Quantum-Inspired Algorithms from Randomized Numerical
Linear Algebra

Nadiia Chepurko! Kenneth L. Clarkson? Lior Horesh? Honghao Lin® David P. Woodruff?3

Abstract

We create classical (non-quantum) dynamic data
structures supporting queries for recommender
systems and least-squares regression that are
comparable to their quantum analogues. De-
quantizing such algorithms has received a flurry
of attention in recent years; we obtain sharper
bounds for these problems. More significantly, we
achieve these improvements by arguing that the
previous quantum-inspired algorithms for these
problems are doing leverage or ridge-leverage
score sampling in disguise; these are powerful
and standard techniques in randomized numerical
linear algebra. With this recognition, we are able
to employ the large body of work in numerical
linear algebra to obtain algorithms for these prob-
lems that are simpler or faster (or both) than ex-
isting approaches. Our experiments demonstrate
that the proposed data structures also work well
on real-world datasets.

1. Introduction

In recent years, quantum algorithms for various problems in
numerical linear algebra have been proposed, with applica-
tions including least-squares regression and recommender
systems (Harrow et al., 2009; Lloyd et al., 2016; Rebentrost
et al., 2014; Gilyén et al., 2019; Zhao et al., 2019; Brandao
et al., 2019; van Apeldoorn & Gilyén, 2019; Lloyd et al.,
2014; Cong & Duan, 2016; Berry et al., 2015). Some of
these algorithms have the striking property that their run-
ning times do not depend on the input size. That is, for a
given matrix A € R"*? with nnz(A) nonzero entries, the

"Department of Computer Science, Massachusetts In-
stitute of Technology, Cambridge, MA, USA 2IBM Re-
search, USA *Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA. Correspondence
to: Kenneth Clarkson <klclarks@us.ibm.com>, Hong-
hao Lin <honghaol@andrew.cmu.edu>, David Woodruff
<dwoodruf @andrew.cmu.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

running times for these proposed quantum algorithms are at
most polylogarithmic in n and d, and polynomial in other
parameters of A, such as rank(A), the condition number
k(A), or Frobenius norm || A|| 7.

However, as observed by Tang (Tang, 2019) and others,
there is a catch: these quantum algorithms depend on a
particular input representation of A, which is a simple data
structure that allows A to be employed for quick preparation
of a quantum state suitable for further quantum computa-
tions. This data structure, which is a collection of weighted
complete binary trees, also supports rapid weighted random
sampling of A, for example, sampling the rows of A with
probability proportional to their squared Euclidean lengths.
So, if an “apples to apples” comparison of quantum to clas-
sical computation is to be made, it is reasonable to ask
what can be accomplished in the classical realm using the
sampling that the given data structure supports.

A recent line of work analyzes the speedups of these quan-
tum algorithms by developing classical counterparts that
exploit these restrictive input and output assumptions, and
shows that previous quantum algorithms do not give an
exponential speedup. In this setting, it has recently been
shown that sublinear time is sufficient for least-squares re-
gression using a low-rank design matrix A (Gilyén et al.,
2018; Chia et al., 2018), for computing a low-rank approx-
imation to input matrix A (Tang, 2019), and for solving
ridge regression problems (Gilyén et al., 2020), using clas-
sical (non-quantum) methods, assuming the data structure
of trees has already been constructed. Further, the results
obtained in (Tang, 2019; Gilyén et al., 2018; 2020) serve as
appropriate comparisons of the power of quantum to classi-
cal computing, due to their novel input-output model: data
structures are input, then sublinear-time computations are
done, yielding data structures as output.

The simple weighted-sampling data structure used in these
works to represent the input can be efficiently constructed
and stored: it uses O(nnz(A)) space, with a small con-
stant overhead, and requires O(nnz(A)) time to construct,
in the static case where the matrix A is given in its en-
tirety, and can support updates and queries to individual
entries of A in O(log(nd)) time. However, the existing
reported sublinear bounds are high-degree polynomials in

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

the parameters involved: for instance, the sublinear term
in the running time for low-rank least-squares regression is
O(rank(A)®||A]|Sk(A)'¢/£5); see also more recent work
for ridge regression (Gilyén et al., 2020). This combination
of features raises the following question:

Question 1: Can the sublinear terms in the run-
ning time be reduced significantly while preserv-
ing the leading order dependence of O(nnz(A))
and O(log(nd)) per update (dynamic)?

Perhaps a question of greater importance is the connection
between quantum-inspired algorithms and the vast body of
work in randomized numerical linear algebra: see the sur-
veys (Kannan & Vempala, 2009; Mahoney, 201 1; Woodruff,
2014). There are a large number of randomized algorithms
based on sampling and sketching techniques for problems in
linear algebra. Yet prior to our work, none of the quantum-
inspired algorithms, which are sampling-based, have dis-
cussed the connection to leverage scores, for example, which
are a powerful and standard tool.

Question 2: Can the large body of work in ran-
domized numerical linear algebra be applied ef-
fectively in the setting of quantum-inspired algo-
rithms?

1.1. Our Results

We answer both of the questions above affirmatively. In fact,
we answer Question 1 by answering Question 2. Namely, we
obtain significant improvements in the sublinear terms, and
our analysis relies on simulating leverage score sampling
and ridge leverage score sampling, using the aforemen-
tioned data structure to sample rows proportional to squared
Euclidean norms. Additionally, we empirically demonstrate
the speedup we achieve on real-world and synthetic datasets
(see Section 6).

Connection to Classical Linear Algebra and Dynamic
Data Structures. The work on quantum-inspired algo-
rithms builds data structures for sampling according to the
squared row and column lengths of a matrix. This is also
a common technique in randomized numerical linear alge-
bra - see the recent survey on length-squared sampling by
Kannan and Vempala (Kannan & Vempala, 2017). However,
it is well-known that leverage score sampling often gives
stronger guarantees than length-squared sampling; leverage
score sampling was pioneered in the algorithms community
in (Drineas et al., 2006), and made efficient in (Drineas
et al., 2012) (see also analogous prior work in the ¢; setting,
starting with (Clarkson, 2005)).

Given an n x d matrix A, with n > d, its (row) leverage
scores are the squared row norms of U, where U is an
orthonormal basis with the same column span as A. One can
show that any choice of basis gives the same scores. Writing

A = UX VT inits thin singular value decomposition (SVD),
and letting A; . and U, . denote the i-th rows of A and U
respectively, we see that || A; .|| = ||U;,«X]|. Consequently,
letting k = rank(A), and with o; and o denoting the
maximum and minimum non-zero singular values of A, we
have || A l| > [[Us. ok (A), and [[A;.|| < [T o1 (A).

Thus, sampling according to the squared row norms of
A is equivalent to sampling from a distribution with ra-
tio distance at most x2(A) = Zigg;z from the leverage
score distribution, that is, sampling a row with probabil-
ity proportional to its leverage score. This is crucial, as
it implies using standard arguments (see, e.g., (Woodruff,
2014) for a survey) that if we oversample by a factor of
k2(A), then we obtain the same guarantees for various
problems that leverage score sampling achieves. Notice
that the running times of quantum-inspired algorithms,
e.g., the aforementioned O(rank(A)S|A|%r(A)'6/e6)
time for regression of (Gilyén et al., 2018) and the
O(| AI5K(A)?/(0min(A)®e)) time for regression of
(Gilyén et al., 2020), both take a number of squared-length
samples of A depending on x(A), and thus are implicitly
doing leverage score sampling, or in the case of ridge re-
gression, ridge leverage score sampling.

Given the connection above, we focus on two central prob-
lems in machine learning and numerical linear algebra, ridge
regression (Problem 1.1) and low rank approximation (Prob-
lem 1.2). We show how to obtain simpler algorithms and
analysis than those in the quantum-inspired literature by
using existing approximate matrix product and subspace
embedding guarantees of leverage score sampling. In addi-
tion to improved bounds, our analysis de-mystifies what the
rather involved ¢5-sampling arguments of quantum-inspired
work are doing, and decreases the gap between quantum
and classical algorithms for machine learning problems. We
begin by formally defining ridge regression and low-rank
approximation, and the dynamic data structure model we
focus on.

Problem 1.1 (Ridge Regression). Given an n X d matrix
A, n x d’ matrix B and a ridge parameter A > 0, the ridge
regression problem is defined as follows:

min [[AX — B||% + M| X%,
oin [7 + MX %

2 .
where || - || denotes the sum-of-squares of entries.

Problem 1.2 (Low-Rank Approximation). Given an n X
d matrix A and a rank parameter k € [d], the low-rank
approximation problem is defined as follows:

min A - X|5.
X eR"*d:rank(X)=k

Definition 1.3 (Dynamic Data Structure Model). Given an
n X d matrix A, the dynamic data structure supports the

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

following operations in O(log(nd)) time: (a) sample row
A; . with probability || A; . \g/HAH%, (b) sample entry j
in row ¢ with probability A? i/ 1A H; and (c) output the
(i,)-th entry of A.

We note that in this input model, reading the entire matrix
would be prohibitive and the algorithms can only access the
matrix through the weighted sampling data structure.

We now describe our concrete results in more detail. At a
high level, our algorithm for ridge regression, Algorithm 2,
does the following: sample a subset of the rows of A via
length-squared sampling, and take a length-squared sample
of the columns of that subset. Then, solve a linear system
on the resulting small submatrix using the conjugate gra-
dient method. Our analysis of this algorithm results in the
following theorem. (Some of the (standard) matrix notation
used is given in Section 3.)

The residual error is bounded in the theorem using
\/%HU/\,LBHF’ where U, | denotes the bottom mg — p
left singular vectors of a sketch SA of A, where p is such
that X is between o2, ,(SA) and 07 (SA). (Here we use
p = rankA when A < 02, ,.) We could write this roughly
as ||A_pApr||/||A_p||, where A_,, denotes A minus its
best rank p approximation. It is the part of B we are “giving
up” by including a ridge term. Proofs for this section are
deferred to Appendix B.

Theorem 1.4 (Dynamic Ridge Regression). Given ann x d
matrix A of rank k, an n x d' matrix B, error parameter
e > 0, and ridge parameter), let k5 = (A + 03(A))/(A +
02 (A)) be the ridge condition number of A, and let 1\ =
|\A||:;,/()\ + 03 (A)). Further, let X* be the optimal ridge
regression solution, i.e., X* = argminy ||AX — B3 +
NIX

Then there is a data structure supporting turnstile updates
of the entries of A in O(log(nd)) time, and an algorithm
using that data structure that computes a sample SA of
m = O (k31x log(nd)/e?) rows of A, where S € R™*"
is a sampling matrix, and outputs X € R™* | such that
with probability 99/100,
ToT v * * €
[A°S X =X p <e(l+29) X" p+—=Uk, . Bll o,
vV

where Uy | B is the projection of B onto the subspace cor-
responding tg the singular values of S A less than \/\; and

2 IBI%

= — — L is a problem dependent parameter.
[aatx-z $ap P P

Further, the running time of the algorithm is
O(d’a_‘lwifii log(d)). Finally, for all i € [d], and
j € [d), an entry (ATSTX);; can be computed in
O(mlog(nd)) time.

We note that the “numerical” quantities) and) are

decreasing in A. When A\ is within a constant factor of
| A||?, 4 is within a constant factor of the stable rank
HA||2F/HA %, where the stable rank is always at most
rank(A). We also note that in the theorem, and the re-
mainder of the paper, a row sampling matrix S has rows
that are multiples of natural basis vectors, so that SA is a
(weighted) sample of the rows of A. A column sampling
matrix is defined similarly.

Concurrent Work on Ridge Regression. In an indepen-
dent and concurrent work, Gilyén, Song and Tang (Gilyén
et al., 2020) obtain a roughly comparable classical algorithm

for regression, assuming access to the tree data structure,
AN 1IAN3

[AT[5et
O(e~*3K?), for the special case of d’ = 1. Their algo-
rithm is based on Stochastic Gradient Descent.

which runs in time O () , or in the notation above,

Next, we describe our results for low-rank approximation.
We obtain a dynamic algorithm (Algorithm 3) for approx-
imating A with a rank-k matrix, for a given k, and a data
structure for sampling from it, in the vein of (Tang, 2019).
At a high-level, as with our ridge regression algorithm, we
first sample rows proportional to their squared Euclidean
norm (length-squared sampling) and then sample a subset
of columns resulting in a small submatrix with O(s2k)
rows and columns. We then compute the SVD of this ma-
trix, and then work back up to A with more sampling and a
QR factorization. The key component in our algorithm and
analysis is using Projection-Cost Preserving sketches (see
Definition A.9). These enable us to preserve the Frobenius
cost of projections onto all rank-k subspaces simultaneously.
As a result, we obtain the following theorem:

Theorem 1.5 (Sampling from a low-rank approximation).
Given an n x d matrix A for which a sampling data
structure has been maintained, target rank k € [d]
and error parameter ¢ > 0, we can find sampling
matrices S and R, and rank-k matrix W, such that

JARWSA— A, < (1 + O)|A— Ayl p. Further,

the running time is O(e =5k + e~y (¥ + k% + kiy)),

2
where 1 is as in Theorem 1.4, and ¥y, = U"}:ﬂ& .Given

j € [d], a random index i € [n] with probability distri-
bution (ARW SA);/||[ARWSA). % can be generated
in expected time O (1, + ke 2k?), where k = o1(A) -
Urank(A) (A)

Here if the assumption || Ay H% > EHAH?D does not hold, the
trivial solution 0O satisfies the relative error target and we
assume the resulting approximation is not worth sampling:

1 1
14— 0l < T (1A= 14el}) = 7114 = Aell3-

This result is directly comparable to Tang’s algorithm (Tang,
2019) for recommender systems which again needs query

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

time that is a large polynomial in k, x and ¢~!. Our al-
gorithm returns a relative error approximation, a rank-k
approximation within 1 + ¢ of the best rank-k approxima-
tion; Tang’s algorithm has additive error, with a bound more
like |A — Ag||» + ¢[|A|| - Finally, we note that ¢, < x>
and for several settings of k can be significantly smaller.

For ease of comparison we summarize our results in Table
1.

1.2. Related Work

Matrix Sketching. The sketch and solve paradigm (Clark-
son & Woodruff, 2015; Woodruff, 2014) was designed to
reduce the dimensionality of a problem, while maintaining
enough structure such that a solution to the smaller problem
remains an approximate solution the original one. This ap-
proach has been pivotal in speeding up basic linear algebra
primitives such as least-squares regression (Sarlés, 2006;
Rokhlin & Tygert, 2008; Clarkson & Woodruff, 2015), £,
regression (Cohen & Peng, 2015; Wang & Woodruff, 2019),
low-rank approximation (Nelson & Nguyén, 2013; Cohen
et al., 2017; Li & Woodruff, 2020), linear and semi-definite
programming (Cohen et al., 2019; Jiang et al., 2020b;a)
and solving non-convex optimization problems such as ¢,
low-rank approximation (Song et al., 2017; 2019; Ban et al.,
2019) and training neural networks (Bakshi et al., 2019b;
Brand et al., 2020). For a comprehensive overview we re-
fer the reader to the aforementioned papers and citations
therein. Several applications use rank computation, finding
a full rank subset of rows/columns, leverage score sampling,
and computing subspace embeddings as key algorithmic
primitives.

Sublinear Algorithms and Quantum Linear Algebra.

Recently, there has been a flurry of work on sublinear time
algorithms for structured linear algebra problems (Musco &
Woodruff, 2017; Shi & Woodruff, 2019; Balcan et al., 2019;
Bakshi et al., 2020) and quantum linear algebra (Harrow
etal., 2009; Gilyén et al., 2019; Lloyd et al., 2014; Kerenidis
& Prakash, 2016; Dunjko & Wittek, 2020). The unifying
goal of these works is to avoid reading the entire input to
solve tasks such as linear system solving, regression and
low-rank approximation. The work on sublinear algorithms
assumes the input is drawn from special classes of matrices,
such as positive semi-definite matrices (Musco & Woodruff,
2017; Bakshi et al., 2019a), distance matrices (Bakshi &
Woodruff, 2018; Indyk et al., 2019) and Toeplitz matrices
(Lawrence et al., 2020), whereas the quantum algorithms
(and their de-quantized analogues) assume access to data
structures that admit efficient sampling (Tang, 2019; Gilyén
et al., 2018; Chia et al., 2020).

The work of Gilyén, Lloyd and Tang (Gilyén et al., 2018) on
low-rank least squares produces a data structure as output:

given index i € [d] = {1,...,d}, the data structure returns

entry 2, of 2/ € R?, which is an approximation to the

solution z* of min |Az — b||, where b € R™. The error
z€ER

boundis ||2" — z*|| < ¢||*||, for given € > 0. This requires
the condition that || Az* — b||/||Ax*|| is bounded above by
a constant. Subsequent work (Chia et al., 2020) removes
this requirement, and both results obtain data structures that
need space polynomial in rank(A), ¢, x(A),! and other
parameters.

The work (Tang, 2019) also produces a data structure, that
supports sampling relevant to the setting of recommender
systems: the nonzero entries of the input matrix A are a
subset of the entries of a matrix P of, for example, user
preferences. An entry A;; € [0,1] is one if user j strongly
prefers product ¢, and zero if user j definitely does not like
product ¢. It is assumed that P is well-approximated by
a matrix of some small rank k. The goal is to estimate P
using A; one way to make that estimate effective, without
simply returning all entries of P, is to create a data structure
so that given j, a random index ¢ is returned, where ¢ is
returned with probability a3,/ HAMH2 Here A, j is the
4°th column of A (and G;; an entry), where Aisa good
rank-k approximation to A, and therefore, under appropriate
assumptions, to P. The estimate Ais regarded as a good
approximation if || A — Al < (1+¢)||A — [A]x| » where
[A], is the matrix of rank k closest to A in Frobenius norm.
Here ¢ is a given error parameter. As shown in (Tang, 2019),
this condition (or indeed, a weaker one) implies that the
described sampler is useful in the context of recommender
systems.

2. Outline

The next section gives some notation and mathematical
preliminaries, in particular regarding leverage-score and
length-squared sampling. This is followed by descriptions
of our data structures and algorithms, and then by our com-
putational experiments. The appendices give some extensive
descriptions, proofs of theorems, and in Appendix D, some
additional experiments.

3. Preliminaries

Let Xt denote the Moore-Penrose pseudo-inverse of matrix
X, equal to VX~'UT when X has thinSVD X = UXV T,
so that X is a square invertible matrix. We note that
Xt =X"X)"XT = X"(XX)Tand XTXXT =
X T, which is provable using the SVDs of X and X *. Also,
if X has full column rank, so that V is square, then X ™
is a left inverse of X, thatis, X T X = I, where d is the

'"Throughout, we define x(A) = || A||||AT||, that is, the ratio
of largest to smallest nonzero singular values of A, so that, in
particular, it will never be infinite or undefined.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Table 1. Comparison of our results and prior work. Let the target error be ¢, target rank be k and let 1, = || A% /ox(A)? , where oy, is
the k-th singular value of the input matrix. Also, 6, < 1/||AT||, 51 > ||A], d is the number of columns of B for multiple-response,
and 7 denotes some numerical properties of A. To avoid numerous parameters, we state our results by setting A\ = ©(||A||3) in the

corresponding theorems.

Problem Time Prior Work
Update Query Update Query
Ridge 5 (d=P1Al log<d>) 3 (kﬁnAH‘;nw)
Regression O(log(n)) | O (EEH O(log(n)) | O et
Thm. 1.4 (Gilyén et al., 2018)
~ 8 K 2
0 (L)
(Gilyén et al., 2020)
Low Rank ~ [1411 < ‘\‘\Z‘I‘é +k2+kw’“) K2 -1
Sampling O(log(n)) 54HAH§ + 6 O(log(n)) Q(p()ly("{kg 77))
Thm. 1.5 (Tang, 2019)

number of columns of X. Let || X| denote the spectral
(operator) norm of X. Let k(X) = || X T|||| X|| denote the
condition number of X. We write a + b to denote the set
{c||c—a|] < |b]}, and ¢ = a +£ b to denote the condition
that ¢ is in the set a £ b. Let [m] = {1,2,...,m} for an
integer m.

As mentioned, nnz(A) is the number of nonzero entries
of A, and we assume nnz(A4) > n, which can be ensured
by removing any rows of A that only contain zeros. We let
[A]j or sometimes Ay denote the best rank-k approximation
to A. Let 04, € R?*® have all entries equal to zero, and
similarly 0, € R denotes the zero vector. Further, for an
n X d matrix A and a subset S of [n], we use the notation
A|s to denote the restriction of the rows of A to the subset
indexed by S. As mentioned, n* is the time needed to
multiply two n X n matrices.

Lemma 3.1 (Oblivious Subspace Embedding Theorem
7.4 (Chepurko et al., 2022)). For given matrix A € R™xd
with k = rank(A), there exists an oblivious sketching ma-
trix S that samples m = O(ey 2k log k) rows of A such that
with probability at least 99/100, for all x € R%, S is an
eo-subspace embedding, that is, |SAzx| = (1 £+)| Az||.
Further, the matrix SA can be computed in O(nnz(A) +
k“poly(loglog(k)) + poly(1/e0)k?toM) time.

We obtain the following data structure for leverage-score
sampling. We provide a statement of its properties below,
but defer the description of the algorithm and proof to the
supplementary material. While leverage-score sampling is
well-known, we give an algorithm for completeness; also,
our algorithm removes a log factor in some terms in the
runtime, due to our use of the sketch of Lemma 3.1.

Theorem 3.2 (Leverage Score Data Structure). Let k =
rank(A), and choose ps > 1. Then, Algorithm 5
(LEVSAMPLE(A, s, v)) uses space O(n+k* loglog(nd)),

not counting the space to store A, and runs in time
O(ps nnz(A) 4 k“poly (log log(k)) + k*+°M) 4 yknt/#s),

and outputs a leverage score sketching matrix L, which
samples v rows of A with probability proportional to their
leverage scores. (It also outputs a column selector A, select-
ing an orthogonal basis of the column space of A.)

Definition 3.3 (Ridge Leverage-score Sample, Statistical
Dimension). Let A be such that ¥ = rank(A), and sup-
pose A has thin SVD A = ULV T, implying ¥ € RF**,
For X > 0, let Ay = [xihy 7 | and Ay has SVD
Ay = [\%EV%] D'V, where D = (X2 + AI;,)~Y/2.
Call S C [n] a ridge leverage-score sample of A if
each i € S is chosen independently with probability at
least ||U; ,XD||? /sdx(A), where the statistical dimension
sdx(A) = |[UED|% = Yicia 91/ (A + 0?), recalling that
UXD comprises the top n rows of the left singular matrix
of A()\) .

We can also use length-squared sampling to obtain subspace
embeddings. In Section 4 we will give a data structure and
algorithm that implements length-squared sampling. We
defer the analysis to Appendix A.

Definition 3.4 (Length-squared sample). Let A € R"*4,
A >0, and A(A) be as in Lemma A.5. For given m, let
matrix L € R™*" be chosen by picking each row of L to be
eiT / /Pim, where e; € R™ is the ¢’th standard basis vector,

/1Al

We obtain the corresponding lemma for length-squared sam-
pling and defer the proof to Appendix A.

and picking ¢ € [n]| with probability p; < || A4; «

Lemma 3.5 (Length-squared sketch). Given a matrix A €
R"*4 and a sample size parameter v € [n], let m =

O (v AL I Al /sd5(A)). Then, with probability at

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

least 99/100, the set of m length-squared samples contains
a ridge leverage-score sample of A of size v.

4. Dynamic Data Structures for Ridge
Regression

In this section, we describe our dynamic data structures, and
then our algorithm for solving Ridge Regression problems.
Given an input matrix A € R™* 4 our data structure can be
maintained under insertions and deletions (and changes) in
O(log(nd)) time, such that sampling a row or column with
probability proportional to its squared length can be done
in O(log(nd)) time. The data structure is used for solving
both ridge regression and LRA (Low-Rank Approximation)
problems.

First, we start with a simple folklore data structure.

Lemma 4.1. Given (real values {u;}c[s, there is a data
structure using storage O((), so that L =3, u? can be
maintained, and such that a random i can be chosen with
probability u? | L in time O(log (). Values can be inserted,
deleted, or changed in the data structure in time O(log {).

The implementation of this data structure is discussed in
Appendix B. We use it in our data structure DYNSAMP(A),
given below, which is used in LENSQSAMPLE, Alg. 1, to
sample rows and columns of A.

Definition 4.2. DYNSAMP(A) is a data structure that, for
A € R™ 4, comprises:

¢ For each row of A, the data structure of Lemma 4.1 for
the nonzero entries of the row or column.

¢ For the rows of A, the data structure of Lemma 4.1 for
their lengths.

* For given 4, j, a data structure supporting access to the
value of entry a;; of A in O(1) time.

Algorithm 1 LENSQSAMPLE(DS, S = null, mg, mpg)

Input: DS = DYNSAMP(A) (Def. 4.2) for A € R"*4,
sample sizes mg, mp
Output: Sampling matrices S € R™s*" R ¢ RIXmr

I: if S == null
Use DS to build row sampler S € R™s*" of A
2: Use DS and S to build column sampler R¥*™% of S A
{cf. Lemma 4.3}
3: return S, R

Lemma 4.3. DYNSAMP(A) can be maintained under
turnstile updates of A in O(log(nd)) time. Using
DYNSAMP(A), rows can be chosen at random with row i €
[n] chosen with probability ||AZ*||2/HA||% in O(log(nd))
time.

Algorithm 2 RIDGEREGDYN(DS, B, 6, 61,¢, \)

Input: DS = DYNSAMP(A), B € R™%, 64 < 1/|| AT,
61 > ||A||, € an error parameter, A a ridge weight

Output: Data for approximate ridge regression solution AT ST X
where S is a sampling matrix

I: Zx < 1/\/A+ 62, k< Zx\/ X+ 63
2: Choose ms = O(22 Z3|| Al|3. log(d)),

mpr = O(mrZ3i| A|l%), where g = O(e 2 logms)
3: S, R + LENSQSAMPLE(DS, null, mg, mg) {cf. Alg. 1;}
4 X + (SARRTATST + \I,,)"'SB

{Solve using conjugate gradient}
5: return X, S

{approximate ridge regression solution is ATST)?}

If S € R™*™ is a sampling matrix, so that SA has rows
that are each a multiple of a row of A, then c¢ columns
can be sampled from S A using DYNSAMP(A) in O((c +
m)log(nd)) time, with the column j € [d] chosen with
probability ||(SA)..;|*/ | SA|.

We designate the algorithm of Lemma 3.5 as
LENSQSAMPLE, as given at a high level in Algo-
rithm 1, and in more detail in the proof of Lemma 4.3 in
Appendix B.

This simple data structure and sampling scheme will be
used to solve ridge regression problems, via Algorithm 2. Its
analysis, which proves Theorem 1.4, is given in Appendix B.

5. Sampling from a Low-Rank
Approximation

Our algorithm for low-rank approximation is
BUILDLOWRANKFACTORS, Algorithm 3, given below.
As discussed in the introduction, it uses LENSQSAMPLE,
Algorithm 1, to reduce to a matrix whose size is inde-
pendent of the input size, beyond log factors, as well as
Projection-Cost Preserving sketches, QR factorization, and
leverage-score sampling. Its analysis, proving Theorem 1.5,
is given in Appendix C.

6. Experiments

We evaluate the empirical performance of our algorithm on
both synthetic and real-world datasets. All of our experi-
ments were done in Python and conducted on a laptop with
a 1.90GHz CPU and 16GB RAM. Prior work (Arrazola
et al., 2020) suggests the tree data structure is only faster
than the built-in sampling function when the matrix size
max{n,d} is larger than 10°. Hence we follow the imple-
mentation in (Arrazola et al., 2020) that directly uses the
built-in function. For a fair comparison, we also modified
the code in (Arrazola et al., 2020), which reduces the time

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Algorithm 3 BUILDLOWRANKFACTORS
(DYNSAMPLER, k, 6, 6%, &, T)

Input: DYNSAMPLER = DYNSAMP(A) (Def. 4.2) for
A € R™*?, k target rank, 65, < 1/||AT||, 6% < ox(A), € an
error parameter, 7 estimate of || A — Ay||3,, where Ay is the best
rank-k approximation to A

Output: Small matrix W and sampling matrices S, R

so that rank(ARW SA) = k and

|[ARWSA — A|| < (1+¢)||A — Ag|

I X« 7/k, Zy < 1/\/XF 62, Zx 1/6%,

2: Choose mp = ms = O(1hsZ3||A|%),
where s = O(e 2 logk)

3: S, R1 + LENSQSAMPLE(DYNSAMPLER, null, ms, mg)

4: Apply Alg. 1 and Thm. 1 of (Cohen et al., 2017) to SAR;,
get col. sampler Ry { mp, = O(¢ *klogk)}

5: Apply Alg. 1 and Thm. 1 of (Cohen et al., 2017) to SAR1 R,
get row sampler So { ms, = O(e 2klogk)}

6: V < top-k right singular matrix of S2.SAR: R>

7: U, + QR(SAR1R.V)
{U has orthonormal cols, SAR1 Ry V = UC for matrix C'}

8: Choose mp, = O(1nr,e ' Z||All7),
where g, = O(eg 2 logk + &™), 0 a small constant

9: Rz <— LENSQSAMPLE(DYNSAMPLER, S, ms, MRg;)

10: Let f(k, C) be the function returning the value

mp, = O(e; %klogk + k)

11: R{, + LEVSAMPLE((U"SAR3)",log(mgy), f())
{Alg. 5}

12: R+ R3R4

13: W« (UTSAR)YUT

14: return W, S, R

to maintain the data structure by roughly 30x. For each
experiment, we took an average over 10 independent trials.

We note that we do not compare with classical sketching
algorithms for several reasons. First, there is no classical
contender with the same functionality as ours. This is be-
cause our dynamic algorithms support operations not seen
elsewhere: sublinear work for regression and low-rank ap-
proximation, using simple fast data structures that allow, as
special cases, row-wise or column-wise updates. Second,
unlike dynamic algorithms where a sketch is maintained,
our algorithms are not vulnerable to updates based on prior
outputs, whether adversarially, or due to use in the inner
loop of an optimization problem. This is because our algo-
rithms are based on independent sampling from the exact
input matrix.

6.1. Low-Rank Approximation

We conduct experiments on the following datasets:

+ KOS data.” A word frequency dataset. The matrix rep-
resents word frequencies in blogs and has dimensions

The Bag of Words Data Set from the UCI Machine Learning
Repository.

3430 x 6906 with 353160 non-zero entries.

* MovieLens 100K. (Harper & Konstan, 2016) A movie
ratings dataset, which consists of a preference ma-
trix with 100,000 ratings from 611 users across 9,724
movies.

We compare our algorithms with the implementations in (Ar-
razola et al., 2020), which are based on the algorithms
in (Frieze et al., 2004) and (Tang, 2019). We refer to
this algorithm as ADBL henceforth. For the KOS dataset,
we set the number of sampled rows and columns to be
(r,¢) = (500, 700) for both algorithms. For the MovieLens
dataset we set (1, ¢) = (300, 500). We define the error ¢ =
|[A—=Y|r/||A — Akllr — 1, where Y is the algorithm’s
output and Ay, is the best k-rank approximation. Since the
regime of interest is k < n, we vary k among {10, 15, 20}.

The results are shown in Table 2. We first report the total
runtime, which includes the time to maintain the data struc-
ture and then compute the low-rank approximation. We also
report the query time, which excludes the time to maintain
the data structure. From the table we see that both algo-
rithms can achieve € ~ 0.05 in all cases. The query time of
ours is about 6x-faster than the ADBL algorithm in (Arra-
zola et al., 2020), and even for the total time, our algorithm
is much faster than the SVD. Although the accuracy of ours
is slightly worse, in Appendix D.1 we show by increasing
the sample size slightly, our algorithm achieves the same
accuracy as ADBL (Arrazola et al., 2020), but still has a
faster runtime.

We remark that the reason our algorithm only needs half
of the time to compute the sampling probabilities is that
we only need to sample rows or columns according to their
squared length, but the algorithm in (Arrazola et al., 2020)
also needs to sample entries for each sampled row according
to the squared values of the entries.

6.2. Ridge Regression
In this section, we consider the problem

X*:= min [[AX — B|% + | X%,
min [AX = Bl + XX}
where A € R"*4 B ¢ R™*4" We do experiments on the
following dataset with A = 1:

¢ Synthetic data. We generate the rank-k£ matrix A
as (Arrazola et al., 2020) do. Particularly, suppose the
SVD of Ais A = UXV ". We first sample an n x k
Gaussian matrix, then we perform a QR-decomposition
G = QR, where @ is an n x k orthogonal matrix. We
then simply set U = () and then use a similar way to
generate V. We set A € R7000x9000 ' 5 o R7000x1

* YearPrediction.’ A dataset that collects 515345 songs

3YearPredictionMSD Data Set

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Table 2. Performance of our algorithm and ADBL on MovieLen
100K and KOS data, respectively.

k=10 | k=15 | k=20
&(Ours) 0.0416 | 0.0557 | 0.0653
€(ADBL) 0.0262 | 0.0424 | 0.0538
Runtime
(Ours, Query) 0.125s | 0.131s | 0.135s
Runtime
(Ours, Total) 0.181s | 0.183s | 0.184s
Runtime
(ADBL, Query) 0.867s | 0.913s | 1.024s
Runtime
(ADBL. Total) 0.968s | 1.003s | 1.099s
Runtime of SVD 2.500s
k=10 | k=15 | k=20
&(Ours) 0.0397 | 0.0478 | 0.0581
€(ADBL) 0.0186 | 0.0295 | 0.0350
Runtime
(Ours, Query) 0.292s | 0.296s | 0.295s
Runtime
(Ours, Total) 0.452s | 0.455s | 0.452s
Runtime
(ADBL, Query) 1.501s | 1.643s | 1.580s
Runtime
(ADBL, Total) 1.814s | 1.958s | 1.897s
Runtime of SVD 36.738s

and each song has 90 attributes. The task here is to
predict the release year of the song. A € R515345%90,
B ¢ R515345%1

« PEMS data. * The data describes the occupancy rate
of different car lanes of San Francisco bay area free-
ways. Each row is the time series for a single day. The
task on this dataset is to classify each observed day as
the correct day of the week, from Monday to Sunday.
A € RMOX138672 B ¢ R440x1

We define the error e = || X — X*|| /|| X*||r. given the
algorithm output X . For synthetic data, we set the number
of sampled rows and columns to be r and c. For the YearPre-
diction data, the number of columns is small, and hence we
only do row sampling, and likewise, for the PEMS data,
we only do column sampling. We did not find an imple-
mentation for the ridge regression problem in the previous
related work. Therefore, here we list the time to compute the
closed-form optimal solution X* = (ATA+ \I)"*A"B
or X* = AT(AAT + \I)~!B, as a reference.

The results are shown in Table 3 and 4. From the tables we
can see that for synthetic data, the algorithm can achieve an
error ¢ < 0.1 when only sampling less than 10% of the rows

*PEMS-SF Data Set

Table 3. Performance of our algorithm on synthetic data.

(r¢) | 300,500 | 500,800 | 1000, 1500
=(Ours) | 0.1392 | 00953 | 00792
Runtime 15 0510 | 00425 | 0.148s
(Query)
Runtime
o | 0557 | 05685 | 0.667s
Exact X* 24.074s

and columns. Also, the total runtime is about 40x-faster than
computing the exact solution. For the YearPrediction and
PEMS data, the bottleneck of the algorithm becomes the
time to compute the sample probabilities, but the query time
is still very fast and we can achieve an error € < 0.1 when
only sampling a small fraction of the rows or columns.

Table 4. Performance of our algorithm on YearPrediction data and
PEMS data, respectively.

= 1000 | 3000 | 5000
=(Ours) | 0.1070 | 0.0633 | 0.0447
Runtime | 3,1 0375 | 0.059s
(Query)
Runtime
o | 02135 | 02295 | 02455
Exact X* 0.251s
c= 15000 | 25000 | 35000
=(Ours) | 0.1778 | 0.1397 | 0.1130
Runtime 1) o3/ 1 03815 | 0.532s
(Query)
Runtime
oy | 0-473s | 0.6285 | 0777
Exact X * 0.972s
Acknowledgements.

Honghao Lin and David Woodruff would like to thank for
partial support from the National Science Foundation (NSF)
under Grant No. CCF-1815840.

References

Arrazola, J. M., Delgado, A., Bardhan, B. R., and Lloyd,
S. Quantum-inspired algorithms in practice. Quan-
tum, 4:307, 2020. URL https://doi.org/10.22331/
q-2020-08-13-307.

Avron, H., Clarkson, K. L., and Woodruff, D. P.
Sharper bounds for regularized data fitting. In RAN-
DOM ’17: 2lst International Workshop on Ran-
domization and Computation, 2017. URL https:

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

//arxiv.org/abs/1611.03225. Full version at
https://arxiv.org/abs/1611.03225.

Bakshi, A. and Woodruff, D. Sublinear time low-rank ap-
proximation of distance matrices. In Advances in Neural
Information Processing Systems, pp. 3782-3792, 2018.

Bakshi, A., Chepurko, N., and Woodruff, D. P. Robust and
sample optimal algorithms for psd low-rank approxima-
tion. arXiv preprint arXiv:1912.04177,2019a.

Bakshi, A., Jayaram, R., and Woodruff, D. P. Learning two
layer rectified neural networks in polynomial time. In
Conference on Learning Theory, pp. 195-268. PMLR,
2019b.

Bakshi, A., Chepurko, N., and Jayaram, R. Testing positive
semi-definiteness via random submatrices. arXiv preprint
arXiv:2005.06441, 2020.

Balcan, M.-F,, Li, Y., Woodruff, D. P., and Zhang, H. Testing
matrix rank, optimally. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 727-746. SIAM, 2019.

Ban, F., Bhattiprolu, V., Bringmann, K., Kolev, P., Lee, E.,
and Woodruff, D. P. A PTAS for ¢,-low rank approxima-
tion. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 747-766. SIAM,
2019.

Berry, D. W., Childs, A. M., and Kothari, R. Hamilto-
nian simulation with nearly optimal dependence on all
parameters. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pp. 792-809, 2015.

Boutsidis, C., Woodruff, D. P., and Zhong, P. Optimal
principal component analysis in distributed and streaming
models. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pp. 236-249, 2016.

Brand, J. v. d., Peng, B., Song, Z., and Weinstein, O. Train-
ing (overparametrized) neural networks in near-linear
time. arXiv preprint arXiv:2006.11648, 2020.

Brandao, F. G. S. L., Kalev, A., Li, T,, Lin, C. Y.-Y,,
Svore, K. M., and Wu, X. Quantum SDP Solvers:
Large Speed-Ups, Optimality, and Applications to Quan-
tum Learning. In Baier, C., Chatzigiannakis, 1., Floc-
chini, P., and Leonardi, S. (eds.), 46th International Col-
loquium on Automata, Languages, and Programming
(ICALP 2019), volume 132 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 27:1-27:14,
Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. ISBN 978-3-95977-109-2. doi:
10.4230/LIPIcs.ICALP.2019.27. URL http://drops.
dagstuhl.de/opus/volltexte/2019/10603.

Chepurko, N., Clarkson, K. L., Kacham, P., and Woodruff,
D. P. Near-optimal algorithms for linear algebra in the
current matrix multiplication time. In Proceedings of
the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 3043-3068. SIAM, 2022.

Chia, N., Lin, H., and Wang, C. Quantum-inspired sublinear
classical algorithms for solving low-rank linear systems.
CoRR, abs/1811.04852,2018. URL http://arxiv.org/
abs/1811.04852.

Chia, N.-H., Gilyén, A., Li, T., Lin, H.-H., Tang, E., and
Wang, C. Sampling-based sublinear low-rank matrix
arithmetic framework for dequantizing quantum machine
learning. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, pp. 387-
400, 2020.

Chowdhury, A., Yang, J., and Drineas, P. An iterative,
sketching-based framework for ridge regression. In Inter-
national Conference on Machine Learning, pp. 989-998,
2018.

Clarkson, K. L. Subgradient and sampling algorithms for /1
regression. In Symposium on Discrete Algorithms: Pro-
ceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, volume 23, pp. 257-266, 2005.

Clarkson, K. L. and Woodruff, D. P. Low rank approxima-
tion and regression in input sparsity time. In STOC, 2013.
Full version at http://arxiv.org/abs/1207.6365.
Final version J. ACM, Vol 63, 2017,
http://doi.acm.org/10.1145/3019134.

Clarkson, K. L. and Woodruff, D. P. Input sparsity and hard-
ness for robust subspace approximation. In 2015 IEEE
56th Annual Symposium on Foundations of Computer
Science, pp. 310-329. IEEE, 2015.

Cohen, M. B. and Peng, R. L, row sampling by Lewis
weights. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pp. 183-192. ACM,
2015.

Cohen, M. B., Elder, S., Musco, C., Musco, C., and Persu,
M. Dimensionality reduction for k-means clustering and
low rank approximation. In Proceedings of the forty-

seventh annual ACM symposium on Theory of computing,
pp. 163-172,2015.

Cohen, M. B., Musco, C., and Musco, C. Input sparsity
time low-rank approximation via ridge leverage score
sampling. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1758—
1777. SIAM, 2017.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Cohen, M. B., Lee, Y. T., and Song, Z. Solving linear
programs in the current matrix multiplication time. In
Proceedings of the 51st annual ACM SIGACT symposium
on theory of computing, pp. 938-942, 2019.

Cong, I. and Duan, L. Quantum discriminant analysis for
dimensionality reduction and classification. New Journal
of Physics, 18(7):073011, 2016.

Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Sub-
space sampling and relative-error matrix approximation:
Column-based methods. In APPROX-RANDOM, pp. 316~
326, 2006.

Drineas, P., Magdon-Ismail, M., Mahoney, M. W., and
Woodruff, D. P. Fast approximation of matrix coher-
ence and statistical leverage. The Journal of Machine
Learning Research, 13(1):3475-3506, 2012.

Dunjko, V. and Wittek, P. A non-review of quantum machine
learning: trends and explorations. Quantum Views, 4:32,
2020.

Frieze, A. M., Kannan, R., and Vempala, S. Fast Monte-
Carlo algorithms for finding low-rank approximations. J.
ACM, 51(6):1025-1041, 2004.

Gilyén, A., Lloyd, S., and Tang, E. Quantum-inspired low-
rank stochastic regression with logarithmic dependence
on the dimension. arXiv preprint arXiv:1811.04909,
2018.

Gilyén, A., Su, Y., Low, G. H.,, and Wiebe, N. Quantum
singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics. In Pro-
ceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pp. 193-204, 2019.

Gilyén, A., Song, Z., and Tang, E. An improved quantum-
inspired algorithm for linear regression. arXiv preprint
arXiv:2009.07268, 2020.

Gilyén, A., Song, Z., and Tang, E. An improved
quantum-inspired algorithm for linear regression. CoRR,
abs/2009.07268, 2020.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst.,
5(4):19:1-19:19, 2016. URL https://doi.org/10.
1145/2827872.

Harrow, A. W., Hassidim, A., and Lloyd, S. Quantum
algorithm for linear systems of equations. Physical review
letters, 103(15):150502, 2009.

Indyk, P, Vakilian, A., Wagner, T., and Woodruff, D.
Sample-optimal low-rank approximation of distance ma-
trices. arXiv preprint arXiv:1906.00339, 2019.

Jiang, H., Kathuria, T., Lee, Y. T., Padmanabhan, S., and
Song, Z. A faster interior point method for semidefinite
programming. arXiv preprint arXiv:2009.10217, 2020a.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H. Faster
dynamic matrix inverse for faster LPs. arXiv preprint
arXiv:2004.07470, 2020b.

Kannan, R. and Vempala, S. Randomized algorithms in
numerical linear algebra. Acta Numerica, 26:95, 2017.

Kannan, R. and Vempala, S. S. Spectral algorithms. Found.
Trends Theor. Comput. Sci., 4(3-4):157-288, 20009.

Kerenidis, I. and Prakash, A. Quantum recommendation
systems. arXiv preprint arXiv:1603.08675, 2016.

Laurent, B. and Massart, P. Adaptive estimation of a
quadratic functional by model selection. Ann. Statist., 28
(5):1302-1338, 10 2000. doi: 10.1214/a0s/1015957395.
URL https://doi.org/10.1214/a0s/1015957395.

Lawrence, H., Li, J., Musco, C., and Musco, C. Low-rank
toeplitz matrix estimation via random ultra-sparse rulers.
In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
4796-4800. IEEE, 2020.

Li, Y. and Woodruff, D. Input-sparsity low rank approxima-
tion in Schatten norm. arXiv preprint arXiv:2004.12646,
2020.

Lloyd, S., Mohseni, M., and Rebentrost, P. Quantum princi-
pal component analysis. Nature Physics, 10(9):631-633,
2014.

Lloyd, S., Garnerone, S., and Zanardi, P. Quantum algo-
rithms for topological and geometric analysis of data.
Nature communications, 7(1):1-7, 2016.

Mahoney, M. W. Randomized algorithms for matrices and
data. Found. Trends Mach. Learn., 3(2):123-224, 2011.

Musco, C. and Woodruff, D. P. Sublinear time low-rank
approximation of positive semidefinite matrices. In 2017
IEEE 58th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 672—-683. IEEE, 2017.

Nelson, J. and Nguyén, H. L. OSNAP: Faster numerical lin-
ear algebra algorithms via sparser subspace embeddings.
In 2013 ieee 54th annual symposium on foundations of
computer science, pp. 117-126. IEEE, 2013.

Rebentrost, P, Mohseni, M., and Lloyd, S. Quantum support
vector machine for big data classification. Phys. Rev. Lett.,
113:130503, Sep 2014. doi: 10.1103/PhysRevLett.113.
130503. URL https://link.aps.org/doi/10.1103/
PhysRevLett.113.130503.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Rokhlin, V. and Tygert, M. A fast randomized algorithm
for overdetermined linear least-squares regression. Pro-
ceedings of the National Academy of Sciences, 105(36):
13212-13217, 2008.

Rudelson, M. and Vershynin, R. Sampling from large matri-
ces: An approach through geometric functional analysis.
J. ACM, 54(4), 2007.

Sarlés, T. Improved approximation algorithms for large
matrices via random projections. In FOCS, pp. 143-152,
2006.

Shi, X. and Woodruff, D. P. Sublinear time numerical linear
algebra for structured matrices. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp- 4918-4925, 2019.

Song, Z., Woodruff, D. P., and Zhong, P. Low rank approxi-
mation with entrywise ¢;-norm error. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 688-701, 2017.

Song, Z., Woodruff, D. P., and Zhong, P. Relative error
tensor low rank approximation. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 2772-2789. Society for Industrial and Ap-
plied Mathematics, 2019.

Tang, E. A quantum-inspired classical algorithm for recom-
mendation systems. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pp.
217-228. ACM, 2019.

van Apeldoorn, J. and Gilyén, A. Improvements in Quantum
SDP-Solving with Applications. In Baier, C., Chatzi-
giannakis, I., Flocchini, P., and Leonardi, S. (eds.),
46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019), volume 132 of Leib-
niz International Proceedings in Informatics (LIPIcs),
pp.- 99:1-99:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. ISBN 978-
3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.99.
URL http://drops.dagstuhl.de/opus/volltexte/
2019/10675.

Vishnoi, N. Cargese lecture notes. 2015. URL
http://www.cs.yale.edu/homes/vishnoi/
Cargeselectures. pdf.

Wang, R. and Woodruff, D. P. Tight bounds for £,, oblivious
subspace embeddings. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1825-1843. SIAM, 2019.

Woodruff, D. P. Sketching as a tool for numerical linear alge-
bra. Foundations and Trends® in Theoretical Computer
Science, 10(1-2):1-157, 2014.

Zhao, Z., Fitzsimons, J. K., and Fitzsimons, J. F. Quantum-

assisted gaussian process regression. Phys. Rev. A,
99:052331, May 2019. doi: 10.1103/PhysRevA.99.
052331. URL https://link.aps.org/doi/10.1103/
PhysRevA.99.052331.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

A. Preliminaries

In, this section, we provide proofs for our theorems in Section 3. We first provide the description of the leverage score
sampling data structure (Algorithm 5). We note that the advantage of the current version compared to the standard leverage
score sampling (see, e.g., Section 2.4 in the survey in (Woodruff, 2014)) is that it saves an O(log n) factor. We need the
following data structure.

Definition A.1 (Sampling Data Structure). Given a matrix A € R™*?, a column selection matrix A such that k =
rank(AA) = rank(A), and \; > 1, the data structure SAMP(A, A, \;) consists of the following:

* SA, where S € R™s*" s a sketching matrix as in Lemma 3.1, with mg = O(klog(k)/e3), chosen to be an
eo-embedding with failure probability 1/100, for fixed £¢;

* C, where [Q, C] < QR(SAA), the QR decomposition of SAA, i.e., SAA = QC, @ has orthonormal columns and C'
is triangular and invertible (since AA has full column rank);

* Cy, where [Qq, Cp] + QR(SA);

« The data structure of Lemma 4.1, built to enable sampling i € [n] with probability p; < || Z;..||* /|1 Z ||?D in O(logn)
time, where Z < AA(C1G), with G € R**™¢ having independent N (0, 1/m¢) entries, and mg = O(),).

Algorithm 4 MATVECSAMPLER(A, SAMPLER, W, v, V)

1

Input: A € R™*? data structure SAMPLER (Def. A1), W € R¥*™wW _ desired number of samples v, normalizer v, where v = T vove

by default if unspecified
Output: L € R*? encoding v draws from i € [n] chosen with approx. probability g; o | A W12 /|| AW |3,

1: N « ||CoW |3, where Cy is from SAMPLER

2. if N ==0:

3: return UNIFORM (v, n) {Alternatively, raise an exception here}
4: L < Opyxn, 2+ 0

5: while z < v:

6: Choose i € [n] with probability p; using SAMPLER

7: G < A W*/N

8: With probability v 11, accept i: set L. ; = 1/y/vGi; 2 +— 2 + 1
9: return L

Lemma A.2 (Sampling Data structure). The data structure SAMP(A, A, \;), from Definition A.1, can be constructed in
O(Xs(nnz(A) + k2) + d*) time.

Proof. The time needed to compute S A is O(nnz(A)+k“poly(loglog(k)) +k*T°(Ne;?). Computing the Q R factorization
of S A takes O(d“) time, by first computing (SA) T (SA) for the mg x d matrix SA, and then its Cholesky composition,
using “fast matrix” methods for both, and using mg < d. This dominates the time for the similar factorization of S AA.

The Z matrix can be computed in O(\,(nnz(A) + k?)) time, by appropriate order of multiplication, and this dominates
the time needed for building the data structure of Lemma 4.1. Adding these terms, and using m < nnz(A), the result
follows. O

Lemma A.3 (MatVecSampler Analysis). Given constant ¢y > 1 and small enough constant 9 > 0, and SAMPLER for A,

there is an event £ holding with failure probability at most 1/k°, so that if £ holds, then when called with v + m, the

probability is (1 £ £¢)q; that the accepted index in Step 4 of MATVECSAMPLER is i € [n], where g; o HAMW||2/||AW||?,
The time taken is O(myyd(d + vkn'/?+), where k = rank(A).

Proof. We need to verify that the quantity in question is a probability, that is, that V% € (0,1), whenv = m.

From Lemma 3.1, if mg = O(g, 2k) for £g > 0, then with failure probability 1/k°*1, S will be a subspace &o-
embedding for im(A), that is, for AA and for A, using rank(A) = k. The event £ includes the condition that S is

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

indeed an £g-embedding. If this holds for S, then from standard arguments, AAC ~1 has singular values all in 1 £ ¢(, and
| A; . ACT? ||2 = (1 + O(go));, where again 7; is the i’th leverage score.

(We have || AAC1z|| = (1 £ &9)||SAAC 12| = (1 £ &9)||z|, for all z,, since SA = QC') This implies that for Z, G in
the construction of SAMP(A, A, \y),

_ 2
12| = [[AACT'G|[p < (1 +) |Gl 3

Since mg HG||?, is x2 with km degrees of freedom, with failure probability at most exp(—+/kXs/2) (using mg = O(\s),
it is at most 3km¢ ((Laurent & Massart, 2000), Lemma 1), so ||G||fF < 3k with that probability. Our event £ also includes
the condition that this bound holds. Thus under this condition, ||Z ||; < 3(1+&0)k.

From Lemma A.8 and the above characterization of 7, for the Z of SAMP(A, A, \,), ||Zi.]]> = ||Ai,*AC*1GH2 >
(1 - O(sg))n/nl/)‘f’.

Putting these together, we have

HZMHfF i/t e
i = . >(1-0 —_ 1
||Z||2 ft ((50)) 3k ()
Using the £9-embedding property of .S,
ICOW 17 = 1QuCoW I = ISAW 17 = (1 £ 220) [AW |7, 2)

and so, letting A = UC for U with orthonormal columns, we have, for small enough £,

AW ULCWIP [UC WP UlP W

(1—2¢0)g; < = = < < T
| AW][5 |UCW |3 ICYW I3 ICYW |5
Putting this bound with (1) we have
'3 < Ti/(1*250) §3(1+O(50))kn1/’\5.

Di (1 — 0(60))775/711/)‘53(1 + 60)]'{1

so that 1/% = m% < (1 + O(gp))/2 < 1 for small enough £¢. Using (2) we have §; = (1 £ 2¢¢)g;. Thus the

correctness condition of the lemma follows, for small enough .

Turning to time: the time to compute CoW is O(d*myy). Each iteration takes O(logn + dmyy), for choosing i and
computing ¢;, and these steps dominate the time. As usual for rejection sampling, the expected number of iterations
is O(vkn'/*¢). Adding these expressions yields the expected time bound, folding a factor of logn in by adjusting A
slightly. O

Algorithm 5 LEVSAMPLE(A, 11, f())

Input: A € R™*4, i, > 1 specifying runtime tradeoff, function f (+) = Z returns a target sample size (may be just a constant)
Output: Leverage score sketching matrix L, column selector A

1: Run an algorithm to compute k& = rank(A) and obtain A € R?*¥, a subset of k lin. indep. columns of A {for example
Theorem 1.5 in (Chepurko et al., 2022)}
2: Construct SAMPLER <— SAMP(AA, I, \), use C from it; {Definition A.1}
W+ C~1G’, where G’ € RF*™¢’ with ind. N'(0,1/m¢) entries {m¢g = O(logn)}
4: L < MATVECSAMPLER(AA, SAMPLER, W, f(k,C),v = 1/6n'/*+)
{Algorithm 4, sample size f(k,C), normalizer v}
5: return L, A

ol

Theorem A.4 (Leverage Score Data Structure, Theorem 3.2 restated). Let k = rank(A), and choose s > 1. Algorithm 5

(LEVSAMPLE(A, us, f(+))) uses space O(n + k* loglog(nd)), not counting the space to store A, and runs in time

O(us nnz(A) + k“poly(loglog(k)) + k> + vkn'/ke),

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

where v is the sample size. For v = e 2klogk, this bound can be expressed as O(ju.nnz(A) + k“poly(loglog(k)) +
6’2*1/“6192) time, for pe > 1.

Note: we can get a slightly smaller running time by including more rounds of rejection sampling: the first round of sampling

needs an estimate with failure probability totaled over for all n rows, while another round would only need such a bound for

vnl/*s rows; this would make the bound v1+1/*s knl/ Az, which would be smaller when v < n. However, in the latter case,

the term vkn'/* is dominated by the other terms anyway, for relevant values of the parameters. For example if v < n and
vk < nnz(A) does not hold, then sampling is not likely to be helpful. Iterating log log n times, a bound with leading term
O(nnz(A)(loglogn + logv)) is possible, but does not seem interesting.

Proof. Step A, building SAMP(AA, \,), take O(\s(nnz(A) + k?) + k) time, with d in Lemma A.2 equal to k here.

From Lemma A.3, the running time of MATVECSAMPLER is O(k? logn + vk?(logn)n'/*+), mapping d of the lemma
to k, my to mg = O(logn). However, since the normalizer v is a factor of & smaller than assumed in Lemma A.3, the
runtime in sampling is better by that factor. Also, we subsume the second log n factor by adjusting ;.

The cost of computing C~1G" is O(k? logn); we have a runtime of
O(nnz(A) + k“poly(loglog(k)) + k*T°M)) + O(\,(nnz(A) 4 k?) + k) + O(k* log n + vkn'/*)
= O(\snnz(A) + kpoly(log log(k)) + k*F°M) 4 vknl/As),

as claimed.

Finally, suppose v = e 2k log k, as suffices for an e-embedding. If vknl/*s < nnz(A) + k“, then the bound follows.
Suppose not. If n > k“, then
5_2 Z nl—l/)\s/kQ log(k) Z nl—l/)\s—Q/w/log(n)

and so £72 > n?, for constant > 0, implying e ~2/*+7" > p1/As log n, for constant 7/ < ~. When k* > n,
e > kT2 Jlog (k) > K7,

for a constant y > 0, so that gmw/ A > pl/As log k, for a constant 7/ < . Using A, a constant multiple of), to account
for constants, the result follows. O

We can also use length-squared sampling to obtain subspace embeddings. In Section 4 we have given a data structure and
algorithm that implements length-squared sampling. To analyze length-squared sampling in the context of ridge regression,
we show the following structural observations about ridge regression.

Lemma A.5 (Block SVD). Let A be such that k = rank(A), and suppose A has thin SVD A = UXV'", implying
¥ e REXF For A > 0, let Ay = [ﬁévr } Forb e R™ leth = [obd] Then for all x € im(V'), the ridge regression loss

2 2 22
[Az = b]" + Allz]|” = [[Aoyz — ol
and ridge regression optimum
.2
2" = argmingcpa | Az — b* + Ae|* = argmin, ez [Ay — b
. _ _ 2 2
The matrix Ay has SVD Ay = [\%X‘J,DD} D=V, where D = (%2 + X))~ '/2, and HAE';\)H =1/(A+1/||AT|"). We
have || 4i+|[*[4G, I” = V52D for i € [n).
Proof. Since x € im(V') has x = V z for some z € R*, and since VTV = I, it follows that VV Tz = Vz = z, and so
22 2 2 2 2
Az = bl = [lAz = bl|* + [VAVV T = 0] = [|Az = bl|* + Al|z]%,

as claimed.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

The SVD of A(y) is Ay = [\%%/%} D~'V'T, where D is defined as in the lemma statement, since the equality holds,

and both [\%EVDD} and V have orthonormal columns, and D~! has non-increasing nonnegative entries. Therefore Aa) =

T
VD [\%\EV%} . We have

Aa)é =VD?SU b =VED?*U b, (3)
using that ¥ and D are diagonal matrices.

By the well-known expression 2* = AT (AA" + \I,,)~'b, and using the not-thin SVD A = USVT, with 3 € R4 and
U and V orthogonal matrices,

8

*
Il
<
™M

UTOssTUT +AUTT)
UTUEET +2L,)7 0T
VEEET +AL)THU T
=VE(Z2 4+ A,) U D
=VED?U b,

I
<
™M

where the next-to-last step uses that 3 is zero except for the top k diagonal entries of 3. Comparing (3) and (4), we have
Az&)l} = z*. Using the expression for Az&), A?')\)H2 =D}, =1/(A+ 1/||A+H2). Finally, since (A(y))i« = Aj« for

i € [n], and letting U = [o }

2 2
1A I NAG I = 1A a2 1A
(N (N
2
> [[(An))i=AQ
= |0 D" WVTVDOT|?
A~ 2
= [|Ui|l
= |U:.ED|?,
as claimed. O

Definition A.6 (Ridge Leverage-score Sample, Statistical Dimension). Let A, A, Ay, and D be asin Lemma A.5. Call S C
[n] a ridge leverage-score sample of A if each i € S is chosen independently with probability at least ||U; .SD||%/sdx (A),

where the statistical dimension sdy(A) = |U ZDHQF = icld) 02 /(X + o), recalling that UY. D comprises the top n rows
of the left singular matrix of Ay).

Lemma A.7 (Length-squared sketch, Lemma 3.5 restated). Given a matrix A € R™"* and a sample size parameter v € [n],

letm = O (vHA(t\) ||2|\A||%/sdA(A)). Then, with probability at least 99/100, the set of m length-squared samples
contains a ridge leverage-score sample of A of size v.

Note that when A\ = 0, ||A2t\) | = ||AT]], sdo(A) = rank(A), and the ridge leverage-score samples are leverage-score
samples.

Proof. We will show that L contains within it a leverage-score sketching matrix; since oversampling does no harm, this
implies the result using the above lemma.

Using the thin SVD A = ULV ", and AT = VETU T, we have
[Ai AT > 4w AT = U ZVTVSYU || = [|Usull,

The expected number of times index i € [n] is chosen among m; length-squared samples, p;m , is within a constant

L2 2 2 . . .
factor of Ilm]%! vHAz&) I HAH?,/sdA(A) > ”s(j;’(ﬂ) v, using Lemma A.5, an expectation at least as large as for a ridge
leverage-score sample of size v.

O

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

Finally, recall the Johnson-Lindenstraus Lemma, for sketching with a dense Gaussian matrix.

Lemma A.8 (Johnson-Lindenstraus Lemma). For given € > 0, if P C R is a set of m > c vectors, and G € R™*¢ has
entries that are independent Gaussians with mean zero and variance 1/m, then there is m = O (=2 log(m/d)) such that
with failure probability 6, |Gz|| = (1 + ¢)||z|| for all = € P. Moreover, there is mg = O(p) so that |Gzx| > ||z /n'/*,
with failure probability at most 1/n?.

Definition A.9 (Projection-Cost Preserving Sketch). Given a matrix A € R"*9, ¢ > 0 and an integer k € [d], a
sketch SA € R**9 is an (e, k)-column projection-cost preserving sketch of A if for all rank-k projection matrices P,
(1 =9 A = P)lF < ISA(I = P)[I7 < (1 + o)A — P)]I%-

There are several constructions of projection-cost preserving sketches known in the literature, starting with the work of
Cohen et. al. (Cohen et al., 2015; 2017). For our purposes, it suffices to use Theorem 1 from (Cohen et al., 2017).

We can use the following lemma to translate from prediction error to solution error for regression problems.

Lemma A.10. Let v, = %. Recall that k(A) = ||A|||A*||. Suppose & € im(AT), and for some ¢, € (0,1),

|AZ — b]|> < (1 +&,) ||| holds, where £ = Ax* — b. Then

12 — 2™ || < 2v/E AT < 2v/Ep/7h, — Le(A)[l2"]-)
e 2
This extends to multiple response regression using v “ HAHfng”g, by applying column by column to B, and extends to
’ F

ridge regression, that is, Ay with B= |:Od€d’ }, as well.

Note that z € im(A ") = im(V) is no loss of generality, because the projection VV "z of z onto im(A") has AVV Tz =

Az and |[VVTz| < ||lz||l. So argmin, ||Az — b||* + Allz|| must be in im(AT) for A arbitrarily close to zero, and
Atbeim(AT).

For the ridge problem min, || A(yyz — b||, we have [[€*[|° = [[Aya* — b]| = [[Az* — b]|* + Al|z*||%, and recalling from
Lemma A.5 that, when A has SVD A = UXV T, Ay has singular value matrix D', where D = (%2 4 \I)~'/2, so that
K(An)? = (A +01)/(A+ o7), where A has singular values o1, ..., oy, with k = rank(A).

Proof. Since z* = ATb = AT(AAT)Tbcim AT, wehave & — 2* = ATz € im AT, for some z. Since ATAAT = AT,
we have 7 — 2% = ATz = AYAATz = AT A(Z — 2*). From the normal equations for regression and the Pythagorean
theorem,

o a2 . 2 ¥ 2 (|2
[A(Z —2")||” = [[AZ = b]]” — || Az" = b][” < 4e,[I€7[I",
using ||AZ — b|| < (14 ¢,)||€*|| and €, < 1. Therefore, using also submultiplicativity of the spectral norm,
~ * 12 ~ 12
12 — 2" = | AT A(Z — 27|
2 ~ 1\ 112
< [ATI1A@E — 27)
2 *
< (AT e €77,)

and the first inequality of (4) follows. For the second, we bound

[1P _ Bl — AA*b)® _ (A, — DIAATD)

2| 1A+ || 1A+ ||

< (Vs — DA

so from (5), we have
~ * 112 2 * 112 2 *1(12 2
& — a*||* < AP, €711° < JAT [P 4epllz* I (va,, — DIIAI,

and the second inequality of (4) follows, using the definition of k(A). O

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

B. Dynamic Data Structures for Ridge Regression

The data structure of Lemma 4.1 is simply a complete binary tree with ¢ leaves, each leaf with weight «;, and each internal
node with weight equal to the sum of the weights of its children. Sampling is done by walking down from the root, choosing
left or right children with probability proportional to its weight. Insertion and deletion are done by inserting or deleting the
leaf z that preserves the complete binary tree property, and updating the weights of its ancestors; in the case of deletion, first
the leaf weight to be deleted is swapped with that of z, updating weights of ancestors. We also refer the reader to a more
detailed description in (Tang, 2019; Gilyén et al., 2020).

Proof of Lemma 4.3. Use Lemma 4.1 for the first part. For the second, with a matrix S, construct the data struc-
ture of Lemma 4.1 for the row lengths of SA, in O(mlog(nd)) time. To sample, pick i* € [m] with probability
[[(SA); « ||2/||SA||§,, using the newly constructed data structure. Then pick j € [d] with probability (SA)Z. /[(SA) 112,

Adding the probabilities across the choices of i*, the probability of choosing index j is || (SA). ; I?/11S A % as claimed.

Once a column is chosen, the time to determine the corresponding column length ||(SA). ;|| is O(mlog(nd)), finding each
(SA);; for i € [m] in O(log(nd)) time. O

We first re-state our theorem for dynamic ridge regression, before giving its proof.

Theorem B.1 (Theorem 1.4 restated). Given matrices A € R"™¢ B ¢ R gnd X > 0, let X* =
argminy [|[AX — B|3 + M X3 Let vy = [[A|%/(\ + 02), kx = (A + 01(A)?)/\ + 0r(A)?) and i =
VA +62)/(\+ 62), where &1 and &y, are over and under estimates of o1 and oy, respectively. Then, there exists a
data structure that maintains Y € R such that with probability at least 99/100,

. . 5
1Y = X" p < (e 4+ 29e) [X7 p + \f\HUk,LBllpv
where 7? = %. Further, an entry Y;; for given i, j can be computed in O(mglog(nd)) = O(e~2&%, (log(nd))?)

time. The time taken to compute Y is O(d'e~*#23 iy log(d)).

Proof. Let
X1 = argminy cpaxa [[SAX — SBH; +)\||XH2F
We first show that
X1 = X"l < 7 51X N ©®

which follows from Lemma A.10, applied to Ay and B, after showing that, for e, = £2/&?, X satisfies

IAX1 — B3 + A Xal[5 < (14 &,/4)A., where A, = [|[AX* — B[+ A1 X*| 7, (7
which in turn follows from Lemma 17 of (Avron et al., 2017). That lemma considers a matrix U;, comprising the first n rows
. - 2
of the left singular matrix of Ay = { \/fld } , noting that the ridge objective can be expressed as minx [|Ax X — [§] |-
The matrix U; = UXD in our terminology, as in Lemma A.5, so the observations of that lemma apply.
Lemma 17 of (Avron et al., 2017) requires that S satisfies
|UTSTSU, — U U || < 1/4, (®)
and
U STS(B — AX*) = U (B — AX™)||» < VepAs.)

We have ||Azr/\) H2 =1/(A+1/]|A" HQ) < Z. With the given call to LENSQSAMPLE to construct .S, the number of rows
sampled is mg = O(e, ' Z3 ||A||?D log(d)), so the expected number of times that row i of A is sampled is, up to a factor of
O(log d),

2
2 [[Ail™

s s o vy 2 10D
T Z3Aiil? = &5 (Uil = 5 YU [2o
a

F 2
1

e, Z31Al

)

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

and so row ¢ is sampled at least the expected number of times it would be sampled under €, Yoy ||2F log d rounds of
length-squared sampling of U;. As shown by Rudelson and Vershynin ((Rudelson & Vershynin, 2007), see also (Kannan &
Vempala, 2017), Theorem 4.4), this suffices to have, with high probability, a bound on the normed expression in (8) of

[1O

== V&0l < V&,
1 2
Ver 1Ug

so by adjusting constant factors in sample size, (8) holds, for small enough ¢,

To show that (9) holds, we use the discussion of the basic matrix multiplication algorithm discussed in (Kannan & Vempala,
2017), Section 2.1, which implies that

|UL|I7 1B — AX*|[7
S

E|UTSTS(B — AX") — U (B — AX")|%) < |

where s is the number of length-squared samples of U;. Here s = ¢ Yoy va log d, so (9) follows with constant probability
by Chebyshev’s inequality, noting that | B — AX ™|, < VA,.

Thus (8) and (9) hold, so that by Lemma 17 of (Avron et al., 2017), (7) holds. We now apply Lemma A.10, which with (7)
and ¢, = ¢%/#2, implies (6).

Next we show that the (implicit) returned solution is close to the solution of (7), that is,
- 2
IATSTX — X1 < & Xa 3 (10)

This is implied by Theorem 2 of (Chowdhury et al., 2018), since A" S T X is the output for ¢ = 1 of their Algorithm 1. (Or
rather, it is their output for each column of X and corresponding column of B.) To invoke their Theorem 2, we need to show
that their equation (8) holds, which per their discussion following Theorem 3, holds for ridge leverage score sampling, with
O(e72sd, log sdy) samples, which our given mp yields.

When we invoke their Theorem 2, we obtain
1

|ATSTX — Xl p < (| Xl + Y

Uk, LBl) (11

Combining with (6) and using the triangle inequality, we have that, abbreviating Ay, B 387> Up O the additive Uy, | term
in (11), we have
IATSTX = X*|lp < |ATSTX = Xi|lp + 1 X0 — X7||»
€
<elXullp + 1% = X*[|p + TAHUIC,LBIIF
N €
<elXellp + (A +e)lIXs = X[p + ﬁ”Uk,iB”F
. €

<el| X g+ 2| Xullp + \ﬁIIUk,LBIIF

« 9
Se(1+29) [X7 p + ﬁllUk,LBllF

for small enough ¢, as claimed.
The time is dominated by that for computing A~1SB, where A = SARRT AT ST, which we do via the conjugate gradient

method. Via standard results (see, e.g., (Vishnoi, 2015), Thm 1.1), in O((T + mg)y/#(A) log(1/c))d’ time, where T is

the time to compute the product of A with a vector, we can obtain X with || X — A~1SB]|| 4 < a|A-1SB| i» Where the
A-norm is lz|l 4 = 2T Az. Since S and R are (at least) constant-factor subspace embeddings, the singular values of SAR

are within a constant factor of those of A, and so x(A) is within a constant factor of

K(AAT + M) = A+ 01(A)D) /(N + 01(A)?) = k3.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

We have

T = O(mgms) = O(e~* logms Z3 | Al|pe*#* Z3|| Al - log(d))
= O(™*"#* 23| All» log(d))

Our running time is O(T'x log(1/¢))d’, with T as above. Translating to the notation using 1 terms, the result follows. [J

C. Sampling from a Low-Rank Approximation
We need the following lemma, implied by the algorithm and analysis in Section 5.2 of (Boutsidis et al., 2016); for

completeness we include a proof.

Lemma C.1. If S € R™S*" and R are such that SA is a PCP of A € R"*%, and SAR is a PCP of SA, for error € and
rank t, and U € R™s** has orthonormal columns such that ||(I — UU ")SAR||. < (1 +¢)||SAR — [SAR],

Y* = argminy [|[YUTSA - Al

has
[Y*UTSA—Allp < (1+0()|A— Al (12)

We also have

2
IUTSA| > || A% — Oe) | Al

Proof. Note that for matrix Y, Y (I — Y;"Y;) = (I — Y;Y,;7)Y, and that UU T S A is no closer to SA than is the projection
of S A to the rowspace of U T SA, and that UU " = (SAR);(SAR);" we have

A=Y U SA|p = [AI = (UTSA)TUTSA) | < (1+)[|SAU — (UTSA)TUTSA)||,
<(1+e)|(I-UUT)SA|
<(1+¢e)}|(I-UU")SAR|
< (1+e)’|[(I - (SAR)(SAR)[)SAR||,
< (L+e)’[[(I = (SA)(SA))SAR|
< (L+e)! (I = (SA)(SA))S Al

= (1+2)*SAI — (SA)F (SA))|
< (1+e)'ISA(I — Af Ayl
< (L+e)° AT = A Al

= ()|

1+e)’ A= Allp =1+ 0@E)[A -~ Allp,

as claimed.

For the last statement: we have ||.S A||2F > (1-¢)|4] 2F since S A is a PCP, and by considering the projection of A onto the

rowspans of blocks of ¢ of its rows. We have also ||SA — [SA]; HF (1+¢)||A — [A],||*, using that SA is a PCP. Using
these observations, we have

IISALl5 = ISAG — |1SA — [SAL |3
> (1-o)|Al} — A +e)llA—[ALl%
= ALl — (1 ANF + (1A = [AL]3)
> ||[ALll7 — 3¢l Al

Similarly, || [SAR]tH?J >l [SA]tH% - 35||SA||§, using that SAR is a PCP of SA. We then have, using these inequalities,

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

the PCP properties, and the hypothesis for U, that

IUTSA|L = [UUTSA|L
= |SAI% I — UUT)SAl;
> (1—¢)|SAR|[% — (1 +¢)?||SAR — [SAR)| 7
> ||[SAR][I3 — 4el| SAR| %
> (I[SAlll7 — 3¢ SAI7) — 4(1 +)el|SA 7
> ([l F — 3ellAll7) — 321 +)| A7 — 4(1 +)| A 7
> [|[AL]l7 — 13¢]| A%,

for small enough ¢, and the last statement of the lemma follows. O

Before a proof, we give a re-statement of Theorem 1.5.

Theorem C.2 (Dynamic Data Structure for LRA). Given a matrix A € R"*9, target rank k, and estimate &3, < op(A),
error parameter € > 0, and estimate T of || A — Ay| % there exists a data structure representing a matrix Z € R™*% with
rank k such that lf||AkH§, > 5HA||?:, with probability at least 99/100, || A — Z||?; <(14+0@E)IA- Ak||§:, where Ay, is
the best rank-k approximation to A. Further, the time taken to construct the representation of Z is

O(e™%k® + e (vr + K> + kn)),

where) = ||A||%/(T/k‘ + 62) and iy, = |\A||;/ak(A) Given j € [d], i € [n] can be generated with probability
(Z)lgj/HZ)*J- 1? in expected time O(|| A||3/62 + m%k2), where k is the condition number of A, and mp, = O(klog k +
e k).

Proof. The matrix Z is the implicit output of Algorithm 3. In that algorithm, the choice of mg = O (s Z3 ||A||2F) rows
constitutes an effective kg = O(c 2k log k) ridge-leverage score samples of the rows of A. We assume that the input 7 is
within a constant factor of ||A — Ay H?, so that A = 7/k is within a constant factor of ||A — A ||§, /k. Theorem 6 of (Cohen
et al., 2017) implies that under these conditions, S A will be a rank-% Projection-Cost Preserving (PCP) sketch of A with
error parameter ¢, a (k, €)-PCP.

Similarly to S, Ry will be a (column) rank-k PCP of SA, here using that the PCP properties of SA imply that
[[(S(A— Ag) ||F =(1+e)||A— A ||F, and so the appropriate A, and Zy, for S A are within constant factors of those for
A.Let A= SAR;. Lemma 16 and Theorem 1 of (Cohen et al. , 2017) imply that applying their Algonthm 1 to A yields
Sy € R™s2%Xms g0 that Sp A is a (k, e)-PCP for A, and similarly So ARy isa (k,e)-PCP for So A

We apply Lemma C.1 with AT, R2 R 52 ,and VT in the roles of A, S, R, and U in the lemma. We obtain that Yy =
(ARyV)+ A = argminy, [[AR VY — Al has |ARVY — Al < (14 O(e))||A — Ag| ., that is, U as constructed in
Algorithm 3 has UU TA= ARQ Vf/, and therefore satisfies the conditions of Lemma C.1 for A, S, R;. This implies that
Y* = AU"SA)" = argminy |[YUTSA — Al has

[Y*UTSA—Alp < (1+0()[|A = Agllp (13)

It remains to solve the multiple-response regression problem miny ||[YU T SA — A|| > Which we do more quickly using the
samplers R3 and Rj.

We next show that RJ is a subspace go-embedding of (U T SA) T, and supports low-error matrix product estimation, so that
Thm. 36 of (Clarkson & Woodruff, 2013) can be applied. Per Lemma 3.1 and per Lemma 32 of (Clarkson & Woodruff,
2013), king, = O(gy 2klogk + £ 'k) leverage-score samples of the columns of U'T S A suffice for these conditions to
hold.

To obtain ki, leverage score samples, we show that 1/e length-squared samples of the columns of S A suffice to contain
one length-squared sample of U T S A, and also that || (U " SA)*|| < 1/64, using the input condition on &y, that o (A) > 4,
so that the given value of mp, in the call to LENSQSAMPLE for B3 is valid.

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

For the first claim, by hypothesis || Ay ||§ > || 4] %, and by adjusting constants, U as computed satisfies the conditions of
Lemma C.1 for some ¢’ = ae for constant & > 0, so by that lemma and by hypothesis

2 2
IUT Az = |4kl = O(ae) | Al
2
> e(1=0())|Allp
2
> (1= 0(a))(1 = ¢)[|SAllF,
so adjusting constants, we have ||U TSA||2F >¢||S A||? Using that U has orthonormal columns, we have for j € [d] that

|UTSA.;|I/IIUTSA|[5 < ||SA. ||/]|SA||% so the probability of sampling j using length-squared probabilities for SA
is least € times that for U T S A.

For the claim for the value of m g, used for R3, using the PCP properties of SA and SAR;, we have
0x(UTSA) = 0p(UUTSAR,) = 01 (SAR;) > (1 —)0 (SA) > (1 — O(e))op(A).

so the number of length-squared samples returned by LENSQSAMPLE suffice.
So using Thm. 36 of (Clarkson & Woodruff, 2013), Y3 = argminy ||(YU T SA — A)R3|| » satisfies

I%507SA = Allp < (1+) min [YUTSA = Al < (1+ O() |4~ Al

where the last inequality follows from (12).

Similar conditions and results can be applied to direct leverage-score sampling of the columns of U T S AR3, resulting in
Y, = miny ||[(YUTSAR3 — AR3)Ry| », where there is mp, = O(e, 2k log k -+~ k) such that these conditions hold for
Ry. This implies Yj is an approximate solution to miny ||(YU T SA — A)Rs)| , and therefore ARY, = AR(U ' SAR)*
has || ARY,UTSA — Al , < (14+0(¢))||A — Apg|| p» as claimed. We have W < (UTSAR)*U T = Y U, so the claimed
output condition on ARW S A holds.

Turning to the time needed, Lemma 16 and Theorem 1 of (Cohen et al., 2017) imply that the time needed to construct S,
and Rs is
O(mp,ms + k*ms) = O(ms(ms + k?)) (14)

The time needed to construct V' from S3S AR Ry € RS2 X™MS3 jg

O(m¥,) = O(e™%k?) (15)

The time needed to construct U from V' € R™#2** and SAR; Ry, € R™s*™r> by multiplication and QR factorization is

O(kmp,ms + k*mg) = ON(mSkJa*Q) (16)

Computation of U T S AR3 requires O(kmgmpg,) time, where mp, = O(mRss’lZ,%HAH?,, and g, = O(logk +¢71),
that is,

~ - 2

O(mske™*Z¢[|All) amn
time. Leverage-score sampling of the rows of (U T SAR3) " € R™~s** takes, applying Theorem A.4 and using mp, =

O(k(logk + 1)), time at most

O(log(mpr,)kmp, + k* loglog(kmp,) + k*logmp, + mmkmg;og(m%)) (18)

= O(ke 2Z2||A|% + k* + k27 1) (19)

Computation of (UT SAR)* from U " SAR requires O(k*>mpg,

) = O(¢~'k?) time. (With notation that R has mg = mg,
columns.) Given (U T SAR)*, computation of W = (UTSAR)*U T

requires

O(kmgrmg) = O(mgk?e™1) (20)

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

time. Putting together (14),(16), (17), (20), (15), (18), we have

O(ms(ms + k%)) + O(mgk?e2) + O(mske 2 Z2|| Al %) + O(mgsk?e™)
+ O(e=%k?) + tO(ke 2 Z2| A|% + k* + ke)
= O(ms(ms + k*e ™2 + ke 2 Z2|| A||%) + %K)

Here mg = O (s Z2|| Al|3) = O(e~2Z2||A||%), so the time is

O(e™ K + e ' ZRNAI(ZRNAIT + & + kZE | All7))

Queries as in the theorem statement for given j € [d] can be answered as in (Tang, 2019), in the time given. Briefly: given j,
letv « (WSA).; € R™E. Let A denote AR. Using LENSQSAMPLE (and large m), generate a sampling matrix S3 with
<2 L2 s 2
O(Z?||A||”) rows, and estimate | Av||” ~ 8, < ||SAv||". Generate i € [n] via rejection sampling as follows. In a given
A2
trial, pick j* € [d] with probability proportional to || A, ;||"v7 using DYNSAMP(A), then pick i € [mp] with probability
/Al?’j*/H/l*’j* ||2 This implies that i € [n] has been picke(} with probability p; = > Afjvf/ >, HAMHQU]Q Now for a
value o > 0, accept with probability g; /ap;, where ¢; = (A; .v)?/B,, otherwise reject. This requires o > g;/p;. and takes
expected trials a. So an upper bound is needed for

~ A 2
g (Ai)? X5 1A 0f
i Bu Zj 143]’0]2

. . .2 L2 .2
We have (4; ,v)> <mpg 3, A%v7 using Cauchy-Schwarz, and 3, =~ [[Av||” > [v]|>/||AT]|", and also >0 1A 707 <

[lv]|? max; ||121*J||2 < ||v||2|\/1||2 Putting this together o > mR||A||2||A+||2 = O(mpr(A)) will do. The work per trial is
O(mpglog(nd)) ,and putting that together with the time to compute /3,,, the theorem follows. O

D. Additional Experiments

D.1. Low-Rank Approximation

As we stated in Section 6.1, although the accuracy of our algorithm is slightly worse, by increasing the sample size slightly,
our algorithm achieves a similar accuracy as (Arrazola et al., 2020), but still has a faster runtime. The results are shown in
Table 5. Here we set (r,¢) = (500, 800) for MovieLens 100K and (r, ¢) = (700, 1100) for KOS data for our algorithms,
but do not change (r, ¢) for the algorithm in (Arrazola et al., 2020) as in Section 6.1.

Table 5. Performance of our algorithm and ADBL on MovieLens 100K and KOS data, respectively.

k=10 | k=15 | k=20 k=10 | k=15 | k=20
€(Ours) 0.0323 | 0.0439 | 0.0521 &(Ours) 0.0291 | 0.0390 | 0.0476
¢(ADBL) 0.0262 | 0.0424 | 0.0538 ¢(ADBL) 0.0186 | 0.0295 | 0.0350
Runtime Runtime
(Ours, Query) 0.341s | 0.365s | 0.370s (Ours, Query) 0.826s | 0.832s | 0.831s
Runtime Runtime
(Ours, Total) 0.412s | 0.417s | 0.415s (Ours, Total) 0.979s | 0.994s | 0.986s
Runtime Runtime
(ADBL, Query) 0.863s | 0.917s | 1.024s (ADBL, Query) 1.501s | 1.643s | 1.580s
Runtime Runtime
(ADBL. Total) 0.968s | 1.003s | 1.099s (ADBL. Total) 1.814s | 1.958s | 1.897s
Runtime of SVD 2.500s Runtime of SVD 36.738s

