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Abstract

We introduce data structures for solving robust regression through stochastic gradient descent

(SGD) by sampling gradients with probability proportional to their norm, i.e., importance sampling.

Although SGD is widely used for large scale machine learning, it is well-known for possibly experien-

cing slow convergence rates due to the high variance from uniform sampling. On the other hand,

importance sampling can signiĄcantly decrease the variance but is usually difficult to implement

because computing the sampling probabilities requires additional passes over the data, in which case

standard gradient descent (GD) could be used instead. In this paper, we introduce an algorithm that

approximately samples T gradients of dimension d from nearly the optimal importance sampling

distribution for a robust regression problem over n rows. Thus our algorithm effectively runs T steps

of SGD with importance sampling while using sublinear space and just making a single pass over the

data. Our techniques also extend to performing importance sampling for second-order optimization.
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1 Introduction

Given a matrix A ∈ Rn×d with rows a1, . . . , an ∈ Rd and a measurement/label vector b ∈ Rn,

we consider the standard regression problem

min
x∈Rd
L(x) :=

n∑

i=1

M(⟨ai, x⟩ − bi),

where M : R→ R≥0 is a function, called a measure function, that satisĄes M(x) = M(−x)

and is non-decreasing in ♣x♣. An M-estimator is a solution to this minimization problem

and for appropriate choices of M , can combine the low variance of L2 regression with the

robustness of L1 regression against outliers.

The Huber norm, for example, is deĄned using the measure function H(x) = x2

2τ for

♣x♣ ≤ τ and H(x) = ♣x♣ − τ
2 for ♣x♣ > τ , where τ is a threshold that governs the interpolation

between L2 loss for small ♣x♣ and L1 loss for large ♣x♣. Indeed, it can often be more reasonable

to have robust treatment of large residuals due to outliers or errors and Gaussian treatment of
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small residuals [12]. Thus the Huber norm is especially popular and Şrecommended for almost

all situationsŤ [39], because it is the Şmost robustŤ [13] due to Şthe useful computational and

statistical properties implied by the convexity and smoothnessŤ [9] of its measure function,

which is differentiable at all points.

Since the measure function H for the Huber norm and more generally, the measure function

M for many common measure functions is convex, we can consider the standard convex

Ąnite-sum form optimization problem min
x∈Rd

F (x) := 1
n

∑n
i=1 fi(x), where f1, . . . , fn : Rd → R

is a sequence of convex functions that commonly represent loss functions. Whereas gradient

descent (GD) performs the update rule xt+1 = xt − ηt∇F (xt) on the iterate xt at iterations

t = 1, 2, . . . , T , stochastic gradient descent (SGD) [32, 27, 26] picks it ∈ [n] in iteration t

with probability pit
and performs the update rule xt+1 = xt −

ηt

npit

∇fit
(xt), where ∇fit

is

the gradient (or a subgradient) of fit
and ηt is some predetermined learning rate. Effectively,

training example it is sampled with probability pit
and the model parameters are updated

using the selected example. The SGD update rule only requires the computation of a single

gradient at each iteration and provides an unbiased estimator to the full gradient, compared to

GD, which evaluates n individual gradients in each iteration and is prohibitively expensive for

large n. However, since SGD is often performed with uniform sampling, so that the probability

pi,t
1 of choosing index i ∈ [n] at iteration t is pi,t = 1

n at all times, the variance introduced by

the randomness of sampling a speciĄc vector function can be a bottleneck for the convergence

rate of this iterative process. Thus, the subject of variance reduction beyond uniform sampling

has been well-studied in recent years [33, 18, 11, 31, 40, 10, 25, 35, 19, 21, 34, 30].

A common technique to reduce variance is importance sampling, where the probabilities

pi,t are chosen so that vector functions with larger gradients are more likely to be sampled.

One such setting of importance sampling is to set the probability of sampling a gradient with

probability proportional to its L2 norm, so that

pi,t =
∥∇fi(xt)∥2∑

j∈[t] ∥∇fj(xt)∥2

.

Under these sampling probabilities, importance sampling gives variance

σ2
opt,t =

1

n2



(

n∑

i=1

∥∇fi(xt)∥2

2

− n2 · ∥∇F (xt)∥
2
2


 ,

where we deĄne the variance of a random vector v to be Var(v) := E
[
∥v∥

2
2

]
− ∥E [v]∥

2
2, and

we deĄne σ2
opt,t to be the variance of the random vector v produced at time t by importance

sampling.

By comparison, the probabilities for uniform sampling pi,t = 1
n imply σ2

t = Var
(

1
npit,t



and thus the variance σ2
uni,t for uniform sampling satisĄes

σ2
uni,t =

1

n2

(
n

n∑

i=1

∥∇fi(xt)∥
2
2 − n2 · ∥∇F (xt)∥

2
2


.

By the root mean square-arithmetic mean inequality, the variance of importance sampling

is always at most the variance of uniform sampling, and can be signiĄcantly less. Hence

σ2
opt,t ≤ σ2

uni,t, so that the variance at each step is reduced, possibly substantially, by

performing importance sampling instead of uniform sampling.

1 In contrast to pi,t, the term pit
denotes the probability associated with the speciĄc index it chosen at

time t.
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To see examples where uniform sampling an index performs signiĄcantly worse than

importance sampling, consider ∇fi(x) = ⟨ai, x⟩ · ai. Then for A = a1 ◦ . . . ◦ an:

▶ Example 1. When the non-zero entries of the input A are concentrated in a small number

of vectors ai, uniform sampling will frequently sample gradients that are small and make

little progress, whereas importance sampling will rarely do so. In an extreme case, the input

A can contain exactly one non-zero vector ai and importance sampling will always output

the full gradient, whereas uniform sampling will only Ąnd the non-zero row with probability
1
n , so that σ2

uni,t = n · σ2
opt,t.

▶ Example 2. It may be that all rows of A have large magnitude, but x is nearly orthogonal

to most of the rows of A, but is well-aligned with row ar. Then ⟨ai, x⟩ · ai is small in

magnitude for most i, but ⟨ar, x⟩ · ar is large so uniform sampling will often output small

gradients while importance sampling will output ⟨ar, x⟩ · ar with high probability, so that it

can be that σ2
uni,t = Ω(n) · σ2

opt,t.

▶ Example 3. More generally for a parameter ν ∈ [0, 1], if a ν-fraction of the n gradients

lengths are bounded by O (n) while the other 1 − ν fraction of the n gradient lengths

are bounded by poly(d) ≪ n, then the variance for uniform sampling satisĄes σ2
uni,t =

O
(
νn2

)
+ poly(d) while the variance for importance sampling satisĄes O

(
ν2n2

)
+ poly(d).

In fact, it follows from the Cauchy-Schwarz inequality that the importance sampling

probability distribution is the optimal distribution for variance reduction.

However, computing the probability distribution for importance sampling requires com-

puting the gradients in each round, which creates a Şchicken and eggŤ problem because

computing the gradients is too expensive in the Ąrst place, or else it is feasible to just run

gradient descent. Unfortunately, computing the sampling probabilities in each iteration often

requires additional passes over the data, e.g., to compute the gradients in each step, which is

generally prohibitively expensive. This problem often prevents importance sampling from

being widely deployed.

In this paper, we overcome this problem by introducing efficient sketches for a wide range

of M -estimators that can enable importance sampling without additional passes over the

data. Using our sketches for various measure functions, we give a time-efficient algorithm

that provably approximates the optimal importance sampling distribution within a constant

factor. Thus we can surprisingly simulate T steps of SGD with (nearly) the optimal sampling

distribution, while only using a single pass over the data, which avoids the aforementioned

problem.

▶ Theorem 4. Given an input matrix A ∈ Rn×d whose rows arrive sequentially in a data

stream along with the corresponding labels of a measurement vector b ∈ Rd, and a measure

function M whose derivative is a continuous union of piecewise constant or linear functions,

there exists an algorithm that performs T steps of SGD with variance within a constant factor

of the optimal sampling distribution. The algorithm uses Õ
(
nd2 + Td2

)
pre-processing time

and Td2 polylog(Tnd) words of space.

For T iterations, both GD and optimal importance sampling SGD require T passes over

the data, while our algorithm only requires a single pass over the data and uses sublinear

space for nd≫ Td2. We remark that although the number T of iterations for SGD may be

large, a major advantage of GD and SGD with importance sampling is a signiĄcantly smaller

number of iterations than SGD with uniform sampling, e.g., as in Example 1 and Example 2,

so we should expect n≫ T . In particular from known results about the convergence of SGD,

APPROX/RANDOM 2022
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e.g., see Theorem 8, if the diameter of the search space and the gradient lengths ∥∇fi(xt)∥2

are both bounded by poly(d), then we should expect T ∝ poly(d) even for uniform sampling.

More generally, if νn of the gradients have lengths Θ(n), while the remaining gradients

have lengths poly(d)≪ n, then Example 3 and Theorem 8 show that the number of steps

necessary for convergence for uniform sampling satisĄes T ∝ O
(
ν2n4

)
+ poly(d), while the

number of steps necessary for convergence for importance sampling satisĄes T ∝ O
(
ν4n4

)
.

Thus for νn = O
(
nC
)

for C < 1, i.e., a sublinear number of gradients have lengths that

exceed the input size, we have T = O
(
n4C

)
and hence for C < 1

4 , we have roughly T = o(n)

steps are necessary for convergence for SGD with importance sampling.

Finally, we show in the full version of the paper that our techniques can also be generalized

to perform importance sampling for second-order optimization.

1.1 Our Techniques

In addition to our main conceptual contribution that optimal convergence rate of importance

sampling for SGD can surprisingly be achieved (up to constant factors) without the Şchicken

and eggŤ problem of separately computing the sampling probabilities, we present a number

of technical contributions that may be of independent interest. Our Ąrst observation is that

if we were only running a single step of importance sampling for SGD, then we just want a

subroutine that outputs a gradient G(⟨ai, x⟩ − bi, ai) with probability proportional to its

norm ∥G(⟨ai, x⟩ − bi, ai)∥2.

G-sampler. In particular, we need an algorithm that reads a matrix A = a1◦. . .◦an ∈ Rn×d

and a vector x ∈ Rd given after processing the matrix A, and outputs (a rough approximation

to) a gradient G(⟨ai, x⟩ − bi, ai) with probability roughly

∥G(⟨ai, x⟩ − bi, ai)∥2∑n
j=1 ∥G(⟨aj , x⟩ − bj , aj)∥2

.

We call such an algorithm a G-sampler and introduce such a single-pass, memory-efficient

sampler with the following guarantees:

▶ Theorem 5. Given an (α, ε)-smooth gradient G, there exists an algorithm Sampler

that outputs a noisy vector v such that ∥v − ai(⟨ai, x⟩ − bi)∥2 ≤ α∥ai(⟨ai, x⟩ − bi)♣∥2 and

E [v] = ai(⟨ai, x⟩ − bi) is (1±O (ε)) ∥G(⟨ai,x⟩−bi,ai)∥2∑
j∈[n]

∥G(⟨aj ,x⟩−bj ,aj)∥2
+ 1

poly(n) . The algorithm uses

d2 poly
(
log(nT ), 1

α

)
update time per arriving row and Td2 poly

(
log(nT ), 1

α

)
total bits of

space.

We say a gradient G is (α, ε)-smooth if a vector u that satisĄes ∥u − v∥2 ≤ α∥v∥2

implies that (1 − ε)∥G(v)∥2 ≤ ∥G(u)∥2 ≤ (1 + ε)∥G(v)∥2. In particular, the measure

functions discussed in Section 1.2 have gradients that are (O (ε) , ε)-smooth. For example,

the subgradient of the Huber estimator is ai · sgn(⟨ai, x⟩− bi) for ♣⟨ai, x⟩− bi♣ > τ , which may

change sign when ⟨ai, x⟩ − bi is close to zero, but its norm will remain the same. Moreover,

the form G(⟨ai, x⟩ − bi, ai) necessitates that the gradient can be computed strictly from

the two quantities ⟨ai, x⟩ − bi and ai. Thus Theorem 5 implies that our algorithm can also

compute a noisy vector v′ such that ∥v′ −G(⟨ai, x⟩ − bi, ai)∥2 ≤ ε∥G(⟨ai, x⟩ − bi, ai)∥2.

Observe that an instance of Sampler in Theorem 5 can be used to simulate a single step

of SGD with importance sampling and thus T independent instances of Sampler provide

an oracle for T steps of SGD with importance sampling. However, this naïve implementation
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does not suffice for our purposes because the overall runtime would be Õ
(
Tnd2

)
so it would

be more efficient to just run T iterations of GD. Nevertheless, our G-sampler is a crucial

subroutine towards our Ąnal algorithm and we brieĆy describe it here.

An alternative deĄnition of G-sampler is given in [16]. In their setting, the goal is to

sample a coordinate i ∈ [n] of a frequency vector f with probability proportional to G(fi),

where G in their notation is a measure function rather than a gradient. However, because

the G-sampler of [16] is not a linear sketch, their approach cannot be easily generalized to

our setting where the sampling probability of each row ai is a function of ⟨ai, x⟩, but the

vector x arrives after the stream is already processed.

Furthermore, because the loss function f may not be scale-invariant, then we should also

not expect its gradient to be scale invariant at any location x ∈ Rd, i.e., ∇f(Cx) ̸= Cp ·∇f(x)

for any constants p, C > 0. Hence, our subroutine Sampler cannot use the standard Lp

sampler framework used in [20, 2, 15, 22], which generally rescales each row of ai by the

inverse of a uniform or exponential random variable. A somewhat less common design

for Lp samplers is a level set and subsampling approach [24, 17], due to their suboptimal

dependencies on the accuracy parameter ε. Fortunately, because we require ε = O (1) to

achieve a constant factor approximation, we can use the level set and subsampling paradigm

as a starting point for our algorithm. Because the algorithms of [24, 17] only sample entries

of a vector implicitly deĄned from a data stream, our G-sampler construction must (1)

sample rows of a matrix implicitly deĄned from a data stream and (2) permit updates to the

sampling probabilities implicitly deĄned through multiplication of each row ai with a vector

x that only arrives after the stream is processed.

G-sampler through level sets and subsampling. To illustrate our method and simplify

presentation here, we consider L2 regression with gradient Aix := ⟨ai, x⟩ · ai, by folding in

the measurement vector b into a column of A Ű our full algorithm in Section 2 handles both

sampling distributions deĄned with respect to the norm of a general gradient G in the form

of Theorem 5, as well as an independent measurement vector b.

We Ąrst partition the rows of A into separate geometrically growing classes based on their

L2 norms, so that for instance, class Ck contains the rows ai of A such that 2k ≤ ∥ai∥2 < 2k+1.

We build a separate data structure for each class Ck, which resembles the framework for Lp

norm estimation [14]. We would like to use the approximate contributions of the level sets

Γ1, . . . , ΓK , with K = O
(

log n
α


, toward the total mass F2(S) =

∑n
i=1 ∥Aix∥2, where a level

set Γj is informally the set of rows ai with ∥Aix∥2 ∈
[

F2(S)
(1+α)j−1 , F2(S)

(1+α)j

]
and the contribution

of a level set Γj is
∑

i∈Γj
∥Aix∥2. Then we could Ąrst sample a level set Γj from a class Ck

and then uniformly select a row ai among those in Γj . Indeed, we can run a generalized

version of the L2 heavy-hitter algorithm CountSketch [7] on the stream S to identify the

level set Γ1, since its rows will be heavy with respect to F2(S). However, the rows of the level

sets Γj for large j may not be detected by CountSketch. Thus, we create L = O (log n)

substreams S1, . . . , SL, so that substream Sℓ samples each row of A with probability 2−ℓ+1,

and run an instance of CountSketch on each substream Sℓ to detect the rows of each level

set and thus estimate the contribution of each level set.

Sampling from level sets with small contribution. However, there is still an issue Ű some

level sets have contribution that is too small to well-approximate with small variance. For

example, if there is a single row with contribution F2(S)
(1+α)j , then it might not survive the

subsampling at a level Sℓ that is used to detect it, in which case it will never be sampled.

Alternatively, if it is sampled, it will be rescaled by a large amount, so that its level set will

APPROX/RANDOM 2022
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be sampled with abnormally large probability. Instead of handling this large variance, we

instead add a number of dummy rows to each level set, to ensure that their contributions

are all ŞsigniĄcantŤ and thus be well-approximated.

Now we have ŞgoodŤ approximations to the contributions of each level set within a

class, so we can Ąrst select a level set with probability proportional to the approximate

contributions of each level set and then uniformly sample a row from the level set. Of course,

we may uniformly sample a dummy row, in which case we say the algorithm fails to acquire

a sample. We show that the contribution added by the dummy rows is a constant fraction,

so this only happens with a constant probability. Thus with O
(
log 1

δ

)
constant number of

independent samples, we can boost the probability of successfully acquiring a sample to 1− δ

for any δ ∈ (0, 1]. We then set δ = 1
poly(n,T,d) .

Unbiased samples. Unfortunately, CountSketch using O
(

1
α2

)
buckets only guarantees

additive α L2(S) error to a particular row with constant probability. To achieve the standard

Şfor-allŤ guarantee across all n rows, an estimate for each row ai is then output by taking the

row with the median length across O (log n) independent instances. However, the median

row is no longer unbiased, which could potentially affect the convergence guarantees of SGD.

Instead, we use d separate instances of CountSketch, so that each instance handles a

separate coordinate of the vector. Thus if the goal is to output a noisy estimate to ai, we

have a separate CountSketch report each coordinate (ai)j , where j ∈ [d]. It can be shown

that the median of each estimated coordinate is an unbiased estimate to the true value (ai)j

of the coordinate because the probability mass function is symmetric about the true value

for each coordinate. Moreover, the error to a single coordinate (ai)j may be large relative to

the value of the coordinate in the case that (ai)j is not heavy with respect to ¶(ai)j♢i∈[n].

However, we show that the ŞoverallŤ error to all coordinates of ai is small relative to ∥ai∥2,

due to ai being a ŞheavyŤ row at the appropriate subsampling level.

Stochastic gradient descent with importance sampling. The main problem with the

proposed G-sampler is that it requires reading the entire matrix A but it cannot be repeatedly

used without incurring dependency issues. In particular, if a sampler at the Ąrst iteration of

SGD outputs a gradient Ai1x1 that is used to construct x2, then x2 is not independent of

the sampler and thus the same sampler should not be used to sample Ai2
x2. This suggests

that if we want to perform T steps of SGD with importance sampling, then we would require

T separate data structures, which would require Tnd time to construct for dense matrices,

but then we might as well just perform full gradient descent!

Instead in Section 3, we partition the matrix A among multiple buckets and create a

sampler for each bucket. Now as long as each bucket should have been sampled a single

time, then we will have a fresh sampler with independent randomness for each time a new

bucket is sampled. If we perform T steps of SGD with importance sampling, then roughly T

buckets should suffice, but we cannot guarantee that each bucket is sampled a single time.

For example, if only a single Ai is non-zero, then whichever bucket Ai is assigned to will be

sampled every single time.

Now the challenge is identifying the submatrices Ai = a⊤
i ai that may be sampled multiple

times, since we do not know the values of the vectors x1, . . . , xT a priori. Fortunately, we

know that ∥Aixt∥2 can only be large if ai has high sensitivity, where we deĄne the sensitivity

for a row ai in A to be the quantity maxx∈Rd

∥a
⊤

i (⟨ai,x⟩)∥
2∑

n

j=1
∥a

⊤
j

(⟨aj ,x⟩)∥
2

. Thus if a block is sampled

multiple times, then one of its rows must have large sensitivity.



S. Mahabadi, D. P. Woodruff, and S. Zhou 31:7

Hence, we would like to identify the buckets that contain any row with sensitivity at least
1
T and create T independent samplers for those buckets so that even if the same bucket is

sampled all T times, there will be a fresh sampler available. Crucially, the process of building

separate buckets for the rows with the large sensitivities can be identiĄed in just a single

pass over the data.

We remark that since each row has sensitivity maxx∈Rd

∥a
⊤

i (⟨ai,x⟩)∥
2∑

n

j=1
∥a

⊤
j

(⟨aj ,x⟩)∥
2

, then it can be

shown that the sum of the sensitivities is O (d log n) by partitioning the rows into O (log n)

classes C1, C2, . . . of exponentially increasing norm, so that ai ∈ Cℓ if 2ℓ ≤ ∥ai∥2 < 2ℓ+1. We

then note that the sensitivity of each row ai ∈ Cℓ is upper bounded by maxx∈Rd
♣⟨ai,x⟩♣∑

aj ∈Cℓ
♣⟨aj ,x⟩♣ .

However, this latter quantity is an L1 sensitivity, whose sum is known to be bounded by

O (d), e.g., [8]. Thus the sum of the sensitivities in each class is at most O (d) and so for a

matrix A whose entries are polynomially bounded by n, the sum of the sensitivities is at

most O (d log n).

Unfortunately, since the sensitivities sum to O (d log n), there can be up to Td rows with

sensitivity at least 1
T , so creating T independent samplers corresponding to each of these

rows would yield Ω(T 2d) samplers, which is a prohibitive amount of space. Instead, we

simply remove the rows with large sensitivities from the buckets and store them explicitly.

We then show this approach still avoids any sampler from being used multiple times across

the T iterations while also enabling the data structure to just use Õ (Td) samplers. Now

since we can explicitly consider the rows with sensitivities roughly at least 1
T , then we can

use Θ(T ) buckets in total to ensure that the remaining non-zero entries of A are partitioned

evenly across buckets that will only require Θ(log(Td)) independent samplers.

1.2 Applications

In this section, we discuss applications of our result to commonly used loss functions, such

as Lp loss or various M -estimators, e.g., [9, 8, 37, 29].

L1 and L2 regression. The Lp regression loss function is deĄned using fi(x) = ♣a⊤
i x− bi♣

p.

The case p = 2 corresponds to the standard least squares regression problem, while p = 1

corresponds to least absolute deviation regression, which is more robust to outliers than least

squares, but also less stable and with possibly multiple solutions. For p = 1, the subgradient

is ai · sgn(⟨ai, x⟩ − bi) while for p = 2, the subgradient is 2ai(⟨ai, x⟩ − bi).

Huber estimator. As previously discussed, Huber loss [13] is commonly used, e.g., [39, 9], to

achieve Gaussian properties for small residuals [12] and robust properties for large residuals

due to outliers or errors. The Huber estimator is also within a constant factor of other

M -estimators that utilize the advantage of the L1 loss function to minimize the impact

of large errors/outliers and that of the L2 loss function to be convex, such as the L1-L2

estimator and the Fair estimator [4]. Given a threshold τ > 0, the Huber loss H is deĄned

by H(x) = x2

2τ for ♣x♣ ≤ τ and H(x) = ♣x♣ − τ
2 for ♣x♣ > τ . Thus the subgradient for H is

ai

τ (⟨ai, x⟩ − bi) for ♣⟨ai, x⟩ − bi♣ ≤ τ and ai · sgn(⟨ai, x⟩ − bi) for ♣⟨ai, x⟩ − bi♣ > τ .

Ridge regression. It is often desirable for a solution x to be sparse. The natural approach

to encourage sparse solutions is to add a regularization λ∥x∥0 term to the loss function, for

some parameter λ > 0. However, since ∥x∥0 is not convex, ridge regression is often used as a

convex relaxation that encourage sparse solutions. The ridge regression loss function satisĄes

APPROX/RANDOM 2022
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fi(x) = (a⊤
i x−bi)

2 +λ ∥x∥2
2 for each i ∈ [n], so that λ regularizes the penalty term associated

with the squared magnitude of x. Higher values of λ push the optimal solution towards zero,

which leads to lower variance, as a particular coordinate has a smaller effect on the prediction.

The gradient for the ridge regression loss function satisĄes ∇fi(x) = 2ai(⟨ai, x⟩ − bi) + 2λx.

Lasso. Another approach that encourages sparsity is using the L1 regularization instead of

the L2 regularization. Least absolute shrinkage and selection operator (Lasso) regression uses

the loss function fi(x) = (a⊤
i x− bi)

2 +λ ∥x∥1. Whereas the penalty term associated for ridge

regression will drive down the Euclidean norm of x for larger λ, solutions with large L1 norm

are still possible if the mass of x is spread across a large number of coordinates. By contrast,

the penalty term associated for Lasso drives down the total magnitude of the coordinates

of x. Thus, in this sense, Lasso tends to drive coordinates to zero and encourages sparsity,

which does not usually happen for ridge regression. The subgradient for the Lasso regression

loss function satisĄes ∇fi(x) = 2ai(⟨ai, x − bi) + 2λ sgn(x), where we abuse notation by

using sgn(x) to denote the coordinate-wise sign of the entries of x.

Group lasso. [38] proposed Group Lasso as a generalization to Lasso. Suppose the weights

in x can be grouped into m groups: x(1), . . . , x(m). We group the columns of A = a1 ◦ . . .◦an

so that A(i) is the set of columns that corresponds to the weights in x(i). The Group Lasso

function is deĄned as fi(x) = (a⊤
i x− bi)

2 + λ
∑m

j=1

√
Gj∥x

(j)∥2, where Gj represents the

number of weights in x(j). Note that Group Lasso becomes Lasso for m = n.

1.3 Preliminaries

For an integer n > 0, we use [n] to denote the set ¶1, 2, . . . , n♢. We use boldfaced font

for variables that represent either vectors of matrices and plain font to denote variables

that represent scalars. We use the notation Õ (·) to suppress polylog factors, so that

f(T, n, d) = Õ (g(T, n, d)) implies that f(T, n, d) ≤ g(T, n, d) polylog(Tnd). Let A ∈ Rn×d

and B ∈ Rm×d. We use ◦ to denote vertical concatenation, so that A ◦B =


A

B


, and ⊗ to

denote outer product, so that the (i, j)-th entry of the matrix u ⊗ v ∈ Rm×n for u ∈ Rm

and v ∈ Rn is uivj . For a vector v ∈ Rn, we let ∥v∥
p
p =

∑n
i=1 vp

i and ∥v∥∞ = maxi ♣vi♣. For

a matrix A ∈ Rn×d, we denote the Frobenius norm of A by ∥A∥F =
√∑n

i=1

∑d
j=1 A2

i,j . We

also use ∥A∥p =
(∑n

i=1

∑d
j=1 ♣Ai,j ♣

p
 1

p

. For a function f , we use ∇f to denote its gradient.

▶ DeĄnition 6. A function f : Rd → R is convex if f(x) ≥ f(y) + ⟨∇f(y), x − y⟩ for all

x, y ∈ Rd.

▶ DeĄnition 7. A continuously differentiable function f : Rd → R is µ-smooth if

∥∇f(x)−∇f(y)∥2 ≤ µ ∥x− y∥2 ,

for all x, y ∈ Rd. Then it follows, e.g., by Lemma 3.4 in [6], that for every x, y ∈ Rd,

♣f(y)− f(x)− ⟨∇f(x), y− x⟩♣ ≤
µ

2
∥y− x∥

2
2 .

Recall that SGD offers the following convergence guarantees for smooth convex functions:
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▶ Theorem 8 ([26, 23]). Let F be a µ-smooth convex function and xopt = argmin F (x). Let

σ2 be an upper bound for the variance of the unbiased estimator across all iterations and

xk = x1+...+xk

k . Let each step-size ηt be η ≤ 1
µ . Then for SGD with initial position x0, and

any value of k,

E [F (xk)− F (xopt)] ≤
1

2ηk
∥x0 − xopt∥

2
2 +

ησ2

2
.

This means that k = O


1
ε2

(
σ2 + µ ∥x0 − xopt∥

2
2

2


iterations suffice to obtain an ε-

approximate optimal value by setting η = 1√
k

.

2 G-Sampler Algorithm

In this section, we describe our G-sampler, which reads a matrix A = a1 ◦ . . .◦an ∈ Rn×d and

a vector x ∈ Rd given after processing the matrix A, and outputs a gradient G(⟨ai, x⟩−bi, ai)

among the n gradients ¶G(⟨a1, x⟩ − b1, a1), . . . , G(⟨an, x⟩ − bn, an)♢ with probability roughly
∥G(⟨ai,x⟩−bi,ai)∥2∑

n

j=1
∥G(⟨aj ,x⟩−bj ,aj)∥2

. However, it is not possible to exactly return G(⟨ai, x⟩ − bi, ai) using

sublinear space; we instead return a vector v such that E [v] = G(⟨ai, x⟩ − bi, ai) and

∥v−G(⟨ai, x⟩ − bi, ai)∥ ≤ ε∥G(⟨ai, x⟩ − bi, ai)∥2. To achieve our G-sampler, we Ąrst require

a generalization of the standard L2-heavy hitters algorithm CountSketch [7], which we

describe in Section 2.1. We then describe our G-sampler in full in Section 2.2.

2.1 Heavy-Hitters

Before describing our generalization of CountSketch, we Ąrst require the following FG es-

timation algorithm that generalizes both well-known frequency moment estimation algorithm

of [1, 36] and symmetric norm estimation algorithm of [3] by leveraging the linear sketches

used in those data structures to support Şpost-processingŤ with multiplication by any vector

x ∈ Rd.

▶ Theorem 9 ([3]). Given a constant ε > 0 and an (α, ε)-smooth gradient G, there exists a

one-pass streaming algorithm Estimator that takes updates to entries of a matrix A ∈ Rn×d,

as well as vectors x ∈ Rd and b ∈ Rd that arrive after the stream, and outputs a quantity F̂

such that (1− ε)
∑

i∈[n] ∥G(⟨ai, x⟩− bi, ai)∥2 ≤ F̂ ≤ (1 + ε)
∑

i∈[n] ∥G(⟨ai, x⟩− bi, ai)∥2. The

algorithm uses d2

α2 polylog(nT ) bits of space and succeeds with probability at least 1− 1
poly(n,T ) .

We now describe a straightforward generalization of the L2-heavy hitter algorithm

CountSketch so that (1) it can Ąnd the Şheavy rowsŤ of a matrix A = a1 ◦ . . . ◦ an ∈

Rn×d rather than the Şheavy coordinatesŤ of a vector and (2) it supports post-processing

multiplication by a vector x ∈ Rd that arrives only after A is processed. Let Ai = ai ⊗ ai ∈

Rd×d for all i ∈ [n]. We deĄne tail(c) to be the n − c rows that do not include the

top c values of ∥Aix∥2. For a given ε > 0, we say a block Ai with i ∈ [n] is heavy if

∥Aix∥2 ≥ ε
∑

i∈tail(2/ε2) ∥Aix∥2.

The standard CountSketch algorithm for Ąnding the L2-heavy hitters among the

coordinates of a vector v of dimension n works by hashing the universe [n] across O
(

1
ε2

)

buckets. Each coordinate i ∈ [n] is also given a random sign σi and so the algorithm

maintains the O
(

1
ε2

)
signed sums

∑
σixi across all the coordinates hashed to each bucket.

Then to estimate xi, the algorithm simply outputs σiCh(i), where Ch(i) represents the

counter corresponding to the bucket to which coordinate i hashes. It can be shown that

APPROX/RANDOM 2022
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E
[
σiCh(i)

]
= xi, where the expectation is taken over the random signs σ and the choices of

the hash functions. Similarly, the variance of the estimator can be bounded to show that

with constant probability, the estimator has additive error O (ε) ∥x∥2
2 to xi with constant

probability. Thus if xi > ε ∥x∥2
2, the algorithm will be able to identify coordinate i as a

heavy-hitter (in part by allowing some false positives). We give the algorithm in full in

Algorithm 1.

Algorithm 1 Output heavy vectors (⟨ai, x⟩)ai, where x can be a vector that arrives after A is

processed.

Input: Matrix A ∈ Rn×d, vector x ∈ Rd, accuracy parameter ε > 0, failure parameter

δ ∈ (0, 1].

Output: Noisy vectors a⊤
i aix with

∥∥a⊤
i aix

∥∥2

2
≥ ε2

∑
i∈tail(2/ε2)

∥∥a⊤
i aix

∥∥2

2
.

1: b← Ω
(

1
δε4

)

2: Let T contain b buckets, each initialized to the all zeros Rd×d matrix.

3: Let σi ∈ ¶−1, +1♢ be drawn from 4-wise independent family for i ∈ [n].

4: Let h : [n]→ [b] be 2-wise independent

5: Process A:

6: Let A = a1 ◦ . . . ◦ an, where each ai ∈ Rd.

7: for each j = 1 to n do

8: Aj ← aj ⊗ aj

9: Add σjAj to the matrix in bucket h(j).

10: Let Mj be the matrix in bucket j of T for i ∈ [r], j ∈ [b].

11: Process x:

12: for j ∈ [b] do

13: vj ←Mjx

14: On query k ∈ [n], report σkvh(k).

Thus Algorithm 1 can be used to give the following guarantee by taking the median of

the norms of O (log(nT )) copies, as well as the vector that realizes the median.

▶ Lemma 10 ([22]). There exists an algorithm that uses O
(

d2

ε2 log2 n


space and outputs

a set S of indices so that with probability 1 − 1
poly(n,T ) , for all i ∈ [n], i ∈ S if ∥Aix∥2 ≥

ε
∑

j∈tail(2/ε2) ∥Ajx∥2 and i /∈ S if ∥Aix∥2 ≤
ε
2

∑
j∈tail(2/ε2) ∥Ajx∥2. The algorithm uses

O
(

d2

ε2 log2(nT )


space.

However, the vector that realizes the median of the norms may no longer be an unbiased

estimate to each heavy-hitter. Unfortunately, we shall require unbiased estimates to each

heavy-hitter, because we will use estimated heavy-hitters as unbiased gradients as part of

SGD with importance sampling. Thus we give an additional algorithm so that for each

i ∈ S reported by Algorithm 1, the algorithm outputs an unbiased estimate to the vector

(⟨ai, x⟩)ai with a ŞsmallŤ error, in terms of the total mass
∑

i∈tail(2/ε2) ∥Aix∥2 excluding the

largest 2
ε2 rows.

To that end, we instead run d separate instances of CountSketch to handle the d

separate coordinates of each heavy-hitter Aix. We show that the median of each estimated

coordinate is an unbiased estimate to the coordinate (Aix)j , since the probability mass

function is symmetric about the true value for each coordinate. Furthermore, we show that

although the error to a single coordinate (Aix)j may be large compared to ♣(Aix)j ♣, the

error is not large compared to
∑

i∈tail(2/ε2) ∥Aix∥2.
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▶ Lemma 11. There exists an algorithm that uses O
(

d2

ε2 log2(nT )


space and outputs a

vector yi for each index i ∈ [n] so that ♣ ∥yi∥2 − ∥Aix∥2 ♣ ≤ ε
∑

i∈tail(2/ε2) ∥Aix∥2 and

E [yi] = Aix with probability at least 1− 1
poly(n,T ) .

However if say, we want to identify the heavy gradients (⟨ai, x⟩ − bi)ai, then we create

separate data structures for the constant (in x) term biai and the linear term (ai ⊗ ai)x,

using the same buckets, hash functions, and random signs. For the constant term data

structure, we hash the scaled rows biai into O
(

1
ε2

)
buckets, so that each bucket contains a

vector that represents the signed sum of the (scaled) rows of A that hash to the bucket. For

the linear term data structure, we hash the outer products Ai := ai⊗ ai into O
(

1
ε2

)
buckets,

so that each bucket contains a vector that represents the signed sum of the matrices Ai that

hash to the bucket. Once the vector x arrives after A is processed, then we can multiply

each of the matrices stored by each bucket by x. Since the signed sum is a linear sketch, this

procedure is equivalent to originally taking the signed sums of the vectors Aix. Similarly, by

linearity, we can then take any linear combination of the two data structures to identify the

heavy gradients (⟨ai, x⟩ − bi)ai.

2.2 G-Sampler Algorithm

In this section, we Ąrst describe our G-sampler algorithm, where we sample a gradient

G(⟨ai, x⟩ − bi, ai) with probability proportional to ∥G(⟨ai, x⟩ − bi, ai)∥2. Given an accuracy

parameter ε > 0, let α be a constant, parametrized by ε, so that (1− ε)FG(v) ≤ FG(u) ≤

(1 + ε)FG(v), for any u with ∥u−v∥2 ≤ α∥v∥2. As our data structure will be a linear sketch,

we focus on the case where we fold the measurement vector b into a column of A, so that we

want to output a gradient Aix := (ai ⊗ ai)x.

Our algorithm Ąrst partitions the rows of A into classes, based on their L2 norm. For

example, if all entries of A are integers, then we deĄne class Ck := ¶ai : 2k−1 ≤ ∥ai∥2 < 2k♢.

We create a separate data structure for each class. We will use the FG estimation algorithm

on each class to Ąrst sample a particular class. It then remains to sample a particular vector

(ai ⊗ ai)x from a class.

Depending on the vector x, the vectors (ai⊗ai)x in a certain class Ck can have drastically

different L2 norm. We deĄne level set Γj as the vectors that satisfy (1+ε)j−1 ≤ ∥(ai⊗ai)x∥2 <

(1 + ε)j . If we could estimate ♣Γj ♣, then we could estimate the contribution of each level set

Γj toward the overall mass
∑

i∈Ck
∥(ai ⊗ ai)x∥2, so we can then sample a speciĄc level set

Γj from the class Ck. To that end, we create L = O (log n) substreams, S1, . . . , SL, so that

we sample each row with probability 1
2ℓ−1 in substream Sℓ.

The point is that if the contribution of level set Γj is ŞsigniĄcantŤ, then there exists a

speciĄc substream Sℓ in which the vectors of Γj will be likely detected by the heavy-hitter

algorithm we introduced in Section 2.1, if they are sampled by Sℓ. We can then use these

vectors that are output by the heavy-hitter algorithm to estimate the contribution of level

set Γj . However, if the contribution of level set Γj is not signiĄcant, then there may not

be any vectors of Γj that survive the sampling in substream Sℓ. Thus we add a number of

Şdummy rowsŤ to each level set to insist that all level sets are signiĄcant, so that we can

estimate their contributions.

We then sample a level set Γj with probability proportional to its contribution and

uniformly select a (noisy) vector from the level set. If the selected vector is one of the original

rows of the matrix, then we output the noisy vector. Otherwise, we say the sampler has

failed. We show that the sampler only fails with constant probability, so it suffices to run

O
(
log 1

δ

)
independent instances to boost the probability of success to any arbitrary 1− δ.

The algorithm for selecting a level set Γj from a speciĄc class Ck appears in Algorithm 2.
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We Ąrst show that the dummy rows only contribute at constant multiple of the mass

FG(S) =
∑n

i=1 ∥Aix∥2, where we assume for simplicity that all rows of A are in the same

class.

▶ Lemma 12. Let S be the input data stream with subsamples S1, . . . , SL. Let S̃ be the input

data stream with the additional dummy rows and corresponding subsamples S̃1, . . . , S̃L. Then

2FG(S) ≥ FG(S̃) ≥ FG(S).

We would now like to show that with high probability, each of the substreams have

exponentially smaller mass FG(Sj). However, this may not be true. Consider a single row

ai that contributes a constant fraction of FG(S). Then even for j = log n, the probability

that ai is sampled is roughly 1
n ≫

1
poly(n) . Instead, we note that CountSketch satisĄes

the stronger tail guarantee in Lemma 11. Hence for each j ∈ [K], we deĄne S
tail(t)
j to be

the frequency vector Sj with its t largest entries set to zero and we show an exponentially

decreasing upper bound on FG(
˜
S

tail(t)
j ).

▶ Lemma 13. With high probability, we have that for all j ∈ [K], FG(
˜
S

tail(t)
j ) ≤

FG(S)
2j log(nT ) for t = O

(
log n
α3


.

We also show that the estimated contribution of each level set (after incorporating the

dummy rows) is a (1 + α)-approximation of the true contribution.

▶ Lemma 14. With high probability, we have that for all j ∈ [K], (1− ε)FG(S̃j) ≤ F̃G(S̃j) ≤

(1 + ε)FG(S̃j).

Finally, we show that each row is sampled with the correct distribution and is an unbiased

estimate.

▶ Lemma 15. Suppose that 2k < ∥ai∥2 ≤ 2k+1 for all i ∈ [n]. Then the probability that

Algorithm 2 outputs a noisy vector v such that ∥v− ai(⟨ai, x⟩ − bi)∥2 ≤ α∥ai(⟨ai, x⟩ − bi)♣∥2

with E [v] = ai(⟨ai, x⟩ − bi) is pv = (1±O (ε)) G(ai(⟨ai,x⟩−bi))

FG(S̃)
+ 1

poly(nT ) .

Putting things together, we have the guarantees of Theorem 5 for our G-sampler.

3 SGD Algorithm and Analysis

Before introducing our main SGD algorithm, we recall the following algorithm, that essentially

outputs noisy version of the rows with high ŞimportanceŤ. Although Sampler outputs a

(noisy) vector according to the desired probability distribution, we also require an algorithm

that automatically does this for indices i ∈ [n] that are likely to be sampled multiple

times across the T iterations. Equivalently, we require explicitly storing the rows with high

sensitivities.

▶ Theorem 16 ([5]). Given a constant ε > 0, there exists an algorithm Sens that returns

all indices i ∈ [n] such that supx
♣ai(⟨ai,x⟩−bi)♣∑

n

j=1
♣aj(⟨aj ,x⟩−bj)♣ ≥

1
200T d for some x ∈ Rn, along with

the vector ai(⟨ai, x⟩ − bi). The algorithm requires a single pass over A = a1 ◦ . . . ◦ an, uses

Õ
(
nd2 + Td2

)
runtime and Õ

(
Td2

)
space, and succeeds with probability 1− 1

poly(n) .

The quantity supx
∥ai(⟨ai,x⟩−bi)∥2∑

n

j=1
∥aj(⟨aj ,x⟩−bj)∥2

can be considered the sensitivity of row ai and can

be interpreted as a measure of ŞimportanceŤ of the row ai with respect to the other rows

of A.
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Algorithm 2 G-sampler for a single class of rows.

Input: Rows a1, . . . , an of a matrix A ∈ Rn×d with 2k ≤ ∥ai∥2 < 2k+1 for all i ∈ [n],

function G, accuracy parameter α for sampling parameter ε

Output: Noisy row v with the correct sampling distribution induced by G

1: γ uniformly at random from [1/2, 1], K ← O
(

log n
α


, L← O (log n)

2: for ℓ ∈ [L] do ▷Processing stage

3: Form a stream Sℓ by sampling each row with probability 2−ℓ+1

4: Run CountSketch
(1)
ℓ with threshold O

(
α3

log n


and failure probability 1

poly(n,T ) by

creating a table A
(1)
ℓ with entries a⊤

j aj in Sℓ and a table B
(1)
ℓ with entries aj ▷Identify

heavy-hitters

5: Run CountSketch
(2)
ℓ with threshold O

(
α3

log n


and failure probability 1

poly(n,T ) by

creating a table A
(2)
ℓ with entries a⊤

j aj in Sℓ and a table B
(2)
ℓ with entries aj and

separately considering coordinates after post-processing ▷Unbiased estimates of

heavy-hitters, see Lemma 11

6: for ℓ ∈ [L] do ▷Post-processing

7: Set C
(i)
ℓ = A

(i)
ℓ x + B

(i)
ℓ with post-multiplication by x for i ∈ ¶1, 2♢

8: Query M̂ ∈ [M/2, 2M ], where M =
∑n

i=1 ∥G(⟨ai, x⟩ − bi, ai)∥2

9: for j ∈ [K] do

10: if j > log(1+α)
log2 n

α3 then

11: Add O
(

(1+α)jα3

log n


dummy rows that each contribute O

(
M̂

(1+α)jα2


to FG

12: Let H
(i)
ℓ be the heavy rows of C

(i)
ℓ for i ∈ ¶1, 2♢ from CountSketch

(i)
ℓ

13: for j ∈ [K] do

14: Lj ← max
(

1, log α2(1+α)j

log n



15: Let Xj be the estimated heavy-hitters v from H
(2)
j that are reported by H

(1)
j with

G(v) in
[

8γM̂
(1+α)j+1 , 8γM̂

(1+α)j



16: if Lj = 1 then

17: F̃G(S̃j)←
∑

v∈Xj

8γM̂
(1+α)j+1

18: else if Lj > 1 and ♣Xj ♣ >
1

α2 then

19: F̃G(S̃j)←
∑

v∈Xj

8γM̂
(1+α)j+1 · 2

Lj

20: else

21: F̃G(S̃j)← 0

22: Sample j ∈ [K] with probability
F̃G(S̃j)∑

F̃G(S̃j)

23: Sample v from Xj with probability 1
Xj

24: if v is a dummy row then

25: return ⊥

26: else

27: return v

We now proceed to describe our main SGD algorithm. For the Ąnite-sum optimization

problem min
x∈Rd

F (x) := 1
n

∑n
i=1 G(⟨ai, x⟩ − bi, ai), where each G is a piecewise function of a

polynomial with degree at most 1, recall that we could simply use an instance of Sampler

as an oracle for SGD with importance sampling. However, naïvely running T SGD steps
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requires T independent instances, which uses Tnd runtime by Theorem 5. Thus, as our main

theoretical contribution, we use a two level data structure by Ąrst implicitly partitioning

the rows of matrix A = a1 ◦ . . . ◦ an into β := Θ(T ) buckets B1, . . . , Bβ and creating an

instance of Estimator and Sampler for each bucket. The idea is that for a given query

xt in SGD iteration t ∈ [T ], we Ąrst query xt to each of the Estimator data structures to

estimate
∑

i∈Bj
G(⟨ai, x⟩ − bi, ai) for each j ∈ [β]. We then sample index j ∈ [β] among the

buckets B1, . . . , Bβ with probability roughly

∑
i∈Bj

G(⟨ai,x⟩−bi,ai)∑
n

i=1
G(⟨ai,x⟩−bi,ai)

. Once we have sampled

index j, it would seem that querying the instance Sampler corresponding to Bj simulates

SGD, since Sampler now performs importance sampling on the rows in Bj , which gives the

correct overall probability distribution for each row i ∈ [n]. Moreover, Sampler has runtime

proportional to the sparsity of Bj , so the total runtime across the β instances of Sampler

is Õ (nd).

However, an issue arises when the same bucket Bj is sampled multiple times, as we

only create a single instance of Sampler for each bucket. We avoid this issue by explicitly

accounting for the buckets that are likely to be sampled multiple times. Namely, we show that

if G(⟨ai,xt⟩−bi,ai)∑
n

j=1
G(⟨aj ,xt⟩−bj ,aj)

< O
(

1
T

)
for all t ∈ [T ] and i ∈ [n], then by BernsteinŠs inequality,

the probability that no bucket Bj is sampled at least 2 log T times is at least 1 − 1
poly(T ) .

Thus we use Sens to separate all such rows ai whose sensitivities violate this property from

their respective buckets and explicitly track the SGD steps in which these rows are sampled.

The natural approach would be to create T samplers for each of the rows with sensitivity

at least Ω
(

1
T

)
, ensuring that each of these samplers has access to fresh randomness in each

of the T SGD steps. However since the sensitivities sum to O (d log n), there can be up to

O (Td log n) rows with sensitivity at least Ω
(

1
T

)
, so creating T samplers for each of these

rows could create up to Θ(T 2d log n) samplers, which is prohibitively expensive in T . Instead,

we simply keep each row with sensitivity at least Ω
(

1
T

)
explicitly, while not including them

in the bucket. Due to the monotonicity of sensitivities, the sensitivity of each row may only

decrease as the stream progresses. In the case that a row had sensitivity at least Ω
(

1
T

)
at

some point, but then no longer exceeds the threshold at some later point, then the row is

given as input to the sampler corresponding to the bucket to which the row hashes and then

the explicit storage of the row is deleted. This ensures we need only Õ (Td) samplers while

still avoiding any sampler from being used multiple times across the T SGD steps. We give

the algorithm in full in Algorithm 3.

The key property achieved by Algorithm 3 in partitioning the rows and removing the

rows that are likely to be sampled multiple times is that each of the Sampler instances are

queried at most once.

▶ Lemma 17. With probability at least 98
100 , each t ∈ [T ] uses a different instance of

Samplerj.

Theorem 4 then follows from Lemma 17 and the sampling distribution guaranteed by

each subroutine in Lemma 15. In particular, Lemma 17 crucially guarantees that each step

t ∈ [T ] of SGD will receive a vector with fresh independent randomness. Moreover, we have

that each (noisy) vector has small variance and is an unbiased estimate of a subgradient

sampled from nearly the optimal importance sampling probability distribution.

▶ Theorem 4. Given an input matrix A ∈ Rn×d whose rows arrive sequentially in a data

stream along with the corresponding labels of a measurement vector b ∈ Rd, and a measure

function M whose derivative is a continuous union of piecewise constant or linear functions,

there exists an algorithm that performs T steps of SGD with variance within a constant factor

of the optimal sampling distribution. The algorithm uses Õ
(
nd2 + Td2

)
pre-processing time

and Td2 polylog(Tnd) words of space.
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Algorithm 3 Approximate SGD with Importance Sampling.

Input: Matrix A = a1 ◦ . . . ◦ an ∈ Rn×d, parameter T for number of SGD steps.

Output: T gradient directions.

1: Preprocessing Stage:

2: β ← Θ(T ) with a sufficiently large constant in the Θ.

3: Let h : [n]→ [β] be a uniformly random hash function.

4: Let Bj be the matrix formed by the rows ai of A with h(i) = j, for each j ∈ [β].

5: Create Θ(log(Td)) instances Estimatorj and Samplerj for each Bj with j ∈ [β] with

ε = 1
2 .

6: Run Sens to Ąnd a set L0 of rows with sensitivity at least Ω
(

1
T

)
.

7: Gradient Descent Stage:

8: Randomly pick starting location x0

9: for t = 1 to T do

10: Let qi be the output of Estimatorj on query xt−1 for each i ∈ [β].

11: Sample j ∈ [β] with probability pj =
qj∑

i∈[β]
qi

.

12: if there exists i ∈ L0 with h(i) = j then

13: Use Estimatorj , L0, and Samplerj to sample gradient wt = ∇̂fit
(xt)

14: else

15: Use fresh Samplerj to sample gradient wt = ∇̂fit
(xt)

16: p̂i,t ←
∥wt∥2

2∑
j∈[β]

qj

17: xt+1 ← xt −
ηt

np̂i,t

·wt

Proof. Consider Algorithm 3. By Lemma 17, each time t ∈ [T ] uses a fresh instance of

Samplerj , so that independent randomness is used. A possible concern is that each instance

Estimatorj is not using fresh randomness, but we observe that the Estimator procedures

are only used in sampling a bucket j ∈ [β]; otherwise the sampling uses fresh randomness

whereas the sampling is built into each instance of Samplerj . By Theorem 5, each index i is

sampled with probability within a factor 2 of the importance sampling probability distribution.

By Theorem 9, we have that p̂i,t is within a factor 4 of the probability pi,t induced by optimal

importance sampling SGD. Note that wt = ̂G(⟨ai, xt⟩ − bi, ai) is an unbiased estimator of

G(⟨ai, xt⟩ − bi, ai) and G(wt) is a 2-approximation to G(xt) by Theorem 5. Hence, the

variance at each time t ∈ [T ] of Algorithm 3 is within a constant factor of the variance

σ2 = (
∑n

i=1 G(⟨ai, xt⟩ − bi, ai))
2
−
∑n

i=1 G(⟨ai, xt⟩− bi, ai)
2 of optimal importance sampling

SGD.

By Theorem 5, Theorem 9, and Theorem 16, the preprocessing time is d2 polylog(nT ) for

ε = O (1) and β = Θ(T ), but partitioning the non-zero entries of A across the β buckets and

the space used by the algorithm is Õ
(
Td2

)
. Once the gradient descent stage of Algorithm 3

begins, it takes Td2 polylog(n) time in each step t ∈ [T ] to query the β = Θ(T ) instances of

Sampler and Estimator, for total time Td2 polylog(n). ◀

Finally, we derandomize our algorithm in Appendix B with an extra logarithmic factor in

the space complexity by using the following formulation of NisanŠs pseudorandom generator:

▶ Theorem 18 (Nisan’s Pseudorandom Generator). [28] Let A be an algorithm that uses

S = Ω(log n) space and R random bits. Then there exists a pseudorandom generator for A

that succeeds with high probability and runs in O (S log R) bits.
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A Missing Proofs from Section 2

Proof of Lemma 11. Given A ∈ Rn×d, let Ai = a⊤
i ai for all i ∈ [n]. For a Ąxed coordinate

k ∈ [d], we deĄne a vector v(k) ∈ Rn so that for each i ∈ [n], the i-th coordinate of v(k) is

the k-th coordinate of Aix ∈ Rd.

Suppose we run a separate CountSketch instance on v(k). For a Ąxed index i ∈ [n],

let h(i) be the bucket of T to which v
(k)
i hashes. For each j ∈ [n], let Ij be the indicator

variable for whether v
(k)
j also hashes to bucket h(i), so that Ij = 1 if h(i) = h(j) and Ij = 0

if h(i) ̸= h(j). Similarly for each j ∈ [n], let sj be a random sign assigned to j, so that the

estimate for v
(k)
i by a single row of CountSketch is

∑

j∈[n]

sisjIjv
(k)
j = v

(k)
i +

∑

j:h(j)=h(i)

rjv
(k)
j ,

where rj = sisj satisĄes rj = 1 with probability 1
2 and rj = −1 with probability 1

2 . Thus if

yi is the estimate for v
(k)
i , then for any real number u, we have that

Pr
[
yi = v

(k)
i + u

]
= Pr

[
yi = v

(k)
i − u

]
,

so that the probability mass function of yi is symmetric about v
(k)
i . Thus given ℓ independent

instances of CountSketch with estimates y
(k,1)
i , . . . , y

(k,ℓ)
i for v

(k)
i and any real numbers

u(1), . . . , u(ℓ),

Pr

[
y

(k,1)
i = v

(k)
i + u

(1)
, . . . , y

(k,ℓ)
i = v

(k)
i + u

(ℓ)
]

= Pr

[
y

(k,1)
i = v

(k)
i − u

(1)
, . . . , y

(k,ℓ)
i = v

(k)
i − u

(ℓ)
]

.

Therefore, the joint probability mass function is symmetric about (v
(k)
i , . . . , v

(k)
i ) and so the

median across the ℓ instances of CountSketch is an unbiased estimator to v
(k)
i . Finally,

we have due to the properties of CountSketch that if each hash function h maps to a

universe of size O
(

1
ε2

)
and ℓ = O (log(nT )), then with probability at least 1− 1

poly(T,n) , the

output estimate for v
(k)
i has additive error at most ε ·

(∑
j∈tail(2/ε2)(v

(k)
i )2

1/2

.

Thus using each of the estimated outputs across all k ∈ [d], then for a Ąxed i ∈ [n], we

can output a vector yi such that E [yi] = Aix and with probability at least 1− 1
poly(T,n) ,

♣ ∥yi∥2 − ∥Aix∥2 ♣ ≤ ε ·


 ∑

i∈tail(2/ε2)

∥Aix∥
2
2




1/2

.
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For a Ąxed k ∈ [d], then our algorithm intends to hash the k-th coordinate of Aix ∈ Rd.

However, since x is only given after the data structure is already formed and in particular,

after Ai is given, then CountSketch must hash the k-th row of Ai entirely, thus storing

O
(

d
ε2 log2(nT )

)
bits for each coordinate k ∈ [d]. Hence across all k ∈ [d], the algorithm uses

the total space O
(

d2

ε2 log2(nT )


. ◀

Proof of Lemma 12. Since S̃ includes all the rows of S, then FG(S̃) ≥ FG(S). Since each

level j ∈ [K] acquires O
(

(1+α)jα3

log n


dummy rows that each contribute O

(
M̂

(1+α)jα2


to

FG in S̃, then each level of FG(S) contributes at most O
(

M̂ ·α
log n


more to FG(S̃). Because

K = O
(

log n
α


, then the total additional contribution by the dummy rows is at most O

(
M̂


.

Since M̂ ≤ 2FG(S), then it follows that for sufficiently small constant in the contribution of

each dummy row, we have FG(S̃)− FG(S) ≤ FG(S) and thus, FG(S̃) ≤ 2FG(S). ◀

Proof of Lemma 13. Observe that the number of rows that exceed M̂
2j is at most 2j+1. Thus

the expected number of rows that exceed M̂
2j sampled by Sj is at most 1

2 . Hence by Chernoff

bounds, the probability that the number of rows that exceed M̂
2j sampled by Sj is more than

t = O
(

log n
α3


is 1

poly(nT ) . ◀

Proof of Lemma 14. Suppose that for each j ∈ [K], level j consists of Nj rows and note

that Nj ≥ O
(

(1+α)jα3

log n


elements due to the dummy rows. Each element is sampled with

some probability pLj
, where Lj = max

(
1, log α2(1+α)j

log n


and thus pLj

(1 + α)j > 1 since

pLj
= 1

2Lj
. Let N̂j be the number of items sampled in S̃Lj

. We have E
[
2Lj · N̂j

]
= Nj

and the second moment is at most Nj · 2
Lj ≤ α2

log n (Nj)2. Thus by Chernoff bounds with

O (log n)-wise independence, we have that with high probability,

(1−O (α))Nj ≤ 2Lj · N̂j ≤ (1 +O (α))Nj .

Each estimated row norm is a (1 + α)-approximation to the actual row norm due to

Lemma 13. Thus by Lemma 12, we have that FG(S̃j) ≤ 2FG(Sj) so that each of the N̂j rows

will be detected by the threshold of CountSketch with the tail guarantee, i.e., Lemma 11.

Moreover, we assume that a noisy row with (1 + α)-approximation to the row norm of the

original vector suffices to obtain a (1 + ε)-approximation to the contribution of the row.

Therefore, the result then follows in an ideal scenario where G(v) ∈
[

M̂
2j , 2M̂

2j


if and only if

the corresponding row ai satisĄes G(ai) ∈
[

M̂
2j , 2M̂

2j


. Unfortunately, this may not be true

because G(ai) may lie near the boundary of the interval
[

M̂
2j , 2M̂

2j


while the estimate G(v)

has a value that does not lie within the interval. In this case, G(v) is used toward the

estimation of some other level set.

Hence, our algorithm randomizes the boundaries of the level sets
[

4γM̂
2j , 8γM̂

2j


by choosing

γ ∈ [1/2, 1) uniformly at random. Since the threshold of CountSketch is O
(

α3

log n


then the

probability that each row ai is misclassiĄed over the choice of γ is at most O (ε). Moreover,

if ai is misclassiĄed, then its contribution can only be classiĄed into level set j − 1 or

j + 1, inducing an incorrect multiplicative factor of at most two. Hence, the error due

to the misclassiĄcation across all rows is at most O (ε) fraction of FG(Sj) in expectation.

By MarkovŠs inequality, this error is a most ε-fraction of FG(Sj) with probability at least

3/4. Then by taking the median across O (log(nT )) independent instances, we obtain high

probability of success. ◀
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Proof of Lemma 15. Conditioned on the correctness of each of the estimates F̃G(S̃j), which

occurs with high probability by Lemma 14, the probability that the algorithm selects

j ∈ [K] is
F̃G(S̃j)∑

j∈[K]
F̃G(S̃j)

. Conditioned on the algorithm selecting j ∈ [K], then either the

algorithm will choose a dummy row, or it will choose a row uniformly at random from

the rows v ∈ Xj , where Xj is the set of heavy-hitters reported by Hj with L2 norm in[
8γM̂

(1+α)j+1 , 8γM̂
(1+α)j


. The latter event occurs with probability

F̃G(Sj)

F̃G(S̃j)
. Due to the tail guarantee

of CountSketch in Lemma 11, we have that each heavy hitter v ∈ Xj corresponds to a

vector ai(⟨ai, x⟩ − bi) such that ∥v− ai(⟨ai, x⟩ − bi)∥2 ≤ ε∥ai(⟨ai, x⟩ − bi)♣∥2. Moreover, by

Lemma 11, we have that E [v] = ai(⟨ai, x⟩ − bi). Hence the probability that vector v is

selected is (1±O(α))G(ai(⟨ai,x⟩−bi)

F̃G(Sj)
. ◀

Putting things together, we have the guarantees of Theorem 5 for our G-sampler.

▶ Theorem 5. Given an (α, ε)-smooth gradient G, there exists an algorithm Sampler

that outputs a noisy vector v such that ∥v − ai(⟨ai, x⟩ − bi)∥2 ≤ α∥ai(⟨ai, x⟩ − bi)♣∥2 and

E [v] = ai(⟨ai, x⟩ − bi) is (1±O (ε)) ∥G(⟨ai,x⟩−bi,ai)∥2∑
j∈[n]

∥G(⟨aj ,x⟩−bj ,aj)∥2
+ 1

poly(n) . The algorithm uses

d2 poly
(
log(nT ), 1

α

)
update time per arriving row and Td2 poly

(
log(nT ), 1

α

)
total bits of

space.

Proof. We deĄne a class Ck of rows as the subset of rows of the input matrix A such that

2k ≤ ∥ai∥2 < 2k+1. We Ąrst use the estimator algorithm in Theorem 9 to sample a class k of

rows with probability

∑
ai∈Ck

G(⟨ai,x⟩−bi,ai)∑
j∈[n]

G(⟨aj ,x⟩−bj ,aj)
. Once a class Ck is selected, then outputting a

row from Ck under the correct distribution follows from Lemma 15. The space complexity

follows from storing a d× d matrix in each of the O
(

log2(nT )
α3


buckets in CountSketch

for threshold O
(

α3

log(nT )


and high probability of success. ◀

B Missing Proofs from Section 3

Proof of Lemma 17. Let C > 0 be a sufficiently large constant. For any t ∈ [T ] and i ∈ [n],

G(ai(⟨ai, x⟩ − bi)) ≥
1

CT

∑
j∈[n] G(aj(⟨aj , x⟩ − bj)) only if there exists a row in ai ◦ bi whose

sensitivity is at least 1
CT . However, we have explicitly stored all rows ai ◦ bi with sensitivity

Ω
(

1
T

)
and removed them from each G-sampler.

Thus, for all j ∈ [β] so that h(i) ̸= j for any index i ∈ [n] such that G(ai(⟨ai, x⟩ − bi)) ≤
1

CT

∑
k∈[n] G(ak(⟨ak, x⟩ − bk)), we have

∑

i:h(i)=j

G(ai(⟨ai, x⟩ − bi)) ≤
log(Td)

200T

∑

k∈[n]

G(ak(⟨ak, x⟩ − bk)),

with probability at least 1− 1
poly(T d) by BernsteinŠs inequality and a union bound over j ∈ [β],

where β = Θ(T ) is sufficiently large. Intuitively, by excluding the hash indices containing

ŞheavyŤ matrices, the remaining hash indices contain only a small fraction of the mass with

high probability.

We analyze the probability that any bucket containing rows with sensitivity less than

O
(

1
T

)
are sampled more than Ω(T log(Td)) times, since we create O (T log(Td)) separate

G-samplers for each of these buckets. By a coupling argument and Chernoff bounds, the

probability that any j ∈ [β] with
∑

i:h(i)=j G(ai(⟨ai, x⟩−bi)) ≤
log(T d)

200T

∑
k∈[n] G(ak(⟨ak, x⟩−
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bk)) is sampled more than 200 log(Td) times is at most 1
poly(T d) for any t ∈ [T ], provided

there is no row with h(i) = j whose sensitivity is at least 1
CT . Thus, the probability that some

bucket j ∈ [β] is sampled more than 200 log(Td) times across T steps is at most 1
poly(T d) .

In summary, we would like to maintain T separate instances of G-samplers for the heavy

matrices and Θ(log(Td)) separate instances of G-samplers for each hash index that does not

contain a heavy matrix, but this creates a Ω(T 2) space dependency. Instead, we explicitly

store the heavy rows with sensitivity Ω
(

1
T

)
, removing them from the heavy matrices, and

manually perform the sampling, rather than rely on the G-sampler subroutine. There can be

at most O (Td log n) such rows, resulting in O
(
Td2 log n

)
overall space for storing these rows

explicitly. Since the resulting matrices are light by deĄnition, we can maintain Θ(log(Td))

separate instances of G-samplers for each of the Θ(T ) buckets, which results in Õ
(
Td2

)

space overall. With probability at least 98
100 , any hash index not containing a heavy matrix is

sampled only once, so each time t ∈ [T ] has access to a fresh G-sampler. ◀

Derandomization of the algorithm. To derandomize our algorithm, we Ąrst recall the

following formulation of NisanŠs pseudorandom generator.

▶ Theorem 19 (Nisan’s Pseudorandom Generator, [28]). Let A be an algorithm that uses

S = Ω(log n) space and R random bits. Then there exists a pseudorandom generator for A

that succeeds with high probability and runs in O (S log R) bits.

The goal of NisanŠs PRG is to fool a small space tester by generating a number of pseudoran-

dom bits in a read-once tape in place of a number of truly random bits. In the row-arrival

model, the updates to each row ai of A ∈ Rn×d arrive sequentially, so it suffices to use

a read-once input tape. Thus a tester that is only allowed to S space cannot distinguish

between the output of our algorithm using true randomness and pseudorandom bits gen-

erated by NisanŠs PRG. Since our algorithm uses S = Td2 polylog(Tnd) bits of space and

R = poly(n, T, d) bits of randomness, then it can be randomized by NisanŠs PRG while using

Td2 polylog(Tnd) total space.
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