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—— Abstract

We introduce data structures for solving robust regression through stochastic gradient descent

(SGD) by sampling gradients with probability proportional to their norm, i.e., importance sampling.
Although SGD is widely used for large scale machine learning, it is well-known for possibly experien-
cing slow convergence rates due to the high variance from uniform sampling. On the other hand,
importance sampling can significantly decrease the variance but is usually difficult to implement
because computing the sampling probabilities requires additional passes over the data, in which case
standard gradient descent (GD) could be used instead. In this paper, we introduce an algorithm that
approximately samples T gradients of dimension d from nearly the optimal importance sampling
distribution for a robust regression problem over n rows. Thus our algorithm effectively runs 7" steps
of SGD with importance sampling while using sublinear space and just making a single pass over the
data. Our techniques also extend to performing importance sampling for second-order optimization.
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1 Introduction

Given a matrix A € R"*? with rows ai, ...,a, € R? and a measurement/label vector b € R,
we consider the standard regression problem

n

min £(x) := ZM(<ai,X> —b;),

]Rd
x€ i=1

where M : R — R2Y is a function, called a measure function, that satisfies M (x) = M (—x)
and is non-decreasing in |x|. An M-estimator is a solution to this minimization problem
and for appropriate choices of M, can combine the low variance of Lo regression with the
robustness of L regression against outliers.

The Huber norm, for example, is defined using the measure function H(x) = % for
|z] <7 and H(x) = |z| — § for [x| > 7, where 7 is a threshold that governs the interpolation
between Ly loss for small || and Ly loss for large |z|. Indeed, it can often be more reasonable
to have robust treatment of large residuals due to outliers or errors and Gaussian treatment of
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small residuals [12]. Thus the Huber norm is especially popular and “recommended for almost
all situations” [39], because it is the “most robust” [13] due to “the useful computational and
statistical properties implied by the convexity and smoothness” [9] of its measure function,
which is differentiable at all points.

Since the measure function H for the Huber norm and more generally, the measure function
M for many common measure functions is convex, we can consider the standard convex
finite-sum form optimization problem rrel]andF(x) = % S, fi(x), where f1,..., f, : RT =R
is a sequence of convex functions that )::ommonly represent loss functions. Whereas gradient
descent (GD) performs the update rule x;11 = x; — 7 VF(x;) on the iterate x; at iterations
t=1,2,...,T, stochastic gradient descent (SGD) [32, 27, 26] picks i; € [n] in iteration ¢
with probability p;, and performs the update rule x;41 = x; — n;’;t V fi, (%¢), where Vf;, is
the gradient (or a subgradient) of f;, and 7; is some predetermined learning rate. Effectively,

training example i; is sampled with probability p;, and the model parameters are updated
using the selected example. The SGD update rule only requires the computation of a single
gradient at each iteration and provides an unbiased estimator to the full gradient, compared to
GD, which evaluates n individual gradients in each iteration and is prohibitively expensive for
large n. However, since SGD is often performed with uniform sampling, so that the probability
pi+' of choosing index i € [n] at iteration ¢ is p; ; = % at all times, the variance introduced by
the randomness of sampling a specific vector function can be a bottleneck for the convergence
rate of this iterative process. Thus, the subject of variance reduction beyond uniform sampling
has been well-studied in recent years [33, 18, 11, 31, 40, 10, 25, 35, 19, 21, 34, 30].

A common technique to reduce variance is importance sampling, where the probabilities
pi,+ are chosen so that vector functions with larger gradients are more likely to be sampled.
One such setting of importance sampling is to set the probability of sampling a gradient with
probability proportional to its L, norm, so that

i = IVfilxe)ll,
T Y em IV,

Under these sampling probabilities, importance sampling gives variance

2
1 n

ngt,t a2 <Z vfz‘("t)”z) -n?. ||VF(Xt)||§ )
i—1

where we define the variance of a random vector v to be Var(v) := E [||v||§} — [|E [v] Hg, and

we define 07, ; to be the variance of the random vector v produced at time ¢ by importance
sampling.

By comparison, the probabilities for uniform sampling p; + = % imply o7 = Var (n; t)
Tt
2

and thus the variance T ni t

for uniform sampling satisfies

1 n
Tinit = 3 (nZ IV filxe)ll5 = n* - ||VF<xt>||§> :
=1

By the root mean square-arithmetic mean inequality, the variance of importance sampling
is always at most the variance of uniform sampling, and can be significantly less. Hence
02t < so that the variance at each step is reduced, possibly substantially, by
performing importance sampling instead of uniform sampling.

2
O-uni,t7

I In contrast to pi.t, the term p;, denotes the probability associated with the specific index i; chosen at
time ¢.
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To see examples where uniform sampling an index performs significantly worse than
importance sampling, consider Vf;(x) = (a;,x) - a;. Then for A =ajo0...0a,:

» Example 1. When the non-zero entries of the input A are concentrated in a small number
of vectors a;, uniform sampling will frequently sample gradients that are small and make
little progress, whereas importance sampling will rarely do so. In an extreme case, the input
A can contain exactly one non-zero vector a; and importance sampling will always output
the full gradient, whereas uniform sampling will only find the non-zero row with probability

150 that o2
n

— . 42
unt,t =n-o

opt,t*

» Example 2. It may be that all rows of A have large magnitude, but x is nearly orthogonal
to most of the rows of A, but is well-aligned with row a,. Then (a;,x) - a; is small in
magnitude for most i, but (a,,x) - a, is large so uniform sampling will often output small
gradients while importance sampling will output (a,,x) - a, with high probability, so that it
can be that o2, , = Q(n) - 02, ;.

» Example 3. More generally for a parameter v € [0, 1], if a v-fraction of the n gradients
lengths are bounded by O (n) while the other 1 — v fraction of the n gradient lengths
are bounded by poly(d) < n, then the variance for uniform sampling satisfies O'Zni’t =

@) (I/n2) + poly(d) while the variance for importance sampling satisfies O (l/an) + poly(d).

In fact, it follows from the Cauchy-Schwarz inequality that the importance sampling
probability distribution is the optimal distribution for variance reduction.

However, computing the probability distribution for importance sampling requires com-
puting the gradients in each round, which creates a “chicken and egg” problem because
computing the gradients is too expensive in the first place, or else it is feasible to just run
gradient descent. Unfortunately, computing the sampling probabilities in each iteration often
requires additional passes over the data, e.g., to compute the gradients in each step, which is
generally prohibitively expensive. This problem often prevents importance sampling from
being widely deployed.

In this paper, we overcome this problem by introducing efficient sketches for a wide range
of M-estimators that can enable importance sampling without additional passes over the
data. Using our sketches for various measure functions, we give a time-efficient algorithm
that provably approximates the optimal importance sampling distribution within a constant
factor. Thus we can surprisingly simulate T" steps of SGD with (nearly) the optimal sampling
distribution, while only using a single pass over the data, which avoids the aforementioned
problem.

» Theorem 4. Given an input matriz A € R"*? whose rows arrive sequentially in a data
stream along with the corresponding labels of a measurement vector b € R?, and a measure
function M whose derivative is a continuous union of piecewise constant or linear functions,
there exists an algorithm that performs T steps of SGD with variance within a constant factor
of the optimal sampling distribution. The algorithm uses O (nd2 + Td2) pre-processing time
and Td? polylog(Tnd) words of space.

For T iterations, both GD and optimal importance sampling SGD require T passes over
the data, while our algorithm only requires a single pass over the data and uses sublinear
space for nd > T'd?. We remark that although the number 7' of iterations for SGD may be
large, a major advantage of GD and SGD with importance sampling is a significantly smaller
number of iterations than SGD with uniform sampling, e.g., as in Example 1 and Example 2,
so we should expect n > T'. In particular from known results about the convergence of SGD,
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e.g., see Theorem 8, if the diameter of the search space and the gradient lengths ||V f;(x4)]|,
are both bounded by poly(d), then we should expect T  poly(d) even for uniform sampling.
More generally, if vn of the gradients have lengths ©(n), while the remaining gradients
have lengths poly(d) < n, then Example 3 and Theorem 8 show that the number of steps
necessary for convergence for uniform sampling satisfies T' x O (u2n4) + poly(d), while the
number of steps necessary for convergence for importance sampling satisfies T' ox O (V4n4).
Thus for vn = O (nc) for C' < 1, i.e., a sublinear number of gradients have lengths that
exceed the input size, we have T = O (n4C) and hence for C < i, we have roughly T = o(n)
steps are necessary for convergence for SGD with importance sampling.

Finally, we show in the full version of the paper that our techniques can also be generalized
to perform importance sampling for second-order optimization.

1.1 Our Techniques

In addition to our main conceptual contribution that optimal convergence rate of importance
sampling for SGD can surprisingly be achieved (up to constant factors) without the “chicken
and egg” problem of separately computing the sampling probabilities, we present a number
of technical contributions that may be of independent interest. Our first observation is that
if we were only running a single step of importance sampling for SGD, then we just want a
subroutine that outputs a gradient G({(a;,x) — b;, a;) with probability proportional to its
norm ||G((az,x> — bi,ai)Hg.

G-sampler. In particular, we need an algorithm that reads a matrix A = a;o...0a, € R"*?
and a vector x € R? given after processing the matrix A, and outputs (a rough approximation
to) a gradient G((a;,x) — b;,a;) with probability roughly

1G (@i, x) — bi,ai)|2
211G (a,x) — bj,a;) |2

We call such an algorithm a G-sampler and introduce such a single-pass, memory-efficient
sampler with the following guarantees:

» Theorem 5. Given an («,¢)-smooth gradient G, there exists an algorithm SAMPLER
that outputs a noisy vector v such that ||v — a;({a;, ) — b;)|l2 < afla;((a;, ) — b;)|||2 and

. G((ai,x)—b;,a;
Efv] = ai((ai o) —b) is (12 0(6)) y =R Iy, +
j€ln] ’ ’

d? poly (log(nT), 2) update time per arriving row and Td?* poly (log(nT), L) total bits of
space.

pol}ll(n). The algorithm uses

We say a gradient G is («,e)-smooth if a vector u that satisfies ||u — v|2 < af|v]|2

implies that (1 — ¢)||G(v)|l2 < [|G(u)]l2 < (1 + ¢€)||G(v)]|2. In particular, the measure
functions discussed in Section 1.2 have gradients that are (O (¢),¢)-smooth. For example,
the subgradient of the Huber estimator is a; - sgn((a;, x) —b;) for |(a;, x) —b;| > 7, which may
change sign when (a;,x) — b; is close to zero, but its norm will remain the same. Moreover,
the form G((a;,x) — b;,a;) necessitates that the gradient can be computed strictly from
the two quantities (a;,x) — b; and a;. Thus Theorem 5 implies that our algorithm can also
compute a noisy vector v’ such that |v — G({(a;,x) — b;,a;)|l2 < ¢||G({(a;, x) — b;, a;)]|2.
Observe that an instance of SAMPLER in Theorem 5 can be used to simulate a single step
of SGD with importance sampling and thus T independent instances of SAMPLER provide
an oracle for T" steps of SGD with importance sampling. However, this naive implementation



S. Mahabadi, D. P. Woodruff, and S. Zhou

does not suffice for our purposes because the overall runtime would be O (Tnd2) so it would
be more efficient to just run T iterations of GD. Nevertheless, our G-sampler is a crucial
subroutine towards our final algorithm and we briefly describe it here.

An alternative definition of G-sampler is given in [16]. In their setting, the goal is to
sample a coordinate i € [n] of a frequency vector f with probability proportional to G(f;),
where G in their notation is a measure function rather than a gradient. However, because
the G-sampler of [16] is not a linear sketch, their approach cannot be easily generalized to
our setting where the sampling probability of each row a; is a function of (a;,x), but the
vector x arrives after the stream is already processed.

Furthermore, because the loss function f may not be scale-invariant, then we should also
not expect its gradient to be scale invariant at any location x € R, i.e., Vf(Ox) # CP-V f(x)
for any constants p,C > 0. Hence, our subroutine SAMPLER cannot use the standard L,
sampler framework used in [20, 2, 15, 22], which generally rescales each row of a; by the
inverse of a uniform or exponential random variable. A somewhat less common design
for L, samplers is a level set and subsampling approach [24, 17], due to their suboptimal
dependencies on the accuracy parameter €. Fortunately, because we require € = O (1) to
achieve a constant factor approximation, we can use the level set and subsampling paradigm
as a starting point for our algorithm. Because the algorithms of [24, 17] only sample entries
of a vector implicitly defined from a data stream, our G-sampler construction must (1)
sample rows of a matrix implicitly defined from a data stream and (2) permit updates to the
sampling probabilities implicitly defined through multiplication of each row a; with a vector
x that only arrives after the stream is processed.

G-sampler through level sets and subsampling. To illustrate our method and simplify
presentation here, we consider Ly regression with gradient A;x := (a;,x) - a;, by folding in
the measurement vector b into a column of A — our full algorithm in Section 2 handles both
sampling distributions defined with respect to the norm of a general gradient GG in the form
of Theorem 5, as well as an independent measurement vector b.

We first partition the rows of A into separate geometrically growing classes based on their
L norms, so that for instance, class Cy contains the rows a; of A such that 28 < ||la; |2 < 251
We build a separate data structure for each class Cj, which resembles the framework for L,
norm estimation [14]. We would like to use the approximate contributions of the level sets

Iy,....,Tk, with K =0 (IOg”), toward the total mass F5(S) = 31", [|A;x]|,, where a level

[e4

F(S)  Fy(S)
(T +a) -1 (T+a)i
of a level set I'; is 3, [[Aix||,. Then we could first sample a level set I'; from a class Cj,

set I'; is informally the set of rows a; with [|A;x]|, €

] and the contribution

and then uniformly select a row a; among those in I';. Indeed, we can run a generalized
version of the Ly heavy-hitter algorithm COUNTSKETCH [7] on the stream S to identify the
level set T'y, since its rows will be heavy with respect to F5(S). However, the rows of the level
sets I'; for large j may not be detected by COUNTSKETCH. Thus, we create L = O (logn)
substreams Si, ..., Sr, so that substream S, samples each row of A with probability 2~¢*+1,
and run an instance of COUNTSKETCH on each substream Sy to detect the rows of each level
set and thus estimate the contribution of each level set.

Sampling from level sets with small contribution. However, there is still an issue — some
level sets have contribution that is too small to well-approximate with small variance. For
5 (8)

subsampling at a level Sy that is used to detect it, in which case it will never be sampled.

Alternatively, if it is sampled, it will be rescaled by a large amount, so that its level set will

example, if there is a single row with contribution then it might not survive the
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be sampled with abnormally large probability. Instead of handling this large variance, we
instead add a number of dummy rows to each level set, to ensure that their contributions
are all “significant” and thus be well-approximated.

Now we have “good” approximations to the contributions of each level set within a
class, so we can first select a level set with probability proportional to the approximate
contributions of each level set and then uniformly sample a row from the level set. Of course,
we may uniformly sample a dummy row, in which case we say the algorithm fails to acquire
a sample. We show that the contribution added by the dummy rows is a constant fraction,
so this only happens with a constant probability. Thus with O (log %) constant number of
independent samples, we can boost the probability of successfully acquiring a sample to 1 — ¢

for any 6 € (0,1]. We then set § = m~

Unbiased samples. Unfortunately, COUNTSKETCH using O (é) buckets only guarantees
additive o Lo(.S) error to a particular row with constant probability. To achieve the standard
“for-all” guarantee across all n rows, an estimate for each row a; is then output by taking the
row with the median length across O (logn) independent instances. However, the median
row is no longer unbiased, which could potentially affect the convergence guarantees of SGD.
Instead, we use d separate instances of COUNTSKETCH, so that each instance handles a
separate coordinate of the vector. Thus if the goal is to output a noisy estimate to a;, we
have a separate COUNTSKETCH report each coordinate (a;);, where j € [d]. It can be shown
that the median of each estimated coordinate is an unbiased estimate to the true value (a;);
of the coordinate because the probability mass function is symmetric about the true value
for each coordinate. Moreover, the error to a single coordinate (a;); may be large relative to
the value of the coordinate in the case that (a;); is not heavy with respect to {(ai);}i[n]-
However, we show that the “overall” error to all coordinates of a; is small relative to |la;||2,
due to a; being a “heavy” row at the appropriate subsampling level.

Stochastic gradient descent with importance sampling. The main problem with the
proposed G-sampler is that it requires reading the entire matrix A but it cannot be repeatedly
used without incurring dependency issues. In particular, if a sampler at the first iteration of
SGD outputs a gradient A; x; that is used to construct xs, then x3 is not independent of
the sampler and thus the same sampler should not be used to sample A,;,xs. This suggests
that if we want to perform T steps of SGD with importance sampling, then we would require
T separate data structures, which would require Tnd time to construct for dense matrices,
but then we might as well just perform full gradient descent!

Instead in Section 3, we partition the matrix A among multiple buckets and create a
sampler for each bucket. Now as long as each bucket should have been sampled a single
time, then we will have a fresh sampler with independent randomness for each time a new
bucket is sampled. If we perform T steps of SGD with importance sampling, then roughly T
buckets should suffice, but we cannot guarantee that each bucket is sampled a single time.
For example, if only a single A; is non-zero, then whichever bucket A; is assigned to will be
sampled every single time.

Now the challenge is identifying the submatrices A; = a;'— a; that may be sampled multiple
times, since we do not know the values of the vectors X1, ...,Xr a priori. Fortunately, we
know that ||A;x;||, can only be large if a; has high sensitivity, where we define the sensitivity
[|af ((aix))]],
o) (@],

multiple times, then one of its rows must have large sensitivity.

for a row a; in A to be the quantity max,cpa . Thus if a block is sampled
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Hence, we would like to identify the buckets that contain any row with sensitivity at least
% and create T independent samplers for those buckets so that even if the same bucket is
sampled all T' times, there will be a fresh sampler available. Crucially, the process of building
separate buckets for the rows with the large sensitivities can be identified in just a single
pass over the data.
|al (@i x))]],
A SISV

shown that the sum of the sensitivities is O (dlogn) by partitioning the rows into O (logn)

We remark that since each row has sensitivity maxycga then it can be

classes C1, Ca, . .. of exponentially increasing norm, so that a; € Cy if 2¢ < [|a;]|, < 2+, We
then note that the sensitivity of each row a; € Cy is upper bounded by max, cga D |<a’7"’|c<>i_ et
a; €Cy 7

However, this latter quantity is an L, sensitivity, whose sum is known to be bounded by
O (d), e.g., [8]. Thus the sum of the sensitivities in each class is at most O (d) and so for a
matrix A whose entries are polynomially bounded by n, the sum of the sensitivities is at
most O (dlogn).

Unfortunately, since the sensitivities sum to O (dlogn), there can be up to T'd rows with
sensitivity at least %,
rows would yield Q(72d) samplers, which is a prohibitive amount of space. Instead, we

so creating T' independent samplers corresponding to each of these

simply remove the rows with large sensitivities from the buckets and store them explicitly.
We then show this approach still avoids any sampler from being used multiple times across
the T iterations while also enabling the data structure to just use O (T'd) samplers. Now
since we can explicitly consider the rows with sensitivities roughly at least %, then we can
use ©(T") buckets in total to ensure that the remaining non-zero entries of A are partitioned
evenly across buckets that will only require ©(log(7'd)) independent samplers.

1.2 Applications

In this section, we discuss applications of our result to commonly used loss functions, such
as L, loss or various M-estimators, e.g., [9, 8, 37, 29].

L; and L regression. The L, regression loss function is defined using f;(x) = |a," x — b;|P.
The case p = 2 corresponds to the standard least squares regression problem, while p = 1
corresponds to least absolute deviation regression, which is more robust to outliers than least
squares, but also less stable and with possibly multiple solutions. For p = 1, the subgradient
is a; - sgn((a;, x) — b;) while for p = 2, the subgradient is 2a;({(a;,x) — b;).

Huber estimator. As previously discussed, Huber loss [13] is commonly used, e.g., [39, 9], to
achieve Gaussian properties for small residuals [12] and robust properties for large residuals
due to outliers or errors. The Huber estimator is also within a constant factor of other
M-estimators that utilize the advantage of the L; loss function to minimize the impact
of large errors/outliers and that of the Ly loss function to be convex, such as the L;-Lo
estimator and the Fair estimator [4]. Given a threshold 7 > 0, the Huber loss H is defined
by H(z) = % for |z| < 7 and H(z) = |z| — § for |z| > 7. Thus the subgradient for H is
21 ((a4,x) — b;) for [(a;,x) — b;| < 7 and a; - sgn((a;,x) — b;) for [(a;,x) —b;| > 7.

Ridge regression. It is often desirable for a solution x to be sparse. The natural approach
to encourage sparse solutions is to add a regularization A||x||op term to the loss function, for
some parameter A > 0. However, since ||x||o is not convex, ridge regression is often used as a
convex relaxation that encourage sparse solutions. The ridge regression loss function satisfies
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fi(x) = (a] x—b;)?+ X\ ||x||3 for each i € [n], so that A regularizes the penalty term associated
with the squared magnitude of x. Higher values of A push the optimal solution towards zero,
which leads to lower variance, as a particular coordinate has a smaller effect on the prediction.
The gradient for the ridge regression loss function satisfies V f;(x) = 2a;({a;, x) — b;) + 2Ax.

Lasso. Another approach that encourages sparsity is using the L; regularization instead of
the Lo regularization. Least absolute shrinkage and selection operator (Lasso) regression uses
the loss function fi(x) = (a x —b;)2 + X [|x||1. Whereas the penalty term associated for ridge
regression will drive down the Euclidean norm of x for larger A, solutions with large L; norm
are still possible if the mass of x is spread across a large number of coordinates. By contrast,
the penalty term associated for Lasso drives down the total magnitude of the coordinates
of x. Thus, in this sense, Lasso tends to drive coordinates to zero and encourages sparsity,
which does not usually happen for ridge regression. The subgradient for the Lasso regression
loss function satisfies V f;(x) = 2a;({a;,x — b;) + 2\ sgn(x), where we abuse notation by
using sgn(x) to denote the coordinate-wise sign of the entries of x.

Group lasso. [38] proposed Group Lasso as a generalization to Lasso. Suppose the weights
in x can be grouped into m groups: x(M), ..., x(™). We group the columns of A =a;o...o0a,
so that A is the set of columns that corresponds to the weights in x(*. The Group Lasso
function is defined as f;(x) = (a/ x — b;)% + A Z;":l V/G;|x9 |2, where G; represents the

number of weights in x\7). Note that Group Lasso becomes Lasso for m = n.

1.3 Preliminaries

For an integer n > 0, we use [n] to denote the set {1,2,...,n}. We use boldfaced font
for variables that represent either vectors of matrices and plain font to denote variables
that represent scalars. We use the notation (5() to suppress polylog factors, so that
f(T,n,d) = O (g(T,n,d)) implies that f(T,n,d) < g(T,n,d)polylog(Tnd). Let A € R"*4

A
and B € R™*?. We use o to denote vertical concatenation, so that A o B = [B] , and ® to

denote outer product, so that the (7, j)-th entry of the matrix u ® v € R™*™ for u € R™

and v € R™ is w;v;. For a vector v € R™, we let |[v|? = >2i_, v} and vl = max; |v;]. For

a matrix A € R"*4, we denote the Frobenius norm of A by [|A| = 1/> i, Z?:l A7, We

1
also use [|A[l, = (Z;L:l ijl |Ai,j|p) ". For a function f, we use Vf to denote its gradient.

» Definition 6. A function f : R? — R is convex if f(x) > f(y) + (Vf(y),x —y) for all
x,y € R%,

» Definition 7. A continuously differentiable function f : R? — R is u-smooth if
IVf(x) = VIl < plx=yl,,
for all x,y € RY. Then it follows, e.g., by Lemma 3.4 in [6], that for every x,y € R,
I
F¥) = £ = (V) y =x)| < 5 ly —xll3.

Recall that SGD offers the following convergence guarantees for smooth convex functions:
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» Theorem 8 ([26, 23]). Let F be a u-smooth convex function and Xope = argmin F'(x). Let
o? be an upper bound for the variance of the unbiased estimator across all iterations and

X = Lk“"‘ Let each step-size ny be n < % Then for SGD with initial position xqo, and
any value of k,
2 | 1o
E[F(Xk) — F(xopt)] < 2 ||X0 Xoptll5 + 9
. 1 2 2 . . .
This means that k = = a 2+ 1llxo —xopt||2) iterations suffice to obtain an e-

approximate optimal value by setting n = ﬁ

2 G-Sampler Algorithm

In this section, we describe our G-sampler, which reads a matrix A = ajo...oa, € R"*? and
a vector x € R? given after processing the matrix A, and outputs a gradient G ({a;,x) —b;,a;)
among the n gradients {G({a;,x) —by1,a1),...,G({a,,x) — by, a,)} with probability roughly

|G ((aix)—bi,a)ll2 T : ) —b:oas) usi
Zn 1G(ag ) —bar)la” However, it is not possible to exactly return G((a;,x) — b;,a;) using

subhnear space; we instead return a vector v such that E[v] = G({a;,x) — b;,a;) and
lv— G((a;,x) — b;,a;)|| < e||G({a;, x) — b;,a;)||2. To achieve our G-sampler, we first require
a generalization of the standard Lo-heavy hitters algorithm COUNTSKETCH [7], which we
describe in Section 2.1. We then describe our G-sampler in full in Section 2.2.

2.1 Heavy-Hitters

Before describing our generalization of COUNTSKETCH, we first require the following Fg es-
timation algorithm that generalizes both well-known frequency moment estimation algorithm
of [1, 36] and symmetric norm estimation algorithm of [3] by leveraging the linear sketches
used in those data structures to support “post-processing” with multiplication by any vector
x € R%,

» Theorem 9 ([3]). Given a constant € > 0 and an (o, €)-smooth gradient G, there exists a
one-pass streaming algorithm ESTIMATOR that takes updates to entries of a matriz A € R"*,
as well as vectors x € R and b € R? that arrive after the stream, and outputs a quantity a
such that (1 — )Z o 1G ({25, %) = bi, a5)|[2 < F<(1+¢) Yiem IG(ai, x) —b;,a;)||2. The

algorithm uses <= polylog(nT) bits of space and succeeds with probability at least 1 — W

We now describe a straightforward generalization of the Lo-heavy hitter algorithm
COUNTSKETCH so that (1) it can find the “heavy rows” of a matrix A =aj;o...0a, €
R™*4 rather than the “heavy coordinates” of a vector and (2) it supports post-processing
multiplication by a vector x € R that arrives only after A is processed. Let A; = a; ® a; €
R4 for all i € [n]. We define tail(c) to be the n — ¢ rows that do not include the
top ¢ values of ||A;x||,. For a given € > 0, we say a block A; with i € [n] is heavy if
[Aix|ly > €3 ictain(a/er 1A,

The standard COUNTSKETCH algorithm for finding the Lo-heavy hitters among the
coordinates of a vector v of dimension n works by hashing the universe [n] across O (%)
buckets. Each coordinate i € [n] is also given a random sign o; and so the algorithm
maintains the O (8%) signed sums > o;x; across all the coordinates hashed to each bucket.
Then to estimate x;, the algorithm simply outputs o;Cj,(;), where Cj ;) represents the
counter corresponding to the bucket to which coordinate ¢ hashes. It can be shown that

319
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E [aiCh(i)] = x;, where the expectation is taken over the random signs ¢ and the choices of
the hash functions. Similarly, the variance of the estimator can be bounded to show that
with constant probability, the estimator has additive error O () ||x||3 to x; with constant
probability. Thus if z; > £]|x||3, the algorithm will be able to identify coordinate i as a
heavy-hitter (in part by allowing some false positives). We give the algorithm in full in
Algorithm 1.

Algorithm 1 Output heavy vectors ({a;, x))a;, where x can be a vector that arrives after A is
processed.

Input: Matrix A € R™*?, vector x € R?, accuracy parameter ¢ > 0, failure parameter
0 € (0,1].
. . 2 2
Output: Noisy vectors a;' a;x with ||.':1Z-Ta,-x||2 > e? Zietaﬂ@/ag) ||a;aix||2.

1: b« Q (é)

2: Let T contain b buckets, each initialized to the all zeros R**? matrix.
3: Let 0; € {—1,+1} be drawn from 4-wise independent family for i € [n].
4: Let h: [n] — [b] be 2-wise independent

5. Process A:

6: Let A =ajo0...0a,, where each a; € R?.

7: for each 7 =1 to n do

8: Aj+—a;®a;

9: Add ¢;A; to the matrix in bucket h(j).

10: Let M; be the matrix in bucket j of T for i € [r],j € [b].

11: Process x:

12: for j € [b] do

13: Vj MjX

14: On query k € [n], report o vy

Thus Algorithm 1 can be used to give the following guarantee by taking the median of
the norms of O (log(nT)) copies, as well as the vector that realizes the median.

» Lemma 10 ([22]). There exists an algorithm that uses O (g—i log® n) space and outputs

a set S of indices so that with probability 1 — m, for alli e [n], i € S if |[Ax|, >
8Zj€tail(2/s2) |A;x|, and i & S if |Ax]|l, < 5 Zjetai1(2/52) |A;x|,. The algorithm uses

@) (g—; log? (nT)) space.

However, the vector that realizes the median of the norms may no longer be an unbiased
estimate to each heavy-hitter. Unfortunately, we shall require unbiased estimates to each
heavy-hitter, because we will use estimated heavy-hitters as unbiased gradients as part of
SGD with importance sampling. Thus we give an additional algorithm so that for each
i € S reported by Algorithm 1, the algorithm outputs an unbiased estimate to the vector
((ai,x))a; with a “small” error, in terms of the total mass ;i (2/2) [[Aix||, excluding the
largest E% TOWS.

To that end, we instead run d separate instances of COUNTSKETCH to handle the d
separate coordinates of each heavy-hitter A;x. We show that the median of each estimated
coordinate is an unbiased estimate to the coordinate (A;x);, since the probability mass
function is symmetric about the true value for each coordinate. Furthermore, we show that
although the error to a single coordinate (A;x); may be large compared to [(A;x),|, the

error is not large compared t0 3¢ (2/c2) [[AX |-
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» Lemma 11. There exists an algorithm that uses O (g—j log2(nT)> space and outputs a
vector y; for each index i € [n] so that ||yilly, — [Aix[ly| < €3 ician(e/er) A, and

E[y:] = A;x with probability at least 1 — m.

However if say, we want to identify the heavy gradients ({(a;,x) — b;)a;, then we create
separate data structures for the constant (in x) term b;a; and the linear term (a; ® a;)x,
using the same buckets, hash functions, and random signs. For the constant term data
structure, we hash the scaled rows b;a; into O (E%) buckets, so that each bucket contains a
vector that represents the signed sum of the (scaled) rows of A that hash to the bucket. For
the linear term data structure, we hash the outer products A; := a; ® a; into O (E%) buckets,
so that each bucket contains a vector that represents the signed sum of the matrices A; that
hash to the bucket. Once the vector x arrives after A is processed, then we can multiply
each of the matrices stored by each bucket by x. Since the signed sum is a linear sketch, this
procedure is equivalent to originally taking the signed sums of the vectors A;x. Similarly, by
linearity, we can then take any linear combination of the two data structures to identify the
heavy gradients ({a;,x) — b;)a;.

2.2 G-Sampler Algorithm

In this section, we first describe our G-sampler algorithm, where we sample a gradient
G((a;,x) — b;,a;) with probability proportional to ||G({a;,x) — b;,a;)||2. Given an accuracy
parameter € > 0, let « be a constant, parametrized by e, so that (1 — e)Fg(v) < Fg(u) <
(1+¢e)Fg(v), for any u with |[u—v||s < «||v||2. As our data structure will be a linear sketch,
we focus on the case where we fold the measurement vector b into a column of A, so that we
want to output a gradient A;x := (a; ® a;)x.

Our algorithm first partitions the rows of A into classes, based on their Ly norm. For
example, if all entries of A are integers, then we define class Cy, := {a; : 2871 < ||la;||o < 2¥}.
We create a separate data structure for each class. We will use the F estimation algorithm
on each class to first sample a particular class. It then remains to sample a particular vector
(a; ® a;)x from a class.

Depending on the vector x, the vectors (a; ®a;)x in a certain class C, can have drastically
different Ly norm. We define level set I'; as the vectors that satisfy (14-¢)77! < ||(a;®a;)x|2 <
(14 ¢)7. If we could estimate |T';|, then we could estimate the contribution of each level set
I'j toward the overall mass ) ;. [[(a; ® a;)x||2, so we can then sample a specific level set
I'; from the class Cj. To that end, we create L = O (logn) substreams, S1,..., S, so that
we sample each row with probability 22%1 in substream Sp.

The point is that if the contribution of level set I'; is “significant”, then there exists a
specific substream S, in which the vectors of I'; will be likely detected by the heavy-hitter
algorithm we introduced in Section 2.1, if they are sampled by S,. We can then use these
vectors that are output by the heavy-hitter algorithm to estimate the contribution of level
set I';. However, if the contribution of level set I'; is not significant, then there may not
be any vectors of I'; that survive the sampling in substream S,. Thus we add a number of
“dummy rows” to each level set to insist that all level sets are significant, so that we can
estimate their contributions.

We then sample a level set I'; with probability proportional to its contribution and
uniformly select a (noisy) vector from the level set. If the selected vector is one of the original
rows of the matrix, then we output the noisy vector. Otherwise, we say the sampler has
failed. We show that the sampler only fails with constant probability, so it suffices to run

O (1og %) independent instances to boost the probability of success to any arbitrary 1 — 6.

The algorithm for selecting a level set I'; from a specific class C}, appears in Algorithm 2.

31:11
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We first show that the dummy rows only contribute at constant multiple of the mass
Fo(S) =31, ||Aix|2, where we assume for simplicity that all rows of A are in the same
class.

» Lemma 12. Let S be the input data stream with subsamples S1,...,SL. Let S beﬂze input
data stream wztﬁ the additional dummy rows and corresponding subsamples Sy, ...,Sr. Then
2FG(S) = Fa(S) = Fa(S).

We would now like to show that with high probability, each of the substreams have
exponentially smaller mass F(S;). However, this may not be true. Consider a single row
a; that contributes a constant fractlon of F(S). Then even for j = logn, the probability

that a; is sampled is roughly > 5oy ( 5 Instead, we note that COUNTSKETCH satisfies

the stronger tail guarantee in Lemma 11. Hence for each j € [K], we define S;aﬂ(t) to be
the frequency vector S; with its ¢ largest entries set to zero and we show an exponentially

decreasing upper bound on Fg (Stall(t)),

—~

» Lemma 13. With high probability, we have that for all j € [K], Fg(S;aﬂ(t)) <
FG(S) log(nT) fort =0 (M)

a3

We also show that the estimated contribution of each level set (after incorporating the
dummy rows) is a (1 4+ «)-approximation of the true contribution.

» Lemma 14. With high probability, we have that for all j € [K], (1 —E)Fg(S ) < Fg(S ) <
(1+¢e)Fa(S)).

Finally, we show that each row is sampled with the correct distribution and is an unbiased
estimate.

» Lemma 15. Suppose that 28 < ||a;||2 < 251 for all i € [n]. Then the probability that
Algorithm 2 outputs a noisy vector v such that ||v — a;((a;, z) — b;)||2 < ofla;({(a;, ) — b;)|||2

. . G(a;({a;,z)—b;
with E[v] = ay((a, ) — b is py = (1% 0 (c)) Solos b | Zd”

Putting things together, we have the guarantees of Theorem 5 for our G-sampler.

3 SGD Algorithm and Analysis

Before introducing our main SGD algorithm, we recall the following algorithm, that essentially
outputs noisy version of the rows with high “importance”. Although SAMPLER outputs a
(noisy) vector according to the desired probability distribution, we also require an algorithm
that automatically does this for indices ¢ € [n] that are likely to be sampled multiple
times across the T iterations. Equivalently, we require explicitly storing the rows with high
sensitivities.

» Theorem 16 ([5]). Given a constant € > 0, there exists an algorithm SENS that returns

all indices i € [n] such that sup, S ‘a’(lila’(:__b;)‘b )
5 \&5,X) =05

the vector a;({a;,x) — b;). The algomthm requires a single pass over A = ajo...oa,, uses
O (nd2 + TdQ) runtime and O (TdQ) space, and succeeds with probability 1 —

| > soo7g Jor some x € R™, along with

1
poly(n) *
llai ({2 ,x) =bs) I,

lla; ({a;.,x)—b;)ll,
be interpreted as a measure of “importance” of the row a; with respect to the other rows
of A.

The quantity sup,, Z can be considered the sensitivity of row a; and can
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Algorithm 2 G-sampler for a single class of rows.

Input: Rows aj,...,a, of a matrix A € R™*? with 2% < |a;ll2 < 2¥*! for all i € [n],
function G, accuracy parameter « for sampling parameter
Output: Noisy row v with the correct sampling distribution induced by G

1: « uniformly at random from [1/2,1], K + O <1°g”) L < O(logn)
2: for ¢ € [L] do >Processing stage
3: Form a stream S; by sampling each row with probability 2~¢*1
4 Run COUNTSKETCH((ZD with threshold O (%) and failure probability m by

creating a table Aél)

heavy-hitters
5 Run Countskmren(” with threshold O (2

creating a table Ag ) with entries a;'—aj in Sy and a table Bé ) with entries a; and
separately considering coordinates after post-processing >Unbiased estimates of
heavy-hitters, see Lemma 11

with entries al a; in S, and a table B"

¥ with entries a; >Identify

by

) and failure probability

logn poly(n T)

6: for ¢ € [L] do >Post-processing
7: Set Céi) = Aéi)x + Bé“ with post-multiplication by x for i € {1,2}

8 Query M € [M/2,2M], where M = S"7 | [|G({a;,x) — b, a,)]2

9: for j € [K] do

10: if j > log(Ha) 2 then

11: Add O (%#) dummy rows that each contribute O (%) to Fg

12: Let Héi) be the heavy rows of Céi) for ¢ € {1,2} from COUNTSKETCHéi)
13: for j € [K] do

14: L; + max (1, log %)

15: Let X; be the estimated heavy-hitters v from Hj(-Q) that are reported by Hj(-l) with
G(v) in | . Gy
16: if L; =1 then
8y M

172 FG(S)HZVEXJW

18: else if L; > 1 and |X;| > —; then
19: ( ) A ZVGX (liajvarl : 2Lj
20: else

21: FG(S )« 0

22: Sample j € [K] with probability FG(S )

Z G(J)

23: Sample v from X; with probability < X
24: if v is a dummy row then

25: return |

26: else

27: return v

We now proceed to describe our main SGD algorithm. For the finite-sum optimization
problem mir}lF(x) =13  G((a;,x) — b;,a;), where each G is a piecewise function of a
x€ER

polynomial with degree at most 1, recall that we could simply use an instance of SAMPLER
as an oracle for SGD with importance sampling. However, naively running 7' SGD steps
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requires T independent instances, which uses Tnd runtime by Theorem 5. Thus, as our main
theoretical contribution, we use a two level data structure by first implicitly partitioning
the rows of matrix A = a; o...o0a, into 8 := O(T) buckets By,...,Bg and creating an
instance of ESTIMATOR and SAMPLER for each bucket. The idea is that for a given query
x; in SGD iteration ¢ € [T], we first query x; to each of the ESTIMATOR data structures to
estimate };c 5. G((a;,x) — b;,a;) for each j € [3]. We then sample index j € [] among the

. - ZieB_ G((ai,x)—bi,ai)
buckets By, ..., Bg with probability roughly S ’G(<
=1

. Once we have sampled
a;,x)—b;,a;)

index j, it would seem that querying the instance SAMPLER corresponding to B; simulates
SGD, since SAMPLER now performs importance sampling on the rows in B;, which gives the
correct overall probability distribution for each row ¢ € [n]. Moreover, SAMPLER has runtime
proportional to the sparsity of Bj, so the total runtime across the 3 instances of SAMPLER
is O (nd).

However, an issue arises when the same bucket B; is sampled multiple times, as we
only create a single instance of SAMPLER for each bucket. We avoid this issue by explicitly
accounting for the buckets that are likely to be sampled multiple times. Namely, we show that

if ZG (gi(’;’f_);b;fgﬁ) a < O (%) for all t € [T] and i € [n], then by Bernstein’s inequality,

the probability that no bucket B; is sampled at least 2logT times is at least 1 —

1
poly(T)
Thus we use SENS to separate all such rows a; whose sensitivities violate this property from

their respective buckets and explicitly track the SGD steps in which these rows are sampled.

The natural approach would be to create T samplers for each of the rows with sensitivity
at least Q2 (%), ensuring that each of these samplers has access to fresh randomness in each
of the T SGD steps. However since the sensitivities sum to O (dlogn), there can be up to
O (Tdlogn) rows with sensitivity at least € (4), so creating T samplers for each of these
rows could create up to ©(72dlogn) samplers, which is prohibitively expensive in T'. Instead,
we simply keep each row with sensitivity at least (2 (%) explicitly, while not including them
in the bucket. Due to the monotonicity of sensitivities, the sensitivity of each row may only
decrease as the stream progresses. In the case that a row had sensitivity at least Q (7) at
some point, but then no longer exceeds the threshold at some later point, then the row is
given as input to the sampler corresponding to the bucket to which the row hashes and then
the explicit storage of the row is deleted. This ensures we need only @) (T'd) samplers while
still avoiding any sampler from being used multiple times across the 7" SGD steps. We give
the algorithm in full in Algorithm 3.

The key property achieved by Algorithm 3 in partitioning the rows and removing the
rows that are likely to be sampled multiple times is that each of the SAMPLER instances are
queried at most once.

98

» Lemma 17. With probability at least 155,

SAMPLER;.

each t € [T] uses a different instance of

Theorem 4 then follows from Lemma 17 and the sampling distribution guaranteed by
each subroutine in Lemma 15. In particular, Lemma 17 crucially guarantees that each step
t € [T] of SGD will receive a vector with fresh independent randomness. Moreover, we have
that each (noisy) vector has small variance and is an unbiased estimate of a subgradient
sampled from nearly the optimal importance sampling probability distribution.

» Theorem 4. Given an input matriz A € R"*? whose rows arrive sequentially in a data
stream along with the corresponding labels of a measurement vector b € R?, and a measure
function M whose derivative is a continuous union of piecewise constant or linear functions,
there exists an algorithm that performs T steps of SGD with variance within a constant factor
of the optimal sampling distribution. The algorithm uses O (nd2 + T d2) pre-processing time
and Td? polylog(Tnd) words of space.
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Algorithm 3 Approximate SGD with Importance Sampling.

Input: Matrix A =a; o...o0a, € R"*¢ parameter T for number of SGD steps.
Output: T gradient directions.

1: Preprocessing Stage:

2: < O(T) with a sufficiently large constant in the ©.

3: Let h: [n] — [B] be a uniformly random hash function.

4: Let B, be the matrix formed by the rows a; of A with h(i) = j, for each j € [f].

5: Create ©(log(T'd)) instances ESTIMATOR; and SAMPLER; for each B; with j € [3] with
£=3.

6: Run SENS to find a set L of rows with sensitivity at least 2 (%)

7: Gradient Descent Stage:

8: Randomly pick starting location xg

9: fort =1to T do

10: Let ¢; be the output of ESTIMATOR; on query x,_; for each ¢ € [3].

11: Sample j € [8] with probability p; = ﬁ.
ie[p]

12: if there exists ¢ € Ly with h(i) = j then

-

13: Use ESTIMATOR;, Ly, and SAMPLER; to sample gradient w; = V f;, (x¢)
14: else .
15: Use fresh SAMPLER; to sample gradient w; = V f;, (x)

2
16: Pt [well :

deis 9

17: Xt11 & Xt — Mt . W

npi,t

Proof. Consider Algorithm 3. By Lemma 17, each time ¢ € [T] uses a fresh instance of
SAMPLERj, so that independent randomness is used. A possible concern is that each instance
ESTIMATOR; is not using fresh randomness, but we observe that the ESTIMATOR procedures
are only used in sampling a bucket j € [5]; otherwise the sampling uses fresh randomness
whereas the sampling is built into each instance of SAMPLER;. By Theorem 5, each index 7 is
sampled with probability within a factor 2 of the importance sampling probability distribution.
By Theorem 9, we have that p; ; is within a factor 4 of the probability p; ; induced by optimal
importance sampling SGD. Note that w; = G((ai,;-)\— bi,a;) is an unbiased estimator of
G((a;,x¢) — b;,a;) and G(wy) is a 2-approximation to G(x;) by Theorem 5. Hence, the
variance at each time ¢ € [T] of Algorithm 3 is within a constant factor of the variance
o? = (30, G(as, x¢) — by, a;)) — S G({a;,x¢) — b, a;)? of optimal importance sampling
SGD.

By Theorem 5, Theorem 9, and Theorem 16, the preprocessing time is d? polylog(nT) for
e =0(1) and § = O(T), but partitioning the non-zero entries of A across the 8 buckets and
the space used by the algorithm is O (sz). Once the gradient descent stage of Algorithm 3
begins, it takes T'd? polylog(n) time in each step t € [T] to query the 3 = ©(T) instances of
SAMPLER and ESTIMATOR, for total time T'd? polylog(n). <

Finally, we derandomize our algorithm in Appendix B with an extra logarithmic factor in
the space complexity by using the following formulation of Nisan’s pseudorandom generator:

» Theorem 18 (Nisan's Pseudorandom Generator). [28] Let A be an algorithm that uses
S = Qlogn) space and R random bits. Then there exists a pseudorandom generator for A
that succeeds with high probability and runs in O (Slog R) bits.
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A Missing Proofs from Section 2

Proof of Lemma 11. Given A € R"*? let A; = a; a; for all i € [n]. For a fixed coordinate
k € [d], we define a vector v(¥) € R™ so that for each i € [n], the i-th coordinate of v(*) is
the k-th coordinate of A;x € R%.

Suppose we run a separate COUNTSKETCH instance on v(¥). For a fixed index i € [n],
let h(i) be the bucket of T to which vl(k) hashes. For each j € [n], let I; be the indicator
variable for whether vj(-k) also hashes to bucket h(7), so that I; =1 if h(:) = h(j) and I; =0
if h(i) # h(j). Similarly for each j € [n], let s; be a random sign assigned to j, so that the
estimate for vi(k) by a single row of COUNTSKETCH is

> sisilo =0 3T
j€ln] J:h(3)=h(i)

where 7; = s;5; satisfies r; = 1 with probability % and r; = —1 with probability % Thus if
k)

y; is the estimate for vg , then for any real number u, we have that

Pr |y, = vgk) +u} = Pr [yi = vgk) —u} ,

(k)

so that the probability mass function of y; is symmetric about v;"’. Thus given ¢ independent

instances of COUNTSKETCH with estimates ygk’l), e ,ygk’e) for vgk) and any real numbers
u®,. . u®),
Pr [ygk’l) = ng) + u(l), S ,ygk’a = vgm + u(z)} =Pr [yl(k’l) = vgk) — u(l), e ,yﬁ"’m = UZ(M - u(z)} .

Therefore, the joint probability mass function is symmetric about (vfk), ey v§k)) and so the

median across the ¢ instances of COUNTSKETCH is an unbiased estimator to vgk). Finally,
we have due to the properties of COUNTSKETCH that if each hash function h maps to a
universe of size O (i) and ¢ = O (log(nT)), then with probability at least 1 — , the

1
€2 poly(T,n)

1/2
output estimate for vi(k) has additive error at most ¢ - (Zjetaﬂ(wsg)(vgmf) .
Thus using each of the estimated outputs across all k € [d], then for a fixed ¢ € [n], we

can output a vector y; such that E [y;] = A;x and with probability at least 1 — m,
1/2

2
Hyilly = [[Ax]ly | < e- Z | Ax|)5
i€tail(2/e2)
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For a fixed k € [d], then our algorithm intends to hash the k-th coordinate of A;x € R

However, since x is only given after the data structure is already formed and in particular,
after A; is given, then COUNTSKETCH must hash the k-th row of A; entirely, thus storing
O (% log*(nT)) bits for each coordinate k € [d]. Hence across all k € [d], the algorithm uses

the total space O (g—z log? (nT)) <

Proof of Lemma 12. Since S includes all the rows of S, then Fg(S) > Fg(S). Since each

level j € [K] acquires O (%) dummy rows that each contribute O (ﬁ) to

o~

Fg in S, then each level of Fi(S) contributes at most O (M"") more to Fg(S). Because

logn

K=0 (log") then the total additional contribution by the dummy rows is at most O (]\/4\ )

Since M < 2F¢(S), then it follows that for sufficiently small constant in the contribution of
each dummy row, we have Fg(S) — Fg(S) < Fg(S) and thus, Fg(S) < 2F¢(9). <

Proof of Lemma 13. Observe that the number of rows that exceed is at most 2771, Thus
the expected number of rows that exceed > sampled by S; is at most . Hence by Chernoff

bounds, the probability that the number of rows that exceed 24 57 sampled by S; is more than

1
t=0 (15" ) is sy b

Proof of Lemma 14. Suppose that for each j € [K], level j consists of N; rows and note
that N; > O (%) elements due to the dummy rows. Each element is sampled with

(1+a
logn

some probability pr;, where L; = max (1,log ) and thus pr, (1 + a)? > 1 since
pL; = 2% Let ]/\7; be the number of items sampled in SLj. We have E [QLJ‘ ]/V\J] = N;

and the second moment is at most N; - 2% < %(Nj)Q. Thus by Chernoft bounds with
O (log n)-wise independence, we have that with high probability,

(1-0(a)N; <2% . N; < (1+ 0 (a))N

Each estimated row norm is a (1 + «)- -approximation to the actual row norm _due to
Lemma 13. Thus by Lemma 12, we have that Fg(S ) < 2F¢(S;) so that each of the N rows

will be detected by the threshold of COUNTSKETCH with the tail guarantee, i.e., Lemma 11.

Moreover, we assume that a noisy row with (1 + a)-approximation to the row norm of the

original vector suffices to obtain a (1 + €)-approximation to the contribution of the row.

Therefore, the result then follows in an ideal scenario where G(v) € {%, 2%) if and only if
M 2M

the corresponding row a; satisfies G(a;) € [g, 5

). Unfortunately, this may not be true

because G(a;) may lie near the boundary of the interval []VJI ,2M ) while the estimate G(v)

has a value that does not lie within the interval. In this case, G(v) is used toward the
estimation of some other level set.

Hence, our algorithm randomizes the boundaries of the level sets [MM &M

27

) by choosing

~ € [1/2,1) uniformly at random. Since the threshold of COUNTSKETCH is O <10g ) then the

probability that each row a; is misclassified over the choice of v is at most O (g). Moreover,
if a; is misclassified, then its contribution can only be classified into level set j — 1 or
j + 1, inducing an incorrect multiplicative factor of at most two. Hence, the error due
to the misclassification across all rows is at most O (¢) fraction of Fz(S;) in expectation.
By Markov’s inequality, this error is a most e-fraction of F(S;) with probability at least
3/4. Then by taking the median across O (log(nT)) independent instances, we obtain high
probability of success. <
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Proof of Lemma 15. Conditioned on the correctness of each of the estimates Fg(S ), which
occurs with hi/g/h probability by Lemma 14, the probability that the algorithm selects
. . Fa(5;)

€ [K]is =522~
j € [K] S Fo®)
algorithm will choose a dummy row, or it will choose a row uniformly at random from
the rows v € X], where X is the set of heavy-hitters reported by H; with L, norm in
[ SyM  8yM_ ( )

(I+a)iF1 (1+a)? Fa(S;)’
of COUNTSKETCH in Lemma 11, we have that each heavy hitter v € X; corresponds to a
vector a;({a;, x) — b;) such that ||v —a;((a;,z) — b;)||2 < ¢l|la;({a;, ) — b;)|||2- Moreover, by
Lemma 11, we have that E[v] = a;({a;,z) — b;). Hence the probability that vector v is
(liO(a)),G\/(ai((ai,LE)fbi)' <

Fa(Sj)

Conditioned on the algorithm selecting j € [K], then either the

) The latter event occurs with probability ===*. Due to the tail guarantee

selected is

Putting things together, we have the guarantees of Theorem 5 for our G-sampler.

» Theorem 5. Given an (a,e)-smooth gradient G, there exists an algorithm SAMPLER
that outputs a noisy vector v such that |[v — a;({(a;, ) — b;)|l2 < afla;((a;, ) — b;)|||2 and

. G((ai,x)—bj,a, .
Elv] = a;({a;,z) — b;) is (1+ O (¢)) Zjll[n](f\cuij,x>_b)j‘!;)llz + poli(n), The algorithm uses

d? poly (log(nT)7 é) update time per arriving row and Td? poly (log(nT)7 é) total bits of
space.

Proof. We define a class C}, of rows as the subset of rows of the input matrix A such that
2k <|la;]|2 < 2F*1. We first use the estimator algorithm in Theorem 9 to sample a class k of

Yo co Gllaia)=biai)
. . ae0y,
rows with probability Z Gy —bra)

row from Cj, under the correct distribution follows from Lemma 15. The space complexity
2
follows from storing a d X d matrix in each of the O (logaﬁ) buckets in COUNTSKETCH

Once a class CY is selected, then outputting a

for threshold O ( T)> and high probability of success. <

B Missing Proofs from Section 3

Proof of Lemma 17. Let C > 0 be a sufficiently large constant. For any ¢ € [T] and i € [n],
G(a;((as, z) — bi)) > &7 > e G(a;((a;, 2) — b;)) only if there exists a row in a; o b; whose

sensitivity is at least % However, we have explicitly stored all rows a; o b; with sensitivity

Q (%) and removed them from each G-sampler.

X Thus, for all j € [f] so that h(i) # j for any index ¢ € [n] such that G(a;({(a;, z) — b;)) <
CcT Zke[n] G(ap((ag, ) — by)), we have
log(Td
S Glautfans) ) < G T Glarllann) )

i:h(i)=j ke[n]

with probability at least 1 — 17 by Bernstein’s inequality and a union bound over j € [5],
poly(T'd)

where 8 = ©(T) is sufficiently large. Intuitively, by excluding the hash indices containing
“heavy” matrices, the remaining hash indices contain only a small fraction of the mass with
high probability.

We analyze the probability that any bucket containing rows with sensitivity less than
O () are sampled more than Q(T log(T'd)) times, since we create O (T log(Td)) separate
G-samplers for each of these buckets. By a coupling argument and Chernoff bounds, the

probability that any j € [8] with ¥, —; G(ai((a, ) —b;)) < ETL S, Glag((ag, =) —
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br)) is sampled more than 200log(T'd) times is at most m for any t € [T], provided
there is no row with h(i) = j whose sensitivity is at least 7. Thus, the probability that some
bucket j € [3] is sampled more than 200log(7'd) times across T steps is at most W(Td)'
In summary, we would like to maintain T' separate instances of G-samplers for the heavy
matrices and ©O(log(T'd)) separate instances of G-samplers for each hash index that does not
contain a heavy matrix, but this creates a Q(T?) space dependency. Instead, we explicitly
store the heavy rows with sensitivity 2 (%), removing them from the heavy matrices, and
manually perform the sampling, rather than rely on the G-sampler subroutine. There can be
at most O (T'dlogn) such rows, resulting in O (Td2 log n) overall space for storing these rows
explicitly. Since the resulting matrices are light by definition, we can maintain ©(log(7'd))
separate instances of G-samplers for each of the ©(T) buckets, which results in O (T'd?)

space overall. With probability at least %, any hash index not containing a heavy matrix is
sampled only once, so each time t € [T] has access to a fresh G-sampler. |

Derandomization of the algorithm. To derandomize our algorithm, we first recall the
following formulation of Nisan’s pseudorandom generator.

» Theorem 19 (Nisan's Pseudorandom Generator, [28]). Let A be an algorithm that uses
S = Qlogn) space and R random bits. Then there exists a pseudorandom generator for A
that succeeds with high probability and runs in O (Slog R) bits.

The goal of Nisan’s PRG is to fool a small space tester by generating a number of pseudoran-
dom bits in a read-once tape in place of a number of truly random bits. In the row-arrival
model, the updates to each row a; of A € R"*? arrive sequentially, so it suffices to use
a read-once input tape. Thus a tester that is only allowed to S space cannot distinguish
between the output of our algorithm using true randomness and pseudorandom bits gen-
erated by Nisan’s PRG. Since our algorithm uses S = T'd? polylog(Tnd) bits of space and
R = poly(n,T,d) bits of randomness, then it can be randomized by Nisan’s PRG while using
Td? polylog(Tnd) total space.
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