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Abstract

In the ℓp-subspace sketch problem, we are given an n× d matrix A with n > d, and asked to build a small
memory data structure Q(A, ε) so that, for any query vector x ∈ R

d, we can output a number in (1± ε)∥Ax∥pp
given only Q(A, ε). This problem is known to require Ω̃(dε−2) bits of memory for d = Ω(log(1/ε)). However,
for d = o(log(1/ε)), no data structure lower bounds were known. Small constant values of d are particularly
important for estimating point queries for support vector machines (SVMs) in a stream (Andoni et al. 2020),
where only tight bounds for d = 1 were known.

We resolve the memory required to solve the ℓp-subspace sketch problem for any constant d and integer

p, showing that it is Ω
(
ε
−

2(d−1)
d+2p

)
bits and Õ

(
ε
−

2(d−1)
d+2p

)
words, where the Õ(·) notation hides poly(log(1/ε))

factors. This shows that one can beat the Ω(ε−2) lower bound, which holds for d = Ω(log(1/ε)), for any
constant d. Further, we show how to implement the upper bound in a single pass stream, with an additional
multiplicative poly(log log n) factor and an additive poly(log n) cost in the memory. Our bounds extend to
loss functions other than the ℓp-norm, and notably they apply to point queries for SVMs with additive error,

where we show an optimal bound of Θ̃
(
ε−

2d
d+3

)
for every constant d. This is a near-quadratic improvement

over the Ω
(
ε−

d+1
d+3

)
lower bound of Andoni et al. Further, previous upper bounds for SVM point query were

noticeably lacking: for d = 1 the bound was Õ(ε−1/2) and for d = 2 the bound was Õ(ε−4/5), but all existing

techniques failed to give any upper bound better than Õ(ε−2) for any other value of d. Our techniques, which
rely on a novel connection to low dimensional techniques from geometric functional analysis, completely close
this gap.

1 Introduction

We consider the subspace sketch problem, which is the problem of designing a low memory data structure to
compress a given n × d matrix A, so that later given only the compressed version of A, one can query norms of
vectors of the form Ax for x ∈ R

d. Formally,

Definition 1.1. In the subspace sketch problem, we are given an n × d matrix A with entries specified by
O(log(nd)) bits, an accuracy parameter ε > 0, and a function Φ : R

n → R
≥0, and the goal is to design a

data structure QΦ so that, with constant probability, simultaneously for all x ∈ R
d, QΦ(x) = (1± ε)Φ(Ax).

An important case of the above is when the functions correspond to the classical ℓp-norms, i.e., Φ(x) =∑n
i=1 |xi|p for some p ≥ 1. A space bound of dO(p) words is known for even integers p, independent of ε. For

p that is not an even integer, it was shown in [LWW21] that there is an Ω̃(dε−2) lower bound on the memory

required to solve the subspace sketch problem for d = Ω(log(1/ε)). Here and throughout, the Õ(·) notation
hides poly-logarithmic factors in its arguments. The fact that d = Ω(log(1/ε)) was crucial for the arguments

in [LWW21], and a natural question is if the same Ω̃(dε−2) lower bound holds for smaller d, in particular for
constant d.

The interest in constant d is particularly motivated given the recent work of [ABL+20], which studied the
support vector machines (SVM) problem in constant dimensions in the streaming setting. Here x can be thought
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Parameters Lower Bound Upper Bound

p = 1

Ω
(
ε−

2(d−1)
d+2p

)
Theorem 3.1

Õ
(
ε−

2(d−1)
d+2

)
[Mat96]

p ∈ Z \ 2Z Õ
(
ε−

2(d−1)
d+2p

)
Theorem 4.2

p ∈ [1,∞) \ Z Õ
(
ε−

2(dq−1)
dq+2

)
q = ⌈p2⌉, Section A.2

p ∈ [1,∞) \ Z, d ≥ 5 Õ
(
ε−

2(d−1)
d+2

)
Theorem A.1

p ∈ (d− 1,∞) \ Z Õ
(
ε−

2d
2p−d+2

)
Section A.3

p ∈ 2Z no dependence on ε O(1) [Sch11, LWW21]

SVM Ω
(
ε−

2d
d+3
)

Theorem 7.2 Õ
(
ε−

2d
d+3
)

Theorem 7.1

Table 1: A summary of existing results and our results for the ℓp-subspace sketch problem. The lower bounds are
in terms of the number of bits and the upper bounds are in the number of words.

of as a pair (θ, b) ∈ R
d × R and each of the n rows of A can be thought of as a pair (xi, yi) ∈ R

d × {−1, 1}, and
for a parameter λ > 0 we have:

Φ((θ, b)) =
λ

2
∥(θ, b)∥22 +

1

n

n∑

i=1

max{0, 1− yi(θ
Txi + b)}.(1.1)

The authors refer to the above as the “point query” version of SVM and show an Ω
(
ε−

d+1
d+3
)
bit lower bound

for any single-pass streaming algorithm for solving this problem. In fact, their lower bound applies to the memory
required of any data structure for solving the subspace sketch problem with Φ as in (1.1). In terms of upper

bounds, [ABL+20] show an Õ(ε−1/2) bound for d = 1 and an Õ(ε−4/5) bound for d = 2. For any d > 2, the best

known upper bound is a trivial Õ(ε−2) bound obtained by uniform sampling. In fact, these upper bounds are
also all one-pass streaming algorithms. One of the major open questions of [ABL+20] was to close this nearly
quadratic gap for large constant d.

The ℓp-subspace sketch problem has also been studied in functional analysis for constant values of d for the
special case of p = 1, and for the special case of requiring an embedding, i.e., a low dimension m and a matrix B

of m rows so that ∥Bx∥1 = (1 ± ε)∥Ax∥1 for all x. In particular, a dimension of Õ
(
ε−

2(d−1)
d+2

)
was established in

a sequence of work [BM83, Gor85, Sch87, Lin89, BL88, Mat96], while a matching lower bound for this particular
type of subspace sketch (and for p = 1 and constant d) was shown in [BLM89]. There are many natural questions
left open by the functional analysis work: (1) can the upper bound be made a streaming upper bound with a
small amount of memory? (2) does the lower bound hold for arbitrary data structures, (3) can the arguments
extend to p > 1, etc.?

Throughout the remainder of this section, we assume that d ≥ 2 and p ≥ 1 are constants.

1.1 Our Results A summary of our results is provided in Table 1.

In this paper, we show that the Ω
(
ε−

2(d−1)
d+2

)
lower bound actually holds for any type of data structure for

p = 1. Furthermore, for every p ∈ [1,∞) \ 2Z, we obtain a lower bound of Ω
(
ε−

2(d−1)
d+2p

)
.

Theorem 1.1. Suppose that p ∈ [1,∞) \ 2Z. Any data structure that solves the ℓp-subspace sketch problem for

dimension d and accuracy parameter ε requires Ω(ε−
2(d−1)
d+2p ) bits of space.

For every integer p, we obtain an Õ
(
ε−

2(d−1)
d+2p

)
upper bound, matching the lower bound up to logarithmic

factors.

Theorem 1.2. (Informal) Suppose that A ∈ R
n×d and p is a positive integer. There is a polynomial-time

algorithm that maintains a data structure using Õ(ε−
2(d−1)
d+2p ) words of space, which solves the ℓp-subspace sketch

problem.

Moreover, we show the upper bound above can be implemented in a single pass row-arrival stream, with an
additional multiplicative poly(log log n) factor and an additive poly(log n) cost in the memory.
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Theorem 1.3. (Informal) Let A = a1 ◦ · · · ◦ an be a stream of n rows, where ai ∈ R
1×d. There is an algorithm

that maintains a data structure in Õ(ε−
2(d−1)
d+2p ) words of space, which solves the ℓp-subspace sketch problem.

Moreover, the algorithm can be implemented in Õ(ε−
2(d−1)
d+2p + log

3d+2p−2
d+2p n) words of space.

We also obtain an O(1)-update time algorithm with a slightly worse Õ(ε−
2(d−1)
d+2p−1 ) words of space bound for

general d = O(1) and a tight space bound of Õ(ε−
2(d−1)
d+2p ) for d ≤ 2p+ 2.

Theorem 1.4. (Informal) Let A = a1 ◦ · · · ◦ an be a stream of n rows, where ai ∈ R
1×d. There is an algorithm

which maintains a data structure Q of Õ(ε−
2(d−1)
d+2p−1 ) words of space which solves the ℓp-subspace sketch problem.

Moreover, the algorithm updates Q in O(1) time and can be implemented using Õ(ε−
2(d−1)
d+2p−1 ) words of space.

When d ≤ 2p + 2, the size of Q can be improved to Õ(ε−
2(d−1)
d+2p ) words of space and the whole algorithm can

be implemented in Õ(ε−
2(d−1)
d+2p ) words of space.

To obtain a tight bound for the SVM point query problem mentioned above, we also study the following
version of the affine ℓp-subspace sketch problem, where

Φ(x, b) =
n∑

i=1

|b− ⟨Ai, x⟩| .

for every x ∈ R
d and b ∈ R. We show a tight space complexity of Θ̃(ε−

2d
d+2p+1 ).

Theorem 1.5. (Informal) Suppose that p ∈ [1,∞) \ 2Z. Any data structure that solves the affine ℓp-subspace

sketch problem for dimension d and accuracy parameter ε requires Ω(ε−
2d

d+2p+1 ) bits of space.

When p is an integer, there is a polynomial-time algorithm that returns a data structure with Õ(ε−
2d

d+2p+1 )
words of space, which solves the affine ℓp subspace sketch problem.

Based on these results, we show that a tight space bound for the point query problem can be derived via a
black box reduction with p = 1.

Theorem 1.6. (Informal) Any data structure which solves the d-dimensional point estimation problem for

SVM requires Ω(ε−
2d

d+3 ) bits of space.

Furthermore, there is an algorithm that maintains a data structure using Õ(ε−
2d

d+3 ) words of space, which

solves the d-dimensional point query problem for SVM. The algorithm can be implemented using Õ(ε−
2d

d+3 ) words
of space.

Lastly, we obtain results for non-integer p, giving algorithms with o(ε−2) words of space even for such p. The
details are postponed to Appendix A.

1.2 Our Techniques One of our key technical contributions is to connect the SVM point query problem to
the ℓ1-subspace sketch problem and to use techniques for the latter from geometric functional analysis, which
previously had not been considered in the context of the SVM problem [ABL+20]. Throughout this section, we
assume that p ≥ 1 is not an even integer.

1.2.1 Lower Bound The idea behind our lower bound for the subspace sketch problem is to give Alice one of
m = 2Ω(n) possible subsets S1, . . . , Sm of n/2 points of a fixed set S = {p1, . . . , pn} of n points on the unit sphere
S
d−1, where ∥pi − pj∥2 ≥ η for all i ̸= j. Here we have |Si ∩ Sj | ≤ n/4 for every pair i ̸= j. If Alice has a specific

subset Si, she can send the subspace sketch of her set to Bob. Bob then pretends he has an Sj and enumerates
over all possible queries x, and by construction of our sets Si, we will (abusing notation and writing a set as the
matrix whose rows correspond to the entries in the set) have that |∥Six∥p − ∥Sjx∥p| is larger than the tolerable
subspace sketch error, and Bob will be able to determine that i ̸= j.

Our main novelty is Lemma 3.2, which says that for two sets A and B of points on the sphere, each symmetric
around the origin and such that no point in A is close to any point in B, there is some direction x on the sphere for
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which |∥Ax∥pp − ∥Bx∥pp| is large. The proof of this lemma is inspired by ideas from geometric functional analysis
[BLM89], which give lower bounds for the specific case when the data structure is an embedding for p = 1 and
for constant d. Indeed, as in their proof, we make use of spherical harmonics. However, we require a significant
strengthening of the arguments in [BLM89]. In particular, the lemma in [BLM89] can be seen as lower bounding
maxx ∥Ax∥pp − minx ∥Ax∥pp, which, after expanding ∥Ax∥pp in a spherical harmonic series, boils down to lower
bounding

∑

i,j

f(⟨Ai, Aj⟩), where f(t) =
1− r4

(1 + r4 − 2r2t)d/2
,

where r is a parameter to be determined. The lower bound of [BLM89] is obtained simply by considering only
the terms for which “i = j”. In our case, we need to lower bound maxx(∥Ax∥pp−∥Bx∥pp)−minx(∥Ax∥pp−∥Bx∥pp),
which reduces to lower bounding a more complicated quantity:

(1.2)
∑

i,j

f(⟨Ai, Aj⟩) +
∑

i,j

f(⟨Bi, Bj⟩)−
∑

i,j

f(⟨Ai, Bj⟩).

The first two terms can be lower bounded similarly by taking only the “i = j” terms as before. However, there
is a third term which causes additional complications since it requires a good upper bound. To do this, for each
point Ai, we partition the points Bj into level sets of geometrically increasing distances from Ai. The critical
observation is that the number of points in each level set grows at a slower rate than the function f decays. Hence,
the contribution from each level set is geometrically decreasing and the total contribution for each fixed Ai can
thus be controlled. In the end, we are able to show that the third term in (1.2) is at most a constant fraction of
the first two terms, which leads to our desired lower bound.

1.2.2 Upper Bound Our upper bound is inspired from an argument of Matousek [Mat96] for p = 1. We give
a high-level description of this idea, assuming first that each point Ai ∈ S

d−1. The points Ai are partitioned into
a number of groups P1, . . . , Ps each of diameter at most η = ε2/(d+2) (Lemma 2.3), then Θ(d) random points are
chosen from each group, such that the barycenter of the randomly selected points is the same as the barycenter of
the group (Lemma 4.2). The data structure stores the selected points in each group as a surrogate for the group.

For a fixed query point x, each group Pj belongs to one of three types, based on its relative position to the
the equator {y : ⟨x, y⟩ = 0}: positive type, if ⟨Ai, x⟩ > Cη for all Ai ∈ Pj ; negative type, if ⟨Ai, x⟩ < −Cη
for all Ai ∈ Pj ; zero type, if |⟨Ai, x⟩| ≤ Cη for all Ai ∈ Pj , where C > 0 is an absolute constant. When Pj is
of positive type, we have

∑
Ai∈Pj

|⟨Ai, x⟩| =
∑

Ai∈Pj
⟨Ai, x⟩ = ⟨

∑
Ai∈Pj

Ai, x⟩, which can be calculated exactly
without error from the sampled points, as guaranteed by the barycenter property. When Pj is of negative type,
the contribution can be calculated exactly in a similar manner. Next, consider the groups Pj of zero type. Since
all summands |⟨Ai, x⟩| are small, a Bernstein bound shows that using randomly selected points can approximate
the total contribution from all zero-type groups up to a small additive error with high probability. Taking a union
bound over a net for query points x, the overall sum

∑
i |⟨Ai, x⟩| can be estimated with a small additive error ε

with high probability simultaneously for all x ∈ S
d−1.

Now, suppose that p is an odd integer. The key observation is a “tensor trick”

⟨x, y⟩p = ⟨x⊗p, y⊗p⟩,

where x⊗p and y⊗p are dp-dimensional vectors. Lemma 4.2 is then applied to a group of dp-dimensional
points, so Θ(dp) points are selected randomly in each group and stored in the data structure. Another crucial
observation is that in this way, all the error comes from the terms |⟨Ai, x⟩|p such that |⟨Ai, x⟩| ≤ η, which implies
|⟨Ai, x⟩|p ≤ ηp ≪ η. This allows for tighter concentration than what is possible for p = 1. We can therefore
estimate

∑
i |⟨Ai, x⟩|p up to a small additive error ε for all x ∈ S

d−1, assuming that ∥Ai∥2 = O(1) for all i.
The procedure above can be generalized to estimate

∑
i wi |⟨Ai, x⟩|p up to an additive error of ε

∑
i wi, where

wi ≥ 0 is the weight associated with the point Ai. This requires that the random points selected from each group
carry (new) weights such that the weighted barycenters are the same. This was already attained in Matousek’s
work (Lemma 4.2).

In order to obtain a multiplicative error for a general matrix A, we perform a preprocessing step, which
transforms the John ellipsoid of {x ∈ R

d : ∥Ax∥p ≤ 1} to the unit ℓ2 ball in R
d via a linear transformation, giving
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a matrix A′ for which we can show that ∥A′
i∥2 = O(1) and ∥A′x∥pp = Ω(

∑
i ∥A′

i∥p2). This is sufficient to deduce
that the additive error to the normalized version of A′ is in fact a multiplicative error for A.

We remark that having a p-th power in |⟨Ai, x⟩|p is only useful when ⟨Ai, x⟩ is small, and improvements exploit-
ing this benefit may not occur in other algorithms. For example, Matousek proposed another algorithm [Mat96]

which removes the log(1/ε) factors for d ≥ 5, obtaining a clean O(ε−
2(d−1)
d+2 ) bound. The analysis of this algorithm

relies on the fact that the function x 7→ |⟨u, x⟩| − |⟨v, x⟩| is Lipschitz on the region where ⟨u, x⟩ and ⟨v, x⟩ have
the same sign and the Lipschitz constant is proportional to ∥u− v∥2. However, we cannot expect a substantially
smaller Lipschitz constant for the function x 7→ |⟨u, x⟩|p−|⟨v, x⟩|p. Interestingly, as we shall show in Appendix A,

despite it failing to give a tight bound for integer p > 1, this algorithm actually implies an O
(
ε−

2(d−1)
d+2

)
upper

bound for all constant p > 1 once d ≥ 5.

1.2.3 Streaming Upper Bound The preceding approach for the upper bound does not give a streaming
algorithm since computing the groups P1, . . . , Ps to perform the partition requires storing all of the points.
Nevertheless, it can be viewed as a coreset procedure which, given a set of weighted points (A,w) (where w

is a vector in which wi is the weight for Ai), outputs a small subset B ⊆ A of size Õ(ε−
2(d−1)
d+2p ) together with

new weights w′ such that
∑

j w
′
j |⟨Bj , x⟩|p = (1± ε)

∑
i wi |⟨Ai, x⟩|p. The standard merge-and-reduce framework

(see, e.g., [BDM+20] in the context of numerical linear algebra) can then be applied, leading to a streaming

algorithm using Õ(ε−
2(d−1)
d+2p polylog(n/ε)) words of space. However, this memory bound depends on the product

of a term involving ε and a term involving log n. By instead running the algorithm with ε = Θ(1) and using
it to estimate the so-called ℓp-sensitivities, according to which we can sample the points Ai, we can replace n
with poly(d/ε) log n, and then run the merge-and-reduce framework on this new value of n, resulting in only a
poly(log log n) factor multiplying the term depending on ε, plus an additive poly(log n) term.

1.2.4 Connection to SVM As mentioned, one of our key contributions is showing that the SVM point query
problem can be related the ℓ1-subspace sketch problem via a black-box reduction. As shown in [ABL+20], the
function Φ for SVM can be modified to

Φ(θ, b) =
1

n

n∑

i=1

max{0, b− θTxi} ,

without loss of generality. Consider the special case when b = 0. Suppose that X = {xi} is the point set given
by the data stream. Let −X = {−x : x ∈ X} and observe that

Φ(θ, 0)
X

+Φ(θ, 0)
−X

=
1

n

∑

i

(
max{0, θ⊤xi}+max{0,−θ⊤xi}

)
=

1

n

∑

i

∣∣θ⊤xi

∣∣ ,

which means that a lower bound for the d-dimensional ℓ1-subspace actually yields a lower bound for the d-
dimensional point query problem for SVM. To obtain a tight lower bound, we instead study a special affine
version of the ℓp-subspace sketch problem, where

Φ(x, b) =
n∑

i=1

|b− ⟨Ai, x⟩|

for a given x ∈ R
d and b ∈ R.

The key observation is the following. Given a matrix A ∈ R
n×d, let B ∈ R

n×(d+1) be the matrix in
which the i-th row Bi =

(
Ai −1

)
. Suppose that x ∈ R

d and b ∈ R are the query vector and value, and

let y =
(
x⊤ b

)⊤ ∈ R
d+1. Then

∑

i

|⟨Ai, x⟩ − b|p =
∑

i

|⟨Bi, y⟩|p = ∥By∥pp .

Hence, the d-dimensional affine ℓp-subspace sketch is related to the (d+1)-dimensional ℓp-subspace sketch problem
where for all points Ai, the last coordinate is 1. A closer examination of the lower bound for the ℓp subspace
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sketch problem reveals that the lower bound for maxx(∥Ax∥pp−∥Bx∥pp)−minx(∥Ax∥pp−∥Bx∥pp) continues to hold,

up to a constant factor, even when A and B do not necessarily lie on S
d−1 but rather in a thin spherical shell, i.e.,

∥Ai∥2 , ∥Bi∥2 = Θ(1), provided that their projections on S
d−1, Ai/ ∥Ai∥2 and Bi/ ∥Bi∥2, are sufficiently separated

from each other. Hence, the point set S in the communication problem can now be chosen from the spherical cap
{x ∈ S

d : xd+1 = Ω(1)} so that normalizing the last coordinate xd+1 to 1 yields a vector x′ = x/xd+1 lying inside
the spherical shell. The same lower bound (up to a constant factor) for the (d+1)-dimensional ℓp sketch problem
then follows.

2 Preliminaries

Notation Let Sd−1 denote the unit sphere in R
d, i.e., Sd−1 = {x ∈ R

d : ∥x∥2 = 1}, and let ∆d−1 denote the
standard (d− 1)-simplex, i.e., ∆d−1 = {x ∈ R

d : x1 + · · ·+ xd = 1 and xi ≥ 0 for all i}.
For two matrices A and B of the same number of columns, we denote their vertical concatenation by A ◦B.
Spherical Harmonics The spherical harmonics {Yk,j}k,j form an orthonormal basis in L2(Sd−1, σd−1),

where σd−1(x) denotes the normalized rotationally-invariant measure on S
d−1. Here k ≥ 0 is an integer and

j = 1, . . . ,M(d, k) for each k, where M(d, k) =
(
k+d−2
d−2

)
+
(
k+d−3
d−2

)
= O(kd−2). The following are some useful

properties of spherical harmonics (see, e.g. [AH12, DX13]).

• (Addition Theorem) For all x, y ∈ S
d−1,

(2.3)
∑

j

Yk,j(x)Yk,j(y) = M(d, k)Pk,d(⟨x, y⟩),

where Pk,d(t) is the Legendre polynomial of degree k in dimension d.

• (Funk-Hecke Formula) Suppose that f : [−1, 1] → R is a function and y ∈ S
d−1. For h : Sd−1 → R defined

as h(x) = f(⟨x, y⟩), it holds that

(2.4) ⟨h, Yk,j⟩ =
∫

Sd−1

h(x)Yk,j(x) dσd−1(x) = λkYk,j(y),

where

(2.5) λk =
Γ(d2 )√
πΓ(d−1

2 )

∫ 1

−1

f(t)(1− t2)
d−3
2 Pk,d(t)dt.

• (Poisson Identity) It holds for all 0 ≤ r < 1 and all t ∈ [−1, 1] that

(2.6)
1− r2

(1 + r2 − 2rt)d/2
=

∞∑

k=0

M(d, k)rkPk,d(t).

Lemma 2.1. Suppose that d ≥ 2 and p ≥ 1 are constants. Let f(t) = |t|p and λk be as defined in (2.5). It holds
that (i) λk = 0 for odd k; (ii) when p is not an even integer, λk ̸= 0 for all even k and

|λk| ∼d,p
1

kd/2+p
sin

πp

2
, even k →∞;

(iii) when p is an even integer, λk = 0 for all k > p.

Proof. Since Pk,d(t) is an odd function when k is odd, it is clear that λk = 0 when k is odd. We shall assume
that k is even in the rest of the proof. In this case Pk,d is an even function.

Note that Pn,k is the normalized Gegenbauer polynomial, Pk,d(t) = Cα
k (t)/C

α
k (1) with α = d/2 − 1. It is

known that Cα
k (1) = (2α)k/(k!). Invoking the identity (2.21.1.1) from [PBM88], we have that

λk = c(d)(−1)k/2Γ
(
α+

1

2

)
Γ(p+1

2 )

Γ(1 + p
2 + α+ k

2 )

(−p
2

)

k/2

.
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Now it is clear that λk = 0 when p is an even integer and k > p, and λk ̸= 0 for all even k when p is not an even
integer. In the latter case, when k > 0,

λk = c(d, p)(−1)k/2+1 sin
(πp

2

) Γ(k−p
2 )

Γ(k+d+p
2 )

∼d,p (−1)k/2+1 sin
(πp

2

) 1

kd/2+p
.

Volume of Spherical Caps For a point x ∈ S
d−1 and r > 0, consider the spherical cap C(x, r) = {y ∈

S
d−1 : ∥x− y∥2 ≤ r}. It is clear that σd−1(C(x, r)) is independent of x and so we write it as σd−1(Cap(r)). We

cite a result on the volume of spherical caps from [BW03] as follows.

Lemma 2.2. ([BW03, Lemma 3.1]) When r2 ≤ 2(1− 1/
√
d+ 1), it holds that

κd
rd−1

1− r2/2

(
1− r2

4

) d−1
2

≤ σd−1(Cap(r)) ≤ κd
rd−1

1− r2/2

(
1− r2

4

) d−1
2

,

where κd = Γ(d2 )/(2
√
πΓ(d+1

2 )).

Partition of Sphere We shall need the following partition lemma in [Mat96].

Lemma 2.3. ([Mat96, Lemma 5]) Let P be an N -point set in S
d−1, and let s ≥ 2 be a constant. There is an

O(Nd− 1
d−1 )-time deterministic algorithm which computes a collection of disjoint s-point subsets P1, . . . , Pt ⊂ P ,

which together contain at least half the points of P , and with the following properties:

(i) For every x ∈ S
d−1, the hyperplane {y : ⟨x, y⟩ = 0} only intersects at most O(N1− 1

d−1 ) sets among Pi. Here
“intersect” means that there exist x and y in Pi such that x, y are on different sides of the hyperplane.

(ii) Each Pi has diameter at most O(N− 1
d−1 ).

3 ℓp-Subspace Sketch Lower Bound

We first state an auxiliary lemma.

Lemma 3.1. Suppose that c(d) ≤ r < 1. Define a function f : [−1, 1]→ R as

f(t) =
1− r4

(1 + r4 − 2r2t)d/2
+

1− r4

(1 + r4 + 2r2t)d/2
.

Then for 0 ≤ t ≤ 1, it holds that

f(t) ≤ 2(1− r2)

(2r2)d/2

(
1

(1− t)d/2
+ 1

)
.

Proof. Let q = 1− r2. Then the first term of f(t) is

1− r4

(1 + r4 − 2r2t)d/2
≤ 2q − q2

(2− 2q + q2 − 2(1− q)t)d/2
≤ 2q

(2(1− q)(1− t))d/2

and the second term of f(t) is

1− r4

(1 + r4 + 2r2t)d/2
≤ 2q − q2

(2− 2q + q2)d/2
≤ 2q

(2(1− q))d/2
.

The claimed result follows.

Our result is mainly based on the following lemma.
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Lemma 3.2. Suppose that p ∈ [1,∞) \ 2Z is a constant. Let A and B be sets of n ≤ N points on S
d−1. Suppose

that A and B are symmetric around the origin and ∥Ai −Bj∥2 ≥ η = C1N
− 1

d−1 for all i, j. Then we have

δ ≡ sup
x∈Sd−1

1

n

∣∣∣∥Ax∥pp − ∥Bx∥pp
∣∣∣ ≥ c2N

− d+2p
2(d−1) .

In the statement above, C1 > 0 is a constant that depends only on d and c2 > 0 is a constant that depends on d
and p only.

Proof. The proof is inspired by the proof of [BLM89, Proposition 6.6], which uses spherical harmonics. Let
hA(x) =

1
n∥Ax∥pp = 1

n

∑
i |⟨Ai, x⟩|p and let hB(x) be defined similarly. We expand hA − hB into

hA − hB =

∞∑

k=0

∑

j

⟨hA − hB , Yk,j⟩Yk,j .

where ⟨h, Yk,j⟩ denotes the inner product in L2(σd) for which

⟨h, Yk,j⟩ =
∫

Sd−1

h(x)Yk,j(x) dσd−1(x).

It follows from Parseval’s identity that

δ2 ≥ ∥hA − hB∥2L2(σd−1)
=

∞∑

k=1

∑

j

⟨hA − hB , Yk,j⟩2.

Now, from (2.3) and (2.6) we have for all u, v ∈ S
d−1 that

(3.7)
1− r2

(1 + r2 − 2r⟨u, v⟩)d/2 =

∞∑

k=0

rk
∑

j

Yk,j(u)Yk,j(v).

Combining with (2.4) and using the fact that A and B are symmetrically distributed on S
d−1, we obtain that

1

n

n∑

i=1

(1− r2)

(1 + r2 − 2r⟨u,Ai⟩)d/2
= 1 +

∑

even k≥2

rkλ−1
k

∑

j

⟨hA, Yk,j⟩Yk,j(u),

and
1

n

n∑

i=1

(1− r2)

(1 + r2 − 2r⟨u,Bi⟩)d/2
= 1 +

∑

even k≥2

rkλ−1
k

∑

j

⟨hB , Yk,j⟩Yk,j(u).

Hence,

1

n

n∑

i=1

(1− r2)

(1 + r2 − 2r⟨u,Ai⟩)d/2
− 1

n

n∑

i=1

(1− r2)

(1 + r2 − 2r⟨u,Bi⟩)d/2
=

∑

even k≥2

rkλ−1
k

∑

j

⟨hA − hB , Yk,j⟩Yk,j(u),

Integrating with respect to u on S
d−1, we have that

(3.8)

∥∥∥∥∥
1

n

n∑

i=1

(1− r2)

(1 + r2 − 2r⟨u,Ai⟩)d/2
− 1

n

n∑

i=1

(1− r2)

(1 + r2 − 2r⟨u,Bi⟩)d/2

∥∥∥∥∥

2

L2(σd−1)

=
∑

even k≥2

r2kλ−2
k

∑

j

⟨hA − hB , Yk,j⟩2

≤ δ2 max
even k≥2

(r2kλ−2
k ),
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The leftmost side of (3.8) equals (using (3.7))

1

n2



∑

i,j

1− r4

(1 + r4 − 2r2⟨Ai, Aj⟩)d/2
+
∑

i,j

1− r4

(1 + r4 − 2r2⟨Bi, Bj⟩)d/2
− 2

∑

i,j

1− r4

(1 + r4 − 2r2⟨Ai, Bj⟩)d/2


 .

Let I, J be the index sets of A and B such that the points in AI , BJ are on the same hemisphere. We can rewrite
the expansion above as

(3.9)
2

n2



∑

i∈I,j∈I

f(⟨Ai, Aj⟩) +
∑

i∈J,j∈J

f(⟨Bi, Bj⟩)− 2
∑

i∈I,j∈J

f(⟨Ai, Bj⟩)


 ,

where f(t) is as defined in Lemma 3.1.
We now choose (1 − r2)−d+1 = N . Suppose that N is sufficiently large such that 1 − r2 ≤ c4(d) < 1, where

c4(d) is a constant depending only on d. Next we turn to lower bounding the expression in (3.9).
Considering the summands with i = j. We see that the first two terms inside the bracket of (3.9) are at least

∑

i∈I

f(⟨Ai, Ai⟩) +
∑

j∈J

f(⟨Bj , Bj⟩) ≥ n
1− r4

(1− r2)d
≥ n(1− r2)−d+1 = nN.

Next we bound the cross terms. We first show that, for every Ai,

(3.10)
∑

j∈J

f(⟨Ai, Bj⟩) ≤
1

4
N.

Without loss of generality, we assume ⟨Ai, Bj⟩ ≥ 0 for all j, as otherwise we can replace Bj with −Bj . To achieve
this, consider a fixed i ∈ I. Let Ik = {j ∈ J : 2k−1η ≤ ∥Ai −Bj∥2 < 2kη} for k = 1, 2, . . . ,K, where K is the
smallest positive integer such that 2Kη ≥ 1/2. We also define IK+1 = {j ∈ J : ∥Ai −Bj∥2 ≥ 2Kη}. Then, we
have that

∑

j∈J

f(⟨Ai, Bj⟩) =
K+1∑

k=1

Sk =
K+1∑

k=1



∑

j∈Ik

f(⟨Ai, Bj⟩)


 .

Next, we will bound Sk individually. From Lemma 2.2 we have that

|Ik| ≤
σd−1(Cap(2

kη))

σd−1(Cap(η/2))
≤ C3(d) · (2k)d−1.

By Lemma 3.1, when 0 ≤ t ≤ 1− 22k−1η2 and k ≤ K, we have that

f(t) ≤ 2(1− r2)

(2r2)d/2

(
1

(1− t)d/2
+ 1

)

≤ 2(1− r2)

(2(1− c4))d/2

(
1

2(k−1/2)dηd
+ 1

)

≤ C4(d)

2kd
1− r2

ηd
.

Also, when 0 ≤ t < 7/8, we have that

f(t) ≤ 2(1− r2)

(2r2)d/2

(
1

(1− t)d/2
+ 1

)

≤ 2(1− r2)

(2(1− c4))d/2

(
1

(1/8)d/2
+ 1

)

≤ C4(d)(1− r2).
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Consequently (noting that ⟨Ai, Bj⟩ = 1− ∥Ai−Bj∥2
2

2 ),

∑

j∈J

f(⟨Ai, Bj⟩) ≤



∑

k≤K

C3(d)(2
k)d−1 · C4(d)

1− r2

ηd
1

2kd


+

n

2
· C4(d)(1− r2)

≤ C5(d)

(
1− r2

ηd
+

N

2
(1− r2)

)
≤ 1

4
N

provided that
1

4
N ≥ C5(d)

(
1− r2

ηd
+

N

2
(1− r2)

)
= C5(d)

(
N− 1

d−1 η−d +
1

2
N1− 1

d−1

)
,

which holds whenever
η ≥ C1(d)N

− 1
d−1

and N is sufficiently large. It follows from (3.10) that

2
∑

i∈I,j∈J

f(⟨Ai, Bj⟩) ≤
1

2
nN,

which implies that the expression in (3.9) is at least

2

n2

(
nN − 1

2
nN

)
≥ 1.

Plugging this back into (3.8) yields
δ2 max

even k
(r2kλ−2

k ) ≥ 1.

By Lemma 2.1, there exists a constant c(d) such that

c(d, p)δ2 max
even k

(r2kkd+2p) ≥ Ω(1).

The maximum is attained when k ≈ (d+ 2)/ ln(1/r) ∼ d
1−r2 , from which we obtain that

δ ≥ c(d, p)N− d+2p
2(d−1) .

Equipped with the lemma above, we are now ready to prove our lower bound. We need the following lemma
on the size of intersecting families.

Lemma 3.3. ([BBD15, p14]) Suppose that 0 < β < α < 1 and n is sufficiently large. There exists a family S of
subsets of [n] such that (i) |S| = αn for each S ∈ S, (ii) |S ∩ T | ≤ βn for every pair of distinct S, T ∈ S and (iii)
|S| = Ω((1/α)βn).

Let η = C1(d)N
− 1

d−1 , where C1(d) is as in Lemma 3.2. It follows from Lemma 2.2 that we can take
n = c(d)N ≤ N/2 points p1, . . . , pn on some spherical cap C(x,

√
2− η) such that ∥pi − pj∥2 ≥ η for every

1 ≤ i < j ≤ n. Since the pi are chosen from a spherical cap of radius
√
2− η, we also have that ∥pi + pj∥2 ≥ η

for all pairs i ̸= j. Let S = {p1, ..., pn}. Applying Lemma 3.3, we can find m = 2Ω(n) subsets S1, . . . , Sm of S
such that |Si| = n/2 for each i and |Si ∩ Sj | ≤ n/4 for every pair i ̸= j.

Given the approximation parameter ε, let N = c(d)ε−
2(d−1)
d+2p be such that c2N

− d+2p
2(d−1) = 12ε, where c2 is as in

Lemma 3.2.
Now we consider the following communication problem: suppose that Alice has one of the subsets

S1, S2, . . . , Sm and she wants to send a message to Bob, who needs to determine which subset Alice has. We shall
show that we can solve this problem if we have an ℓp-subspace sketch data structure. Suppose that the subset
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Alice has is St and Q is a data structure such that Q(x) = (1± ε)∥Stx∥p for all x ∈ S
d−1. Then, Alice sends such

a data structure Q to Bob.
On the one hand, we have for the subset Si = St that

(3.11) |Q(x)− ∥Six∥p| ≤ nε, ∀x ∈ S
d−1.

On the other hand, if St ̸= Si, we know from the construction of the subsets Si that |Si \ St| = |St \ Si| ≥ n/4.
Applying Lemma 3.2 to Si ∪ (−Si) and St ∪ (−St), we see that there exists an x ∈ S

d−1 such that

|∥Six∥p − ∥Stx∥p| ≥
1

4
n · c2N− d+2p

2(d−1) ≥ 3nε,

whence it follows that

(3.12) |Q(x)− ∥Six∥p| ≥ |∥Six∥p − ∥Stx∥p| − |∥Stx∥p −Q(x)| ≥ 3nε− nε = 2nε.

Combining (3.11) and (3.12), we immediately see that Bob can decide which of the two cases he is in by querying

a sufficient number of points on S
d−1, which implies a lower bound of Ω(logm) = Ω(n) = Ω(ε−

2(d−1)
d+2p ) bits of

space.

Theorem 3.1. Suppose that p ∈ [1,∞) \ 2Z and d are constants. Any data structure that solves the ℓp-subspace

sketch problem for dimension d and accuracy parameter ε requires Ω(ε−
2(d−1)
d+2p ) bits of space.

Remark 3.1. Our proof does not work when p is an even integer, which is as expected. In this case, ∥Ax∥pp is a

polynomial and the spherical harmonic series will be finite. The term maxk(r
2kλ−2

k ) in (3.8) will be a constant
instead of a quantity depending on N .

4 ℓp-Subspace Sketch Upper Bound

Our approach follows [Mat96], which deals with the case of p = 1. The following is our key lemma, which is an
analogue of [Mat96, Proposition 7] for a general p.

Lemma 4.1. Let P ∈ R
d be an N -point set with each point having ℓ2 norm O(1), and let w ∈ ∆N−1 be an

associated weight vector. There is an O(d3/2Nd)-time deterministic algorithm which computes a subset P ′ ⊂ P
of at most 7

8N points with a weight vector w′ ∈ ∆|P ′|−1 such that with probability 1− 1/N , for every x ∈ S
d−1

∣∣∣∣∣
∑

i

wi|⟨Pi, x⟩|p −
∑

i

w′
i|⟨P ′

i , x⟩|p
∣∣∣∣∣ = O(N− d+2p

2(d−1)

√
logN) .

Given matrix A and error parameter ε, we apply Lemma 4.1 repeatedly as in [Mat96], obtaining a sequence

of subsets with 7
8N , ( 78 )

2N , . . . points, until a subset of size Õ(ε−
2(d−1)
d+2p ) is obtained. Note that the errors of the

successive approximations form a geometric progression, and hence the final error will be O(ε). The following
theorem follows immediately.

Theorem 4.1. Suppose that A ∈ R
n×d satisfies that ∥Ai∥2 = O(1) for all i and p is a positive integer

constant. There is an O(d3/2nd)-time deterministic algorithm which computes a matrix B consisting of m =

O(ε−
2(d−1)
d+2p log

d−1
d+2p (ε−1)) rows of A, and an associated weight vector w ∈ ∆m−1, such that with high probability

for every x ∈ S
d−1, ∣∣∣∣∣

m∑

i=1

wi|⟨Bi, x⟩|p −
1

n
∥Ax∥pp

∣∣∣∣∣ = O(ε) .

To prove Lemma 4.1, we first give intuition, which is inspired by the proof of [Mat96, Proposition 7]. Given
a point set P , from Lemma 2.3 we know that for at least half of the points of P , we can divide them into groups
P1, P2, . . . , Pt which satisfy the corresponding conditions (for the points that are not on the sphere, we scale them
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to unit vectors when applying the partition lemma). That is, (i) each Pi is within a small area and (ii) for every
x ∈ S

d−1, the hyperplane {y : ⟨x, y⟩ = 0} only intersects a small number of sets among Pi.
Given a query point x ∈ S

d−1, let H be the hyperplane {y : ⟨x, y⟩ = 0}. For the subset Pi, we first consider
the case that H does not intersect Pi. In this case we have

∑

y∈Pi

|⟨x, y⟩|p =
∑

y∈Pi

⟨x, y⟩p .

The tensor product trick ⟨x, y⟩p = ⟨x⊗p, y⊗p⟩ implies that
∑

y∈Pi

|⟨x, y⟩|p =
∑

y∈Pi

⟨x⊗p, y⊗p⟩ = ⟨x⊗p,
∑

y∈Pi

y⊗p⟩ .

Hence, what we need to store is
∑

y∈Pi
y⊗p, which can be seen as a dp-dimensional vector.

For the other case where H intersects Pi, the method above will not work. However, note that in this case
|⟨x, y⟩| is small for every y ∈ Pi as each Pi lies in a small region. We also know that H intersects only a small
number of groups Pi; therefore, sampling points from the intersection is enough to achieve an ε-additive error.

However, one issue here is that it is not easy to determine whether H intersects Pi if we only store a
limited number of points. To address this, for each subset Pi, we choose a random subset T ⊆ Pi with
associated weights {wy}y∈T such that (i)

∑
y∈T wy · y⊗p =

∑
y∈Pi

y⊗p (which is helpful for the first case) and (ii)
E
∑

y∈T wy · |⟨x, y⟩|p =
∑

y∈Pi
⟨x, y⟩p (which we will show is enough for the second case). The following lemma

will be useful.

Lemma 4.2. ([Mat96], Lemma 8) Let P = {P1, . . . , Ps} ⊂ R
d be a set of s ≥ d + 1 points with an associated

weight vector u ∈ ∆s−1. There is a deterministic algorithm which computes a group of the subsets T1, . . . , Ts′ ,
each associated with a probability pi and a weight vector wi ∈ ∆ti−1, where s′ ≤ s− d and ti = |Ti|, such that

(i)
∑s′

i=1 pi = 1;

(ii) ti ≤ d+ 1 for each i ∈ [s′];

(iii)
∑ti

j=1 wi,jTi,j =
∑s

i=1 uiPi for each Ti = {Ti,j}j=1,...,ti ;

(iv)
∑

i∈Ik
piwi,j(i,k) = uk for each k ∈ [s], where Ik = {i ∈ [s′] : Pk ∈ Ti} and j(i, k) is the index j such that

Ti,j = Pk for i ∈ Ik.

Furthermore, the running time of the algorithm is dominated by that of finding a feasible solution to a linear
program with s variables and d+ 1 constraints.

We now are ready to prove our Lemma 4.1.

Proof. [Proof of Lemma 4.1] Since
∑

i ui = 1, there are at least 1
2N points with weight wi ≤ 2

N . Applying
Lemma 2.3 to these points with s = 2(dp + 1) (recall that d and p are both constants), we obtain a collection of

disjoint s-points subsets P1, ..., Pt, each of which has diameter O(N
1

d−1 ). Furthermore, for every x ∈ S
d−1, the

corresponding hyperplane {y : ⟨x, y⟩ = 0} intersects at most O(N1− 1
d−1 ) subsets. For the remaining points, we

keep them with the same weights. For each Pi, we sample at most half of the points for each group as below.
For each x ∈ R

d, let T (x) = x⊗p denote its p-th tensor product, viewed as a dp-dimensional vector. For
each subset Pi, let T (Pi) = {T (x) : x ∈ Pi} and w(Pi) =

∑
y∈Pi

wy. We then apply Lemma 4.2 to T (P ) with
the normalized weights w′

y = wy/w(Pi), obtaining a group of the subsets T1, . . . , Ts′ with weights v1, . . . , vs′ and
probabilities p1 . . . , p

′
s. We choose a random index j ∈ {1, 2, . . . , s′} according to probabilities p1, . . . , p

′
s and take

the subset Tj to be our sample set of the points. The guarantee of Lemma 4.2 implies that Tj contains at most
dp + 1 points, which is at most half of the size of Pi. Repeating this procedure for each Pi, we finally obtain a
subset of P containing at most 7

8N points.
Now we analyze correctness of our algorithm. Fix x ∈ S

d−1. For each Pi, let Qi denote the subsets of Pi with
the points we sampled in the procedure above with the associated weight vi. It suffices to show that

∣∣∣∣∣∣

∑

i

∑

y∈Qi

vy|⟨x, y⟩|p −
∑

i

∑

y∈Pi

wy|⟨x, y⟩|p
∣∣∣∣∣∣
= O(N− d+2p

2(d−1)

√
logN)
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holds with high probability.
Let I denote the set of indices in {1, 2, . . . , t} for which the hyperplane H = {y : ⟨x, y⟩ = 0} intersects Pi.

Then for each i /∈ I, from the condition

∑

y∈Qi

vyy
⊗p =

∑

y∈Pi

wyy
⊗p

we have that

⟨x⊗p,
∑

y∈Qi

vyy
⊗p⟩ =

∑

y∈Qi

vy⟨x, y⟩p =
∑

y∈Pi

wy⟨x, y⟩p = ⟨x⊗p,
∑

y∈Pi

wyy
⊗p⟩ .

Note that in this case ⟨x, y⟩ has the same sign for all y ∈ Pi. Hence

∑

y∈Qi

vy|⟨x, y⟩|p =
∑

y∈Pi

wy|⟨x, y⟩|p

Now we focus on the case i ∈ I. Recall that |I| = O(N1− 1
d−1 ). Define a random variable Xi as

Xi =
∑

y∈Qi

vy|⟨x, y⟩|p −
∑

y∈Pi

wy|⟨x, y⟩|p ,

where the randomness is taken over the choice of the subsets Qi. Lemma 4.2(iii) implies that

E



∑

y∈Qi

vy|⟨x, y⟩|p

 =

∑

y∈Pi

wy|⟨x, y⟩|p .

Hence EXi = 0. Since H intersects Pi and the diameter of Pi is O(N− 1
d−1 ), it holds that |⟨x, y⟩|p = O(N− p

d−1 )
for all y ∈ Qi. Recalling our definitions of vy and s, we have

∑
y∈Qy

vy = w(Pi) = O(s/N) and thus

|Xi| = O(N−1− p

d−1 ). Let U be this upper bound for |Xi|. It then follows from Bernstein’s inequality that

Pr

[∣∣∣∣∣
∑

i∈I

Xi

∣∣∣∣∣ > λU
√
|I|
]
< 2e−λ2/2,

where U
√
|I| = O(N− d+2p

2(d−1) ). Taking λ ∼ √logN , we obtain that for a fixed x,

(4.13)

∣∣∣∣∣∣

∑

i

∑

y∈Qi

vy|⟨x, y⟩|p −
∑

i

∑

y∈Pi

wy|⟨x, y⟩|p
∣∣∣∣∣∣
= O(N− d+2p

2(d−1)

√
logN)

with probability at least 1− 1/ poly(N).
Next we do a net argument. Choose a constant D > d+2p

2(d−1) and let γ = N−D. We can take a γ-net N on S
d−1

with O(γ−(d−1)) points. By a union bound, we have that with probability at least 1−1/N , the bound (4.13) holds
for all x ∈ N simultaneously. Note that for two x, x′ ∈ S

d−1, if ∥x− x′∥2 ≤ γ, then ||⟨x, y⟩|p − |⟨x′, y⟩|p| = O(γ).
It follows that with probability at least 1 − 1/N , the target bound (4.13) holds for all x ∈ S

d−1 simultaneously,
which is what we need.

We now analyze the time complexity of our algorithm. The first step is to compute the subsets P1, . . . , Pt,

which can be done in O(Nd− 1
d−1 ) time by Lemma 2.3. Then, for each subset Pi, by Lemma 4.2, the subset T and

the associated weights w can be computed in Õ(d
3
2 s) = Õ(d

3
2+p) time (for instance, using the LP algorithm in

[LS15]). Therefore, the total runtime of the algorithm is O(d3/2Nd), as claimed.

Achieving (1± ε)-Multiplicative Error. Consider a general matrix A ∈ R
n×d. Without loss of generality,

assume that A has full column rank.
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Consider the John ellipsoid of Z(A) := {x ∈ R
d : ∥Ax∥p ≤ 1}. There exists an invertible linear transformation

T : Rd → R
d such that Bd

ℓ2
⊆ Z(AT ) ⊆

√
dBd

ℓ2
. Let A′ = AT . Then 1/

√
d ≤ ∥A′x∥p ≤ 1 when x ∈ S

d−1. Let

A′′
i = A′

i/ ∥A′
i∥2. Then A′′

i ∈ S
d−1. Note that

1 ≥ ∥A′x∥pp =
∑

i

∥A′
i∥

p
2 |⟨A′′

i , x⟩|
p
, ∀x ∈ S

d−1.

Integrate both sides over S
d−1 w.r.t. x. Observe that

∫
Sd−1 |⟨u, x⟩|p dσd−1(x) is a constant, independent of u,

whenever u ∈ S
d−1. Denote this constant by βd,p. It follows that

1 ≥
∑

i

∥A′
i∥

p
2 · βd,p,

and thus ∥A′x∥pp ≥ 1/dp/2 ≥ (βd,p/d
p/2)

∑
i ∥A′

i∥p2 for all x ∈ S
d−1.

Next, define weights w′
i = wi ∥A′

i∥p2. Then
∑

i

wi |⟨A′
i, x⟩|

p
=
∑

i

w′
i |⟨A′′

i , x⟩|
p
.

Suppose that wi = 1/n for all i. We apply Lemma 4.1 to A′′ with weights w′′
i = w′

i/
∑

j w
′
j and obtain a subset

of points W with weights vi, where |W | = O(ε−
2(d−1)
d+2p ), such that with high probability,

(4.14)

∣∣∣∣∣
∑

i

vi|⟨Wi, x⟩|p −
1

n
∑

j w
′
j

∥A′x∥pp

∣∣∣∣∣ = O(ε), ∀x ∈ S
d−1.

Recall that we showed above that ∥A′x∥pp ≥ c(d, p) ·n∑j w
′
j = c(d, p)

∑
i ∥A′

i∥p2 for all x ∈ S
d−1, where c(d, p) > 0

is some constant depending only on d and p.
Let v′i = nvi

∑
j w

′
j . It follows from (4.14) that

∣∣∣∣∣
∑

i

v′i|⟨Wi, x⟩|p − ∥A′x∥pp

∣∣∣∣∣ = O(ε) ∥A′x∥pp , ∀x ∈ S
d−1.

Therefore, ∣∣∣∣∣
∑

i

v′i|⟨(T−1)⊤Wi, Tx⟩|p − ∥ATx∥pp

∣∣∣∣∣ = O(ε) · ∥ATx∥pp , ∀x ∈ R
d.

This implies that the rows of WT−1 (which form a row-subsampled matrix of A) with weights v′i are exactly what
we need. Our final theorem is now immediate.

Theorem 4.2. Suppose that A ∈ R
n×d and p is a positive integer constant. There is a polynomial-time algorithm

which computes a subset B of m = Õ(ε−
2(d−1)
d+2p ) rows of A and an associated weight vector w ∈ R

m, such that with
high probability for every x ∈ S

d−1,
∣∣∣∣∣

m∑

i=1

wi|⟨Bi, x⟩|p − ∥Ax∥pp

∣∣∣∣∣ = O(ε) · ∥Ax∥pp .

Proof. First, we show that a constant-factor approximation of the John ellipsoid of Z(A) can be found in
polynomial time. We can compute in polynomial time a decomposition A = UT , where U ∈ R

n×d has
orthonormal columns and T ∈ R

d×d is an invertible matrix. It then suffices to find the John ellipsoid of Z(U).
It is clear that B(0, r) ⊆ Z(U) ⊆ B(0, R) for r = 1/n and R = nmax{1/2−1/p,0} and that a separation oracle
for Z(U) can be implemented in polynomial time. Then an ellipsoid E satisfying E ⊆ Z(U) ⊆

√
d(d+ 1)E

can be found in polynomial time via the shallow-cut ellipsoid method [GLS88, Theorem 4.6.3]. Therefore,
T−1E ⊆ Z(A) ⊆

√
d(d+ 1)T−1E, that is, T−1E is a constant-factor approximation of the John ellipsoid of

Z(A).
Correctness then follows from the discussion preceding the theorem statement (which goes through with

a constant-factor approximation of John’s ellipsoid) and Theorem 4.1, which also implies that the remaining
procedure can be completed in polynomial time.
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5 ℓp-Subspace Sketch in a One-Pass Stream

In this section, we implement our algorithm in the previous section in a one-pass stream, where each row arrives
one at a time. We assume that each entry of matrix A can be saved in log(n) bits of space. We first show
that a coreset can be constructed in linear space when the number of rows is not large, which will be used as a
subroutine in our full algorithm. Then we present the full algorithm, which is based on the standard merge-and-
reduce paradigm and uses an additional factor of polylog(n) space. Finally, we show that the polylog(n) factor
can be reduced to poly(log log n). At the end of this section, we shall give another O(ε)-additive error streaming

algorithm with O(1) update time, with a slightly worse space complexity Õ(ε−
2(d−1)
d+2p−1 ) for general d = O(1) and

the near-tight bound Õ(ε−
2(d−1)
d+2p ) for d ≤ 2p+ 2.

5.1 Basic Step: Coreset Our algorithm is based on the following lemma.

Lemma 5.1. Suppose that p is a positive integer constant, A ∈ R
n×d and w ∈ ∆n−1 is the associated weight

vector. There is an algorithm Coreset(A,w, ε) which computes a subset B of m = Õ(ε−
2(d−1)
d+2p ) rows of A and

a weight vector v ∈ ∆m−1, such that with high probability, it holds for every x ∈ S
d−1,

∣∣∣∣∣
∑

i

vi|⟨Bi, x⟩|p −
∑

i

wi|⟨Ai, x⟩|p
∣∣∣∣∣ = O(ε) ·

(
∑

i

wi|⟨Ai, x⟩|p
)

.

Furthermore, the algorithm can be implemented in O(n) space.

Proof. The ellipsoid method employed in the proof of Theorem 4.2 operates in R
d with poly(d) space, except for

the separation oracle which can be clearly implemented in O(n) space. Therefore, the linear transformation that
normalizes the John ellipsoid of Z(A) can be computed in O(n) space. Recall that we only need a constant-factor
approximation. Hence, we can assume that after the linear transformation, each entry can still be stored in
O(log n) bits of space.

Since we only need to invoke Lemma 4.1 a total of log n times, it suffices to show that O(N) space is enough
in each invocation, where N is the number of rows of the input. From the proof of Lemma 4.1, there exist desired
groups P1, . . . , Pt, which can be found in O(N) space by enumeration. Each subset Pi corresponds to only O(s)
rows, and thus the weights can be computed in poly(s) space. Thus, each run of Lemma 4.1 can be implemented
in O(N) space. This finishes the proof.

5.2 Merge and Reduce Given the coreset procedure (Lemma 5.1), the general coreset framework in
[BDM+20] can be readily applied, leading to an algorithm similar to Algorithm 6 therein. For completeness,
a full description of our algorithm is presented in Algorithm 1. We maintain a number of blocks B0,B1, . . . , each
of size mspace (which is determined by the coreset size). The most recent rows are stored in B0; whenever B0 is
full, the successive non-empty blocks B0, . . . ,Bi are merged and reduced to a new coreset, which will be stored
in Bi+1. Since there are n data points in the stream, the next lemma guarantees that maintaining (log n + 1)
blocks B0, . . . ,Blogn suffices.

Lemma 5.2. ([BDM+20]) Suppose that B0, . . . ,Bi−1 are all empty while Bi is non-empty. Then Bi with the
associated weight vector wi is a (1 + ε

logn )
i-coreset for the last 2i−1

mspace rows.

Theorem 5.1. Let A = a1 ◦ · · · ◦ an be a stream of n rows, where ai ∈ R
1×d. There is an algorithm which

computes a subset B of m = Õ(ε−
2(d−1)
d+2p ) rows of A and an associated weight vector w ∈ R

m, such that with high
probability, for every x ∈ S

d−1,

∣∣∣∣∣
∑

i

wi|⟨Bi, x⟩|p − ∥Ax∥pp

∣∣∣∣∣ = O(ε) · ∥Ax∥pp .

Moreover, the algorithm can be implemented in Õ(ε−
2(d−1)
d+2p · polylog(n)) words of space.
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Algorithm 1: Merge-and-reduce framework for the ℓp subspace sketch for constant d.

Input: A stream of rows a1, a2, . . . , an ∈ R
1×d with weights u1, . . . , un, and approximation factor ε;

Output: A coreset B with associated weights w ;

Initialize blocks B0,B1, . . . ,Blogn ← ∅, mspace ← Õ(γ− 2(d−1)
d+2p ) where γ = ε

logn ;

foreach row at and weight ut do

if B0 does not contain mspace rows then

B0 ← at ◦B0;
else

Let i > 0 be the minimal index such that Bi = ∅;
Bi, wi ← Coreset

(
M, w, ε

logn

)
, where M = B0 ◦ · · · ◦Bi−1 and w = w0 ◦ · · · ◦ wi−1;

for j = 0 to j = i− 1 do

Bj ← ∅ ;
end

B0 ← at, w0 ← ut;

end

end

B∗, w∗ ← Coreset(Blogn ◦ · · · ◦B0, wlogn ◦ · · · ◦ w0, ε);
return B∗ and w∗

Proof. We assume that each call to the subroutine Coreset(M, w, ε
logn ) is successful, which holds with high

probability after taking a union bound. It then follows from Lemma 5.2 that Blogn ◦ · · · ◦B0 is a (1+ ε
logn )

logn =

(1+O(ε))-coreset of the rows of A and, after a further coreset operation, B∗ is a (1 +O(ε))(1 + ε) = (1 +O(ε))-
coreset of A, as desired.

Now we analyze the space complexity of our algorithm. Let γ = ε
logn . The algorithm stores O(log n) blocksBi,

each taking at most O(mspace ·d) = Õ(γ− 2(d−1)
d+2p ) words of space. Lemma 5.1 implies that each call to the subroutine

Coreset(M, w, γ) takes O(mspace · log n) words of space, since the number of total rows in the input does not

exceed O(mspace ·log n). Therefore, the total space of our algorithm is O(mspace ·log n) = O(ε−
2(d−1)
d+2p ·polylog(n/ε)).

5.3 Reducing Space Complexity In this section, we show that the multiplicative poly(log n) factor in the
space complexity can be reduced to poly(log log n) at the cost of an extra additive poly(log n) term. The basic
idea is that if we can sample a few of the rows which form a good approximation to the matrix A, then we can
then treat the sampled rows as a new stream and the new input to our Algorithm 1. To this end, we consider the
following ℓp sensitivities of the rows of A.

Definition 5.1. For a matrix A = a1 ◦ · · · ◦ an ∈ R
n×d, the ℓp-sensitivity of ai, denoted by si(A), is defined to

be si(A) = supx∈Rd\{0}
|⟨ai,x⟩|
∥Ax∥p

p
.

The following lemma shows that sampling according to the ℓp-sensitivities of A gives a subspace embedding
of A. This is a generalization of the ℓ1-sensitivity sampling [BDM+20, Lemma 4.4] and the proof follows the same
approach.

Lemma 5.3. Let A ∈ R
n×d and 1 ≤ p < ∞. The matrix B is a submatrix of A such that the rescaled i-th

row p
−1/p
i ai is included in B with probability pi ≥ min(βsi(A), 1). Then, there is a constant c such that when

β ≥ cε−2d log(1/ε), the matrix B is a (1± ε)-subspace embedding of A with probability at least 9/10.

Proof. Since the row space of B is contained in that of A, in order to show that B is a (1±ε)-subspace embedding
of A, it suffices to show that ∥Bx∥p = 1± ε for all x such that ∥Ax∥p = 1.

Fix an x and let y = Ax. Define the random variable Zi to be |yi|p/pi with probability pi and 0 otherwise,
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so EZi = |yi|p. Let Z = ∥Bx∥pp. Then Z =
∑

i Zi and

E[Z] =
∑

i

E[Zi] = ∥y∥pp .

We also have

Var[Zi] ≤ E[Z2
i ] =

|yi|2p
p2i
· pi =

|yi|2p
pi

and

Zi ≤
|yi|p
pi
≤ 1

β

|yi|p ∥y∥pp
|yi|p

=
∥y∥pp
β

,

so

Var[Z] =
∑

i

Var[Zi] ≤
n∑

i=1

|yi|2p
pi
≤ 1

β

n∑

i=1

|yi|p
|yi|p ∥y∥pp
|yi|p

=
∥y∥2pp
β

.

It follows from Bernstein’s inequality that

Pr
[
|Z − E[Z]| ≥ ε ∥y∥pp

]
≤ 2 exp

(
−β

2

ε2 ∥y∥2pp
∥y∥2pp + ε ∥y∥2pp /3

)
= ε−Ω(d) .

Rescaling ε by a constant factor (depending on p), we have that ∥Bx∥p = (1± ε) ∥Ax∥p with probability at least

1− εΩ(d) for each fixed x.
We next need a net argument. Let S = {Ax : x ∈ R

d, ∥Ax∥p = 1} be the unit ℓp ball and N be a net of size

(3/ε)d of S under the ℓp distance. By a union bound, we have that ∥Bx∥p = (1 ± ε) ∥Ax∥p for every Ax ∈ N
simultaneously with probability at least 9/10. Conditioned on this event, for each y = Ax ∈ S, we choose a
sequence of points y0, y1, · · · ∈ S as follows.

• Choose y0 ∈ S such that ∥y − y0∥p ≤ ε and let α0 = 1;

• After choosing y0, y1, . . . , yi, we choose yi+1 such that

∥∥∥∥
y − α0y0 − α1y1 − · · · − αiyi

αi+1
− yi+1

∥∥∥∥
p

≤ ε,

where αi+1 = ∥y − α0y0 − α1y1 − · · · − αiyi∥p.

The choice of yi+1 means that

αi+2 = ∥y − α0y0 − α1y1 − · · · − αiyi − αi+1yi+1∥p ≤ αi+1ε.

A simple induction yields that αi ≤ εi. Hence

y = y0 +
∑

i≥1

αiyi, |αi| ≤ εi .

Suppose that yi = Axi, we have

∥Bx∥p ≤ ∥Bx0∥p +
∑

i≥1

ϵi ∥Bxi∥p ≤ (1 + ϵ) +
∑

i≥1

ϵi(1 + ϵ) = 1 +O(ϵ),

and

∥Bx∥p ≥ ∥Bx0∥p −
∑

i≥1

ϵi ∥Bxi∥p ≥ (1− ϵ)−
∑

i≥1

ϵi(1− ϵ) = 1−O(ϵ).

Rescaling ε again gives the result.
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Since the rows of A are given in the streaming model, we shall sample according to the online ℓp sensitivities
of the rows, which are defined below.

Definition 5.2. (Online ℓp Sensitivities [BDM+20, WY22]) Let A ∈ R
n×d and let 1 ≤ p < ∞. Then, for

each i ∈ [n], the i-th online ℓp sensitivity is defined as

sOL
i (A) :=

{
min

{
supx∈rowspace(A)\{0}

|⟨ai,x⟩|p
∥Ai−1x∥p

p

, 1
}

ai ∈ rowspace(Ai−1)

1 otherwise,

where Aj ∈ R
j×d denotes the submatrix of A formed by the first j rows.

It is clear from the definition that the online ℓp sensitivity is at least as large as the ℓp-sensitivity of the same
row and we can thus use the online ℓp-sensitivities in an online algorithm to achieve the ℓp-subspace embedding
property. Our full algorithm is given in Algorithm 2.

Algorithm 2: Algorithm for ℓp subspace sketch for constant d.

Input: A streaming of rows a1, a2, . . . , an ∈ R
1×d and approximation factor γ;

ALG1 is an instance of Algorithm 1 with ε = O(1);
ALG2 is an instance of Algorithm 1 with ε = γ;
β ← poly(d) log(1/ε)/ε2;
foreach row at do

Mt ← a coreset of At−1 from ALG1;

τt ← a poly(d)-approximation of sOL
t (A) from at and Mt;

pt ← min(1, βτt);

With probability pt, feed at/p
1/p
t to ALG2;

Feed at to ALG1;

end

return a coreset M from ALG2.

It follows from Theorem 5.1 and Lemma 5.3 that the output M is a (1±ε)-coreset of A with high probability.
To bound the space complexity of our algorithm, we need to bound the sum of the online ℓp sensitivities of
the rows ai, which is given below in Lemma 5.4. It follows that the expected number of sampled rows is
O(ε−2 poly(d) log(1/ε) log n) = O(ε−2 log(1/ε) log n).

Lemma 5.4. ([BDM+20, Lemma 4.7], [WY22, Theorem 3.10]) Suppose that A ∈ R
n×d and p ∈ {1}∪ [2,∞).

Let q = 1 when p = 1 or q = p/2 when p ≥ 2, and κ be the condition number of A. Then, we have

n∑

i=1

sOL
i (A) = O(dq(log n) logq κ).

Moreover, if A ∈ Z
n×d is the integer matrix with entries bounded by poly(n), we have

n∑

i=1

sOL
i (A) = O(dq logq+1 n).

The only thing remaining is to compute a poly(d)-approximation of si from ai and Mi. Since ∥Ai−1x∥p =

(1 ± ε) ∥Mix∥p for all x, it must hold that (rowspace(Ai−1))
⊥ = (rowspace(Mi))

⊥ and so rowspace(Ai−1) =
rowspace(Mi). Hence, we can use Mi to determine whether ai ∈ rowspace(Ai−1). When ai ∈ rowspace(Ai−1), we
need an efficient algorithm to find τt, for which we consider a well-conditioned basis of Ai−1, defined below.

Definition 5.3. (Well-conditioned basis, [DDH+09]) Suppose that A ∈ R
n×d has rank r and p ≥ 1. An

n × r matrix U is an (α, β, p)-well-conditioned basis for A if (i) colspace(U) = colspace(A), (ii) ∥U∥p ≤ α and

(iii) ∥z∥q ≤ β ∥Uz∥p for all z ∈ R
d, where q = p/(p− 1) is the conjugate index of p.
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Theorem 5.2. ([DDH+09]) Let A be an n × d matrix of rank r, p ∈ [1,∞) and q be the conjugate index of p.
There exists an (α, β, p)-well-conditioned basis U for the column space of A such that:

(1) if p < 2 then α = r
1
p
+ 1

2 and β = 1,

(2) if p = 2 then α =
√
d and β = 1, and

(3) if p > 2 then α = r
1
p
+ 1

2 and β = r
1
p
− 1

2 .

Moreover, there is a deterministic procedure that computes a decomposition A = UT , where U ∈ R
n×r is a well-

conditioned basis as described above and T ∈ R
r×d is of full row rank, in time O(ndr + nd5 log n) for p ̸= 2 and

O(ndr) if p = 2.

Suppose that Ai−1 has a decomposition Ai−1 = UT as in Theorem 5.2 and assume that ai ∈ rowspace(Ai−1) =
rowspace(T ). Since T has full row rank, it has a right inverse T † ∈ R

d×r such that TT † = I and colspace(T †) =
rowspace(T ). Now, the online ℓp sensitivity of ai becomes

sup
x∈Rr\{0}

|⟨ai, T †x⟩|p
∥Ai−1T †x∥pp

= sup
x∈Rr\{0}

|⟨b, x⟩|p
∥Ux∥pp

= sup
x∈Sr−1

|⟨b, x⟩|p
∥Ux∥pp

,

where b = (T †)⊤ai. The definition of the well-conditioned basis indicates that 1/ poly(d) ≤ ∥Ux∥pp ≤ poly(d).

Suppose that x0 is the vector that attains the supremum. Then |⟨b, x0⟩|p ≤ |x0|p2 · ∥b∥p2 = ∥b∥p2, implying that
sOL
i (A) ≤ poly(r) · ∥b∥p2. On the other hand, taking x = b/ ∥b∥2 leads to sOL

i (A) ≥ ∥b∥p2 / poly(r). Therefore, ∥b∥
p
2

is a poly(d)-approximation to sOL
i (A). Putting everything together, we obtain the following theorem.

Theorem 5.3. Let A = a1 ◦ · · · ◦ an be a stream of n rows, where ai ∈ R
1×d. There is an algorithm which

computes a subset B of m = Õ(ε−
2(d−1)
d+2p ) rows of A and an associated weight vector w ∈ R

m such that with high
probability for every x ∈ S

d−1,
∣∣∣∣∣
∑

i

wi|⟨Bi, x⟩|p − ∥Ax∥pp

∣∣∣∣∣ = O(ε) · ∥Ax∥pp .

Moreover, the algorithm can be implemented in Õ(ε−
2(d−1)
d+2p + log

3d+2p−2
d+2p n) words of space.

5.4 Faster Update Time In this section, we give a different one-pass streaming algorithm which achieves
O(ε)-additive error with O(1) update time, assuming that ∥Ai∥2 = O(1). The basic idea is to partition the
sphere, rather than the points, into a number of regions and maintain a sketch for each region individually. This
idea of sphere partitioning was previously used by Bourgain and Lindenstrauss [BL88] to obtain suboptimal results
for ℓ1-subspace embeddings for d ≥ 5. We remark that our new algorithm does not give a subspace embedding,
unlike the previous ones.

To begin with, we state a partition lemma for spheres.

Lemma 5.5. Suppose that η ∈ (0, 1/2). There exists a partition of Sd−1 with c1(1/η)
d−1 regions such that (i) the

diameter of each region is at most 2η and (ii) for every x ∈ S
d−1, the hyperplane {y : ⟨x, y⟩ = 0} only intersects

at most c2(1/η)
d−2 regions. Here c1 and c2 are constants that only depend on d.

Proof. Take a maximal set N ⊂ S
d−1 such that d(x, y) > η for all distinct x, y ∈ N . It is a standard fact that

m := |N | ≤ c1(d)/η
d−1. Suppose that N = {v1, . . . , vm}. For each i, define Qi = {x ∈ S

d−1 : d(x, vi) = d(x,N )}
and Ri = Qi \

⋃
j<i Rj . We can see the regions R1, . . . , Rm form a partition of Sd−1. By the construction of N ,

we can see that int(B(vi, η/2)) ⊆ Ri ⊆ B(vi, η), where int(·) denotes the relative interior of a set on S
d−1.

Now, given any x ∈ S
d−1, we bound the number of the regions that intersect the equator Ex = {y ∈

S
d−1 : ⟨x, y⟩ = 0}. On the one hand, if a region Ri intersects the equator Ex, it is covered by the band
{y ∈ S

d−1 : d(y,Ex) ≤ 2η}, which has area at most c2(d)η. On the other hand, each region Ri contains an
open neighbourhood B(vi, η/2), thus having area at least c3(d)η

d−1. Since the regions are disjoint, the number
of regions that intersect Ex must be at most c2(d)η/c3(d)/η

d−1 = c4(d)/η
d−2.
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Algorithm Description. We now describe our algorithm. Given approximation parameter ε, invoking

Lemma 5.5 with η = ε
2

d+2p−1 , we obtain a partition of the sphere R1, . . . , Rt where t = O(ηd−1) = O(ε−
2(d−1)
d+2p−1 ).

For each region we maintain the following two things throughout the stream (we rescale the points which are not
on the sphere to unit vectors when determining the region for them): (i) the sum of the p-th tensor products
over the points in the region qi =

∑
y∈Ri

y⊗p. (ii) a sample point zi in the region, for which we employ reservoir
sampling so that the sample point is uniformly chosen from all the points in the region. If the number of points
in one region exceeds ηd−1n in the middle of the stream, we will treat this region as a new region and create a
separate sketch for the new incoming points in it. Note that such an operation will create at most O((1/η)d−1)
new regions.

Query Algorithm. Given a query point y ∈ S
d−1, we perform the following procedure: for each region Ri,

similar to the analysis in Section 4, if the hyperplane H = {y : ⟨x, y⟩ = 0} does not intersect Ri, we have that

⟨x⊗p,
∑

y∈Ri

y⊗p⟩ =
∑

y∈Ri

⟨x, y⟩p = ⟨x⊗p, qi⟩ .

Hence we obtain
∑

y∈Ri
|⟨x, y⟩|p with zero error. Now we focus on the case that H intersects Ri. In this case,

since the value of |⟨x, y⟩|p is small for all y ∈ Ri, we can use the sample point zi to estimate
∑

y∈Ri
|⟨x, y⟩|p.

Specifically, suppose that Ri contains ci points. We define an estimator Zi = |⟨x, z⟩|p · ci and let Z =
∑

i∈I Zi be
our final estimator, where I is the set of indices of the regions which H intersects.

It is easy to see that Z is an unbiased estimator. To analyze the concentration, note that for each such area Ri,
Var[Zi] ≤

∑
v∈Ri

1
ci
·(ci ·ℓ)2 = c2i ℓ

2, where ℓ = maxv∈Ri
|⟨v, x⟩|p ≤ ηp. Recall that ci ≤ ηd−1n by our construction,

and there are O(η−(d−1)) regions. We have that Var[Zi] ≤ η2(d−1)n2η2p and thus Var[Z] ≤ ηd−1+2pn2 = ε2n2.
It then follows from Chebyshev’s inequality that the error |Z − EZ| = O(εn) with probability at least 9/10.
Rescaling by a normalization factor of 1/n yields the following theorem.

Theorem 5.4. (For-each version) Let A = a1 ◦ · · · ◦ an be a stream of n rows, where ai ∈ R
1×d. There is an

algorithm which maintains a data structure Q of O(ε−
2(d−1)
d+2p−1 ) words of space such that for each x ∈ S

d−1, with
probability at least 9/10,

(5.15)

∣∣∣∣Q(x)− 1

n
∥Ax∥pp

∣∣∣∣ = O(ε) .

Moreover, the algorithm updates Q in O(1) time and can be implemented in O(ε−
2(d−1)
d+2p−1 ) words of space.

Applying the median trick and a net argument, we obtain the following for-all version of Theorem 5.4.

Corollary 5.1. (For-all version) Let A = a1 ◦ · · · ◦ an be a stream of n rows, where ai ∈ R
1×d. There

is an algorithm which maintains a data structure Q of Õ(ε−
2(d−1)
d+2p−1 ) words of space such that (5.15) holds for

all x ∈ S
d−1 simultaneously with high probability. Moreover, the algorithm updates Q in O(1) time and can be

implemented in Õ(ε−
2(d−1)
d+2p−1 ) words of space.

Tight Bound for d ≤ 2p+2. Below we show that when d ≤ 2p+2, the algorithm above can achieve a tight

space complexity with a small modification. Let η = ε
2

d+2p . When a region contains more than ηd−1n points, we
split it into a number of new sub-regions with diameter at least half that of the larger region and we stop splitting
when a region has diameter less than O(poly(ε)) because the error is negligible at this point. Specifically, for a
region with diameter O(η/2i), we take a new O(η/2i+1)-partition in Lemma 5.5 and partition the region using
the new partitions.

Now we turn to bound the variance. We split Z as Z =
∑

i≥0

∑
j∈Ii

Zj , where Ii is the set of indices of regions

which H intersects and has diameter in (η/2i−1, η/2i]. From Lemma 5.5 we have that |Ii| = O(η−(d−2) · 2i(d−2))
and so

∑
j∈Ii

Var[Zj ] ≤ (ηd−1n)2 · (η/2i)2p · |Ii| = O(ηd+2pn) = O(ε2n2). Summing over i = 0, 1, . . . , O(log(1/ε)),

it follows that Var[Z] = O(ε2n2 log(1/ε)). Using the same argument as before and after a rescaling of ε, we
conclude with the following theorem.
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Theorem 5.5. Suppose that d ≤ 2p+2. Let A = a1 ◦· · ·◦an be a stream of n rows, where ai ∈ R
1×d. There is an

algorithm which maintains a data structure Q of Õ(ε−
2(d−1)
d+2p ) words of space such that (5.15) holds for all x ∈ S

d−1

simultaneously with high probability. Moreover, the algorithm updates Q in O(1) time and can be implemented

using Õ(ε−
2(d−1)
d+2p ) words of space.

6 Affine ℓp-Subspace Sketch

In this section, we consider the following special version of the affine ℓp-subspace sketch problem, which can be
seen as a generalization of the ℓp subspace sketch problem. Given a matrix A ∈ R

n×d and for any given x ∈ R
d

and b ∈ R, we want to determine a (1± ε)-approximation to
∑

i |⟨Ai, x⟩ − b|p.
Upper Bound. We first consider the upper bound. The crucial observation is that, given matrix A ∈ R

n×d,
let B ∈ R

n×(d+1) be the matrix for which the i-th row Bi =
(
Ai −1

)
. Suppose that x ∈ R

d and b ∈ R are the

query vector and value, and let y =
(
x⊤ b

)⊤ ∈ R
d+1. Then

∑

i

|⟨Ai, x⟩ − b|p =
∑

i

|⟨Bi, y⟩|p = ∥By∥pp .

Hence, any data structure that solves the ℓp subspace sketch problem in (d + 1) dimensions solves the affine ℓp
subspace sketch problem for d dimensions. The following theorem follows immediately from Theorem 4.2.

Theorem 6.1. Suppose that A ∈ R
n×d and p is a positive integer constant. Then there is a polynomial-time

algorithm that returns a data structure with Õ(ε−
2d

d+2p+1 ) bits of space, which solves the affine ℓp subspace sketch
problem.

Lower Bound. We now turn to the lower bound. We will show that interestingly, we obtain a lower bound
with the same space complexity. To achieve this, we need the following lemma, which can be seen as a stronger
version of Lemma 3.2.

Lemma 6.1. Suppose that p ∈ [1,∞) \ 2Z is a constant. Let A and B be sets of n ≤ N points in a spherical shell

{x ∈ R
d : α ≤ ∥x∥2 ≤ β}, where α, β > 0 are constants such that α < β < ( 1+

√
3

2 )
1
pα. Suppose that A and B are

symmetric around the origin and
∥∥∥ Ai

∥Ai∥2
− Bj

∥Bj∥2

∥∥∥
2
≥ η = C1N

− 1
d−1 for all i ̸= j. Then we have

δ ≡ sup
x∈Sd−1

1

n

∣∣∣∥Ax∥pp − ∥Bx∥pp
∣∣∣ ≥ c2N

− d+2p
2(d−1) .

In the statement above, C1 > 0 is a constant that depends only on d and c2 > 0 is a constant that depends on
d, p, α, β only.

Proof. Normalizing the points in A and B, we consider the equivalent form of this problem: A and B are still
subsets of Sd−1, while the target error δ becomes

δ ≡ sup
x∈Sd−1

(
∑

i

wAi
|⟨Ai, x⟩|p −

∑

i

wBi
|⟨Bi, x⟩|p

)
,

where the wi are weights such that wi ∈ [ 1
βpn ,

1
αpn ]. Define the function hA =

∑
i wAi

|⟨Ai, x⟩|p and hB =∑
i wBi

|⟨Bi, x⟩|p. Following similar steps as in the proof of Lemma 3.2, we obtain that

n∑

i=1

wAi
(1− r2)

(1 + r2 − 2r⟨u,Ai⟩)d/2
= cA +

∑

even k≥2

rkλ−1
k

∑

j

⟨hA, Yk,j⟩Yk,j(u)

and
n∑

i=1

wBi
(1− r2)

(1 + r2 − 2r⟨u,Bi⟩)d/2
= cB +

∑

even k≥2

rkλ−1
k

∑

j

⟨hB , Yk,j⟩Yk,j(u),
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where cA =
∑

i wAi
and cB =

∑
i wBi

are both contained in [ 1β ,
1
α ]. Hence

n∑

i=1

wAi
(1− r2)

(1 + r2 − 2r⟨u,Ai⟩)d/2
−

n∑

i=1

wBi
(1− r2)

(1 + r2 − 2r⟨u,Bi⟩)d/2

= cA − cB +
∑

even k≥2

rkλ−1
k

∑

j

⟨hA − hB , Yk,j⟩Yk,j(u).

Integrating with respect to u on S
d−1, we have that

(6.16)

∥∥∥∥∥

n∑

i=1

wAi
(1− r2)

(1 + r2 − 2r⟨u,Ai⟩)d/2
−

n∑

i=1

wBi
(1− r2)

(1 + r2 − 2r⟨u,Bi⟩)d/2

∥∥∥∥∥

2

L2(σd−1)

=
∑

even k≥2

r2kλ−2
k

∑

j

⟨hA − hB , Yk,j⟩2 + (cA − cB)
2

≤ δ2 max
even k≥2

(r2kλ−2
k ) + (cA − cB)

2,

Following the same steps as in Lemma 3.2, we obtain that the left hand side of (6.16) is at least 2
β2p − 1

α2p > 0.

Note that we have cA and cB are both in [ 1
βp ,

1
αp ] so (cA − cB)

2 ≥ ( 1
αp − 1

βp )
2. Hence

δ2 max
even k

(r2kλ−2
k ) ≥ 2

β2p
− 1

α2p
− (

1

αp
− 1

βp
)2 =

1

β2p
+

2

αpβp
− 2

α2p
> 0

by our assumptions on α and β. It follows that

δ ≥ c(d, p, α, β)N− d+2p
2(d−1) .

Consider the same S = {p1, . . . , pn} as in Section 3 for (d+ 1) dimensions. Consider the spherical cap

C =

{
x ∈ S

d : xd+1 ≥
(
3

4

) 1
p

}
.

and let T = S ∩C. From Lemma 2.2 we have that the area of C is at least c(d, p), a constant depending only on

d and p. Hence, |T | = c(d, p) ·Ω(ε− 2d
d+2p+1 ). Let T ′ ⊂ R

d+1 be the set of points obtained by scaling the (d+ 1)-st
coordinate of each point in T to 1. Note that every point in T ′ has the same last coordinate and ℓ2 norm in
[1, ( 43 )

1/p]. Following the same steps in Section 3 and combining with Lemma 6.1, we have that any affine ℓp
subspace sketch data structure solves the same subset identification problem. Our theorem follows immediately.

Theorem 6.2. Suppose that p ∈ [1,∞) \ 2Z and d are constants. Any data structure that solves the affine

ℓp-subspace sketch problem for dimension d and accurary parameter ε requires Ω(ε−
2d

d+2p+1 ) bits of space.

7 Point Estimation for SVMs

As an application of our results, we obtain tight space bounds for point estimation for the streaming SVM problem.
In this section, we consider the following (regularized) SVM objective function:

(7.17) Fλ(θ, b) :=
λ

2
∥(θ, b)∥22 +

1

n

n∑

i=1

max{0, 1− yi(θ
⊤xi + b)},

where n data points (xi, yi) ∈ R
d × {−1,+1}, with ∥xi∥2 = O(1) and (θ, b) ∈ R

d × R are the unknown model
parameters, and λ is the regularization parameter. In this section, we consider the point estimation problem, that
is, given (θ, b), we want to output an approximation to Fλ(θ, b). As mentioned in [ABL+20], when d ≥ 2, it is
impossible to obtain a (1 ± ε)-approximation in o(n) space and so we consider O(ε)-additive error. Throughout
this section, we assume that λ = O(1), which is a common setting for this problem.
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Definition 7.1. (SVM Point Estimation) Given (θ, b) with ∥(θ, b)∥2 = O(1), compute a value Z such that
|Z − Fλ(θ, b)| ≤ ε, where Fλ(θ, b) is as defined in (7.17) with ∥xi∥2 = O(1) for all i, λ = O(1) and yi ∈ {−1,+1}
for all i.

First, we demonstrate that it suffices to consider a simplified SVM objective, as mentioned in [ABL+20]. We
can assume that λ = 0 because we can compute the regularization term exactly. Next, recall that yi = ±1, and
so we can estimate the contribution from the positive labels and negative labels separately and so we can assume,
without loss of generality, that yi = 1 for all i. With a further replacement of b with 1−b, the objective is changed
to

F (θ, b) :=
1

n

n∑

i=1

max{0, b− θ⊤xi} .

Upper Bound. The observation is similar to that in Section 6. Given points xi ∈ R
d with positive

labels, let yi =
(
−x⊤

i 1
)⊤ ∈ R

d+1. Suppose that θ ∈ R
d and b ∈ R are the query vector and value, and

let θ′ =
(
θ⊤ b

)⊤ ∈ R
d+1. Then

F (θ, b) =
1

n

∑

i

max{0, b− θ⊤xi} =
1

n

∑

i

max{0, θ′⊤yi}.

It is now clear that the problem can be seen as a variant of the ℓ1-subspace sketch problem in dimension d + 1,
where |θ⊤xi| is replaced with max{0, θ⊤xi}. Our earlier algorithms also work for the max{x, 0}-loss for the
subspace sketch problem. Recall the proof of Lemma 4.1: we partition the data points into groups P1, . . . , Pt.
Given a query point θ, for a group Pi for which the hyperplane H = {x : ⟨x, θ⟩ = 0} does not intersect, we can
still obtain the exact value of

∑

x∈Pi

max{0, ⟨θ, x⟩} =
∑

x∈Pi

⟨θ, x⟩ or
∑

x∈Pi

max{0, ⟨θ, x⟩} = 0 .

For the groups which H intersects, since max{0, ⟨θ, x⟩} ≤ |⟨θ, x⟩|, our analysis of the concentration for the
sampling method still holds. Therefore, an analogous version of Lemma 5.1 holds, that is, we can find a coreset of

size Õ(ε−
2d

d+3 ), which approximates F (θ, b) up to an additive error of ε in O(n) space. To reduce the space usage,
the key observation is that uniformly sampling O(1/ε2) points, by Hoeffding’s inequality, is sufficient for an O(ε)
additive error. Therefore, we have effectively reduced n to O(1/ε2) as it suffices to find a coreset for O(1/ε2)
uniformly sampled points, for which we use Algorithm 1. Thus, we arrive at the following theorem.

Theorem 7.1. Let x1, . . . , xn be a stream of n points, where xi ∈ R
d. There is an algorithm which computes

a subset yi’s of m = Õ(ε−
2d

d+3 ) points of ai’s and weights w ∈ R
m such that with high probability, for every

(θ, b) ∈ R
d × R with ∥(θ, b)∥2 = O(1),

∣∣∣∣∣
1

n

∑

i

wi ·max{0, b− θ⊤yi} −
1

n

∑

i

max{0, b− θ⊤xi}
∣∣∣∣∣ = O(ε) .

Moreover, the algorithm can be implemented in Õ(ε−
2d

d+3 ) words of space.

Lower Bound. We now turn to lower bounds for the point estimation problem. Suppose that X = {xi} is
the point set given by the data stream. Let −X = {−x : x ∈ X} and observe that

F (θ, 0)
X

+ F (θ, 0)
−X

=
1

n

∑

i

(
max{0, θ⊤xi}+max{0,−θ⊤xi}

)
=

1

n

∑

i

∣∣θ⊤xi

∣∣ .

Thus, if we can solve the d-dimensional point estimation problem for SVM, we can solve the d-dimensional ℓ1-

subspace sketch problem, whence a lower bound of Ω(ε−
2(d−1)
d+2 ) bits follows from Theorem 3.1. To obtain a tight

bound, consider the affine ℓ1-subspace sketch problem in Section 6. Specifically, we have

F (θ, b)
X

+ F (θ,−b)
−X

=
1

n

∑

i

(
max{0, b− θ⊤xi}+max{0,−b+ θ⊤xi}

)
=

1

n

∑

i

∣∣b− θ⊤xi

∣∣ ,
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which implies that if we can solve the d-dimensional point estimation problem for SVM, we would be able to solve
the d-dimensional affine ℓ1-subspace sketch problem. Our theorem follows immediately from Theorem 6.2.

Theorem 7.2. Suppose that d is constant. Any data structure that solves the d-dimensional point estimation

problem for SVM requires Ω(ε−
2d

d+3 ) bits of space.

We remark that our analysis shows tight space complexity via a black box reduction to the ℓ1 subspace sketch
problem, which is much simpler than the analysis in previous work [ABL+20].
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[BW03] Károly Böröczky and Gergely” Wintsche. Covering the sphere by equal spherical balls. In Boris Aronov,
Saugata Basu, János Pach, and Micha Sharir, editors, Discrete and Computational Geometry: The Goodman-Pollack
Festschrift, pages 235–251. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[DDH+09] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Mahoney. Sampling algorithms
and coresets for ℓp regression. SIAM J. Comput., 38(5):2060–2078, 2009.

[Dor76] L. E. Dor. Potentials and isometric embeddings in L1. Israel Journal of Mathematics, 24(3–4):260–268, 1976.
[DX13] Feng Dai and Yuan Xu. Approximation theory and harmonic analysis on spheres and balls. Springer Monogr.

Math. New York, NY: Springer, 2013.
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A ℓp-Subspace Sketch Upper Bound for Non-integer p

In this section, we consider the ℓp-subspace sketch problem for non-integers p. We shall show that for every
constant d and non-integer constant p, it is still possible to obtain a sketch of size o(ε−2).

A.1 Subspace Embedding for d ≥ 5. In Section 4, we adapted a proof of Matousek [Mat96], giving a bound
that contains logarithmic factors. Matousek’s work contains a second result, which shows a tight O(ε−2(d−1)/(d+2))
bound without logarithmic factors for d ≥ 5 and p = 1. In fact, the same bound also holds for p > 1, which we
shall demonstrate below.

The starting point and the main change is the following generalization of a proposition in [Mat96] to p > 1.

Lemma A.1. (Generalization of [Mat96, Proposition 9]) Let d ≥ 3 and P ⊆ S
d−1 be a point set of size

N , where N ≥ N0 for some large constant N0. There exist a subset P ∗ ⊆ P of N∗ ≥ N/8 points with N∗ even,
and a subset Q ⊆ P ∗ of size N∗/2 such that for all x ∈ S

d−1

∣∣∣∣∣∣

∑

y∈P∗

|⟨x, y⟩|p − 2
∑

y∈P∗

|⟨x, y⟩|p
∣∣∣∣∣∣
= O(N

1
2− 3

2(d−1) )

Proof. We only highlight the changes from the original proof in [Mat96]. Take k such that 2k ∼ N2 and for each
i = 1, . . . , k, let Ni be a 2−i-net on S

d−1 and πi(x) : Sd−1 → Ni be the induced projection map. Then define
ϕi,q ∈ S

d−1 → R for q ∈ Ni as

ϕi,q(y) =

{
|⟨q, y⟩|p , if i = 1;

|⟨q, y⟩|p − |⟨πi−1(q), y⟩|p , if i > 1.

The claim is that the functions ϕi,q satisfy the following three properties:

(i) |ϕi,q(y)| = O(2−i) for all y ∈ S
d−1;

(ii) Define

L+
i,q = {y ∈ S

d−1 : ⟨q, y⟩ ≥ 0 and ⟨πi−1(q), y⟩ ≥ 0}
L−
i,q = {y ∈ S

d−1 : ⟨q, y⟩ ≤ 0 and ⟨πi−1(q), y⟩ ≤ 0}

Then ϕi,q is O(2−i)-Lipschitz on L+
i,q and L−

i,q.

(iii) The expansion

|⟨x, y⟩|p =

k∑

i=1

ϕi,qi(y) + rx(y),

where qk = πk(x) and qi−1 = πi−1(qi), has the remainder term |rx(y)| = O(N−2) for all y ∈ S
d−1.

The three properties are easy to verify when p = 1. Now we shall verify them for a general p > 1. For notational
convenience, let u = πi−1(q)− q. Then ∥u∥2 ≤ 2−i. Property (i) is easy to verify as |ϕ1,q(y)| ≤ 1 and

|ϕi,q(y)| = ||⟨q, y⟩|p − |⟨q, y⟩+ ⟨u, y⟩|p| ≤ p |⟨u, y⟩| ≤ p2−i,

where we used the fact that 1− xp ≤ p(1− x) when x ∈ (0, 1) and thus ||a|p − |b|p| ≤ p |a− b| when |a| , |b| ≤ 1.
Property (iii) is also easy to verify, as

|rx(y)| = ||⟨x, y⟩|p − |⟨πk(x), y⟩|p| ≤ p |⟨x− πk(x), y⟩| ≤ p ∥x− πk(x)∥2 ≤ p2−k = O(N−2).
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Next, we verify Property (ii). Suppose that y, z ∈ L+
i,q. We first consider

sup
y,z∈L+

i,q

⟨u,y−z⟩̸=0

∣∣∣∣
ϕi,q(y)− ϕi,q(z)

⟨u, y⟩ − ⟨u, z⟩

∣∣∣∣ = sup
y,z∈L+

i,q

⟨u,y−z⟩̸=0

∣∣∣∣
⟨q, y⟩p − (⟨q, y⟩+ ⟨u, y⟩)p − ⟨q, z⟩p + (⟨q, z⟩+ ⟨u, z⟩)p

⟨u, y⟩ − ⟨u, z⟩

∣∣∣∣

By relating the expression to the definition of derivatives, it is easy to see that this supremum is upper bounded
by a constant L (which depends on p only), thus

|ϕi,q(y)− ϕi,q(z)| ≤ L |⟨u, y − z⟩| ≤ 2L ∥u∥2 = O(2−i).

By continuity, this bound also holds for ⟨u, y⟩ = ⟨u, z⟩. Therefore, we have verified that ϕi,q is O(2−i)-Lipschitz
on L+

i,q. A similar argument works for L−
i,q and thus we have verified (ii).

The rest of Matousek’s original proof goes through, establishing the lemma.

Next, we repeat Matousek’s argument. Repeatedly applying the preceding lemma yields P ∗
1 and Q1 from P ,

P ∗
2 and Q2 from P \ P ∗

1 , P
∗
3 and Q3 from P \ (P ∗

1 ∪ P ∗
2 ), and so forth. Let Q be the union of these Qi’s. This

shows that for any set P of N points, one can find a subset P ′ ⊂ P of size N/2 such that

∣∣∣∣∣∣
1

N

∑

y∈P

|⟨x, y⟩|p − 2

N

∑

y∈Q

|⟨x, y⟩|p
∣∣∣∣∣∣
= O(N− d+2

2(d−1) ), ∀x ∈ S
d−1.

An iterative application of the step above leads to the final bound of O(ε−2(d−1)/(d+2)), where we can repeat a
point several times to accommodate different weights. Formally, we have

Theorem A.1. Suppose that p ≥ 1 and d ≥ 5 are constants, A ∈ R
n×d and w ∈ ∆n−1 is the associated weight

vector. There exists a polynomial time algorithm which outputs a subset B of m = O(ε−
2(d−1)
d+2 ) rows of A and a

weight vector v ∈ ∆m−1 such that with high probability it holds for every x ∈ S
d−1,

∣∣∣∣∣
∑

i

vi|⟨Bi, x⟩|p −
∑

i

wi|⟨Ai, x⟩|p
∣∣∣∣∣ = O(ε) ·

(
∑

i

wi|⟨Ai, x⟩|p
)
.

A.2 Algorithm for all d ≥ 2 and Non-Integer p. First, consider the case of 1 < p < 2. It is known that
ℓnp (1 + ε)-embeds into ℓN1 for some N = C(p)n/ε (see, e.g., [FG11]), which means for every matrix A ∈ R

n×d,

there is a matrix T ∈ R
N×n such that ∥TAx∥1 = (1 ± ε) ∥Ax∥p for all x ∈ R

d. Thus, we can apply our existing

upper bound to TA under the ℓ1 norm, yielding an Õ
(
ε−

2(d−1)
d+2

)
upper bound. We remark that the matrix T

constructed in [FG11] is oblivious and has independent columns, so we can write (TA)·,j =
∑n

i=1 T·,iAi,j and
compute T·,iAi,j for all j = 1, . . . , d sequentially for each i = 1, . . . , n. In this manner, the entire algorithm takes
O(N) = O(n/ε) words of space. We remark that such an embedding-based approach does not seem amenable to
the streaming setting because it would require storing the entire A to compute (TA)i,· = Ti,·A.

Now consider p > 2. Let q = ⌈p/2⌉, then for every x ∈ R
d,

|⟨Ai, x⟩|p = (|⟨Ai, x⟩|q)p/q =
∣∣⟨A⊗q

i , x⊗q⟩
∣∣p/q .

Hence, the problem can be reduced to the dq-dimensional ℓr-subspace sketch problem with 1 < r = p/q < 2, which

leads to an Õ
(
ε−

2(dq−1)
dq+2

)
upper bound. Again, the algorithm uses O(n/ε) words of space and is not amenable

to the streaming setting. We remark that we cannot expect a better upper bound by reducing an ℓp-subspace
sketch problem to an ℓr-subspace sketch problem for an integer r > 2 because ℓ2p does not (1 + ε)-embed into

ℓNr when p > r > 2 [Dor76]. The following is a short proof we include for completeness. Suppose that ℓ2p does

(1 + ε)-embed into ℓNr . Then there exist u, v ∈ ℓNr such that ∥au+ bv∥r ≤ (1 + ε)(|a|p + |b|p)1/p for all u, v ∈ R.
This means that (1+ ε)2r/p ≥ 1

2 (∥u+ v∥rr + ∥u− v∥rr) ≥ ∥u∥
r
r + ∥v∥

r
r = 2, which is a contradiction for all small ε.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited875

D
o
w

n
lo

ad
ed

 0
6
/1

7
/2

3
 t

o
 7

3
.2

2
2
.5

4
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



A.3 Streaming Algorithm for p > d − 1. Next, we present a streaming algorithm when p > d − 1, using
approximation theory on the unit sphere. Given a function h : Sd−1 → R, consider its series expansion in spherical
harmonics

h(x) =

∞∑

k=0

M(d,k)∑

j=1

⟨h, Yk,j⟩Yk,j(x)

and the truncation of this series of order at most K

(QKh)(x) =

K∑

k=0

M(d,k)∑

j=1

⟨h, Yk,j⟩Yk,j(x).

It is a well-studied problem in approximation theory on the unit sphere that (see, e.g. [AH12, Theorem 2.35])

∥h−QKh∥∞ ≤ (1 + ∥QK∥C→C)EK,∞(h),

where ∥QK∥C→C is the operator norm of QK when viewed as an operator from C(Sd−1) to C(Sd−1), and En,∞(f)
is the minimum error in the ℓ∞ norm of approximating f by polynomials of total degree at most K on S

d−1. It
was shown in [Rag71b] that ∥QK∥C→C ≃ Kd/2−1 when d ≥ 3 and it is a classical result in Fourier analysis that
∥QK∥C→C ≃ lnK when d = 2.

In our problem, without loss of generality, consider h(x) =
∑

i wi |⟨ai, x⟩|p with ai ∈ S
d−1 and

∑
i wi = O(1).

Let us first consider the approximation to f(x) = |⟨ai, x⟩|p. It follows from the result of Ragozin [Rag71a] (see
also [AH12, Eq. (4.49)]) that

(A.1) EK,∞(f) ≤ Cp

np
,

where Cp > 0 is a constant depending only on p. Thus,

EK,∞(h) ≤
∑

i

wiEK,∞(f) ≤ C ′
p

np

and

∥h−QKh∥∞ ≲p

{
lnK/Kp d = 2

1/Kp−d/2+1 d ≥ 3.

Therefore, we can take

K ≃p

{
(1/ε)1/p log1/p(1/ε) d = 2

(1/ε)1/(p−d/2+1) d ≥ 3

such that ∥h−QKh∥∞ ≤ ε. For our h(x), we have from Funk-Hecke Theorem that

(QKh)(x) =

K∑

k=0

λk

M(d,k)∑

j=1

Yk,j(x)

(
∑

i

wiYk,j(ai)

)
.

Therefore the streaming algorithm needs only to maintain
∑

i wiYk,j(ai) for each k = 0, . . . ,K and j =
0, . . . ,M(d, k) to output (QKh)(x). This is clearly feasible in the data stream setting, as we can calculate
for each new point ai the value of Yk,j(ai) for all pairs (k, j) with k ≤ K. The number of such values to maintain
is

O

(
K∑

k=0

M(d, k)

)
= O

(
K∑

k=0

kd−2

)
= O(Kd−1).

However, this approach suffers from a precision problem when d ≥ 3. Using the explicit expression of Yk,j in
terms of the Gegenbauer polynomials (see, e.g. [DX13, Theorem 1.5.1]) would cause the intermediate results to
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be as small as 1/KO(Kd) or as large as KO(Kd), thus requiring Õ(K) words of space to calculate and store the
value of each Yk,j(x). This leads to an overall space of

Õ(Kd) = Õ(ε−2d/(2p−d+2))

words when d ≥ 3, which is o(ε−2) when p > d− 1. This precision problem, however, does not exist when d = 2,
since the spherical harmonics degenerate to exactly sines and cosines and the intermediate values can fit in a
word. Thus, the streaming algorithm uses O(K) = Õ(ε−1/p) words of space when d = 2, which is close to the
lower bound of Ω(ε−1/(p+1)) bits.
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