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Abstract

In settings from fact-checking to question
answering, we frequently want to know
whether a collection of evidence (premises)
entails a hypothesis. Existing methods pri-
marily focus on the end-to-end discriminative
version of this task, but less work has
treated the gemerative version in which a
model searches over the space of statements
entailed by the premises to constructively
derive the hypothesis. We propose a system
for doing this kind of deductive reasoning
in natural language by decomposing the task
into separate steps coordinated by a search
procedure, producing a tree of intermediate
conclusions that faithfully reflects the system’s
reasoning process.  Our experiments on
the EntailmentBank dataset (Dalvi et al.,
2021) demonstrate that the proposed system
can successfully prove true statements while
rejecting false ones. Moreover, it produces
natural language explanations with a 17%
absolute higher step wvalidity than those
produced by an end-to-end TS model.

1 Introduction

When we read a passage from a novel, a Wikipedia
entry, or any other piece of text, we gather
meaning from it beyond what is written on the
page. We make inferences based on the text by
combining information across multiple statements
and by applying our background knowledge.
This ability to synthesize meaning and determine
the consequences of a set of statements is a
significant part of natural language understanding.
Humans are able to give step-by-step explanations
of the reasoning that they do as part of these
processes. However, approaches that involve end-
to-end discriminative fine-tuning of pre-trained
language models have no such notion of step-by-
step deduction; these models are black boxes and
do not offer explanations for their predictions. This
limitation prevents users from understanding and

premises intermediate conclusions

Paper is recyclable

T Cardstock is recyclable
Cardstock is a type of paper

Recyclable means old material

can be turned into new material Old cardstock can be turned

into new cardstock

.....

goal  New cardstock can be produced from old cardstock

Figure 1: An example of multi-step natural language
deduction performed by our system. From input
premises, our model generates new statements in a
heuristic-guided way to try to prove a given hypothesis.

accommodating models’ affordances (Hase and
Bansal, 2020; Bansal et al., 2021).

A simple way of representing this kind of
reasoning process is through an entailment tree
(Dalvi et al., 2021): a derivation indicating how
each intermediate conclusion was composed from
its premises, exemplified in Figure 1. Generative
sequence-to-sequence models can be fine-tuned to
carry out this task given example trees (Tafjord
et al., 2021; Dalvi et al., 2021). However, we argue
in this paper that this conflates the generation of
individual reasoning steps with the planning of the
overall reasoning process. An end-to-end model
is encouraged by its training objective to generate
steps that arrive at the goal, but it is not constrained
to do so by following a sound structure. As we
will show, the outputs of such methods may skip
steps or draw unsound conclusions from unrelated
premises while claiming a hypothesis is proven.
Generating an explanation is not enough; we need
explanations to be consistent and faithfully reflect
a reasoning process to which the model commits
(Jacovi and Goldberg, 2020).

This paper proposes a system that factors
the reasoning process into discrete search over
intermediate steps. The core of our system is a
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Figure 2: Overview of the problem setting and our approach. The search fringe tracks which statements should
be combined next, scored according to the heuristic / (indicated here by purple shading). See Algorithm 1 for a

detailed account of the search procedure.

step deduction module that generates the direct
consequence of composing a pair of statements.
This module is used as a primitive in a search
procedure over entailed statements, guided by a
learned heuristic function. By decoupling the
deduction itself from the search over statement
combinations, our system’s design ensures that
each step’s conclusion builds on its inputs, avoiding
the pitfalls of end-to-end generation.

We evaluate our method on the EntailmentBank
dataset (Dalvi et al., 2021). Thanks to our system’s
factored design and its ability to capitalize on
additional semi-synthetic single step data (Bostrom
et al., 2021), we observe that 82% of the reasoning
steps produced by our approach are sound, a 17%
absolute increase compared to an end-to-end model
replicated from prior work.

Our contributions are: (1) A factored, inter-
pretable system for natural language deduction,
separating the concerns of generating intermediate
conclusions from those of planning entailment
tree structures; (2) Exploration of several search
heuristics, including a learned goal-oriented
heuristic; (3) Comparison to an end-to-end model
from prior work (Dalvi et al., 2021) in two settings
of varying difficulty.

2 Problem Description and Motivation

The general setting we consider is shown in Figure
2. We assume we are given a collection of evidence
sentences X = {z7 ...z, }' and a goal statement
g. We want to construct an entailment tree
deriving g from X. An entailment tree is a tree
of statements with the property that each statement

'In the settings we consider in this paper, n does not exceed
25. However, this is not a hard limit imposed by our approach,

and for very large premise sets, a retrieval system could be
used to prune the premise set to a manageable size.

is directly entailed by its children. Thus, if we can
produce a tree with root g and leaves X, it follows
that g is transitively entailed by the premises in X.

Crucially, we assume that the intermediate nodes
of this tree must be generated and are not present
in the input premise set X . This condition differs
from prior work on question answering with multi-
hop reasoning (Yang et al., 2018; Chen et al., 2019)
or models that build a proof structure but do not
generate new statements (Saha et al., 2020, 2021).
We therefore require a generative step deduction
model S to produce intermediate conclusions given
their immediate children, a concept explored by
Tafjord et al. (2021) and Bostrom et al. (2021).

S yields a distribution pg(y | =1 ...x,) over
step conclusions y conditioned on inputs x;. In our
approach, we assume that each step has exactly
m = 2 inputs. Some nodes in our evaluation
dataset, EntailmentBank, have more than two
children, but in preliminary investigation we found
it possible to express the reasoning in these steps
in a binary branching format. We do not apply this
arity constraint to baseline models.

3 Methods

Our proposed system consists of a step model
S, a search procedure involving a heuristic A,
and an entailment model which judges whether a
generated conclusion entails the goal. An overview
of the responsibilities and task data required by
each module is presented in Table 1.

3.1 Step Deduction Model

Our step models are instances of the TS pre-
trained sequence-to-sequence model (Raffel et al.,
2020) fine-tuned on a combination of deduction
step datasets from prior work (Dalvi et al., 2021;



Task data format

Module (Datasets used)

Single-step deductions

Step model .5 (ParaPattern, EntailmentBank)

Entailment trees*

Heuristic h (EntailmentBank)

Single-sentence NLI

Goal entailment model (WANLI, EBEntail)

Table 1: Each module in our proposed system operates
independently, and most components can leverage

existing resources without the need for full tree data.

*Qur best-performing parametric heuristic uses full tree
supervision, but nonparametric heuristics are supported.

Bostrom et al., 2021), which we discuss further in
Section 4.4. At inference time, we decode from
these models using nucleus sampling (Holtzman
et al., 2020) with p = 0.9.

3.2 Search

We define a search procedure over sentence
compositions that we call SCSEARCH, described
in Algorithm 1. SCSEARCH is a best-first search
procedure where the search fringe data structure
is a max-heap of statement pairs ordered by
the heuristic scoring function h. SCSEARCH
iteratively combines statement pairs using the step
deduction model, adding generated conclusions to
the forest of entailed statements.

The heuristic function h({z; ...z}, g) = R
accepts candidate step inputs x; and a goal
hypothesis g and returns a real-valued score
indicating the priority of the potential step in the
expansion order.

These priority values reflect multiple factors.

We want to prioritize compatible compositions:
combining statements from which we can make
a meaningful inference, as opposed to unrelated
sentences. We also want to prioritize useful steps:
among compatible compositions, we should prefer
those that are likely to derive statements that help
prove the hypothesis.

We consider several potential realizations of the
heuristic function h:

Breadth-first Naively, the earliest fringe items
are explored first; all compositions of initial
premises will be explored before any composition
involving an intermediate conclusion.

Overlap This heuristic scores potential steps
according to the number of tokens shared between

Algorithm 1

procedure SCSEARCH(X = {z1...2n}, 9):
fringe « {(zi, ;) | zi,x; € X, i # j}
visited < {}
141
mazSteps € N
while | fringe| > 0 A i < mazSteps do
inputs <  argmax h({z1,z2},9)
(x1,z9)Efringe
fringe < fringe \ {inputs}
sample y; from ps(y | inputs)
if y; ¢ visited then
visited < visited U {y'}
yield (inputs, y;)
if entails(y;, g) then return
fringe < fringe U {{y;, z;)|z; € X}

U {{yi, y) |1 < j <}

i1+ 1

input sentences. This heuristic is focused on
compatibility, as overlap indicates expressions
that might be unifiable (e.g., paper in the
first composition step of Figure 1). In the
Overlap+Goal version, token overlap with the goal
hypothesis is also incorporated into the score.

Repetition Past work on step deduction models
(Bostrom et al., 2021) has identified that these
models tend to “back off” to copying the input
when given incompatible premises.

This heuristic aims to exploit this behavior as a
measure of premise compatibility. Potential steps
are scored according to —pg(z1|xy...zy), i.e., the
negative likelihood of repeating the first input.

Learned This heuristic uses an additional pre-
trained model fine-tuned to predict whether input
statements are part of a gold explanation of the
hypothesis or not. We train this model on sets
of step inputs drawn from a collection of valid
steps augmented with negative samples produced
by replacing one input with a random statement.
The Learned+Goal version of this heuristic is
also trained with the goal hypothesis in its input,
so as to be able to select useful premises and guide
search towards the goal. Note that the step model
S which generates statements still does not see the
goal; the goal only informs which compositions are
explored first during the search. See Appendix A
for training details of our learned heuristic models.

3.3 Goal Entailment

In order to determine when the search has
succeeded, we need a module to judge the
entailment relationship between each generated
conclusion and the goal. We use a DeBERTa



hypot: the earth revolving around the sun causes leo to appear in different areas in the sky at different times of year.

sentl: leo is a kind of constellation.

sent2: the earth revolving around the sun causes stars to appear in different areas in the sky at different times of year:

sent3: a constellation contains stars.

sentl & sent3 — intl: leo is a constellation containing stars.
intl & sent2 — hypot

Figure 3: An example of the EntailmentWriter end-to-end system’s linearized input and output format.
EntailmentWriter takes the goal hypothesis as input, making it possible to hallucinate content based on it, and
generation of — hypot may occur prematurely, before enough evidence is included to truly derive the goal.

Statement Goal Hypothesis Label
Afishis a kind of scaled animal that uses their Scales are used for protection by fish. Entailment
scales to defend themselves.
Information in an organism’s chromosomes
causes an inherited characteristic to be passed  Children usually resemble parents. Neutral
from parent to offspring by dna.
A rheumatoid arthritis will happen first before  The immune system becomes disordered first Neutral

other diseases affect the body’s tissues.

before rheumatoid arthritis occurs.

Table 2: Examples of instances from the EBENTAIL dataset. The goal hypotheses are from EntailmentBank, and
the statements are from the SCSEARCH algorithm applied to the original EntailmentBank premises. Although the
third example contains a contradiction, the ‘neutral’ and ‘contradiction’ labels are merged in EBENTAIL, as both

reflect a failure to entail the goal.

model (He et al.,, 2021) fine-tuned on the
WANLI dataset (Liu et al., 2022) to predict the
probability that each derived statement entails the
goal. In order to mitigate the domain mismatch
between WANLI and the scientific facts that
make up EntailmentBank, we also fine-tune our
goal entailment model on EBENTAIL, a set of
300 examples of generated conclusions sampled
from SCSEARCH paired with corresponding goal
hypotheses which we manually label for their
entailment relationship.

EBENTAIL To produce a set of reference
judgments for threshold selection and entailment
model evaluation, we sampled 150 instances
of generated conclusions from SCSEARCH
inference over EntailmentBank examples with their
corresponding gold goals. Three annotators labeled
the entailment relationship between these generated
inferences and the goal. We select a consensus
annotation with a majority vote. These examples
form an in-domain evaluation set which we call
EBENTAIL. To simultaneously train and evaluate
on these judgements, we use 3-fold cross-validation
where each cross-validation fold is constructed to
contain goals not seen in its respective training fold.

We extend EBENTAIL with EBENTAIL-
ACTIVE, consisting of 150 additional instances
with the lowest confidence (highest prediction
entropy) following the initial fine-tuning, which
are then manually labeled by at least one annotator.

Thresholding During inference, rather than
returning the highest-scoring class, a threshold
value « is applied to the predicted probability of the
‘entailment’ class. This threshold allows for better
control over trade-off between precision and recall.
For our main experiments, we use an entailment
score threshold of & = 0.81 selected via cross-
validation on EBENTAIL.

4 Experimental Setup

Our experiments assess whether our SCSEARCH
system, which factors the deduction process into
separate step generation and search modules, can
do better than end-to-end baselines on two axes:
(1) proving correct (and only correct) goals, and
(2) producing more consistent entailment steps in
the tree.

4.1 Evaluation: Goal Discrimination

We evaluate our models in two settings, both
derived from the validation and test sets of the
English-language EntailmentBank dataset. Each
setting consists of a 1:1 mixture of examples with
valid goals (the original EntailmentBank validation
examples) and negative examples with invalid
goals, produced by replacing the goal of each
positive example with a distinct one drawn from
another example. Each system is evaluated on
whether it can prove the correct goals with valid
steps and successfully reject incorrect goals.

To construct hard negatives, candidate replace-



ment goals are ranked according to TF-IDF
weighted overlap between tokens in the destination
example and tokens in their original example. For
each negative example, the replacement goal with
the highest overlap score is selected, excluding
goals from examples whose premise sets are
subsets of the destination example’s premises. We
manually check negative examples to ensure they
cannot be derived from the provided premises.

In Task 1, examples contain only gold premises
(between 2 and 15), while in Task 2, each premise
set is expanded to 25 premises through the addition
of distractors retrieved from the original premise
corpora. We set the max Steps hyperparameter of
the SCSEARCH algorithm to 20. The maximum
gold tree step count in EntailmentBank is 17, so our
approach can theoretically recover any binarized
gold tree given the right heuristic scores.

Note that we focus our evaluation on this goal
discrimination task and validating that individual
steps of entailment trees are correct, not on
recovering the exact trees in EntailmentBank. Our
deduction model frequently constructs correct
entailment trees that do not match the reference,
particularly since our approach is not trained end-
to-end on this dataset.

4.2 End-to-end Baseline

We compare against an End-to-end T5 model that
we train following the EntailmentWriter paradigm
(Dalvi et al., 2021). The EntailmentWriter system
involves fine-tuning a sequence-to-sequence lan-
guage model to generate an entire entailment tree in
linearized form, conditioned on the concatenation
of a set of premises and a hypothesis. The
EntailmentWriter tree linearization format is shown
in Figure 3. In the original work, Dalvi et al. (2021)
fine-tune T5-11b (Raffel et al., 2020); we replicate
their training setup using T5-3b instead for parity
with our other experiments.

In order to evaluate whether an end-to-end
model intrinsically distinguishes between valid
and invalid entailment tree structures, we use the
average output confidence over trees generated
by the model trained without negative examples,
computed as the mean token log-likelihood
1 Zle logpg(t; | t1...t;—1). This is motivated
by the hypothesis that a model trained as a density
estimator for trees composed of sound steps should
assign low likelihood to unsound trees. We fit
a linear model to predict the goal validity €

{0,1} based on this quantity. We refer to this
discriminative setup as End-to-end (Intrinsic).

We also train a variant of the end-to-end baseline,
End-to-end TS5 (Classify), to explicitly predict
whether a given goal is valid by including a flag
token T or F at the start of the model’s output.
We augment the model’s training data with an
equal number of negative examples by randomly
resampling goal hypotheses. We prepend T to the
target sequence of positive examples, while the
target sequence for negative examples is F. Note
that this model can predict T and then output a
nonsensical entailment tree, as the trees are post-
hoc explanations of the decision.

4.3 Metrics

For both Task 1 and Task 2, consistent models
should be able to reach gold goals while also failing
to prove invalid goals. To measure the former, we
report the number of valid goals reached by each
system as Goal%. For our search systems, this
metric is computed as the proportion of positive
examples for which any generated conclusion had
a goal entailment score higher than the threshold
o = 0.81 (see Section 4.4). Goal% scores for the
end-to-end model correspond to its self-reported
success rate — the proportion of positive examples
for which the model emits the T token.

We report the average number of steps expanded
before reaching a valid goal as #Steps. This metric
is averaged over examples for which a system is
able to reach the goal.

To measure whether systems are able to
distinguish invalid goals from valid goals, we also
compute precision-recall curves and report the
area under the receiver operating characteristic
(AUROC) of each system for both tasks. We
produce these curves for search models by varying
the goal entailment threshold a.. For the End-to-
end (Intrinsic) model, we vary a threshold on the
average generated token likelihood, and for the
End-to-end (Classify) model, we vary a threshold
on the value of p(T)/(p(T) + p(F)), the score
assigned to the “valid” flag token by the model
out the two possible validity flags.

In addition to evaluating end-to-end performance
through the above tasks, we would also like to
understand the internal consistency of generated
trees. To that end, we conduct a manual study
of step validity. We sample 100 steps uniformly
across valid-goal Task 2 examples for each of



Task 1 Task 2

System Goal% AUROC #Steps Goal% AUROC #Steps
Breadth-first 33.5+0.9 0.88+0.0 32+26 53+£03 0.68+0.01 10.6+6.1
Overlap 19.4+£0.5 0.78+£0.01 1.8+£1.2 1.8+0.2 0.61+0.02 48%5.0
Overlap (Goal) 31.7+1.0 0.834+0.01 244+16 265+1.2 0.744+0.01 3.54+2.8
Repetition 19.7+1.2 0.81+£0.0 20£14 09£04 061£001 20%£14
Learned 28.2+1.7 0.83+0.01 28+2.3 79+20 071+£0.01 6.8+4.0
Learned (Goal) 45.0%+£1.8 090£0.01 27+21 474+18 085£001 45+£4.1
SCSearch 488+ 1.5 0.914+0.01 3.0+21 529+1.6 0.85+0.01 3.84+3.4
End-to-end (Classify) 100.0£0.0 0.97+0.00 28416 100.0+0.0 0.95+0.00 22412

End-to-end (Intrinsic) - 0.57 £0.02 - - 0.62 £ 0.02 -

Table 3: Results from our main experiments on the EntailmentBank test sets. Mean =+ standard deviation is reported
for each metric, taken across 10 trials varying the random seed used for nucleus sampling. Goal % indicates the
proportion of valid goals reached by a system’s generated trees using the a = 0.81 threshold. AUROC indicates
the area under the receiver operating characteristic when attempting to distinguish gold goals from invalid goals.
#Steps indicates the average number of steps expanded before reaching the goal among trees which reached valid
goals; this metric’s standard deviation is computed at the example level. See Section 4.3 for more details.

Task 1 Task 2
1.0 4 1.0 4
0.9 1 0.9 1
0.8 0.8
0.7 1 0.7 1
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.2 2
806 806
~ -
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0.3 —— End-to-end (Classify) (AP =0.97) 0.3 —— End-to-end (Classify) (AP =0.93)
— End-to-end (Intrinsic) (AP = 0.56) — End-to-end (Intrinsic) (AP = 0.62)
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Figure 4: Precision-recall curves for breadth-first search, our full method, and the end-to-end baseline. The dashed

line at precision= 0.5 corresponds to random chance.

System Step Validity
Learned (Goal) 74.0%
SCSearch 82.3%
End-to-end 65.0%

Table 4: Results from manual annotation of step validity.
Steps are sampled from inference on Task 2. Macro-
average inter-annotator agreement (Cohen’s x) is 0.72.

three systems: our full system, our system without
mid-training, and the end-to-end system. The
resulting set of 300 steps is shuffled and triply
labeled by three annotators without knowledge of
which examples came from which system. For each
example, the annotators assess whether a single
step’s conclusion can be inferred from the input
premises with minimal additional world knowledge.

We discuss these results in Section 5.2.

4.4 Implementation and Training

All sequence-to-sequence language models we
experiment with are instances of T5-3b (Raffel
et al., 2020) with 3 billion parameters. Bridging
entailment models and learned heuristic models are
derived from DeBERTa Large (He et al., 2021) with
350M parameters. Fine-tuning is performed with
the Hugging Face transformers library (Wolf
et al., 2020). Further details including fine-tuning
hyperparameters are included in the appendix.

Step deduction model We train our step
deduction model using gold steps sampled from
trees in the EntailmentBank (EB) training split,
totaling 2,762 examples. Our full system, which
we refer to as SCSearch, is also “mid-trained” on
ParaPattern substitution data (Bostrom et al., 2021).



The ParaPattern data is derived semi-synthetically
from English Wikipedia, totaling ~120k examples.
In the mid-training configuration, an instance of
T5 is fine-tuned for one epoch on the ParaPattern
data and then for one epoch on the EntailmentBank
data, after which optimal validation loss is reached.

Learned heuristic models Data for our learned
heuristic models is constructed by taking step
inputs from the EntailmentBank training set’s
gold trees. For each positive step example, a
corresponding negative example is produced by
replacing one input statement with a sentence
drawn at random from all statements in the training
set that do not appear in the original step’s subtree.
Examples used to train the Learned (Goal) heuristic
additionally contain the original step’s gold goal
concatenated to their input. Our full SCSearch
system uses the Learned (Goal) heuristic.

5 Results

The results of our experiments on Task 1 and Task
2 are shown in Table 3. Table 4 shows the results
of our manual step validity evaluation.

5.1 Complete Deductions

The end-to-end approach is not a sound model
of entailment tree structure. End-to-end T5
(Classify) is nominally able to “prove” 100%
of gold goals by finishing a proof with ->
hypot. However, as shown in Figure 4, using
the generation confidence of End-to-end T5 to
discriminate between valid goals and invalid goals
(the Intrinsic method) is not much better than
random chance, since the model has similar
confidence when “proving” invalid goals as it
does when generating trees for valid goals. This
means that the model’s output distribution does not
penalize the generation of invalid steps.

Our approach is able to prove most goals while
exhibiting much better internal consistency than
the end-to-end approach. Our full SCSearch
system nearly matches the performance of the End-
to-end (Classify) system on Task 1 and Task 2,
losing chiefly in high-recall settings. Critically,
Section 5.2 will show that it achieves a much higher
rate of step validity in the process.

Mid-training the step deduction model also
increases the proportion of reachable valid goals
by 3-5% (compare Learned (Goal) to SCSearch
in Table 3). It is worth noting that the chosen

threshold for our goal entailment module sacrifices
recall in favor of avoiding false positives, as shown
in Table 5, meaning that our reported Goal% rate
is an underestimate. In Figure 4, we see that
our SCSearch method can achieve 80% recall
at roughly 80% precision with a slightly lower
threshold.

A goal-oriented heuristic is critical. If we
compare Breadth-first, Repetition, our two Overlap
methods, and our two Learned heuristics, both
Table 3 and Figure 4 show that the incorporating
goal information into the planning process is
essential for Task 2, as only the Overlap (Goal)
and Learned (Goal) heuristics are able to reach a
reasonable number of valid goals in the presence
of distractor premises. We can see in Figure 4 how
much breadth-first degrades from Task 1 to Task 2,
largely due to timing out.

5.2 Individual Step Validity

The most crucial divergence between our method
and the end-to-end method arises in the evaluation
of individual steps. The End-to-end (Classify)
method can produce correct decisions, and as
shown in Figure 3 it can always claim to have
produced the goal statement, but is its reasoning
sound?

Table 4 shows that our best SCSearch model
produces valid inferences 82% of the time,
improving by 17% absolute over the end-to-end
model as well as improving over the version of our
system without mid-training on ParaPattern. This
result confirms our hypothesis about the end-to-
end method: despite often predicting the right label
and predicting an associated entailment tree, these
entailment trees are not as likely to be valid due to
their post-hoc nature and the conflation of search
and generation.

We can use our step validity rate to approximate
the expected number of fully-valid trees based
on the observed depth distribution. Under the
conservative assumption that observed errors are
distributed uniformly w.r.t. depth, the expected
number of fully valid trees in a dataset D =
{T1...T|p} for validity rate v can be computed
as ﬁ Zlﬂ vl At a step validity rate of 82%
we should expect ~58% of trees generated by
our system to be error-free. Under the same
assumption, according to the end-to-end model’s
step validity rate we should expect only ~35% of
its trees to be fully valid.



In Section 5.4 we examine observed error
patterns in invalid steps. Crucially, even when our
system produces a tree involving an invalid step,
it is easy to audit the tree and determine exactly
where the reasoning error occurred, since each
step is conditioned only on its immediate premises.
In contrast, the end-to-end model attends to all
premises and the hypothesis at every step, meaning
that when an inconsistent step is generated, it is
difficult to diagnose the cause.

5.3 Goal Entailment

Model o F1 Precision Recall
DeBERTa WANLI 0.92 71.8 65.1 80.0
+EBENTAIL 0.83 724 91.3 60.0
+EBENTAIL-ACTIVE 0.81 77.9 95.8 65.7

Table 5: Evaluation of goal-bridging entailment models
on EBENTAIL. Both of the models fine-tuned on
EBENTAIL are evaluated using 3-fold cross validation.
« indicates the best entailment score threshold.

The results in Table 3 depend on an accurate
assessment of when we have successfully deduced
the hypothesis. To that end, we evaluate our
goal entailment model against labeled test data.
Table 5 shows the results of our evaluation on the
EBENTAIL dataset described in Section 3.3. We
view precision as more important than recall, as
a stringent criteria for determining whether a tree
has reached the goal increases confidence in our
evaluation results.

Our best F1 score, using EBENTAIL-ACTIVE,
is only slightly lower than the lowest F1 score of
the annotators when evaluated against the majority
vote. Annotator agreement is moderate; macro-
averaged inter-annotator F1 is 0.83 and Cohen’s
k is 0.54. This indicates that the problem of
determining when a statement straightforwardly
entails the goal is subjective; the boundary between
‘trivial’ entailment and a case which needs an
additional reasoning step is somewhat fuzzy.

5.4 Error Analysis: Step Model

Although our step model cannot hallucinate based
on the hypothesis, it can still fail to produce valid
intermediate steps due to other challenges.

One error type we see is indiscriminate
unification: when given incompatible premises,
the step model will sometimes still attempt to
combine them, resulting in improper conclusions.
For example, given the premises “Earthquake can

change the earth’s surface. In a short amount
of time is similar to rapidly.” one conclusion
generated by the model is “Earthquake changes
the earth’s surface rapidly.” This could be avoided
through the use of more selective heuristics, or by
explicitly supervising step models with negative
examples in order to encourage conservative
conclusions in these cases.

We also observe compounding errors in
conclusions generated from erroneous premises.
For example, given the premises “Offspring will
inherit a scar on both knees except not both
knees. Offspring will inherit a scar on the knee
from parents.” the model generates “Parents
will inherit a scar on both knees.” This kind of
relation assignment mistake is uncommon outside
of instances involving bad premises. These errors
could potentially be mitigated by training heuristics
to avoid corrupted premises.

5.5 Error Analysis: Goal Entailment

An additional source of error arises from cases
where the goal entailment model is unable to
predict the correct entailment relationship between
an output from the step model and the goal
hypothesis.

One reason this arises is definitional knowledge.
When given the premise “Sugar is soluble in water,”
the model does not predict entailment of the goal
hypothesis “Sugar cubes will dissolve in water
when they are combined.” English speakers who
know the definition of ‘soluble’ and recognize that
sugar cubes are made of sugar could reasonably
understand this as entailed. However, the degree
of definitional knowledge that should be expected
of the entailment model is subjective and often a
source of annotator disagreement.

Another cause of errors are ill-formed state-
ments. For example, the model predicts that
“Lichens and soil are similar to being produced by
breaking down rocks.” entails “Lichens breaking
down rocks can form soil.” However, it is unclear
what is “similar” in the generated statement due to
poor syntax. Labels for examples like this often
vary depending on how the annotator understood
the step model’s output. Improving the step model
to reduce compounding generation errors will
mitigate this issue.

Finally, the entailment may sometimes be
predicated on context. The model predicts that
“A new moon will occur on june 30 when the moon



orbits the earth.” entails “The next new moon
will occur on june 30.” In this case, the model is
assuming that ‘a new moon’ occurring is equivalent
to ‘the next new moon’ occurring. Depending on
annotator assumptions, cases like this can also be
somewhat subjective.

Future work could expand the training data of
our NLI model to account for the subjectivity of
NLI judgments (Pavlick and Kwiatkowski, 2019;
Chen et al., 2020; Nie et al., 2020), particularly by
modifying our data collection procedure (Zhang
etal., 2021).

6 Related work

Our work reflects an outgrowth of several lines
of work in reading comprehension and textual
reasoning. Multi-hop question answering models
(Chen et al. 2019; Min et al. 2019; Nishida
et al. 2019, inter alia) also build derivations
linking multiple statements to support a conclusion.
However, these models organize selected premises
into a chain or leave them unstructured as opposed
to composing them into an explicit tree.

The NLProlog system (Weber et al., 2019)
frames multi-hop reading comprehension explicitly
as a proof process, performing proof search using
soft rule unification over vector representations of
predicates and arguments. Similar backward search
ideas were used in Arabshahi et al. (2021). PRover
(Saha et al., 2020) and ProofWriter (Tafjord et al.,
2021) also frame natural language deduction as
proof search, although both systems are evaluated
in a synthetic domain of limited complexity.
Betz and Richardson (2021) also use synthetic
data to improve reasoning models through mid-
training, although the improvements they observe
are limited to premise selection performance.

Hu et al. (2020) and Chen et al. (2021) propose
systems which perform single-sentence natural
language inference through proof search in the
natural logic space. Our work also relates to earlier
efforts on natural logic (MacCartney and Manning,
2009; Angeli et al., 2016) but is able to cover far
more phenomena by relaxing the strict constraints
of this framework. Finally, the Leap of Thought
system (Talmor et al., 2020) tackles some related
ideas in a discriminative reasoning framework.

The recent chain-of-thought (Wei et al., 2022)
and Scratchpads (Nye et al., 2021) methods
also generate intermediate text as part of answer
prediction. However, like the end-to-end

baseline we consider, these techniques are free to
generate unsound derivations. Published results
with these techniques are strongest for tasks
involving mathematical reasoning or programmatic
execution, whereas on textual reasoning datasets
like StrategyQA (Geva et al., 2021) they only
mildly outperform a few-shot baseline.

7 Discussion and Conclusion

In this work, we propose a system that performs
natural language reasoning through generative
deduction and heuristic-guided search.  We
demonstrate that our system produces entailment
trees that are more internally consistent than those
of an end-to-end model, and that its factored
design allows it to successfully prove valid goals
while being unable to hallucinate trees for invalid
goals. We believe that this modular deduction
framework can be readily extended to empower
future reasoning systems.

8 Limitations

The baseline approach we consider in this work,
end-to-end modeling of entailment tree generation,
enjoys the convenience of simple inference and
quadratic complexity. However, the computational
overhead of sequence-to-sequence models places
a hard limit on the tree size and premise count
that can be handled in the end-to-end setting;
moreover, recent results call into question how
well end-to-end Transformers can generalize this
type of reasoning (Zhang et al., 2022). Our
structured approach allows arbitrarily large premise
sets and step counts. However, by discretizing the
reasoning in the SCSearch procedure, we do face
a runtime theoretically exponential in proof size
to do exhaustive search. In practice, we limit our
search to a finite horizon and find that this suffices
to provide a practical wall clock runtime, never
exceeding 5 seconds for any single example. Future
work on higher tree depths may have to reckon
with the theoretical limitations of this procedure,
possibly through the use of better heuristics.

Our experiments are conducted exclusively on
English datasets. While we hypothesize that our
approach would work equally well for another
language given a pretrained sequence-to-sequence
model for that language with equivalent capacity,
such models are not available universally across
languages, representing an obstacle for transferring
our results to languages beyond English.



Furthermore, the EntailmentBank dataset on
which we train and evaluate targets the elementary
science domain, raising a question of domain
specificity. In future work, we plan to evaluate
deduction models on additional datasets with
different style, conceptual content, and types of
reasoning in order to verify that the factored
approach is equally applicable across diverse
settings.
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A Implementation Details

Hugging Face transformers version: 4.19.1
Two NVidia Quadro 8000 GPUs were used for all
experiments in this paper.

Hyperparameter Value
Base model T5-3b
Total batch size 8
Initial LR 5e-5

Epoch count 3 (early stopping on val. loss)

Table 6: End-to-end model fine-tuning configuration
(hyperparameters left at transformers default if
unspecified)

Hyperparameter Value
Base model T5-3b
Total batch size 12
Initial LR Se-5

Epoch count 2 (early stopping on val. loss)

Table 7: EntailmentBank-only step deduction model
fine-tuning

Hyperparameter  Value
Base model T5-3b
Total batch size 12
Initial LR 5e-5
Epoch count 1
Table 8: Step deduction model mid-tuning on

ParaPattern-substitution

Hyperparameter Value
Base model DeBERTa Large MNLI
Total batch size 32
Initial LR le-5
Epoch count 1
Table 9: Goal entailment model fine-tuning on

EBENTAIL+EBENTAIL-ACTIVE

Hyperparameter Value
Base model DeBERTa-v3 Large
Total batch size 32
Initial LR 2e-5

2 (no goals)

Epoch count 7 (wgoals)

(early stopping on val. loss)

Table 10: Learned heuristic model fine-tuning
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B Examples

An ocean plant is a kind of

water plant. A fossil of a water plant is found
in the desert.

A fossil of an ocean plant is — goal: 0.02

i L ey Goal: The desert used to be

covered by water in the past.

— goal: 0.96
If fossils of a water animal or
plant are found in a place then
that place used to be covered
by water in the past.
Geothermal energy is a
renewable resource. Producing renewable electric
energy requires geothermal
Producing renewable electric energy. Geothermal energy can be
energy requires renewable = EEEE O used for producing renewable
resources. electric energy.
> goal: 0.75 Goal: Geothermal energy has
) ) the potential to produce
If a process requires something renewable electric energy.
that that something may be — goal: 0.94

able to perform that process.

If something may be able to do

something else then that
something has the potential to
do that something else.

Changing the ph of water can L . Goal: If acid rain changes the
cause animals live in the water Atadpole living in water will not ph of water then tadpoles may
not be able to survive. survive if the ph of water by unable to survive.
changes.
> goal: 0.01

Atadpole lives in water.

Changing the ph of water can
cause a tadpole to not be able

Atadpole is a kind of animal. R P .
DS, Acid rain can cause a tadpole pedianlandlcnanginolticlpn
> goal: 0 = of water can cause a tadpole to
to not be able to survive. N
, goal: 0.09 not survive.
goat: ©. — goal: 0.85

Acid rain changes the ph of
water.

Figure 5: Examples of entailment trees generated by our SCSearch system. In the second example, the first
intermediate conclusion exhibits an overzealous substitution, unifying ‘renewable resources’ in ‘[...] requires
renewable resources’ with ‘geothermal energy’ despite geothermal energy being just one example of a renewable
resource. This is one form of the indiscriminate unification issue noted in Section 5.4. The last example includes
an additional step sampled outside of the successful entailment tree; this step technically entails the goal but goes
undetected by the goal entailment module.



