for choosing i and

computing q̃i, and these steps dominate the time. As usual for rejection sampling, the expected number of iterations

is O(vkn1/λs). Adding these expressions yields the expected time bound, folding a factor of log n in by adjusting λs
slightly.

Algorithm 5 LEVSAMPLE(A, µs, f())

Input: A ∈ R
n×d, µs ≥ 1 specifying runtime tradeoff, function f(·)→ Z+ returns a target sample size (may be just a constant)

Output: Leverage score sketching matrix L, column selector Λ

1: Run an algorithm to compute k = rank(A) and obtain Λ ∈ R
d×k, a subset of k lin. indep. columns of A {for example

Theorem 1.5 in (Chepurko et al., 2022)}
2: Construct SAMPLER ← SAMP(AΛ, I, λs), use C from it; {Definition A.1}
3: W ← C−1G′, where G′ ∈ R

k×mG′ with ind. N (0, 1/mG′) entries {mG′ = Θ(log n)}
4: L← MATVECSAMPLER(AΛ, SAMPLER,W, f(k, C), ν = 1/6n1/λs)

{Algorithm 4, sample size f(k,C), normalizer ν}
5: return L,Λ

Theorem A.4 (Leverage Score Data Structure, Theorem 3.2 restated). Let k = rank(A), and choose µs ≥ 1. Algorithm 5

(LEVSAMPLE(A, µs, f(·))) uses space O(n+ kω log log(nd)), not counting the space to store A, and runs in time

O(µs nnz(A) + kωpoly(log log(k)) + k2+o(1) + vkn1/µs),

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

where v is the sample size. For v = ε−2k log k, this bound can be expressed as O(µe nnz(A) + kωpoly(log log(k)) +
ε−2−1/µek2) time, for µe ≥ 1.

Note: we can get a slightly smaller running time by including more rounds of rejection sampling: the first round of sampling

needs an estimate with failure probability totaled over for all n rows, while another round would only need such a bound for

vn1/λs rows; this would make the bound v1+1/λskn1/λ2
s , which would be smaller when v ≪ n. However, in the latter case,

the term vkn1/λs is dominated by the other terms anyway, for relevant values of the parameters. For example if v ≤ n and

vk ≤ nnz(A) does not hold, then sampling is not likely to be helpful. Iterating log log n times, a bound with leading term

O(nnz(A)(log logn+ log v)) is possible, but does not seem interesting.

Proof. Step A, building SAMP(AΛ, λs), take O(λs(nnz(A) + k2) + kω) time, with d in Lemma A.2 equal to k here.

From Lemma A.3, the running time of MATVECSAMPLER is O(k2 log n + vk2(log n)n1/λs), mapping d of the lemma

to k, mW to mG′ = O(log n). However, since the normalizer ν is a factor of k smaller than assumed in Lemma A.3, the

runtime in sampling is better by that factor. Also, we subsume the second log n factor by adjusting λs.

The cost of computing C−1G′ is O(k2 log n); we have a runtime of

O(nnz(A) + kωpoly(log log(k)) + k2+o(1)) +O(λs(nnz(A) + k2) + kω) +O(k2 log n+ vkn1/λs)

= O(λs nnz(A) + kωpoly(log log(k)) + k2+o(1) + vkn1/λs),

as claimed.

Finally, suppose v = ε−2k log k, as suffices for an ε-embedding. If vkn1/λs ≤ nnz(A) + kω, then the bound follows.

Suppose not. If n ≥ kω , then

ε−2 ≥ n1−1/λs/k2 log(k) ≥ n1−1/λs−2/ω/ log(n)

and so ε−2 ≥ nγ , for constant γ > 0, implying ε−2/λsγ
′ ≥ n1/λs log n, for constant γ′ < γ. When kω ≥ n,

ε−2 ≥ kω−2−1/ωλs/ log(k) ≥ kγ ,

for a constant γ > 0, so that ε−ω/λsγ
′ ≥ n1/λs log k, for a constant γ′ < γ. Using λe, a constant multiple of λs, to account

for constants, the result follows.

We can also use length-squared sampling to obtain subspace embeddings. In Section 4 we have given a data structure and

algorithm that implements length-squared sampling. To analyze length-squared sampling in the context of ridge regression,

we show the following structural observations about ridge regression.

Lemma A.5 (Block SVD). Let A be such that k = rank(A), and suppose A has thin SVD A = UΣV ⊤, implying

Σ ∈ R
k×k. For λ > 0, let A(λ) =

[

A√
λV V ⊤

]

. For b ∈ R
n, let b̂ =

[

b
0d

]

. Then for all x ∈ im(V), the ridge regression loss

‖Ax− b‖2 + λ‖x‖2 = ‖A(λ)x− b̂‖
2
,

and ridge regression optimum

x∗ = argminx∈Rd ‖Ax− b‖2 + λ‖x‖2 = argminx∈Rd ‖A(λ)x− b̂‖
2
.

The matrix A(λ) has SVD A(λ) =
[

UΣD√
λV D

]

D−1V ⊤, where D = (Σ2 + λIk)
−1/2, and ‖A+

(λ)‖
2
= 1/(λ+ 1/‖A+‖2). We

have ‖Ai,∗‖2‖A+
(λ)‖

2 ≥ ‖Ui,∗ΣD‖2 for i ∈ [n].

Proof. Since x ∈ im(V) has x = V z for some z ∈ R
k, and since V ⊤V = Ik, it follows that V V ⊤x = V z = x, and so

‖A(λ)x− b̂‖
2
= ‖Ax− b‖2 + ‖

√
λV V ⊤x− 0‖2 = ‖Ax− b‖2 + λ‖x‖2,

as claimed.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

The SVD of A(λ) is A(λ) =
[

UΣD√
λV D

]

D−1V ⊤, where D is defined as in the lemma statement, since the equality holds,

and both
[

UΣD√
λV D

]

and V have orthonormal columns, and D−1 has non-increasing nonnegative entries. Therefore A+
(λ) =

V D
[

UΣD√
λV D

]⊤
. We have

A+
(λ)b̂ = V D2ΣU⊤b = V ΣD2U⊤b, (3)

using that Σ and D are diagonal matrices.

By the well-known expression x∗ = A⊤(AA⊤ + λIn)
−1b, and using the not-thin SVD A = Û Σ̂V̂ ⊤, with Σ̂ ∈ R

n×d and

Û and V̂ orthogonal matrices,

x∗ = V̂ Σ̂Û⊤(Û Σ̂Σ̂⊤Û⊤ + λÛÛ⊤)−1b

= V̂ Σ̂Û⊤Û(Σ̂Σ̂⊤ + λIn)
−1Û⊤b

= V̂ Σ̂(Σ̂Σ̂⊤ + λIn)
−1Û⊤b

= V Σ(Σ2 + λIk)
−1U⊤b

= V ΣD2U⊤b,

where the next-to-last step uses that Σ̂ is zero except for the top k diagonal entries of Σ̂. Comparing (3) and (4), we have

A+
(λ)b̂ = x∗. Using the expression for A+

(λ), ‖A+
(λ)‖

2
= D2

1,1 = 1/(λ + 1/‖A+‖2). Finally, since (A(λ))i,∗ = Ai,∗ for

i ∈ [n], and letting Û =
[

UΣD√
λV D

]

,

‖Ai,∗‖2‖A+
(λ)‖

2
= ‖(A(λ))i,∗‖2‖A+

(λ)‖
2

≥ ‖(A(λ))i,∗A
+
(λ)‖

2

= ‖Ûi,∗D−1V ⊤V DÛ⊤‖2

= ‖Ûi,∗‖
2

= ‖Ui,∗ΣD‖2,
as claimed.

Definition A.6 (Ridge Leverage-score Sample, Statistical Dimension). LetA, λ,A(λ), andD be as in Lemma A.5. Call S ⊂
[n] a ridge leverage-score sample of A if each i ∈ S is chosen independently with probability at least ‖Ui,∗ΣD‖2/sdλ(A),
where the statistical dimension sdλ(A) = ‖UΣD‖2F =

∑

i∈[d] σ
2
i /(λ+ σ2

i), recalling that UΣD comprises the top n rows

of the left singular matrix of A(λ).

Lemma A.7 (Length-squared sketch, Lemma 3.5 restated). Given a matrix A ∈ R
n×d and a sample size parameter v ∈ [n],

let m = O
(

v‖A+
(λ)‖

2‖A‖2F /sdλ(A)
)

. Then, with probability at least 99/100, the set of m length-squared samples

contains a ridge leverage-score sample of A of size v.

Note that when λ = 0, ‖A+
(λ)‖ = ‖A+‖, sd0(A) = rank(A), and the ridge leverage-score samples are leverage-score

samples.

Proof. We will show that L̂ contains within it a leverage-score sketching matrix; since oversampling does no harm, this

implies the result using the above lemma.

Using the thin SVD A = UΣV ⊤, and A+ = V Σ+U⊤, we have

‖Ai,∗‖‖A+‖ ≥ ‖Ai,∗A+‖ = ‖Ui,∗ΣV ⊤V Σ+U⊤‖ = ‖Ui,∗‖,
The expected number of times index i ∈ [n] is chosen among mL̂ length-squared samples, pimL̂, is within a constant

factor of
‖Ai,∗‖2

‖A‖2
F

v‖A+
(λ)‖

2‖A‖2F /sdλ(A) ≥
‖Ui,∗‖2

sdλ(A) v, using Lemma A.5, an expectation at least as large as for a ridge

leverage-score sample of size v.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Finally, recall the Johnson-Lindenstraus Lemma, for sketching with a dense Gaussian matrix.

Lemma A.8 (Johnson-Lindenstraus Lemma). For given ε > 0, if P ⊂ R
c is a set of m ≥ c vectors, and G ∈ R

m×c has

entries that are independent Gaussians with mean zero and variance 1/m, then there is m = O(ε−2 log(m/δ)) such that

with failure probability δ, ‖Gx‖ = (1± ε)‖x‖ for all x ∈ P . Moreover, there is mG = O(µ) so that ‖Gx‖ ≥ ‖x‖/n1/µ,

with failure probability at most 1/n2.

Definition A.9 (Projection-Cost Preserving Sketch). Given a matrix A ∈ R
n×d, ε > 0 and an integer k ∈ [d], a

sketch SA ∈ R
s×d is an (ε, k)-column projection-cost preserving sketch of A if for all rank-k projection matrices P ,

(1− ε)‖A(I − P)‖2F ≤ ‖SA(I − P)‖2F ≤ (1 + ε)‖A(I − P)‖2F .

There are several constructions of projection-cost preserving sketches known in the literature, starting with the work of

Cohen et. al. (Cohen et al., 2015; 2017). For our purposes, it suffices to use Theorem 1 from (Cohen et al., 2017).

We can use the following lemma to translate from prediction error to solution error for regression problems.

Lemma A.10. Let γA,b = ‖b‖
‖AA+b‖ . Recall that κ(A) = ‖A‖‖A+‖. Suppose x̃ ∈ im(A⊤), and for some εp ∈ (0, 1),

‖Ax̃− b‖2 ≤ (1 + εp)‖ξ∗‖2 holds, where ξ∗ = Ax∗ − b. Then

‖x̃− x∗‖ ≤ 2
√
εp‖A+‖‖ξ∗‖ ≤ 2

√
εp

√

γ2A,b − 1κ(A)‖x∗‖. (4)

This extends to multiple response regression using γ2A,B
def
=

‖B‖2
F

‖AA+B‖2
F

, by applying column by column to B, and extends to

ridge regression, that is, A(λ) with B̂ =
[

B
0d×d′

]

, as well.

Note that x ∈ im(A⊤) = im(V) is no loss of generality, because the projection V V ⊤x of x onto im(A⊤) has AV V ⊤x =

Ax and ‖V V ⊤x‖ ≤ ‖x‖. So argminx ‖Ax− b‖2 + λ‖x‖ must be in im(A⊤) for λ arbitrarily close to zero, and

A+b ∈ im(A⊤).

For the ridge problem minx ‖A(λ)x− b̂‖, we have ‖ξ∗‖2 = ‖A(λ)x
∗ − b̂‖ = ‖Ax∗ − b‖2 + λ‖x∗‖2, and recalling from

Lemma A.5 that, when A has SVD A = UΣV ⊤, A(λ) has singular value matrix D−1, where D = (Σ2 + λIk)
−1/2, so that

κ(A(λ))
2 = (λ+ σ2

1)/(λ+ σ2
k), where A has singular values σ1, . . . , σk, with k = rank(A).

Proof. Since x∗ = A+b = A⊤(AA⊤)+b ∈ imA⊤, we have x̃− x∗ = A⊤z ∈ imA⊤, for some z. Since A+AA⊤ = A⊤,

we have x̃ − x∗ = A⊤z = A+AA⊤z = A+A(x̃ − x∗). From the normal equations for regression and the Pythagorean

theorem,

‖A(x̃− x∗)‖2 = ‖Ax̃− b‖2 − ‖Ax∗ − b‖2 ≤ 4εp‖ξ∗‖2,

using ‖Ax̃− b‖ ≤ (1 + εp)‖ξ∗‖ and εp < 1. Therefore, using also submultiplicativity of the spectral norm,

‖x̃− x∗‖2 = ‖A+A(x̃− x∗)‖2

≤ ‖A+‖2‖A(x̃− x∗)‖2

≤ ‖A+‖24εp‖ξ∗‖2, (5)

and the first inequality of (4) follows. For the second, we bound

‖ξ ∗ ‖2

‖x∗‖2
=
‖b‖2 − ‖AA+b‖2

‖A+b‖2
=

(γ2A,b − 1)‖AA+b‖2

‖A+b‖2
≤ (γ2A,b − 1)‖A‖2

so from (5), we have

‖x̃− x∗‖2 ≤ ‖A+‖24εp‖ξ∗‖2 ≤ ‖A+‖24εp‖x∗‖2(γ2A,b − 1)‖A‖2,

and the second inequality of (4) follows, using the definition of κ(A).

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

B. Dynamic Data Structures for Ridge Regression

The data structure of Lemma 4.1 is simply a complete binary tree with ℓ leaves, each leaf with weight ui, and each internal

node with weight equal to the sum of the weights of its children. Sampling is done by walking down from the root, choosing

left or right children with probability proportional to its weight. Insertion and deletion are done by inserting or deleting the

leaf z that preserves the complete binary tree property, and updating the weights of its ancestors; in the case of deletion, first

the leaf weight to be deleted is swapped with that of z, updating weights of ancestors. We also refer the reader to a more

detailed description in (Tang, 2019; Gilyén et al., 2020).

Proof of Lemma 4.3. Use Lemma 4.1 for the first part. For the second, with a matrix S, construct the data struc-

ture of Lemma 4.1 for the row lengths of SA, in O(m log(nd)) time. To sample, pick i∗ ∈ [m] with probability

‖(SA)i,∗‖2/‖SA‖2F , using the newly constructed data structure. Then pick j ∈ [d] with probability (SA)2i∗j/‖(SA)i∗,∗‖2.

Adding the probabilities across the choices of i∗, the probability of choosing index j is ‖(SA)∗,j‖2/‖SA‖2F , as claimed.

Once a column is chosen, the time to determine the corresponding column length ‖(SA)∗,j‖ is O(m log(nd)), finding each

(SA)ij for i ∈ [m] in O(log(nd)) time.

We first re-state our theorem for dynamic ridge regression, before giving its proof.

Theorem B.1 (Theorem 1.4 restated). Given matrices A ∈ R
n×d, B ∈ R

n×d′ and λ > 0, let X∗ =
argminX ‖AX −B‖2F + λ‖X‖2F . Let ψλ = ‖A‖2F /(λ + σ2

k), κλ = (λ + σ1(A)
2)/(λ + σk(A)

2) and κ̂ =
√

(λ+ σ̂2
1)/(λ+ σ̂2

k), where σ̂1 and σ̂k are over and under estimates of σ1 and σk respectively. Then, there exists a

data structure that maintains Y ∈ R
d×d′ such that with probability at least 99/100,

‖Y −X∗‖F ≤ (ε+ 2γε) ‖X∗‖F +
ε√
λ
‖Uk,⊥B‖F ,

where γ2 =
‖B‖2

F

‖AA+X∗‖2
F

. Further, an entry Yij for given i, j can be computed in O(mS log(nd)) = O(ε−2κ̂2ψλ(log(nd))
2)

time. The time taken to compute Y is Õ(d′ε−4κ̂2ψ2
λκλ log(d)).

Proof. Let

X1 = argminX∈Rd×d′ ‖SAX − SB‖2F + λ‖X‖2F .
We first show that

‖X1 −X∗‖F ≤ εγA(λ),B̂
‖X∗‖F , (6)

which follows from Lemma A.10, applied to A(λ) and B̂, after showing that, for εp = ε2/κ̂2, X1 satisfies

‖AX1 −B‖2F + λ‖X1‖2F ≤ (1 + εp/4)∆∗, where ∆∗ = ‖AX∗ −B‖2F + λ‖X∗‖2F , (7)

which in turn follows from Lemma 17 of (Avron et al., 2017). That lemma considers a matrix U1, comprising the first n rows

of the left singular matrix of Â(λ) =
[

A√
λId

]

, noting that the ridge objective can be expressed as minX ‖Â(λ)X − [B
0
] ‖2
F

.

The matrix U1 = UΣD in our terminology, as in Lemma A.5, so the observations of that lemma apply.

Lemma 17 of (Avron et al., 2017) requires that S satisfies

‖U⊤
1 S

⊤SU1 − U⊤
1 U1‖ ≤ 1/4, (8)

and

‖U⊤
1 S

⊤S(B −AX∗)− U⊤
1 (B −AX∗)‖F ≤

√

εp∆∗. (9)

We have ‖A+
(λ)‖

2
= 1/(λ+ 1/‖A+‖2) ≤ Zλ. With the given call to LENSQSAMPLE to construct S, the number of rows

sampled is mS = O(ε−1
p Z2

λ‖A‖
2
F log(d)), so the expected number of times that row i of A is sampled is, up to a factor of

O(log d),

ε−1
p Z2

λ‖A‖2F
‖Ai,∗‖2

‖A‖2F
= ε−1

p Z2
λ‖Ai,∗‖2 ≥ ε−1

p ‖(U1)i,∗‖2 = ε−1
p ‖U1‖2F

‖(U1)i,∗‖2

‖U1‖2F
,

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

and so row i is sampled at least the expected number of times it would be sampled under ε−1
p ‖U1‖2F log d rounds of

length-squared sampling of U1. As shown by Rudelson and Vershynin ((Rudelson & Vershynin, 2007), see also (Kannan &

Vempala, 2017), Theorem 4.4), this suffices to have, with high probability, a bound on the normed expression in (8) of

‖U1‖‖U1‖F
√

ε−1
p ‖U1‖2F

=
√
εp‖U1‖ ≤

√
εp,

so by adjusting constant factors in sample size, (8) holds, for small enough εp.

To show that (9) holds, we use the discussion of the basic matrix multiplication algorithm discussed in (Kannan & Vempala,

2017), Section 2.1, which implies that

E[‖U⊤
1 S

⊤S(B −AX∗)− U⊤
1 (B −AX∗)‖2F] ≤

‖U1‖2F ‖B −AX∗‖2F
s

where s is the number of length-squared samples of U1. Here s = ε−1
p ‖U1‖2F log d, so (9) follows with constant probability

by Chebyshev’s inequality, noting that ‖B −AX∗‖F ≤
√
∆∗.

Thus (8) and (9) hold, so that by Lemma 17 of (Avron et al., 2017), (7) holds. We now apply Lemma A.10, which with (7)

and εp = ε2/κ̂2, implies (6).

Next we show that the (implicit) returned solution is close to the solution of (7), that is,

‖A⊤S⊤X̃ −X1‖
2

F ≤ ε‖X1‖2F . (10)

This is implied by Theorem 2 of (Chowdhury et al., 2018), since A⊤S⊤X̃ is the output for t = 1 of their Algorithm 1. (Or

rather, it is their output for each column of X̃ and corresponding column of B.) To invoke their Theorem 2, we need to show

that their equation (8) holds, which per their discussion following Theorem 3, holds for ridge leverage score sampling, with

O(ε−2sdλ log sdλ) samples, which our given mR yields.

When we invoke their Theorem 2, we obtain

‖A⊤S⊤X̃ −X1‖F ≤ ε(‖X1‖F +
1√
λ
‖Uk,⊥B‖F). (11)

Combining with (6) and using the triangle inequality, we have that, abbreviating γÂ(λ),B̂
as γ, up to the additive Uk,⊥ term

in (11), we have

‖A⊤S⊤X̃ −X∗‖F ≤ ‖A⊤S⊤X̃ −X1‖F + ‖X1 −X∗‖F
≤ ε‖X1‖F + ‖X1 −X∗‖F +

ε√
λ
‖Uk,⊥B‖F

≤ ε‖X∗‖F + (1 + ε)‖X1 −X∗‖F +
ε√
λ
‖Uk,⊥B‖F

≤ ε‖X∗‖F + 2εγ‖X∗‖F +
ε√
λ
‖Uk,⊥B‖F

≤ ε (1 + 2γ) ‖X∗‖F +
ε√
λ
‖Uk,⊥B‖F

for small enough ε, as claimed.

The time is dominated by that for computing Â−1SB, where Â = SARR⊤A⊤S⊤, which we do via the conjugate gradient

method. Via standard results (see, e.g., (Vishnoi, 2015), Thm 1.1), in O((T +mS)

√

κ(Â) log(1/α))d′ time, where T is

the time to compute the product of Â with a vector, we can obtain X̃ with ‖X̃ − Â−1SB‖Â ≤ α‖Â−1SB‖Â, where the

Â-norm is ‖x‖Â = x⊤Âx. Since S and R are (at least) constant-factor subspace embeddings, the singular values of SAR

are within a constant factor of those of A, and so κ(Â) is within a constant factor of

κ(AA⊤ + λI) = (λ+ σ1(A)
2)/(λ+ σ1(A)

2) = κ2λ.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

We have

T = O(mRmS) = Õ(ε−2 logmSZ
2
λ‖A‖2F ε−2κ̂2Z2

λ‖A‖2F log(d))

= Õ(ε−4κ̂2Z4
λ‖A‖4F log(d))

Our running time is Õ(Tκλ log(1/ε))d
′, with T as above. Translating to the notation using ψ terms, the result follows.

C. Sampling from a Low-Rank Approximation

We need the following lemma, implied by the algorithm and analysis in Section 5.2 of (Boutsidis et al., 2016); for

completeness we include a proof.

Lemma C.1. If S ∈ R
mS×n and R are such that SA is a PCP of A ∈ R

n×d, and SAR is a PCP of SA, for error ε and

rank t, and U ∈ R
mS×k has orthonormal columns such that ‖(I − UU⊤)SAR‖F ≤ (1 + ε)‖SAR− [SAR]t‖, then

Y ∗ = argminY ‖Y U⊤SA−A‖F

has

‖Y ∗U⊤SA−A‖F ≤ (1 +O(ε))‖A−At‖F . (12)

We also have

‖U⊤SA‖2F ≥ ‖At‖
2
F −O(ε)‖A‖2F .

Proof. Note that for matrix Y , Y (I − Y +
t Yt) = (I − YtY +

t)Y , and that UU⊤SA is no closer to SA than is the projection

of SA to the rowspace of U⊤SA, and that UU⊤ = (SAR)t(SAR)
+
t we have

‖A− Y ∗U⊤SA‖F = ‖A(I − (U⊤SA)+U⊤SA)‖F ≤ (1 + ε)‖SA(I − (U⊤SA)+U⊤SA)‖F
≤ (1 + ε)‖(I − UU⊤)SA‖F
≤ (1 + ε)2‖(I − UU⊤)SAR‖F
≤ (1 + ε)3‖(I − (SAR)t(SAR)

+
t)SAR‖F

≤ (1 + ε)3‖(I − (SA)t(SA)
+
t)SAR‖F

≤ (1 + ε)4‖(I − (SA)t(SA)
+
t)SA‖F

= (1 + ε)4‖SA(I − (SA)+t (SA)t)‖F
≤ (1 + ε)4‖SA(I −A+

t At)‖F
≤ (1 + ε)5‖A(I −A+

t At)‖F
= (1 + ε)5‖A−At‖F = (1 +O(ε))‖A−At‖F ,

as claimed.

For the last statement: we have ‖SA‖2F ≥ (1− ε)‖A‖2F , since SA is a PCP, and by considering the projection of A onto the

rowspans of blocks of t of its rows. We have also ‖SA− [SA]t‖2F ≤ (1 + ε)‖A− [A]t‖2, using that SA is a PCP. Using

these observations, we have

‖[SA]t‖2F = ‖SA‖2F − ‖SA− [SA]t‖2F
≥ (1− ε)‖A‖2F − (1 + ε)‖A− [A]t‖2F
= ‖[A]t‖2F − ε(‖A‖

2
F + ‖A− [A]t‖2F)

≥ ‖[A]t‖2F − 3ε‖A‖2F .

Similarly, ‖[SAR]t‖2F ≥ ‖[SA]t‖
2
F − 3ε‖SA‖2F , using that SAR is a PCP of SA. We then have, using these inequalities,

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

the PCP properties, and the hypothesis for U , that

‖U⊤SA‖2F = ‖UU⊤SA‖2F
= ‖SA‖2F − ‖(I − UU⊤)SA‖2F
≥ (1− ε)‖SAR‖2F − (1 + ε)2‖SAR− [SAR]t‖2F
≥ ‖[SAR]t‖2F − 4ε‖SAR‖2F
≥ (‖[SA]t‖2F − 3ε‖SA‖2F)− 4(1 + ε)ε‖SA‖2F
≥ (‖[A]t‖2F − 3ε‖A‖2F)− 3ε(1 + ε)‖A‖2F − 4(1 + ε)2ε‖A‖2F
≥ ‖[A]t‖2F − 13ε‖A‖2F ,

for small enough ε, and the last statement of the lemma follows.

Before a proof, we give a re-statement of Theorem 1.5.

Theorem C.2 (Dynamic Data Structure for LRA). Given a matrix A ∈ R
n×d, target rank k, and estimate σ̂k ≤ σk(A),

error parameter ε > 0, and estimate τ of ‖A−Ak‖2F , there exists a data structure representing a matrix Z ∈ R
n×d with

rank k such that if ‖Ak‖2F ≥ ε‖A‖
2
F , with probability at least 99/100, ‖A− Z‖2F ≤ (1 +O(ε))‖A−Ak‖2F , where Ak is

the best rank-k approximation to A. Further, the time taken to construct the representation of Z is

Õ(ε−6k3 + ε−4ψλ(ψλ + k2 + kψk)),

where ψλ = ‖A‖2F /(τ/k + σ̂2
k) and ψk = ‖A‖2F /σk(A). Given j ∈ [d], i ∈ [n] can be generated with probability

(Z)2ij/‖Z)∗,j‖2 in expected time O(‖A‖2F /σ̂2
k +m2

Rκ
2), where κ is the condition number of A, and mR = O(k log k +

ε−1k).

Proof. The matrix Z is the implicit output of Algorithm 3. In that algorithm, the choice of mS = O(m̂SZ
2
λ‖A‖

2
F) rows

constitutes an effective km̂S = O(ε−2k log k) ridge-leverage score samples of the rows of A. We assume that the input τ is

within a constant factor of ‖A−Ak‖2F , so that λ = τ/k is within a constant factor of ‖A−Ak‖2F /k. Theorem 6 of (Cohen

et al., 2017) implies that under these conditions, SA will be a rank-k Projection-Cost Preserving (PCP) sketch of A with

error parameter ε, a (k, ε)-PCP.

Similarly to S, R1 will be a (column) rank-k PCP of SA, here using that the PCP properties of SA imply that

‖(S(A−Ak)‖2F = (1± ε)‖A−Ak‖2F , and so the appropriate λ, and Zλ, for SA are within constant factors of those for

A. Let Â = SAR1. Lemma 16 and Theorem 1 of (Cohen et al., 2017) imply that applying their Algorithm 1 to Â yields

S2 ∈ R
mS2

×mS so that S2Â is a (k, ε)-PCP for Â, and similarly S2ÂR2 is a (k, ε)-PCP for S2Â.

We apply Lemma C.1 with Â⊤, R⊤
2 , S⊤

2 , and V ⊤ in the roles of A, S, R, and U in the lemma. We obtain that Ỹ =
(ÂR2V)+Â = argminY ‖ÂR2V Y − Â‖F has ‖ÂR2V Ỹ − Â‖F ≤ (1 + O(ε))‖Â− Âk‖F , that is, U as constructed in

Algorithm 3 has UU⊤Â = ÂR2V Ỹ , and therefore satisfies the conditions of Lemma C.1 for A, S, R1. This implies that

Y ∗ = A(U⊤SA)+ = argminY ‖Y U⊤SA−A‖F has

‖Y ∗U⊤SA−A‖F ≤ (1 +O(ε))‖A−Ak‖F . (13)

It remains to solve the multiple-response regression problem minY ‖Y U⊤SA−A‖F , which we do more quickly using the

samplers R3 and R4.

We next show that R⊤
3 is a subspace ε0-embedding of (U⊤SA)⊤, and supports low-error matrix product estimation, so that

Thm. 36 of (Clarkson & Woodruff, 2013) can be applied. Per Lemma 3.1 and per Lemma 32 of (Clarkson & Woodruff,

2013), km̂R3
= O(ε−2

0 k log k + ε−1k) leverage-score samples of the columns of U⊤SA suffice for these conditions to

hold.

To obtain km̂R3
leverage score samples, we show that 1/ε length-squared samples of the columns of SA suffice to contain

one length-squared sample of U⊤SA, and also that ‖(U⊤SA)+‖ ≤ 1/σ̂k, using the input condition on σ̂k that σk(A) ≥ σ̂k,

so that the given value of mR3 in the call to LENSQSAMPLE for R3 is valid.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

For the first claim, by hypothesis ‖Ak‖2F ≥ ε‖A‖
2
F , and by adjusting constants, U as computed satisfies the conditions of

Lemma C.1 for some ε′ = αε for constant α > 0, so by that lemma and by hypothesis

‖U⊤SA‖2F ≥ ‖Ak‖ −O(αε)‖A‖2F
≥ ε(1−O(α))‖A‖2F
≥ ε(1−O(α))(1− ε)‖SA‖2F ,

so adjusting constants, we have ‖U⊤SA‖2F ≥ ε‖SA‖
2
F . Using that U has orthonormal columns, we have for j ∈ [d] that

‖U⊤SA∗,j‖/‖U⊤SA‖2F ≤ ‖SA∗,j‖/ε‖SA‖2F , so the probability of sampling j using length-squared probabilities for SA
is least ε times that for U⊤SA.

For the claim for the value of mR3
used for R3, using the PCP properties of SA and SAR1, we have

σk(U
⊤SA) = σk(UU

⊤SAR1) = σk(SAR1) ≥ (1− ε)σk(SA) ≥ (1−O(ε))σk(A).

so the number of length-squared samples returned by LENSQSAMPLE suffice.

So using Thm. 36 of (Clarkson & Woodruff, 2013), Ỹ3 = argminY ‖(Y U⊤SA−A)R3‖F satisfies

‖Ỹ3U⊤SA−A‖F ≤ (1 + ε)min
Y
‖Y U⊤SA−A‖F ≤ (1 +O(ε))‖A−Ak‖F ,

where the last inequality follows from (12).

Similar conditions and results can be applied to direct leverage-score sampling of the columns of U⊤SAR3, resulting in

Ỹ4 = minY ‖(Y U⊤SAR3 −AR3)R4‖F , where there is mR4
= O(ε−2

0 k log k+ ε−1k) such that these conditions hold for

R4. This implies Ỹ4 is an approximate solution to minY ‖(Y U⊤SA−A)R3‖F , and therefore ARỸ4 = AR(U⊤SAR)+

has ‖ARỸ4U⊤SA−A‖F ≤ (1+O(ε))‖A−Ak‖F , as claimed. We haveW ← (U⊤SAR)+U⊤ = Ỹ4U
⊤, so the claimed

output condition on ARWSA holds.

Turning to the time needed, Lemma 16 and Theorem 1 of (Cohen et al., 2017) imply that the time needed to construct S2

and R2 is

O(mR1
mS + k2mS) = O(mS(mS + k2)) (14)

The time needed to construct V from S2SAR1R2 ∈ R
mS2

×mS2 is

O(m3
S2
) = Õ(ε−6k3) (15)

The time needed to construct U from V ∈ R
mR2

×k and SAR1R2 ∈ R
mS×mR2 by multiplication and QR factorization is

O(kmR2
mS + k2mS) = Õ(mSk

2ε−2) (16)

Computation of U⊤SAR3 requires O(kmSmR3) time, where mR3 = O(m̂R3ε
−1Z2

k‖A‖
2
F , and m̂R3 = O(log k + ε−1),

that is,

Õ(mSkε
−2Z2

k‖A‖2F) (17)

time. Leverage-score sampling of the rows of (U⊤SAR3)
⊤ ∈ R

mR3
×k takes, applying Theorem A.4 and using mR4

=
O(k(log k + ε−1)), time at most

O(log(mR3)kmR3 + kω log log(kmR3) + k2 logmR3 +mR4km
1/log(mR3

)

R3
) (18)

= Õ(kε−2Z2
k‖A‖2F + kω + k2ε−1) (19)

Computation of (U⊤SAR)+ from U⊤SAR requires O(k2mR4) = Õ(ε−1k3) time. (With notation that R has mR = mR4

columns.) Given (U⊤SAR)+, computation of W = (U⊤SAR)+U⊤ requires

O(kmRmS) = Õ(mSk
2ε−1) (20)

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

time. Putting together (14),(16), (17), (20), (15), (18), we have

O(mS(mS + k2)) + Õ(mSk
2ε−2) + Õ(mSkε

−2Z2
k‖A‖2F) + Õ(mSk

2ε−1)

+ Õ(ε−6k3) + tO(kε−2Z2
k‖A‖2F + kω + k2ε−1)

= Õ(mS(mS + k2ε−2 + kε−2Z2
k‖A‖2F) + ε−6k3)

Here mS = O(m̂SZ
2
λ‖A‖

2
F) = Õ(ε−2Z2

λ‖A‖
2
F), so the time is

Õ(ε−6k3 + ε−4Z2
λ‖A‖2F (Z2

λ‖A‖2F + k2 + kZ2
k‖A‖2F))

Queries as in the theorem statement for given j ∈ [d] can be answered as in (Tang, 2019), in the time given. Briefly: given j,

let v ← (WSA)∗,j ∈ R
mR . Let Â denote AR. Using LENSQSAMPLE (and large mR), generate a sampling matrix S3 with

O(Z2‖Â‖2) rows, and estimate ‖Âv‖2 ≈ βv ← ‖SÂv‖
2
. Generate i ∈ [n] via rejection sampling as follows. In a given

trial, pick j∗ ∈ [d] with probability proportional to ‖Â∗,j‖
2
v2j using DYNSAMP(A), then pick i ∈ [mR] with probability

Â2
i,j∗/‖Â∗,j∗‖

2
. This implies that i ∈ [n] has been picked with probability pi =

∑

j Â
2
ijv

2
j /

∑

j ‖Â∗,j‖
2
v2j . Now for a

value α > 0, accept with probability qi/αpi, where qi = (Âi,∗v)2/βv , otherwise reject. This requires α ≥ qi/pi. and takes

expected trials α. So an upper bound is needed for

qi
pi

=
(Âi,∗v)2

βv

∑

j ‖Â∗,j‖
2
v2j

∑

j Â
2
ijv

2
j

.

We have (Âi,∗v)2 ≤ mR

∑

j Â
2
ijv

2
j using Cauchy-Schwarz, and βv ≈ ‖Âv‖

2 ≥ ‖v‖2/‖Â+‖2, and also
∑

j ‖Â∗,j‖
2
v2j ≤

‖v‖2 maxj ‖Â∗,j‖
2 ≤ ‖v‖2‖Â‖2. Putting this together α ≥ mR‖Â‖

2‖Â+‖2 = O(mRκ(A)) will do. The work per trial is

O(mR log(nd)) ,and putting that together with the time to compute βv , the theorem follows.

D. Additional Experiments

D.1. Low-Rank Approximation

As we stated in Section 6.1, although the accuracy of our algorithm is slightly worse, by increasing the sample size slightly,

our algorithm achieves a similar accuracy as (Arrazola et al., 2020), but still has a faster runtime. The results are shown in

Table 5. Here we set (r, c) = (500, 800) for MovieLens 100K and (r, c) = (700, 1100) for KOS data for our algorithms,

but do not change (r, c) for the algorithm in (Arrazola et al., 2020) as in Section 6.1.

Table 5. Performance of our algorithm and ADBL on MovieLens 100K and KOS data, respectively.

k = 10 k = 15 k = 20
ε(Ours) 0.0323 0.0439 0.0521

ε(ADBL) 0.0262 0.0424 0.0538

Runtime
0.341s 0.365s 0.370s

(Ours, Query)

Runtime
0.412s 0.417s 0.415s

(Ours, Total)

Runtime
0.863s 0.917s 1.024s

(ADBL, Query)

Runtime
0.968s 1.003s 1.099s

(ADBL, Total)

Runtime of SVD 2.500s

k = 10 k = 15 k = 20
ε(Ours) 0.0291 0.0390 0.0476

ε(ADBL) 0.0186 0.0295 0.0350

Runtime
0.826s 0.832s 0.831s

(Ours, Query)

Runtime
0.979s 0.994s 0.986s

(Ours, Total)

Runtime
1.501s 1.643s 1.580s

(ADBL, Query)

Runtime
1.814s 1.958s 1.897s

(ADBL, Total)

Runtime of SVD 36.738s

