
On Differential Privacy and Adaptive Data

Analysis with Bounded Space

Itai Dinur1(B), Uri Stemmer2,3, David P. Woodruff4, and Samson Zhou5,6

1 Ben-Gurion University, Be’er Sheva, Israel
dinuri@bgu.ac.il

2 Tel Aviv University, Tel Aviv-Yafo, Israel
u@uri.co.il

3 Google Research, Tel Aviv-Yafo, Israel
4 Carnegie Mellon University, Pittsburgh, USA

dwoodruf@andrew.cmu.edu
5 UC Berkeley, Berkeley, USA
6 Rice University, Houston, USA

Abstract. We study the space complexity of the two related fields of
differential privacy and adaptive data analysis. Specifically,

1. Under standard cryptographic assumptions, we show that there
exists a problem P that requires exponentially more space to be
solved efficiently with differential privacy, compared to the space
needed without privacy. To the best of our knowledge, this is the
first separation between the space complexity of private and non-
private algorithms.

2. The line of work on adaptive data analysis focuses on understanding
the number of samples needed for answering a sequence of adaptive
queries. We revisit previous lower bounds at a foundational level,
and show that they are a consequence of a space bottleneck rather
than a sampling bottleneck.

To obtain our results, we define and construct an encryption scheme with
multiple keys that is built to withstand a limited amount of key leakage
in a very particular way.

1 Introduction

Query-to-communication lifting theorems allow translating lower bounds on the
query complexity of a given function f to lower bounds on the communication
complexity of a related function f̂ . Starting from the seminal work of Raz and
McKenzie [31], several such lifting theorems were presented, and applied, to
obtain new communication complexity lower bounds in various settings.

In the domain of cryptography, related results have been obtained, where the
starting point is a lower bound on the query complexity of an adversary solving a
cryptanalytic problem in an idealized model, such as the random oracle model [4].

The full version of this paper is available at https://eprint.iacr.org/2023/171.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14006, pp. 35–65, 2023.
https://doi.org/10.1007/978-3-031-30620-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30620-4_2&domain=pdf
https://eprint.iacr.org/2023/171
https://doi.org/10.1007/978-3-031-30620-4_2

36 I. Dinur et al.

The query complexity lower bound is then lifted to a query-space lower bound for
a non-uniform (preprocessing) adversary solving the same problem [11,12,37].

Building on ideas developed in these lines of work, we present a new technique
for translating sampling lower bounds to space lower bounds for problems in the
context of differential privacy and adaptive data analysis. Before presenting our
results, we motivate our settings.

1.1 Differential Privacy

Differential privacy [16] is a mathematical definition for privacy that aims to
enable statistical analyses of datasets while providing strong guarantees that
individual-level information does not leak. Informally, an algorithm that analyzes
data satisfies differential privacy if it is robust in the sense that its outcome
distribution does not depend “too much” on any single data point. Formally,

Definition 1.1 ([16]). Let A : X∗ → Y be a randomized algorithm whose input
is a dataset D ∈ X∗. Algorithm A is (ε, δ)-differentially private (DP) if for any
two datasets D,D′ that differ on one point (such datasets are called neighboring)
and for any outcome set F ⊆ Y it holds that Pr[A(D) ∈ F] ≤ eε · Pr[A(D′) ∈
F] + δ.

To interpret the definition, let D be a dataset containing n data points, each
of which represents the information of one individual. Suppose that Alice knows
all but one of these data points (say Bob’s data point). Now suppose that we
compute z ← A(D), and give z to Alice. If A is differentially private, then Alice
learns very little about Bob’s data point, because z would have been distributed
roughly the same no matter what Bob’s data point is.

Over the last few years, we have witnessed an explosion of research on dif-
ferential privacy in various settings. In particular, a fruitful line of work has
focused on designing differentially private algorithms with small space complex-
ity, mainly in streaming settings. These works show many positive results and
present differentially private algorithms with small space complexity for various
problems. In fact, some of these works show that classical streaming algorithms
are differentially private essentially as is. For example, Blocki et al. [5] show
that the Johnson-Lindenstrauss transform itself preserves differential privacy,
and Smith et al. [32] show this for the classical Flajolet-Martin Sketch.

In light of these positive results, one might think that algorithms with small
space are particularly suitable for differential privacy, because these algorithms
are not keeping too much information about the input to begin with.

Question 1.2. Does differential privacy require more space?

Our Results for Differential Privacy With bounded Space. We answer
Question 1.2 in the affirmative, i.e., we show that differential privacy may require
more space. To this end, we come up with a problem that can be solved using a
small amount of space without privacy, but requires a large amount of space to
be solved with privacy. As a first step, let us examine the following toy problem,
which provides some answer to the above question.

On Differential Privacy and Adaptive Data Analysis with Bounded Space 37

A Toy Problem. Recall that F2 (the second frequency moment of a stream)
estimation with multiplicative approximation error 1 + α has an Ω(1/α2) space
lower bound [38]. This immediately shows a separation for the problem of “output
either the last element of the stream or a (1 + α)-approximation to the F2 value
of the stream”. In the non-private setting, the last element can be output using
space independent of α, but in the private setting the algorithm is forced to
(privately) estimate F2 and thus use at least 1/α2 space. Of course, we could
replace F2 with other tasks that have a large space lower bound in the standard
non-private model.

We deem this toy problem non-interesting because, at a high level, our goal is
to show that there are cases where computing something privately requires a lot
more space than computing “the same thing” non-privately. In the toy problem,
however, the private and non-private algorithms are arguably not computing “the
same thing”. To reconcile this issue, we will focus on problems that are defined
by a function (ranging over some metric space), and the desired task would be
to approximate the value of this function. Note that this formulation disqualifies
the toy problem from being a valid answer to Question 1.2, and that with this
formulation there is a formal sense in which every algorithm for solving the task
must compute (or approximate) “the same thing”.

Let us make our setting more precise. In order to simplify the presentation,
instead of studying the streaming model, we focus on the following computation
model.1 Consider an algorithm that is instantiated on a dataset D and then aims
to answer a query with respect to D. We say that such an algorithm has space
s if, before it gets the query, it shrinks D to a summary z containing at most s
bits. Then, when obtaining the query, the algorithm answers it using only the
summary z (without additional access to the original dataset D). Formally, we
consider problems that are defined by a function P : X∗ × Q → M , where X is
the data domain, Q is a family of possible queries, and M is a metric space.

Definition 1.3. We say that A = (A1,A2) solves a problem P : X∗ × Q → M
with space complexity s, sample complexity n, error α, and confidence β if

1. A1 : X∗ → {0, 1}s is a preprocessing procedure that takes a dataset D and
outputs an s-bit string.

2. For every input dataset D ∈ Xn and every query q ∈ Q it holds that

Pr
z←A1(D)
a←A2(z,q)

[|a − P (D, q)| ≤ α] ≥ 1 − β.

We show the following theorem.

Theorem 1.4 (informal). Let d ∈ N be a parameter controlling the size of
the problem (specifically, data points from X can be represented using polylog(d)
bits, and queries from Q can be represented using poly(d) bits). There exists a
problem P : X∗ × Q → M such that the following holds.

1 We remark, however, that all of our results extend to the streaming setting. See
Remark 3.3.

38 I. Dinur et al.

1. P can be solved non-privately using polylog(d) bits of space.
% See Lemma 3.2 for the formal statement.

2. P can be solved privately using sample and space complexity Õ(
√

d).
% See Lemma 3.4 for the formal statement.

3. Assuming the existence of a sub-exponentially secure symmetric-key encryp-
tion scheme, every computationally-efficient differentially-private algorithm
A for solving P must have space complexity Ω̃(

√
d), even if its sample com-

plexity is a large polynomial in d. Furthermore, this holds even if A is only
required to be computationally differentially private (namely, the adversary
we build against A is computationally efficient).
% See Corollary 3.13 for the formal statement.

Note that this is an exponential separation (in d) between the non-private
space complexity and the private space complexity. We emphasize that the hard-
ness of privately solving P does not come from not having enough samples.
Indeed, by Item 2, Õ(

√
d) samples suffice for privately solving this problem.

However, Item 3 states that unless the algorithm has large space, then it cannot
privately solve this problem even if it has many more samples than needed.

To the best of our knowledge, this is the first result that separates the space
complexity of private and non-private algorithms. Admittedly, the problem P
we define to prove the above theorem is somewhat unnatural. In contrast, our
negative results for adaptive data analysis (to be surveyed next) are for the
canonical problem studied in the literature.

1.2 Adaptive Data Analysis

Consider a data analyst interested in testing a specific research hypothesis. The
analyst acquires relevant data, evaluates the hypothesis, and (say) learns that it
is false. Based on the findings, the analyst now decides on a second hypothesis
to be tested, and evaluates it on the same data (acquiring fresh data might be
too expensive or even impossible). That is, the analyst chooses the hypotheses
adaptively, where this choice depends on previous interactions with the data.
As a result, the findings are no longer supported by classical statistical theory,
which assumes that the tested hypotheses are fixed before the data is gathered,
and the analyst runs the risk of overfitting to the data.

Starting with [15], the line of work on adaptive data analysis (ADA) aims
to design methods for provably guaranteeing statistical validity in such settings.
Specifically, the goal is to design a mechanism A that initially obtains a dataset D
containing t i.i.d. samples from some unknown distribution P, and then answers
k adaptively chosen queries w.r.t. P. Importantly, A’s answers must be accurate
w.r.t. the underlying distribution P, and not just w.r.t. the empirical dataset D.
The main question here is,

On Differential Privacy and Adaptive Data Analysis with Bounded Space 39

Question 1.5. How many samples does A need (i.e., what should t be) in order
to support k such adaptive queries?

As a way of dealing with worst-case analysts, the analyst is assumed to be
adversarial in that it tries to cause the mechanism to fail. If a mechanism can
maintain utility against such an adversarial analyst, then it maintains utility
against any analyst. Formally, the canonical problem pursued by the line of
work on ADA is defined as a two-player game between a mechanism A and an
adversary B. See Fig. 1.

1. The adversary B chooses a distribution P over a data domain X.
2. The mechanism A obtains a sample S ∼ Pt containing t i.i.d. samples from P.
3. For k rounds j = 1, 2, . . . , k:

– The adversary chooses a function hj : X → {−1, 0, 1}, possibly as a function
of all previous answers given by the mechanism.

– The mechanism obtains hj and responds with an answer zj , which is given
to B.

Fig. 1. A two-player game between a mechanism A and an adversary B.

Definition 1.6 ([15]). A mechanism A is (α, β)-accurate for k queries over a
domain X using sample size t if for every adversary B (interacting with A in
the game specified in Fig. 1) it holds that

Pr
[
∃j ∈ [k] s.t. |zj − hj(P)| > α

]
≤ β,

where hj(P) = Ex∼P [hj(x)] is the “true” value of hj on the underlying distribu-
tion P.

Following Dwork et al. [15], this problem has attracted a significant amount of
work, most of which is focused on understanding how many samples are needed
for adaptive data analysis (i.e., focused on Question 1.5). In particular, the
following almost matching bounds are known.

Theorem 1.7 ([2,15]). There exists a computationally efficient mechanism that

is (0.1, 0.1)-accurate for k queries using sample size t = Õ
(√

k
)
.

Theorem 1.8 ([24,34], informal). Assuming the existence of one-way func-
tions, every computationally efficient mechanism that is (0.1, 0.1)-accurate for k

queries must have sample size at least t = Ω
(√

k
)
.

Our Results for Adaptive Data Analysis with Bounded Space. All
prior work on the ADA problem treated it as a sampling problem, conveying the
message that “adaptive data analysis requires more samples than non adaptive

40 I. Dinur et al.

data analysis”. In this work we revisit the ADA problem at a foundational level,
and ask:

Question 1.9. Is there a more fundamental bottleneck for the ADA problem
than the number of samples?

Consider a mechanism A that initially gets the full description of the under-
lying distribution P, but is required to shrink this description into a summary z,
whose description length is identical to the description length of t samples from
P. (We identify the space complexity of A with the size of z in bits.) Afterwards,
A needs to answer k adaptive queries using z, without additional access to P.
Does this give A more power over a mechanism that only obtains t samples from
P?

We show that, in general, the answer is no. Specifically, we show the following
theorem.

Theorem 1.10 (informal version of Theorem 4.1). Assuming the existence
of one-way functions, then every computationally efficient mechanism that is

(0.1, 0.1)-accurate for k queries must have space complexity at least Ω
(√

k
)
.

In fact, in the formal version of this theorem (see Theorem 4.1) we show that

the space complexity must be at least Ω
(√

k
)

times the representation length

of domain elements. We view this as a significant strengthening of the previous
lower bounds for the ADA problem: it is not that the mechanism did not get
enough information about P; it is just that it cannot shrink this information in
a way that allows for efficiently answering k adaptive queries. This generalizes
the negative results of [24,34], as sampling t =

√
k points from P is just one

particular way for storing information about P.

1.3 Our Techniques

We obtain our results through a combination of techniques across several research
areas including cryptography, privacy, learning theory, communication complex-
ity, and information theory.

Our Techniques: Multi-instance Leakage-Resilient Scheme. The main
cryptographic tool we define and construct is a suitable encryption scheme with
multiple keys that is built to withstand a certain amount of key leakage in a very
particular way. Specifically, the scheme consists of n instances of an underlying
encryption scheme with independent keys (each of length λ bits). The keys are
initially given to an adversary who shrinks them down to a summary z containing
s ≪ n · λ bits. After this phase, each instance independently sets an additional
parameter, which is public but unknown to the adversary in the initial phase.
Then, the adversary obtains encryptions of plaintexts under the n keys. We
require that given z and the public parameters, the plaintexts encrypted with

On Differential Privacy and Adaptive Data Analysis with Bounded Space 41

each key remain computationally hidden, except for a small number of the keys
(which depends on s, but not on n).

We call the scheme a multi-instance leakage-Resilient scheme (or MILR
scheme) to emphasize the fact that although the leakage of the adversary is an
arbitrary function of all the n keys, the scheme itself is composed of n instances
that are completely independent.

The efficiency of the MILR scheme is measured by two parameters: (1) the
number of keys under which encryptions are (potentially) insecure, and (2) the
loss in the security parameter λ. The scheme we construct is optimal in both
parameters up to a multiplicative constant factor. First, encryptions remain
hidden for all but O

(
s
λ

)
of the keys. This is essentially optimal, as the adversary

can define z to store the first s
λ keys. Second, we lose a constant factor in the

security parameter λ. An additional advantage of our construction is that its
internal parameters do not depend on s. If we did allow such a dependency, then
in some settings (particularly when s ≤ o(n ·λ)) it would be possible to fine-tune
the scheme to obtain a multiplicative 1 + o(1) loss in the efficiency parameters,
but this has little impact on our application.

Our construction is arguably the most natural one. To encrypt a plaintext
with a λ-bit key after the initial phase, we first apply an extractor (with the
public parameter as a seed) to hash it down to a smaller key, which is used to
encrypt the plaintext with the underlying encryption scheme.

The MILR scheme is related to schemes developed in the area of leakage-
resilient cryptography (cf., [10,19,20,26,27,30,33]) where the basic technique
of randomness extraction is commonly used. However, leakage-resilient cryp-
tography mainly deals with resilience of cryptosystems to side-channel attacks,
whereas our model is not designed to formalize security against such attacks
and has several properties that are uncommon in this domain (such as protecting
independent multiple instances of an encryption scheme in a way that inherently
makes some of them insecure). Consequently, the advanced cryptosytems devel-
oped in the area of leakage-resilient cryptography are either unsuitable, overly
complex, or inefficient for our purposes.

Despite the simplicity of our construction, our proof that it achieves the
claimed security property against leakage is somewhat technical. We stress that
we do not rely on hardness assumptions for specific problems, nor assume that
the underlying encryption scheme has special properties such as resilience to
related-key attacks. Instead, our proof is based on the pre-sampling technique
introduced by Unruh [37] to prove security of cryptosystems against non-uniform
adversaries in the random oracle model. This technique has been recently refined
and optimized in [11,12,14] based on tools developed in the area of communica-
tion complexity [22,28]. The fact that we use the technique to prove security in
a computational (rather than information-theoretic) setting seems to require the
assumption that the underlying encryption scheme is secure against non-uniform
adversaries (albeit this is considered a standard assumption).

42 I. Dinur et al.

Our Techniques: Privacy Requires More Space. We design a problem that
can be solved non-privately with very small space complexity, but requires a large
space complexity with privacy. To achieve this, we lift a known negative result on
the sample complexity of privately solving a specific problem to obtain a space
lower bound for a related problem. The problem we start with, for which there
exists a sampling lower bound, is the so-called 1-way marginals problem with
parameter d. In this problem, our input is a dataset D ∈ ({0, 1}d)∗ containing
a collection of binary vectors, each of length d. Our goal is to output a vector
�a ∈ [0, 1]d that approximates the average of the input vectors to within small
L∞ error, say to within error 1/10. That is, we want vector �a ∈ [0, 1]d to satisfy:∥∥∥�a − 1

|D|

∑
�x∈D �x

∥∥∥
∞

≤ 1
10 .

We say that an algorithm for this problem has sample complexity n if, for
every input dataset of size n, it outputs a good solution with probability at least
0.9. One of the most fundamental results in the literature of differential privacy
shows that this problem requires a large dataset:

Theorem 1.11 ([9], informal). Every differentially private algorithm for solv-
ing the 1-way marginal problem with parameter d must have sample complexity
n = Ω(

√
d).

To lift this sampling lower bound into a space lower bound, we consider a
problem in which the input dataset contains n keys �x = (x1, . . . , xn) (sampled
from our MILR scheme). The algorithm must then shrink this dataset into a
summary z containing s bits. Afterwards, the algorithm gets a “query” that is
specified by a collection of n ciphertexts, each of which is an encryption of a d-
bit vector. The desired task is to approximate the average of the plaintext input
vectors. Intuitively, if the algorithm has space s ≪

√
d, then by the properties of

our MILR scheme, it can decrypt at most ≈ s ≪
√

d of these d-bit vectors, and
is hence trying to solve the 1-way marginal problem with fewer than

√
d samples.

We show that this argument can be formalized to obtain a contradiction.

Our Techniques: ADA Is About Space. As we mentioned, Hardt and Ull-
man [24] and Steinke and Ullman [34] showed that the ADA problem requires a
large sample complexity (see Theorem 1.8). Specifically, they showed that there
exists a computationally efficient adversary that causes every efficient mech-
anism to fail in answering adaptive queries. Recall that the ADA game (see
Fig. 1) begins with the adversary choosing the underlying distribution.

We lift the negative result of [24,34] to a space lower bound. To achieve
this, we design an alternative adversary that first samples a large collection
of keys for our MILR scheme, and then defines the target distribution to be
uniform on these sampled keys. Recall that in our setting, the mechanism gets
an exact description of this target distribution and afterwards it must shrink
this description into s bits. However, by the properties of our MILR scheme,
this means that the mechanism would only be able to decrypt ciphertexts that
correspond to at most ≈ s/λ of the keys. We then show that the adversary

On Differential Privacy and Adaptive Data Analysis with Bounded Space 43

of [24,34] can be simulated under these conditions, where the “input sample”
from their setting corresponds to the collection of indices of keys for which the
mechanism can decrypt ciphertexts.

1.4 Applications to Communication Complexity

Finally, our arguments also provide distributional one-way communication com-
plexity lower bounds, which are useful when the goal is to compute a relation
with a very low success probability. To the best of our knowledge, existing query-
to-communication lifting theorems, e.g., [22,23,31] do not consider the problems
and input distributions that we consider here. Roughly speaking, we show that
if any sampling based protocol for computing a function f requires k samples
(a1, b1), . . . , (ak, bk), where ai ∈ {0, 1}t for each i ∈ [k], then any one-way proto-
col that computes f(A,B) in this setting must use Ω(kt) communication.

More precisely, in the two-player one-way communication game, inputs A
and B are given to Alice and Bob, respectively, and the goal is for Alice to send
a minimal amount of information to Bob, so that Bob can compute f(A,B) for
some predetermined function f . The communication cost of a protocol Π is the
size of the largest message in bits sent from Alice across all possible inputs A and
the (randomized) communication complexity is the minimum communication
cost of a protocol that succeeds with probability at least 2

3 . In the distributional
setting, A and B are further drawn from a known underlying distribution.

In our distributional setting, suppose Alice has m independent and uniform
numbers a1, . . . , am so that either ai ∈ GF (p) for all i ∈ [m] or ai ∈ GF (2t)
for sufficiently large t for all i ∈ [m] and suppose Bob has m independent and
uniform numbers b1, . . . , bm from the same field, either GF (p) or GF (2t). Then
for any function f(〈a1, b1〉, . . . , 〈am, bm〉), where the dot products are taken over
GF (2) or f(a1 ·b1, . . . , am ·bm), where the products are taken over GF (p), has the
property that the randomized one-way communication complexity of computing
f with probability σ is the same as the number of samples from a1, . . . , am

that Alice needs to send Bob to compute f with probability σ − ε. It is easy
to prove sampling lower bounds for many of these problems, sum as

∑
i ai ·

bi (mod p) or MAJ(〈a1, b1〉, . . . , 〈am, bm〉), and this immediately translates into
communication complexity lower bounds. The main intuition for our overall
lower bound argument is that the numbers b1, . . . , bm can be viewed as the hash
functions that Bob has and thus we can apply a variant of the leftover hash
lemma if Bob only has a small subset of these numbers. See the full version of
this work for the details.

1.5 Related Works

Dwork et al. [17] used traitor-tracing schemes to prove computational sampling
lower bounds for differential privacy. Their results were extended by Ullman [36],
who used fingerprinting codes to construct a novel traitor-tracing scheme and
to obtain stronger computational sampling lower bounds for differential pri-
vacy. Ullman’s construction can be viewed as an encrypted variant of the 1-way

44 I. Dinur et al.

marginal problem. Bun et al. [8] and Alon et al. [1] showed that there are trivial
learning tasks that require asymptotically more samples to solve with differen-
tial privacy (compared to the non-private sample complexity). These results are
fundamentally different than ours, as they are about sampling rather than space.
Feldman [21] and Brown et al. [7] showed that there are learning problems for
which every near optimal learning algorithm (obtaining near optimal error w.r.t.
to the number of input samples it takes) must memorize a large portion of its
input data. These works do not directly address the additional space required
for preserving privacy. See the full version for additional related works.

1.6 Paper Structure

The rest of the paper is structured as follows. The MILR scheme is defined
in Sect. 2. Our results for differential privacy and adaptive data analysis are
described in Sects. 3 and 4, respectively. We construct our MILR scheme in
Sect. 5, and prove its security in Sect. 6. Some of the technical details from these
sections are deferred to the full version of this work.

2 Multi-instance Leakage-Resilient Scheme

We define a multi-instance leakage-resilient scheme (or MILR scheme) to be a
tuple of efficient algorithms (Gen, Param,Enc,Dec) with the following syntax:

– Gen is a randomized algorithm that takes as input a security parameter λ
and outputs a λ-bit secret key. Formally, x ← Gen(1λ).

– Param is a randomized algorithm that takes as input a security parameter λ
and outputs a poly(λ)-bit public parameter. Formally, p ← Param(1λ).

– Enc is a randomized algorithm that takes as input a secret key x, a pub-
lic parameter p, and a message m ∈ {0, 1}, and outputs a ciphertext
c ∈ {0, 1}poly(λ). Formally, c ← Enc(x, p,m).

– Dec is a deterministic algorithm that takes as input a secret key x, a public
parameter p, and a ciphertext c, and outputs a decrypted message m′. If the
ciphertext c was an encryption of m under the key x with the parameter
p, then m′ = m. Formally, if c ← Enc(x, p,m), then Dec(x, p, c) = m with
probability 1.

To define the security of an MILR scheme, let n ∈ N, let �x = (x1, . . . , xn) be
a vector of keys, and let �p = (p1, . . . , pn) be a vector of public parameters (set
once for each scheme by invoking Param). Let J ⊆ [n] be a subset, referred to
as the “hidden coordinates”. Now consider a pair of oracles E1(�x, �p, J, ·, ·) and
E0(�x, �p, J, ·, ·) with the following properties.

1. E1(�x, �p, J, ·, ·) takes as input an index of a key j ∈ [n] and a message m, and
returns Enc(xj , pj ,m).

2. E0(�x, �p, J, ·, ·) takes the same inputs. If j ∈ J then the outcome is
Enc(xj , pj , 0), and otherwise the outcome is Enc(xj , pj ,m).

On Differential Privacy and Adaptive Data Analysis with Bounded Space 45

Definition 2.1. Let λ be a security parameter. Let Γ : R → R and τ : R
2 →

R be real-valued functions. An MILR scheme (Gen,Param,Enc,Dec) is (Γ, τ)-
secure against space bounded preprocessing adversaries if the following holds.

(1) Multi semantic security: For every n = poly(Γ (λ)) and every
poly(Γ (λ))-time adversary B there exists a negligible function negl such that
∣

∣

∣

∣

Pr
�x,�p,B,Enc

[

BE0(�x,�p,[n],·,·)(�p) = 1
]

− Pr
�x,�p,B,Enc

[

BE1(�x,�p,[n],·,·)(�p) = 1
]

∣

∣

∣

∣

≤ negl(Γ (λ)).

That is, a computationally bounded adversary that gets the public parame-
ters, but not the keys, cannot tell whether it is interacting with E0 or with
E1.

(2) Multi-security against a bounded preprocessing adversary: For
every n = poly(Γ (λ)), every s ≤ n · λ, and every preprocessing proce-

dure F :
(
{0, 1}λ

)n → {0, 1}s (possibly randomized), there exists a ran-
dom function J = J(F, �x, z, �p) ⊆ [n] that given a collection of keys �x and
public parameters �p, and an element z ← F (�x), returns a subset of size
|J | ≥ τ := n−τ(λ, s) such that for every poly(Γ (λ))-time algorithm B there
exists a negligible function negl satisfying

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr
�x,�p,B,Enc
z←F (�x)

J←J(F,�x,z,�p)

[

B
E0(�x,�p,J,·,·)

(z, �p) = 1
]

− Pr
�x,�p,B,Enc
z←F (�x)

J←J(F,�x,z,�p)

[

B
E1(�x,�p,J,·,·)

(z, �p) = 1
]

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(Γ (λ)).

That is, even if s bits of our n keys were leaked (computed by the prepro-
cessing function F operating on the keys), then still encryptions w.r.t. the
keys of J are computationally indistinguishable.

Remark 2.2. When Γ is the identity function, we simply say that the scheme
is τ -secure. Note that in this case, security holds against all adversaries with
runtime polynomial in the security parameter λ. We will further assume the
existence of a sub-exponentially secure encryption scheme. By that we mean
that there exists a constant ν > 0 such that the scheme is (Γ, τ)-secure for
Γ (λ) = 2λν

. That is, we assume the existence of a scheme in which security
holds against all adversaries with runtime polynomial in 2λν

.

In Sects. 5 and 6 we show the following theorem.

Theorem 2.3. Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ). If there exists a Γ (λ)-secure encryp-
tion scheme against non-uniform adversaries then there exists an MILR scheme
that is (Γ (λ), τ)-secure against space bounded non-uniform preprocessing adver-
saries, where τ(λ, s) = 2s

λ + 4.

46 I. Dinur et al.

3 Space Hardness for Differential Privacy

Consider an algorithm that is instantiated on a dataset D and then aims to
answer a query w.r.t. D. We say that such an algorithm has space s if, before
it gets the query, it shrinks D to a summary z containing at most s bits. Then,
when obtaining the query, the algorithm answers it using only the summary z
(without additional access to the original dataset D).

Let (Gen,Param,Enc,Dec) be an MILR scheme with security parameter λ. In
the (λ, d)-decoded average (DA) problem with sample complexity n, the input
dataset contains n keys, that is D = (x1, . . . , xn) ∈

(
{0, 1}λ

)n
. A query q =

((p1, c1), . . . , (pn, cn)) is specified using n pairs (pi, ci) where pi is a public param-
eter and ci is a ciphertext, which is an encryption of a binary vector of length d.
The goal is to release a vector �a = (a1, . . . , ad) ∈ [0, 1]d that approximates the
“decrypted average vector (dav)”, defined as davq(D) = 1

n

∑n
i=1 Dec(xi, pi, ci).

Definition 3.1. Let A = (A1,A2) be an algorithm where A1 :
(
{0, 1}λ

)n →
{0, 1}s is the preprocessing procedure that summarizes a dataset of n keys into s
bits, and where A2 is the “response algorithm” that gets the outcome of A1(D)
and a query q. We say that A solves the DA problem if with probability at least
9/10 the output is a vector �a satisfying ‖�a − davq(D)‖∞ ≤ 1

10 .

Without privacy considerations, the DA problem is almost trivial. Specifically,

Lemma 3.2. The (λ, d)-DA problem can be solved efficiently using space s =
O (λ log(d)).

Proof. The preprocessing algorithm A1 samples O (log d) of the input keys. Algo-
rithm A2 then gets the query q and estimates the dav vector using the sampled
keys. The lemma then follows by the Chernoff bound.

Remark 3.3. As we mentioned, to simplify the presentation, in our computa-
tional model we identify the space complexity of algorithm A = (A1,A2) with
the size of the output of algorithm A1. We remark, however, that our separation
extends to a streaming model where both A1 and A2 are required to have small
space. To see this, note that algorithm A1 in the above proof already has small
space (and not just small output length), as it merely samples O(log d) keys from
its input dataset. We now analyze the space complexity of A2, when it reads the
query q in a streaming fashion. Recall that the query q contains n public param-
eters p1, . . . , pn and n ciphertexts c1, . . . , cn, where each ci is an encryption of a
d-bit vector, call it yi ∈ {0, 1}d. To allow A2 to read q using small space, we order
it as follows: q = (p1, . . . , pn), (c1,1, . . . , cn,1), . . . , (c1,d, . . . , cn,d) � q0◦q1◦· · ·◦qd.
Here ci,j = Enc(xi, pi, yi[j]) is an encryption of the jth bit of yi using key xi and
public parameter pi. Note that the first part of the stream, q0, contains the public
parameters, and then every part qj contains encryptions of the jth bit of each
of the n input vectors. With this ordering of the query, algorithm A2 begins by
reading q0 and storing the O(log d) public parameters corresponding to the keys
that were stored by A1. Then, for every j ∈ [d], when reading qj, algorithm A2

On Differential Privacy and Adaptive Data Analysis with Bounded Space 47

estimates the average of the jth coordinate using the sampled keys. Algorithm
A2 then outputs this estimated value, and proceeds to the next coordinate. This
can be implemented using space complexity poly(λ log(d)).

So, without privacy constraints, the DA problem can be solved using small
space. We now show that, assuming that the input dataset is large enough,
the DA problem can easily be solved with differential privacy using large space.
Specifically,

Lemma 3.4. There is a computationally efficient (ε, δ)-differentially pri-
vate algorithm that solves the (λ, d)-DA problem using space s =

O
(

1
ε ·

√
d · log(1

δ) · λ · log d
)
, provided that the size of the input dataset satis-

fies n = Ω(s) (large enough).

Proof. The preprocessing algorithm A1 samples ≈
√

d of the keys. By standard
composition theorems for differential privacy [18], this suffices for the response
algorithm A2 to privately approximate each of the d coordinates of the target
vector.

Thus the DA problem can be solved non-privately using small space, and it
can be solved privately using large space. Our next goal is to show that large
space is indeed necessary to solve this problem privately. Before showing that, we
introduce several additional preliminaries on computational differential privacy
and on fingerprinting codes.

3.1 Preliminaries on Computational Differential Privacy
and Fingerprinting Codes

Computational differential privacy was defined by Beimel et al [3] and Mironov et
al. [29]. Let A be a randomized algorithm (mechanism) that operates on datasets.
Computational differential privacy is defined via a two player game between a chal-
lenger and an adversary, running a pair of algorithms (Q,T). The game begins with
the adversary Q choosing a pair of neighboring datasets (D0, D1) of size n each, as
well as an arbitrary string r (which we think of as representing its internal state).
Then the challenger samples a bit b and applies A(Db) to obtain an outcome a.
Then T (r, ·) is applied on a and tries to guess b. Formally,

Definition 3.5. Let λ be a security parameter, let ε be a constant, and let
δ : R → R be a function. A randomized algorithm A : X∗ → Y is (ε, δ)-
computationally differentially private (CDP) if for every n = poly(λ) and every
non-uniform poly(λ)-time adversary (Q,T) there exists a negligible function negl
such that

Pr
(r,D0,D1)←Q

A,T

[T (r,A(D0)) = 1] ≤ eε · Pr
(r,D0,D1)←Q

A,T

[T (r,A(D1)) = 1]+δ(n)+negl(λ).

Definition 3.6. Let ε be a constant and let δ = δ(λ) be a function. Given two
probability ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N we write X ≈ε,δ Y if for

48 I. Dinur et al.

every non-uniform probabilistic polynomial-time distinguisher D there exists a
negligible function negl such that Prx←Xλ

[D(x) = 1] ≤ eε · Pry←Yλ
[D(y) = 1] +

δ(λ) + negl(λ), and vice versa.

We recall the concept of fingerprinting codes, which was introduced by Boneh
and Shaw [6] as a cryptographic tool for watermarking digital content. Starting
from the work of Bun, Ullman, and Vadhan [9], fingerprinting codes have played
a key role in proving lower bounds for differential privacy in various settings.

A (collusion-resistant) fingerprinting code is a scheme for distributing code-
words w1, · · · , wn to n users that can be uniquely traced back to each user.
Moreover, if a group of (at most k) users combines its codewords into a pirate
codeword ŵ, then the pirate codeword can still be traced back to one of the users
who contributed to it. Of course, without any assumption on how the pirates can
produce their combined codeword, no secure tracing is possible. To this end, the
pirates are constrained according to a marking assumption, which asserts that
the combined codeword must agree with at least one of the “real” codewords in
each position. Namely, at an index j where wi[j] = b for every i ∈ [n], the pirates
are constrained to output ŵ with ŵ[j] = b as well.2

Definition 3.7 ([6,35]). A k-collusion resilient fingerprinting code of length d
for n users with failure probability γ, or (n, d, k, γ)-FPC in short, is a pair of ran-
dom variables C ∈ {0, 1}n×d and Trace : {0, 1}d → 2[n] such that the following
holds. For all adversaries P : {0, 1}k×d → {0, 1}d and S ⊆ [n] with |S| = k,

Pr
C,Trace,P

[(∀1 ≤ j ≤ d ∃i ∈ [n] s.t. P (CS)[j] = ci[j]) ∧ (Trace(P (CS)) = ∅)] ≤ γ,

and
Pr

C,Trace,P
[Trace(P (CS)) ∩ ([n] \ S) �= ∅] ≤ γ,

where CS contains the rows of C given by S.

Remark 3.8. As mentioned, the condition {∀1 ≤ j ≤ d ∃i ∈ [n] s.t. P (CS)[j]
= ci[j]} is called the “marking assumption”. The second condition is called the
“small probability of false accusation”. Hence, if the adversary P guarantees that
its output satisfies the marking assumption, then with probability at least 1 − 2γ
it holds that algorithm Trace outputs an index i ∈ S.

Theorem 3.9 ([6,34,35]). For every 1 ≤ k ≤ n there is a k-collusion-resilient
fingerprinting code of length d = O(k2 · log n) for n users with failure probability
γ = 1

n2 and an efficiently computable Trace function.

We remark that there exist both adaptive and non-adaptive constructions of
fingerprinting codes with the guarantees of Theorem 3.9; we use the non-adaptive
variant.

2 We follow the formulation of the marking assumption as given by [34], which is a bit
different than the commonly considered one.

On Differential Privacy and Adaptive Data Analysis with Bounded Space 49

3.2 A Negative Result for the DA Problem

Our main negative result for space bounded differentially private algorithms is
the following.

Theorem 3.10. Let Π = (Gen,Param,Enc,Dec) be an MILR scheme with
security parameter λ that is (Γ, τ)-secure against space bounded preprocessing
adversaries. Let d ≤ poly(Γ (λ)) and n ≤ poly(Γ (λ)) be functions of λ. Let ε
be a constant and let δ ≤ 1

4n(eε+1) = Θ(1
n). For every poly(Γ (λ))-time (ε, δ)-

CDP algorithm for the (λ, d)-DA problem with sample complexity n and space

complexity s it holds that τ(λ, s) = Ω
(√

d
log n

)
.

Proof. Let A = (A1,A2) be a poly(Γ (λ))-time CDP algorithm for the (λ, d)-
DA problem using sample complexity n = poly(Γ (λ)) and space complexity s.

Denote τ = τ(λ, s), and assume towards a contradiction that τ = O
(√

d
log n

)

(small enough). We construct the following adversary B to an
(
n+1, d, τ , 1

n2

)
-

FPC (such a code is guaranteed to exist by Theorem 3.9 and by the contradictory
assumption).

1. The input is n codewords w1, . . . , wn ∈ {0, 1}d.
2. Sample n keys x1, . . . , xn ∼ Gen(1λ).
3. Let z ← A1(x1, . . . , xn).
4. Sample n public parameters p1, . . . , pn ∼ Param(1λ).
5. For i ∈ [n] let ci ← Enc(xi, pi, wi).
6. Let �a ← A2(z, (p1, c1), . . . , (pn, cn)).
7. Output �a, after rounding its coordinates to {0, 1}.

We think of B as an adversary to an FPC, and indeed, its input is a collection
of codewords and its output is a binary vector of length d. Observe that if A
solves the DA problem (i.e., approximates the decrypted average vector), then
for every coordinate, the outcome of B must agree with at least one of the input
codewords, namely, it satisfies the marking assumption (see Remark 3.8).

Remark 3.11. Before we proceed with the formal proof, we give an overview of
its structure (this remark can be ignored, and is not needed for the formal proof).
Informally, we will show that

(1) Algorithm B is computationally differentially private w.r.t. the collection of
codewords (even though our assumption on A is that it is private w.r.t. the
keys).

(2) Leveraging the properties of the MILR scheme, we will show that B must
effectively ignore most of its inputs, except for at most τ codewords. This
means that B is effectively an FPC adversary that operates on only τ code-
words (rather than the n codewords it obtains as input).

50 I. Dinur et al.

(3) A known result in the literature of differential privacy (starting from [9]) is
that a successful FPC adversary cannot be differentially private, because this
would contradict the fact that the tracing algorithm is able to recover one of
its input points. Our gain here comes from the fact that B only uses (effec-
tively) τ codewords, and hence, in order to get a contradiction, it suffices
to use an FPC with a much shorter codeword-length (only ≈ τ2 instead of
≈ n2). This will mean that the hardness of the DA problem depends on the
space of A (which controls τ) rather than the size of the input (which is n).

Recall that A = (A1,A2) is computationally differentially private w.r.t. the
keys. We first show that B is computationally differentially private w.r.t. the
codewords. To this end, let Q be an adversary (as in Definition 3.5) that outputs

a pair of neighboring datasets (�w, �w′), each containing n codewords, together

with a state r. Given (�w, �w′), we write ℓ = ℓ(�w, �w′) ⊆ [n] to denote the index on

which �w, �w′ differ. We also write x0 to denote another key, independent of the
keys x1, . . . , xn sampled by algorithm B. By the privacy guarantees of algorithm
A and by the semantic security of the encryption scheme (see Definition 2.1) we
have that

〈r, B(�w)〉 ≡

≡ 〈r, A2 (A1(x1, ..., xℓ, ..., xn), �p, Enc(x1, p1, w1), ..., Enc(xℓ, pℓ, wℓ), ..., Enc(xn, pn, wn))〉

≈(ε,δ) 〈r, A2 (A1(x1, ..., x0, ..., xn), �p, Enc(x1, p1, w1), ..., Enc(xℓ, pℓ, wℓ), ..., Enc(xn, pn, wn))〉

≡c 〈r, A2

(

A1(x1, ..., x0, ..., xn), �p, Enc(x1, p1, w1), ..., Enc(xℓ, pℓ, w
′
ℓ), ..., Enc(xn, pn, wn)

)

〉

≈(ε,δ) 〈r, A2

(

A1(x1, ..., xℓ, ..., xn), �p, Enc(x1, p1, w1), ..., Enc(xℓ, pℓ, w
′
ℓ), ..., Enc(xn, pn, wn)

)

〉

≡ 〈r, B(�w′)〉.

So algorithm B is (2ε, (eε + 1)δ)-computationally differentially private. Now
consider the following variant of algorithm B, denoted as B̂. The modifications
from B are marked in red.

1. The input is n codewords w1, . . . , wn ∈ {0, 1}d.
2. Sample n keys x1, . . . , xn ∼ Gen(1λ).
3. Let z ← A1(x1, . . . , xn).
4. Sample n public parameters p1, . . . , pn ∼ Param(1λ).
5. Let J ← J(A1, �x, z, �p) ⊆ [n] be the subset of coordinates guaranteed to exist

by Definition 2.1, of size |J | = n − τ .
6. For i ∈ J let ci ← Enc(xi, pi, 0).
7. For i ∈ [n] \ J let ci ← Enc(xi, pi, wi).
8. Let �a ← A2(z, (p1, c1), . . . , (pn, cn)).
9. Output �a, after rounding its coordinates to {0, 1}.

On Differential Privacy and Adaptive Data Analysis with Bounded Space 51

Remark 3.12. Observe that algorithm B̂ is not necessarily computationally effi-
cient, since computing J(A1, �x, z, �p) might not be efficient. Nevertheless, as we
next show, this still suffices to obtain a contradiction and complete the proof of
the lower bound. Specifically, we will show that B̂ is computationally differentially
private (w.r.t. the codewords) and that it is a successful adversary to the FPC.
This will lead to a contradiction, even if B̂ itself is a non-efficient mechanism.

We now show that, by the multi-security of the MILR scheme (see Defini-
tion 2.1), the outcome distributions of B and B̂ are computationally indistin-
guishable. Specifically, we want to show that for every efficient adversary (Q,T),
as in Definition 3.5, it holds that

|Pr[T (r,B(�w)) = 1] − Pr[T (r, B̂(�w)) = 1]| ≤ negl(Γ (λ)).

Note that here both expressions are with the same dataset �w (without the neigh-

boring dataset �w′). To show this, consider the following algorithm, denoted as
W, which we view as an adversary to the MILR scheme. This algorithm has only
oracle access to encryptions, via an oracle E .

1. The input of W is n codewords w1, . . . , wn ∈ {0, 1}d, an element z (supposedly
computed by A1), and a collection of n public parameters p1, . . . , pn.

2. For i ∈ [n] let ci ← E(i, wi).
3. Let �a ← A2(z, (p1, c1), . . . , (pn, cn)).
4. Output �a, after rounding its coordinates to {0, 1}.

Now by the multi-security of the MILR scheme we have

∣∣∣∣ Pr
Q,T,B

[T (r,B(�w)) = 1] − Pr
Q,T,B

[T (r, B̂(�w)) = 1]

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

Pr
�x,�p,W,Q,T,Enc

z←A1(�x)
J←J(A1,�x,z,�p)

[Q(r,WE1(�x,�p,J,·,·)(�w, z, �p)) = 1]

− Pr
�x,�p,W,Q,T,Enc

z←A1(�x)
J←J(A1,�x,z,�p)

[Q(r,WE0(�x,�p,J,·,·)(�w, z, �p)) = 1]

∣∣∣∣∣∣∣∣∣

≤ negl(Γ (λ)).

52 I. Dinur et al.

So we have that B̂ ≡c B and we have that B is (2ε, (eε +1)δ)-computationally
differentially private. Hence, algorithm B̂ is also (2ε, (eε + 1)δ)-computationally
differentially private (w.r.t. the input codewords). Observe that algorithm B̂
ignores all but N − |J | = τ of the codewords, and furthermore, the choice of
which codewords to ignore is independent of the codewords themselves. Now
consider the following thought experiment.

1. Sample a codebook w0, w1, . . . , wn for the fingerprinting code.
2. Run B̂ on (w1, . . . , wn).
3. Run Trace on the outcome of B̂ and return its output.

As B̂ ignores all but τ codewords, by the properties of the FPC, with probability
at least 1− 1

n2 ≥ 1
2 the outcome of Trace is a coordinate of a codeword that B̂ did

not ignore, and in particular, it is a coordinate between 1 and n. Therefore, there
must exist a coordinate i∗ �= 0 that is output by this thought experiment with
probability at least 1

2n . Now consider the following modified thought experiment.

1. Sample a codebook w0, w1, . . . , wn for the fingerprinting code.
2. Run B̂ on (w1, . . . , wi∗−1, w0, wi∗+1, . . . , wn).
3. Run Trace on the outcome of B̂ and return its output.

As B̂ is computationally differentially private and as Trace is an efficient algo-
rithm, the probability of outputting i∗ in this second thought experiment is
roughly the same as in the previous thought experiment, specifically, at least

e−2ε

(
1

2n
− (eε + 1)δ − negl(Γ (λ))

)
≥ e−2ε

(
1

4n
− negl(Γ (λ))

)
= Ω

(
1

n

)
.

However, by the guarantees of the FPC (small probability of false accusation),
in the second experiment the probability of outputting i∗ should be at most 1

n2 .
This is a contradiction to the existence of algorithm A.

The following corollary follows by instantiating Theorem 3.10 with our MILR
scheme, as specified in Theorem 2.3.

Corollary 3.13. Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ), and let d ≤ poly(Γ (λ)). If there
exists a Γ (λ)-secure encryption scheme against non-uniform adversaries then
there exists an MILR scheme such that the corresponding (λ, d)-DA problem
requires large space to be solved privately. Specifically, let n ≤ poly(Γ (λ)), let ε
be a constant, and let δ ≤ 1

4n(eε+1) = Θ(1
n). Every poly(Γ (λ))-time (ε, δ)-CDP

algorithm for the (λ, d)-DA problem with sample complexity n must have space

complexity s = Ω
(
λ ·

√
d

log n

)
.

4 Space Hardness for Adaptive Data Analysis (ADA)

Consider a mechanism that first gets as input a sample containing t i.i.d. samples
from some underlying (unknown) distribution D, and then answers k adaptively
chosen statistical queries w.r.t. D. Importantly, the answers must be accurate

On Differential Privacy and Adaptive Data Analysis with Bounded Space 53

Algorithm 1. AdaptiveGameSpace(A = (A1,A2),B, s, k)

1. The adversary B chooses a distribution D over a domain X .
2. The mechanism A1 gets D and summarizes it into s bits, denoted as z.
3. The mechanism A2 is instantiated with z.
4. For round i = 1, 2, . . . , k:

(a) The adversary B specifies a query qi : X → {−1, 0, 1}
(b) The mechanism A2 obtains qi and responds with an answer ai ∈ [−1, 1]
(c) ai is given to A

5. The outcome of the game is one if ∃i s.t. |ai − Ey∼D[qi(y)]| > 1/10, and zero
otherwise.

w.r.t. the underlying distribution and not just w.r.t. the empirical sample. The
challenge here is that as the queries are being chosen adaptively, the interaction
might quickly lead to overfitting, i.e., result in answers that are only accurate
w.r.t. the empirical sample and not w.r.t. the underlying distribution. This fun-
damental problem, which we refer to as the ADA problem, was introduced by
Dwork et al. [15] who connected it to differential privacy and showed that differ-
ential privacy can be used as a countermeasure against overfitting. Intuitively,
overfitting happens when answers reveal properties that are specific to the input
sample, rather than to the general population, and this is exactly what differen-
tial privacy aims to protect against.

Hardt, Steinke, and Ullman [24,34] showed negative results for the ADA
problem. Specifically, they showed that given t samples, it is computationally
hard to answer more than k = O(t2) adaptive queries. We show that the hardness
of the ADA problem is actually more fundamental; it is, in fact, a result of a
space bottleneck rather than a sampling bottleneck. Informally, we show that
the same hardness result continues to hold even if in the preprocessing stage
the mechanism is given the full description of the underlying distribution D,
and is then required to store only a limited amount of information about it (an
amount that equals the representation length of t samples from D). So it is not
that the mechanism did not get enough information about D; it is just that it
cannot shrink this information in a way that supports t2 adaptive queries. This
generalizes the negative results of [24,34], as sampling t points from D is just
one particular way of trying to store information about D.

Consider AdaptiveGameSpace, where the mechanism initially gets the full
description of the underlying distribution, but it must shrink it into an s-bit
summary z. To emphasize that the mechanism does not have additional access to
the underlying distribution, we think about it as two mechanisms A = (A1,A2)
where A1 computes the summary z and where A2 answers queries given z. We
consider s = |z| as the space complexity of such a mechanism A.

Our main theorem in the context of the ADA problem is the following.

54 I. Dinur et al.

Theorem 4.1. Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ), and let k ≤ poly(Γ (λ)). If there
exists a Γ (λ)-secure encryption scheme against non-uniform adversaries then
there exists a poly(Γ (λ))-time adversary B such that the following holds.
Let A=(A1,A2) be a poly(Γ (λ))-time mechanism with space complexity s ≤
O

(
λ ·

√
k
)

(small enough). Then, Pr[AdaptiveGameSpace(A,B, s, k) = 1] > 2
3 .

Furthermore, the underlying distribution defined by the adversary B can be
fully described using O(

√
k · λ) bits, it is sampleable in poly(Γ (λ))-time, and

elements sampled from this distribution can be represented using O(λ + log(k))
bits.

In a sense, the “furtheremore” part of the theorem shows that the distribu-
tion chosen by our adversary is not too complex. Specifically, our negative result
continues to hold even if the space of the mechanism is linear in the full descrip-
tion length of the underlying distribution (in a way that allows for efficiently
sampling it). If the space of the mechanism was just a constant times bigger,
it could store the full description of the underlying distribution and answer an
unbounded number of adaptive queries. The formal proof of Theorem 4.1 is
deferred to the full version of this work. Here we only provide an informal (and
overly simplified) proof sketch.

4.1 Informal Proof Sketch

Let k denote the number of queries that the adversary makes. Our task is to show
that there is an adversary that fails every efficient mechanism Aspace that plays

in AdaptiveGameSpace, provided that it uses space s ≪
√

k. What we know from
[24,34] is that there is an adversary Bsample that fails every efficient mechanism
that plays in the standard ADA game (the game specified in Fig. 1), provided
that its sample complexity is t ≪

√
k. We design an adversary Bspace that plays

in AdaptiveGameSpace in a way that emulates Bsample. We now elaborate on the
key points in the construction of Bspace, and their connection to Bsample.

Recall that both games begin with the adversary specifying the underlying
distribution. A useful fact about the adversary Bsample (from [24,34]) is that
the distribution it specifies is uniform on a small set of points of size n = Θ(t)
(these n points are unknown to the mechanism that Bsample plays against). Our
adversary, Bspace, first samples n independent keys (x1, . . . , xn) from our MILR
scheme, and then defines the target distribution Dspace to be uniform over the
set {(j, xj)}j∈[n]. Recall that in AdaptiveGameSpace this target distribution is
given to the mechanism Aspace, who must shrink it into a summary z containing
s bits. After this stage, by the security of our MILR scheme, there should exist
a large set J ⊆ [n] of size |J | = n − τ corresponding to keys uncompromised by
Aspace. Denote I = [n] \ J .

Our adversary Bspace now emulates Bsample as follows. First, let Dsample

denote the target distribution chosen by Bsample, and let m1, . . . , mn denote
its support. Our adversary then samples n public parameters p1, . . . , pn, and
encrypts every point in the support mj using its corresponding key and public

On Differential Privacy and Adaptive Data Analysis with Bounded Space 55

parameter. Specifically, cj ← Enc(xj , pj ,mj). % This is an over-simplification. For

technical reasons, the actual construction is somewhat different.

Now, for every query q specified by Bsample, our adversary outputs the query
fq defined by fq(j, x) = q(Dec(x, pj , cj)). Our adversary then obtains an answer
a from the mechanism Aspace, and feeds a to Bsample. Observe that the “true”
value of fq w.r.t. Dspace is the same as the “true” value of q w.r.t. Dsample. There-
fore, if Aspace maintains accuracy in this game against our adversary Bspace, then
in the emulation that Bspace runs internally we have that Bspace maintains utility
against Bsample. Intuitively, we would like to say that this leads to a contradic-
tion, since Bsample fails every efficient mechanism it plays against. But this is
not accurate, because Bspace saw the full description of the target distribution
Dsample, and Bsample only fools mechanisms that get to see at most t samples
from this target distribution.

To overcome this, we consider the following modified variant of our adversary,
called B̂space. The modification is that B̂space does not get to see the full descrip-
tion of Dsample. Instead it only gets to see points from the support of Dsample that
correspond to indices in the set I = [n] \ J . Then, when generating the cipher-

texts cj , the modified adversary B̂space encrypts zeroes instead of points mj

which it is missing. By the security of our MILR scheme, the mechanism Aspace

cannot notice this modification, and hence, assuming that it maintains accuracy
against our original adversary Bspace then it also maintains accuracy against our

modified adversary B̂space. As before, this means that B̂space maintains accuracy

against the emulated Bsample. Intuitively, this leads to a contradiction, as B̂space

is using only τ ≤ t points from the target distribution Dsample.
We stress that this proof sketch is over-simplified and inaccurate. In partic-

ular, the following two technical issues need to be addressed: (1) It is true that

B̂space uses only τ points from the support of the target distribution Dsample,
but these points are not necessarily sampled from Dsample; and (2) The modified

adversary B̂space is not computationally efficient because computing the set J
is not efficient. We address these issues, and other informalities made herein, in
the full version of this work.

5 Construction of an MILR Scheme from a Semantically
Secure Encryption Scheme

Construction. Let λ′ ≤ λ be such that λ = poly(λ′). Given an encryption
scheme Π ′ = (Gen′,Enc′,Dec′) such that Gen′(1λ′

) outputs a key uniformly
distributed on {0, 1}λ′

(i.e., x′ ←R {0, 1}λ′

), we construct an MILR scheme
Π = (Gen,Param,Enc,Dec) as follows:

56 I. Dinur et al.

– Gen: On input 1λ, return x ←R {0, 1}λ.
– Param: On input 1λ, let G be a family of universal hash functions with domain

{0, 1}λ and range {0, 1}λ′

. Return (a description of) g ←R G.
– Enc: On input (x, p,m), parse g := p (as a description of a hash function), let

x′ = g(x) and return Enc′(x′,m).
– Dec: On input (x, p, c), parse g := p, let x′ = g(x) and return Dec′(x′, c).

Using a standard construction of a universal hash function family, all the
algorithms run in time polynomial in λ. Moreover, if c ← Enc(x, p,m), then
Dec(x, p, c) = m with probability 1 (as this holds for Enc′ and Dec′).

The following two theorems (corresponding to the two security properties in
Definition 2.1) establish the security of Π and prove Theorem 2.3.

Theorem 5.1 (Multi semantic security). Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ) and
λ′ = 0.1λ. If Π ′ is Γ (λ′)-secure against uniform (resp. non-uniform) adver-
saries, then Π is Γ (λ)-secure against uniform (resp. non-uniform) adversaries.

Theorem 5.2 (Multi-security against bounded preprocessing adver-
saries). Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ), λ′ = 0.1λ (as in Theorem 5.1). If Π ′ is
Γ (λ′)-secure against non-uniform adversaries then Π is (Γ (λ), τ)-secure against
space bounded non-uniform preprocessing adversaries, where τ(λ, s) = 2s

λ + 4.

Remark 5.3. Since Γ (λ) ≤ 2o(λ) and λ′ = 0.1λ, then poly(Γ (λ′)) =
poly(Γ (λ)). Therefore, for the sake of simplicity, we analyze the runtime and
advantage of all adversaries (including those that run against Π ′) as functions
of λ.

The proof of Theorem 5.1 is given in the full version of this work. We prove
Theorem 5.2 in Sect. 6.

6 Multi-security Against a Bounded Preprocessing
Adversary

In this section we prove Theorem 5.2. The proof requires specific definitions and
notation, defined below.

6.1 Preliminaries

Notation. Given a sequence of elements X = (X1, . . . , Xn) and a subset I ⊆ [n],
we denote by XI the sequence composed of elements with coordinates in I.

For a random variable X, denote its min-entropy by H∞(X). For random
variables X,Y with the same range, denote by Δ(X,Y) the statistical distance
of their distributions. We say that X and Y are γ-close if Δ(X,Y) ≤ γ. We
use the notation X ←R X to indicate that the random variable X is chosen
uniformly at random from the set X .

On Differential Privacy and Adaptive Data Analysis with Bounded Space 57

Dense and Bit-Fixing Sources. We will use the following definition (see [12,
Definition 1]).

Definition 6.1. An (n, 2λ)-source is a random variable X with range
({0, 1}λ)n. A source is called

– (1 − δ)-dense if for every subset I ⊆ [n], H∞(XI) ≥ (1 − δ) · |I| · λ,
– (k, 1 − δ)-dense if it is fixed on at most k coordinates and is (1 − δ)-dense on

the rest,
– k-bit-fixing if it is fixed on at most k coordinates and uniform on the rest.

Namely, the min-entropy of every subset of entries of a (1 − δ)-dense source
is at most a fraction of δ less than what it would be for a uniformly random one.

6.2 Key Leakage Lemma

Let X = (X1, . . . , Xn) ∈ ({0, 1}λ)n be a random variable for n keys of Π chosen
independently and uniformly at random. Let Z := F (X) be a random variable
for the leakage of the adversary. For z ∈ {0, 1}s, let Xz be the random variable
chosen from the distribution of X conditioned on F (X) = z.

We denote G := (G1, . . . , Gn) and G(X) := (G1(X1), . . . , Gn(Xn)) the ran-
dom variable for the hash functions (public parameters) of Π. We will use similar
notation for sequences of different lengths (which will be clear from the context).

The proof of Theorem 5.2 is based on the lemma below (proved in Sect. 6.4),
which analyzes the joint distribution (G,Z,G(X)).

Lemma 6.2. Let F : ({0, 1}λ)n → {0, 1}s be an arbitrary function, X =
(X1, . . . , Xn) ←R ({0, 1}λ)n and denote Z := F (X). Let G be a family of univer-
sal hash functions with domain {0, 1}λ and range {0, 1}λ′

and let G ←R (G)n.
Let δ > 0, γ > 0, s′ > s be parameters such that (1 − δ)λ > λ′ + log n + 1.

Then, there exists a family VG,Z = {V�g,z}�g∈(G)n,z∈{0,1}s of convex combina-

tions V�g,z of k-bit-fixing (n, 2λ′

)-sources for k = s′+log 1/γ
δ·λ such that

Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤
√

2−(1−δ)λ+λ′+log n + γ + 2s−s′

.

We obtain the following corollary (which implies the parameters of Theo-
rem 5.2).

Corollary 6.3. In the setting of Lemma 6.2, assuming n < 20.15λ and suffi-
ciently large λ, the parameters s′ = s + λ, λ′ = 0.1λ, δ = 0.5, γ = 2−λ give

Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤ 2−0.1λ, and k =
2s

λ
+ 4.

58 I. Dinur et al.

Proof. Set s′ = s + λ, λ′ = 0.1λ, δ = 0.5, γ = 2−λ. Then, for sufficiently
large λ, (1 − δ)λ = 0.5λ > 0.1λ + 0.15λ + 1 > λ′ + log n + 1 (and the
condition of Lemma 6.2 holds). We therefore have (for sufficiently large λ):

Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤
√

2−(1−δ)λ+λ′+log n+γ+2s−s′

=
√

2−0.4λ+log n+

2−λ + 2−λ ≤ 2−0.1λ, and k = s′+log 1/γ
δ·λ = s+λ+λ

0.5·λ = 2s
λ + 4.

6.3 The Proof of Theorem 5.2

Using Lemma 6.2 to Prove Theorem 5.2. Before proving Theorem 5.2, we explain
why Lemma 6.2 is needed and how it used in the proof.

It is easy to prove some weaker statements than Lemma 6.2, but these do not
seem to be sufficient for building the MILR scheme (i.e., proving Theorem 5.2).
For example, one can easily prove that with high probability, given the leakage
z and hash functions �g, there is a large subset of (hashed) keys such that each
one of them is almost uniformly distributed. However, the adversary could have
knowledge of various relations between the keys of this subset and it is not clear
how to prove security without making assumptions about the resistance of the
encryption scheme against related-key attacks.

Moreover, consider a stronger statement, which asserts that with high proba-
bility, given the leakage z and hash functions �g, there is a large subset of (hashed)
keys that are jointly uniformly distributed. We claim that even this stronger
statement may not be sufficient to prove security, since it does not consider the
remaining keys outside of the subset. In particular, consider a scenario in which
the adversary is able to recover some weak keys outside of the subset. Given this
extra knowledge and the leakage z, the original subset of keys may no longer be
distributed uniformly (and may suffer from a significant entropy loss).

Lemma 6.2 essentially asserts that there is a subset of keys that is almost
jointly uniformly distributed even if we give the adversary z,�g and all the remain-
ing keys. More specifically, given the hash functions �g and the leakage z, accord-
ing to the lemma, the distribution of the hashed keys �g(X) is (close to) a convex
combinations V�g,z of k-bit-fixing sources. In the proof of Theorem 5.2 we will
fix such a k-bit-fixing source by giving the adversary k hashed keys (we will do
this carefully, making sure that the adversary’s advantage does not change sig-
nificantly). Since the remaining hashed keys are uniformly distributed from the
adversary’s view, security with respect to these keys follows from the semantic
security of the underlying encryption scheme.

Proof (Proof of Theorem 5.2). Fix a preprecessing procedure F and let λ be
sufficiently large, n < 20.15λ. By Lemma 6.2 (with parameters set in Corol-
lary 6.3), there exists a family VG,Z of convex combinations V�g,z of k-bit-fixing

(n, 2λ′

)-sources for k = 2s
λ + 4 such that Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤ 2−0.1λ.

Sampling the Index Set J and Simplifying the Distribution. We first define how
the oracles E0 and E1 in Definition 2.1 sample J . The random variable J is
naturally defined when sampling the random variables (G,Z, VG,Z): given �g ∈
(G)n, z ∈ {0, 1}s, sample a k-bit-fixing source in the convex combination V�g,z

On Differential Privacy and Adaptive Data Analysis with Bounded Space 59

(according to its weight) and let J be the set of (at least) n−k indices that are not
fixed. This defines a joint distribution on the random variables (G,Z, VG,Z , J).
Another way to sample from this distribution is to first sample the variables
(G,Z, VG,Z) and then sample J according to its marginal distribution. This
defines a randomized procedure for sampling J . Although the oracles do not
sample (G,Z, VG,Z), we reuse the same sampling procedure for sampling J given
the sample (�g, z,�g(�x)) (if the sample (�g, z,�g(�x)) is not in the support of the
distribution of (G,Z, VG,Z), define J = [n]).

Consider a poly(Γ (λ))-time algorithm B. As encryption queries of B to E0

and E1 are answered with the hash keys �g(�x), then given �g(�x), the interaction
of B with E0 and E1 no longer depends on �x. Therefore, for t = 0, 1 we define

E(1)
t (�g(�x), �g, J, ·, ·) that simulates the interaction of Et(�x,�g, J, ·, ·) with B. Instead

of sampling �x, the oracles directly sample (�g, z,�g(�x), J) according to their joint
distribution before the interaction with B. To simplify notation, we denote this
joint distribution by D1. Denote

AdvB(λ) =
∣

∣

∣

∣

∣

∣

∣

Pr
B,Enc

(�g,z,�g(�x),J)←D1

[

BE
(1)
0 (�g(�x),�g,J,·,·)(z,�g) = 1

]

− Pr
B,Enc

(�g,z,�g(�x),J)←D1

[

BE
(1)
1 (�g(�x),�g,J,·,·)(z,�g) = 1

]

∣

∣

∣

∣

∣

∣

∣

.

It remains to prove that AdvB(λ) ≤ negl(Γ (λ)).

Using Lemma 6.2 to switch to a family of convex combinations of bit-fixing
sources. We have

Δ[(G,Z,G(X), J), (G,Z, VG,Z , J)] ≤ Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤ 2−0.1λ,

where the first inequality follows by the data processing inequality, since J is
computed by applying the same function to the three variables of both distri-
butions, and the second inequality is by Corollary 6.3. Hence, for t = 0, 1 we

replace E(1)
t that samples from D1 with E(2)

t that samples from the joint distribu-
tion of (G,Z, VG,Z , J), which we denote by D2. Since B and Enc use independent
randomness, by the triangle inequality, the total penalty is at most 2 · 2−0.1λ,
namely

∣∣∣∣∣∣
Pr

B,Enc
(�g,z,�y,J)←D2

[
BE

(2)
0 (�y,�g,J,·,·)(z,�g) = 1

]
− Pr

B,Enc
(�g,z,�y,J)←D2

[
BE

(2)
1 (�y,�g,J,·,·)(z,�g) = 1

]
∣∣∣∣∣∣
≥

AdvB(λ) − 2−0.1λ+1,

where we denote a sample from D2 by (�g, z, �y, J).

Giving the Adversary Additional Input. Consider a (potentially) more powerful
poly(Γ (λ))-time algorithm B1 against Π whose input consists of (z,�g, J, �yJ),
where J = [n]\J . Namely, in addition to (z,�g) the input also consists of J , as

60 I. Dinur et al.

well as the hashed keys �yJ ∈
(
{0, 1}λ′

)n−|J|

(note that these parameters define

a |J |-bit-fixing source). We denote in = (z,�g, J, �yJ), and

AdvB1
(λ) =

∣∣∣∣∣∣
Pr

B1,Enc
(�g,z,�y,J)←D2

[
BE

(2)
0 (�y,�g,J,·,·)

1 (in) = 1

]
− Pr

B1,Enc
(�g,z,�y,J)←D2

[
BE

(2)
1 (�y,�g,J,·,·)

1 (in) = 1

]∣∣∣∣∣∣
.

Next, we prove that for any such poly(Γ (λ))-time algorithm B1, AdvB1
(λ) ≤

negl(Γ (λ)). As any algorithm B with input (z,�g) can be simulated by an
algorithm B1 with input in and similar runtime, this implies that AdvB(λ) −
2−0.1λ+1 ≤ negl(Γ (λ)) and hence AdvB(λ) ≤ negl(Γ (λ)), concluding the proof.

Fixing the Adversary’s Input. Since both E(2)
0 and E(2)

1 sample the input of B1
from the same distribution, by an averaging argument, there exists an input
in∗ = in∗

λ = (z∗, �g∗, J∗, �y∗
J∗) such that the advantage of B1 remains at least as

large when fixing the input to in∗ and sampling from D2 conditioned on in∗.
Note that given in∗ sampling from D2 reduces to sampling from the |J∗|-bit-

fixing source defined by (J∗, �y∗
J∗), i.e., selecting �w ←R ({0, 1}λ′

)|J∗|. Therefore,

∣

∣

∣

∣

∣

∣

∣

∣

Pr
B1,Enc

�w←R({0,1}λ′
)|J∗|

[

B
E
(2)
0 (in∗, �w,·,·)

1 (in∗) = 1

]

− Pr
B1,Enc

�w←R({0,1}λ′
)|J∗|

[

B
E
(2)
1 (in∗, �w,·,·)

1 (in∗) = 1

]

∣

∣

∣

∣

∣

∣

∣

∣

≥

AdvB1
(λ).

Reducing the Security of Π with Preprocessing from the (Multi-instance) Secu-
rity of Π ′. We now use B1 to define a non-uniform poly(Γ (λ))-time adversary B2

(with no preprocessing) that runs against |J∗| instances of Π ′ and has advantage
at least AdvB1

(λ). By the semantic security of Π ′ and a hybrid argument (sim-
ilarly to the proof of Theorem 5.1), this implies that AdvB1

(λ) ≤ negl(Γ (λ)),
concluding the proof.

The adversary B2 is given in Algorithm 2. Note that B2 perfectly simulates
the oracles of B1 given the input in∗, and hence its advantage is at least AdvB1

(λ)
as claimed. Finally, it runs in time poly(Γ (λ)).

6.4 Proof of Lemma 6.2

Proof Overview. We first prove in Lemma 6.4 that G = (G1, . . . , Gt) (for some
t ∈ [n]) is a good extractor, assuming its input Y = (Y1, . . . , Yt) is (1 − δ)-
dense, namely, it has sufficient min-entropy for each subset of coordinates (see
Lemma 6.4 for the exact statement). Specifically, we prove that (G,G(Y)) is
statistically close to (G,U), where U is uniformly distributed over ({0, 1}λ′

)t.
The proof is by a variant of the leftover hash lemma [25] where a sequence of hash
functions (G1, . . . , Gt) are applied locally to each block of the input (instead of

On Differential Privacy and Adaptive Data Analysis with Bounded Space 61

Algorithm 2. BE
(3)

(·)
(�x′,[|J∗|],·,·)

2 ()

Setting: B2 is a non-uniform adversary that runs against |J∗| instances of Π ′

(defined by E
(3)

(·)). It gets in∗ = in∗
λ = (z∗, �g∗, J∗, �y∗

J∗) as advice. B2 has access to

B
E
(2)
(·)

(in∗, �w,·,·)

1 (in∗), which runs against Π.

1. B2 gives in∗ to B1 as input.
2. B2 answers each query (j, m) of B1 as follows:

– If j ∈ J∗, B2 uses the advice string in∗ (which contains �y∗
j) to compute the

answer Enc′(�y∗
j , m) and gives it to B1.

– If j ∈ J∗, B2 translates the query (j, m) to (j′, m), where j′ ∈ [|J∗|] is obtained
by mapping j to J∗ (ignoring indices in J∗). B2 then queries its oracle with
(j′, m) and forwards the answer to B1.

3. B2 outputs the same output as B1.

applying a single hash function to the entire input). We note that a related lemma
was proved in [22, Lem. 13] in a different setting of communication complexity.
Our variant is applicable to a different (mostly wider) range of parameters (such
as various values of δ and the number of bits extracted, t · λ′) that is relevant in
our setting. Additional (somewhat less related) results were presented in [13,14].

The remainder of the proof is deferred to the full version of this work, and
is somewhat similar to [12, Lem. 1].

Block-Wise Extraction from Dense Sources.

Lemma 6.4 Let Y = (Y1, . . . , Yt) ∈ ({0, 1}λ)t be a (t, 2λ)-source that is (1− δ)-
dense for 0 < δ < 1. Let G be a family of universal hash functions with domain
{0, 1}λ and range {0, 1}λ′

. Then, for G ←R (G)t and U ←R ({0, 1}λ′

)t,

Δ[(G,G(Y)), (G,U)] ≤
√

2−(1−δ)λ+λ′+log t,

assuming that (1 − δ)λ > λ′ + log t + 1.

Proof. Let d := log |G|. For a random variable Q, and Q′ an independent copy
of Q, we denote by Col[Q] = Pr[Q = Q′] the collision probability of Q. We have

Col[(G,G(Y))] = Pr
G,Y,G′,Y ′

[(G,G(Y ′)) = (G′, G′(Y ′))]

= Pr
G,G′

[G = G′] · Pr
G,Y,Y ′

[G(Y) = G(Y ′)] = 2−t·d · Pr
G,Y,Y ′

[G(Y) = G(Y ′)].
(1)

For sequences Y1, . . . , Yt, Y
′
1 , . . . , Y ′

t , define C = |{i | Yi = Y ′
i }|. We now upper

bound the expression Pr[C = c].

62 I. Dinur et al.

Recall that Y is a (1−δ)-dense source, i.e., for every subset I ⊆ [t], H∞(YI) ≥
(1 − δ) · |I| · λ. Fix a subset I ⊆ [t] such that |I| = c. Then,

Pr[YI = Y ′
I] =

∑

yI∈({0,1}λ)c

(Pr[YI = yI])
2

≤ max
yI

{Pr[YI = yI]} ·
∑

yI∈({0,1}λ)c

Pr[YI = yI] ≤ 2−(1−δ)·c·λ.

Therefore,

Pr[C = c] ≤
∑

{I⊆[t]||I|=c}

Pr[YI = Y ′
I] ≤

(
t

c

)
· 2−(1−δ)·c·λ

≤ tc · 2−(1−δ)·c·λ = 2c·(−(1−δ)λ+log t).

(2)

We have

Pr
G,Y,Y ′

[G(Y) = G(Y ′)] =

t∑

c=0

Pr
Y,Y ′

[C = c] · Pr
G,Y,Y ′

[G(Y) = G(Y ′) | C = c].

For each coordinate i such that Yi �= Y ′
i , Pr

Gi

(Gi(Yi) = Gi(Y
′
i)) = 2−λ′

as

Gi is selected uniformly from a family of universal hash functions. Since G =
(G1, . . . , Gt) contains t independent copies selected uniformly from G,

Pr
G

[G(Y) = G(Y ′) | C = c] = 2−λ′·(t−c).

Hence, using (2) we obtain

Pr
G,Y,Y ′

[G(Y) = G(Y ′)] =

t∑

c=0

Pr[C = c] · 2−λ′·(t−c)

≤
t∑

c=0

2c·(−(1−δ)λ+log t) · 2−λ′·(t−c) = 2−λ′·t ·
t∑

c=0

2−c·((1−δ)λ−λ′−log t)

= 2−λ′·t · (1 +

t∑

c=1

2−c·((1−δ)λ−λ′−log t)) ≤ 2−λ′·t · (1 + 2−(1−δ)λ+λ′+log t+1),

where the last inequality uses the assumption that (1 − δ)λ > λ′ + log t + 1.
Treating distributions as vectors over {0, 1}t·d+t·λ′

(and abusing notation),
we plug the above expression into (1) and deduce

‖(G,G(Y)) − (G,U)‖2
2 = Col[(G,G(Y))] − 2−t·d−t·λ′ ≤

2−t·d−t·λ′ · (1 + 2−(1−δ)λ+λ′+log t+1) − 2−t·d−t·λ′

= 2−t·d−t·n′−(1−δ)λ+λ′+log t+1.

On Differential Privacy and Adaptive Data Analysis with Bounded Space 63

Finally, using the Cauchy-Schwarz inequality, we conclude

Δ[(G,G(Y)), (G,U)] ≤ 1/2 ·
√

2t·d+t·λ′ · ‖(G,G(Y)) − (G,U)‖2

≤ 1/2 ·
√

2t·d+t·λ′ ·
√

2−t·d−λ′·t−(1−δ)λ+λ′+log t+1 <
√

2−(1−δ)λ+λ′+log t.

Acknowledgements. Itai Dinur was partially supported by the Israel Science Foun-
dation (grant 1903/20) and by the European Research Council under the ERC starting
grant agreement no. 757731 (LightCrypt). Uri Stemmer was partially supported by the
Israel Science Foundation (grant 1871/19) and by Len Blavatnik and the Blavatnik
Family foundation. Work done in part while David P. Woodruff was visiting Google
Research and Samson Zhou was at Carnegie Mellon University. They were also sup-
ported by a Simons Investigator Award and by the National Science Foundation under
Grant No. CCF-1815840.

References

1. Alon, N., Livni, R., Malliaris, M., Moran, S.: Private PAC learning implies finite
littlestone dimension. In: STOC, pp. 852–860. ACM (2019). https://doi.org/10.
1145/3313276.3316312

2. Bassily, R., Nissim, K., Smith, A.D., Steinke, T., Stemmer, U., Ullman, J.R.:
Algorithmic stability for adaptive data analysis. SIAM J. Comput. 50(3) (2021).
https://doi.org/10.1137/16M1103646

3. Beimel, A., Nissim, K., Omri, E.: Distributed private data analysis: simultaneously
solving how and what. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
451–468. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5_25

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S.,
Ashby, V. (eds.) CCS 1993, pp. 62–73. ACM (1993). https://doi.org/10.1145/
168588.168596

5. Blocki, J., Blum, A., Datta, A., Sheffet, O.: The Johnson-Lindenstrauss transform
itself preserves differential privacy. In: FOCS, pp. 410–419. IEEE Computer Society
(2012). https://doi.org/10.1109/FOCS.2012.67

6. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans.
Inf. Theory 44(5), 1897–1905 (1998). https://doi.org/10.1109/18.705568

7. Brown, G., Bun, M., Feldman, V., Smith, A., Talwar, K.: When is memorization
of irrelevant training data necessary for high-accuracy learning? In: Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 123–132
(2021). https://doi.org/10.1145/3406325.3451131

8. Bun, M., Nissim, K., Stemmer, U., Vadhan, S.P.: Differentially private release and
learning of threshold functions. In: FOCS, pp. 634–649. IEEE Computer Society
(2015). https://doi.org/10.1109/FOCS.2015.45

9. Bun, M., Ullman, J.R., Vadhan, S.P.: Fingerprinting codes and the price of approx-
imate differential privacy. In: STOC, pp. 1–10. ACM (2014). https://doi.org/10.
1145/2591796.2591877

10. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6_33

https://doi.org/10.1145/3313276.3316312
https://doi.org/10.1145/3313276.3316312
https://doi.org/10.1137/16M1103646
https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/FOCS.2012.67
https://doi.org/10.1109/18.705568
https://doi.org/10.1145/3406325.3451131
https://doi.org/10.1109/FOCS.2015.45
https://doi.org/10.1145/2591796.2591877
https://doi.org/10.1145/2591796.2591877
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-45539-6_33

64 I. Dinur et al.

11. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 693–721. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1_23

12. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_9

13. Dai, W., Tessaro, S., Zhang, X.: Super-linear time-memory trade-offs for symmetric
encryption. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 335–
365. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_12

14. Dodis, Y., Farshim, P., Mazaheri, S., Tessaro, S.: Towards defeating backdoored
random oracles: indifferentiability with bounded adaptivity. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 241–273. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64381-2_9

15. Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., Roth, A.L.: Pre-
serving statistical validity in adaptive data analysis. In: Proceedings of the Forty-
Seventh Annual ACM Symposium on Theory of Computing, pp. 117–126 (2015)

16. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. J. Priv. Confidentiality 7(3), 17–51 (2016). https://doi.org/
10.29012/jpc.v7i3.405

17. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity
of differentially private data release: efficient algorithms and hardness results. In:
Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
pp. 381–390 (2009). https://doi.org/10.1145/1536414.1536467

18. Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In:
FOCS, pp. 51–60. IEEE Computer Society (2010). https://doi.org/10.1109/FOCS.
2010.12

19. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878_11

20. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008, pp.
293–302. IEEE Computer Society (2008). https://doi.org/10.1109/FOCS.2008.56

21. Feldman, V.: Does learning require memorization? A short tale about a long tail.
In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, pp. 954–959 (2020). https://doi.org/10.1145/3357713.3384290

22. Göös, M., Lovett, S., Meka, R., Watson, T., Zuckerman, D.: Rectangles are non-
negative juntas. In: Servedio, R.A., Rubinfeld, R. (eds.) STOC 2015, pp. 257–266.
ACM (2015). https://doi.org/10.1145/2746539.2746596

23. Göös, M., Pitassi, T., Watson, T.: Deterministic communication vs. partition num-
ber. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
pp. 1077–1088. IEEE (2015). https://doi.org/10.1109/FOCS.2015.70

24. Hardt, M., Ullman, J.R.: Preventing false discovery in interactive data analysis is
hard. In: FOCS, pp. 454–463. IEEE Computer Society (2014). https://doi.org/10.
1109/FOCS.2014.55

25. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). https://
doi.org/10.1137/S0097539793244708

26. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. J. Cryptol. 29(3), 514–551 (2015). https://doi.org/10.1007/
s00145-015-9200-x

https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-030-64381-2_12
https://doi.org/10.1007/978-3-030-64381-2_9
https://doi.org/10.29012/jpc.v7i3.405
https://doi.org/10.29012/jpc.v7i3.405
https://doi.org/10.1145/1536414.1536467
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1007/11681878_11
https://doi.org/10.1109/FOCS.2008.56
https://doi.org/10.1145/3357713.3384290
https://doi.org/10.1145/2746539.2746596
https://doi.org/10.1109/FOCS.2015.70
https://doi.org/10.1109/FOCS.2014.55
https://doi.org/10.1109/FOCS.2014.55
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1007/s00145-015-9200-x
https://doi.org/10.1007/s00145-015-9200-x

On Differential Privacy and Adaptive Data Analysis with Bounded Space 65

27. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. In: Goldreich,
O. (ed.) Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pp. 727–794. ACM (2019). https://doi.org/10.1145/
3335741.3335768

28. Kothari, P.K., Meka, R., Raghavendra, P.: Approximating rectangles by juntas
and weakly-exponential lower bounds for LP relaxations of CSPs. In: Hatami, H.,
McKenzie, P., King, V. (eds.) STOC 2017, pp. 590–603. ACM (2017). https://doi.
org/10.1145/3055399.3055438

29. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.P.: Computational differential
privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_8

30. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9_27

31. Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. Comb. 19(3),
403–435 (1999). https://doi.org/10.1007/s004930050062

32. Smith, A.D., Song, S., Thakurta, A.: The Flajolet-Martin sketch itself preserves dif-
ferential privacy: private counting with minimal space. In: NeurIPS (2020). https://
doi.org/10.5555/3495724.3497365

33. Standaert, F., Pereira, O., Yu, Y., Quisquater, J., Yung, M., Oswald, E.: Leakage
resilient cryptography in practice. In: Sadeghi, A., Naccache, D. (eds.) Towards
Hardware-Intrinsic Security - Foundations and Practice. Information Security and
Cryptography, pp. 99–134. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14452-3_5

34. Steinke, T., Ullman, J.R.: Interactive fingerprinting codes and the hardness of pre-
venting false discovery. In: COLT. JMLR Workshop and Conference Proceedings,
vol. 40, pp. 1588–1628. JMLR.org (2015)

35. Tardos, G.: Optimal probabilistic fingerprint codes. J. ACM (JACM) 55(2), 1–24
(2008). https://doi.org/10.1145/1346330.1346335

36. Ullman, J.: Answering n2+o(1) counting queries with differential privacy is hard. In:
Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
pp. 361–370 (2013). https://doi.org/10.1145/2488608.2488653

37. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5_12

38. Woodruff, D.P.: Optimal space lower bounds for all frequency moments. In: Munro,
J.I. (ed.) Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana, USA, 11–14 January 2004, pp.
167–175. SIAM (2004). https://doi.org/10.5555/982792.982817

https://doi.org/10.1145/3335741.3335768
https://doi.org/10.1145/3335741.3335768
https://doi.org/10.1145/3055399.3055438
https://doi.org/10.1145/3055399.3055438
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1007/978-3-642-01001-9_27
https://doi.org/10.1007/978-3-642-01001-9_27
https://doi.org/10.1007/s004930050062
https://doi.org/10.5555/3495724.3497365
https://doi.org/10.5555/3495724.3497365
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1145/1346330.1346335
https://doi.org/10.1145/2488608.2488653
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.5555/982792.982817

	On Differential Privacy and Adaptive Data Analysis with Bounded Space
	1 Introduction
	1.1 Differential Privacy
	1.2 Adaptive Data Analysis
	1.3 Our Techniques
	1.4 Applications to Communication Complexity
	1.5 Related Works
	1.6 Paper Structure

	2 Multi-instance Leakage-Resilient Scheme
	3 Space Hardness for Differential Privacy
	3.1 Preliminaries on Computational Differential Privacy and Fingerprinting Codes
	3.2 A Negative Result for the DA Problem

	4 Space Hardness for Adaptive Data Analysis (ADA)
	4.1 Informal Proof Sketch

	5 Construction of an MILR Scheme from a Semantically Secure Encryption Scheme
	6 Multi-security Against a Bounded Preprocessing Adversary
	6.1 Preliminaries
	6.2 Key Leakage Lemma
	6.3 The Proof of Theorem 5.2
	6.4 Proof of Lemma 6.2

	References

