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Abstract

Despite recent progress in abstractive summa-
rization, models often generate summaries with
factual errors. Numerous approaches to detect
these errors have been proposed, the most pop-
ular of which are question answering (QA)-
based factuality metrics. These have been
shown to work well at predicting summary-
level factuality and have potential to localize
errors within summaries, but this latter capa-
bility has not been systematically evaluated in
past research. In this paper, we conduct the
first such analysis and find that, contrary to
our expectations, QA-based frameworks fail
to correctly identify error spans in generated
summaries and are outperformed by trivial ex-
act match baselines. Our analysis reveals a
major reason for such poor localization: ques-
tions generated by the QG module often in-
herit errors from non-factual summaries which
are then propagated further into downstream
modules. Moreover, even human-in-the-loop
question generation cannot easily offset these
problems. Our experiments conclusively show
that there exist fundamental issues with local-
ization using the QA framework which cannot
be fixed solely by stronger QA and QG models.

1 Introduction

Although abstractive summarization systems (Rush
et al., 2015; See et al., 2017; Lewis et al., 2020)
have improved drastically over the past few years,
these systems often introduce factual errors into
generated summaries (Cao et al., 2018; Kryscinski
et al., 2019). Recent work has proposed a num-
ber of approaches to detect these errors, includ-
ing using off-the-shelf entailment models (Falke
et al., 2019; Laban et al., 2022), question answering
(QA) models (Chen et al., 2018; Wang et al., 2020;
Durmus et al., 2020), and discriminators trained
on synthetic data (Kryscinski et al., 2020). Such
methods have also been explored to identify error
spans within summaries (Goyal and Durrett, 2020)

Source Article: My recent exhibition features some prominent trends and 
themes spanning the entire history of the matchbox industry. I exhibited 

5,000 labels from my collection of 25,000. […]

For the past 15 years, I have been collecting matchbox labels.BART/

PEGASUS

Since when have I been 
collecting labels?

What have I been 
collecting for 15 years?

Question Generation - Question Answering Framework

Unanswerable Unanswerable

Correctly identifies factual error Tags factual span as an error!

Non-Factual Span Factual Span

Figure 1: Factual error localization using QA metrics.
Questions are generated for summary spans and then
answered by a QA model using the source article as
context. For factual spans (e.g. matchbox labels), we
expect the predicted answers to match the original spans.
However, non-factual spans in generated questions in-
herited from summaries may render these unanswerable
and lead to incorrect error localization.

and perform post-hoc error correction (Dong et al.,
2020; Cao et al., 2020).

Among these different approaches for evaluat-
ing factuality, QA-based frameworks are the most
widely adopted (Chen et al., 2018; Scialom et al.,
2019; Durmus et al., 2020; Wang et al., 2020;
Scialom et al., 2021; Fabbri et al., 2022). These
evaluate the factuality of a set of spans in isola-
tion, then combine them to render a summary-level
judgment. Figure 1 illustrates the core mechanism:
question generation (QG) is used to generate ques-
tions for a collection of summary spans, typically
noun phrases or entities, which are then compared
with those questions’ answers based on the source
document to determine factuality. Due to this span-
level decomposition of factuality, QA frameworks
are widely believed to localize errors (Chen et al.,
2018; Wang et al., 2020; Gunasekara et al., 2021).
Therefore, the metrics have been applied in set-
tings like post-hoc error correction (Dong et al.,
2020), salient (Deutsch and Roth, 2021) and incor-
rect (Scialom et al., 2021) span detection, and text
alignment (Weiss et al., 2021). However, their ac-



tual span-level error localization performance has
not been systematically evaluated in prior work.

In this paper, we aim to answer the following
question: does the actual behavior of QA-based
metrics align with their motivation? Specifi-
cally, we evaluate whether these models success-
fully identify error spans in generated summaries,
independent of their final summary-level judgment.
We conduct our analysis on two recent factuality
datasets (Cao and Wang, 2021; Goyal and Dur-
rett, 2021) derived from pre-trained summariza-
tion models on two popular benchmark datasets:
CNN/DM (Hermann et al., 2015; Nallapati et al.,
2016) and XSum (Narayan et al., 2018). Our results
are surprising: we find that good summary-level
performance is rarely accompanied by correct
span-level error detection. Moreover, even trivial
exact match baselines outperform QA metrics at
error localization. Our results clearly show that
although motivated by span-level decomposition of
the factuality problem, the actual span-level predic-
tions of QA metrics are very poor.

Next, we analyze these failure cases to under-
stand why QA-based metrics diverge from their
intended behavior. We find that the most serious
problem lies in the question generation (QG) stage:
generated questions for non-factual summaries in-
herit errors from the input summaries (see Fig-
ure 1). This results in poor localization wherein
factual spans get classified as non-factual due to
presupposition failures during QA. Furthermore,
we show that such inherited errors cannot be easily
avoided: decreasing the length of generated ques-
tions reduces the number of inherited errors, but
very short questions can be under-specified and not
provide enough context for the QA model. In fact,
replacing automatic QG with human QG also does
not improve the error localization of QA metrics.
These results demonstrate fundamental issues with
the current QA-based factuality frameworks that
cannot be patched by stronger QA/QG methods.

Our contributions are as follows. (1) We show
that QA-based factuality models for summarization
exhibit poor error localization capabilities. (2) We
provide a detailed study of factors in QG that ham-
per these models: inherited errors in long generated
questions and trade-offs between these and short
under-specified questions. (3) We conduct a human
study to illustrate the issues with the QA-based fac-
tuality framework independent of particular QA or
QG systems.

2 QA-Based Factuality Metrics

Recent work has proposed numerous QA-based
metrics for summarization evaluation, particularly
factuality (Chen et al., 2018; Scialom et al., 2019;
Eyal et al., 2019; Durmus et al., 2020; Wang
et al., 2020; Deutsch and Roth, 2021). These pro-
posed metrics follow the same basic framework (de-
scribed in Section 2.1), and primarily differ in the
choice of off-the-shelf models used for the different
framework components (discussed in Section 2.2).

2.1 Basic Framework
Given a source document D and generated sum-
mary S, the QA-based metrics output a summary-
level factuality score yS that denotes the factual
consistency of S. This includes the following steps
(also outlined in Figure 2):

1. Answer Selection: First, candidate answer
spans ai ∈ S are extracted. These correspond
to the base set of facts that are compared against
the source document D. Metrics evaluated in
this work (Scialom et al., 2021; Fabbri et al.,
2022) consider all noun phrases and named en-
tities in generated summaries as the answer can-
didates set, denoted by span(S).

2. Question Generation: Next, a question genera-
tion model (G) is used to generate questions for
these answer candidates with the generated sum-
mary S as context. Let qi = G(ai, S) denote
the corresponding question for span ai.

3. Question Filtering: Questions for which the
question answering (A) model’s predicted an-
swer A(qi, S) from the summary does not match
the original span ai are discarded, i.e., when
ai ̸= A(qi, S). This step is used to ensure that
the effects of erroneous question generation do
not percolate down the pipeline; however, an-
swer spans that do not pass this phase cannot be
evaluated by the method.

4. Question Answering: For each generated ques-
tion qi, the A model is used to predict answers
using the source document D as context. Let
pi = A(qi, D) denote the predicted answer.

5. Answer Comparison: Finally, the predicted an-
swer pi is compared to the expected answer ai
to compute a similarity score sim(pi, ai). The
overall summary score yS is computed by aver-
aging over all span-level similarity scores:

yS =
1

|span(S)|
∑︂

ai∈span(S)

sim(A(qi, D), ai)
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Figure 2: Overall workflow for the QA metrics. First, questions are generated for all NEs and NPs in the generated
summary. Answers to these questions are obtained from the source document. Then, a factuality score is computed
for each summary span based on it similarity with the predicted span from the previous step. Finally, all span-level
scores are aggregated to obtain the final summary-level factuality.

Based on the motivation behind QA metrics, these
similarity scores sim(pi, ai) should indicate the
factuality of the corresponding spans. If span ai
is factual, then the G − A pipeline should output
pi ∈ D with high similarity to ai. Conversely, if
ai is non-factual, the similarity score sim(pi, ai)
should be low. While prior research has only evalu-
ated their sentence-level performance, we use these
span-level factuality scores to additionally evaluate
the localization performance of QA metrics.

2.2 QA Metrics compared

In this work, we focus our analysis on the two best
performing QA-based metrics from prior work:

QuestEval (QE) Scialom et al. (2021) generate
questions for answer spans extracted from both
the summary (“precision questions”) and source
document (“recall questions”). We only use the
former in our experiments as these are shown to
correlate better with factuality. Both the A and
G components of QuestEval use T5-Large mod-
els (Raffel et al., 2020) fine-tuned on question an-
swering datasets (Rajpurkar et al., 2018; Trischler
et al., 2017). The similarity score sim(pi, ai) in
this framework is computed as the average of the
lexical overlap, BERTScore, and the answerability
score predicted by A.

QAFactEval (QAFE) Fabbri et al. (2022) con-
duct an ablation study over the different combi-
nations of available A and G models. Here, we
use their best-performing combination: an ELEC-
TRA-based A model and a BART-based G model
fine-tuned on the QA2D dataset (Demszky et al.,
2018). The sim(pi, ai) score is obtained using
the learned metric LERC (Chen et al., 2020). If
A(qi, D) is unanswerable for span ai, QAFactEval

sets the similarity score sim(_, ai) = 0 instead of
using the LERC metric.

3 Experimental Setup

3.1 Task Definition

Given document D and a generated summary S,
let y∗S ∈ {0, 1} denote the gold summary-level
factuality label. Additionally, we assume access
to L = {(a, y∗a)} which denotes the set of spans
a ∈ span(S) and their corresponding span-level
gold factuality labels y∗a ∈ {0, 1}.

First, we evaluate the summary-level perfor-
mance of factuality models, i.e., is the predicted
factuality equal to the gold factuality judgment
y∗S? To do this, we covert the predicted factual-
ity score yS to a binary judgment using dataset-
specific thresholds. For each factuality model eval-
uated, we select thresholds that yield the best F1
scores on the validation set on each dataset.

Next, we evaluate the span-level (localization)
performance of factuality models. Similar to the
previous setting, we convert span-level predictions
ya to binary labels using the best-F1 threshold de-
rived from the validation set. We report the macro-
averaged performance at correctly predicting the
span-level label y∗a ∀a ∈ span(S) across all (D,S)
pairs in the evaluation dataset.

To align with the current QA frameworks, we re-
strict our evaluation to spans that correspond to
named entities and noun phrases. This takes a
generous view of the QA metrics’ performance
as it does not penalize them for failing to identify
factual-errors outside NPs and NEs. This setting
allows us to study the fundamental issues with the
QA framework instead of those that can potentially
be addressed by extending the question types con-
sidered in the framework.



Note that even for NP and NE spans, sometimes
the QA metric does not return a span-level predic-
tion if the span has not been selected as an answer
candidate or has been discarded during the ques-
tion filtering phase. We assume the predicted label
ya = 1 for such spans, as the model failed to detect
any errors.1 We discuss the performance loss due
to this additional filtering step in Appendix C.

3.2 Datasets

We conduct our analysis on two human-annotated
factuality datasets from prior work that provide
gold annotations of factuality at the token level. To
the best of our knowledge, these two are the only
datasets that include span-level factuality annota-
tion for summaries generated by SOTA models.

CLIFF (Cao and Wang, 2021) is a dataset con-
sisting of summaries generated by BART (Lewis
et al., 2020) and PEGASUS (Zhang et al., 2020)
models trained on the XSum and CNN/DM sum-
marization datasets. For each generated summary,
the dataset includes token-level factuality labels
y∗t ∈ {0, 1}. For y∗t = 0, these are additionally
labeled with fine-grained error types: extrinsic, in-
trinsic, or requiring world knowledge.

GD21 (Goyal and Durrett, 2021) contains XSum
summaries generated using a fine-tuned BART

model. Similar to CLIFF, it contains token-level
factuality labels for all generated summaries.

Deriving gold summary- and span-level factu-
ality labels from human annotations To derive
the summary-level gold label y∗S from these token-
level human annotations, we set y∗S = 1 iff all
tokens are factual, i.e. y∗t = 1 ∀t ∈ S. To derive
span-level gold labels, for each NP/NE span a, we
set y∗a = 1 iff all tokens t ∈ a are factual.

We construct validation and test sets by divid-
ing each dataset into equal subsets. The statistics
for the test set are included in Table 1. It shows
that ~26% of non-factual tokens do not correspond
to NEs or NPs and are therefore ignored by the
QA metrics’ evaluation pipeline. Also, note that
the error statistics differ for the XSum summaries
in GD21 and CLIFF due to the differences in the
annotation methodologies and the trained models
used (both BART and PEGASUS in CLIFF vs only
BART in GD21).

1Operationally, we set sim = 6.0 for QAFactEval and
sim = 1.0 for QuestEval for filtered spans.

Label Metric GD21 CLIFF
Gran. XSum C/D XSum

Summ. Total 46 150 150
% Non-Factual 52.2 15.3 70.7

Span # per summary 7.9 15.3 5.4
% Non-Factual 9.9 1.9 28.1

Token
# per summary 17.1 31.6 13.1
% Non-Factual 8.8 1.7 24.5

% Ignored (Non-Factual) 28.9 24.5 27.6

Table 1: Test set statistics for CLIFF and GD21 at dif-
ferent levels of label granularity. All our evaluation is
done at the summary- and span-levels to align with the
QA metrics’ formulation. We convert the token-level
human annotations to span-level to achieve this. The ta-
ble reports the % of non-factual tokens outside NE/NPs
that are ignored by the QA metrics’ evaluation pipeline.

3.3 Baselines for Comparison

Exact Match Baseline (EM) first extracts all
nouns, proper nouns, numbers, adjectives, and pro-
noun tokens from the generated summary S. For
these tokens, we set yt = 1 if yt ∈ D, else yt = 0.
We use the fraction of tokens predicted as factual
as a summary-level score.

Dependency-Arc Entailment (DAE) Goyal and
Durrett (2020) evaluate the factuality of each de-
pendency arc in generated summaries separately.
We follow the methodology proposed by Goyal
and Durrett (2021) to derive both summary- and
token-level factuality scores from these arc-level
judgments. We refer readers to the original paper
for further details. We use their available model
checkpoint in our experiments.2

We convert token-level judgments from these
baseline models into span-level judgments to make
their outputs compatible with our evaluation frame-
work. This is described in detail in Appendix A.3.

4 Summary vs. Span Level Performance

QA metrics motivate the use of span-level factual-
ity as building blocks for evaluating factuality at
the sentence level. Therefore, our hypothesis is
that good summary-level performance must be
accompanied by good span-level performance.
Here, we test this by comparing summary- and
span-level performances.

Figure 3 outlines the performance of QA metrics
and baseline systems. The top row shows ROC

2Code and trained model checkpoint provided by authors
at: https://github.com/tagoyal/factuality-datasets

https://github.com/tagoyal/factuality-datasets
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Figure 3: ROC curves and F1 scores (legend) for all systems at the summary- and span-levels (EM is a point as
it provides hard binary judgments). Here, D (or E) denotes that the performance difference with DAE (or EM) is
statistically significant according to a paired bootstrap test (p-value < 0.05). We observe that for QA metrics, good
summary-level performance (e.g. on GD21 and CLIFF (CNN/DM)) does not imply good localization performance.

curves and F1 scores (in the legend) for all three
datasets; the bottom row shows span-level results.
The dotted black lines show the performance of a
random baseline. First, we observe that none of
the baselines or QA metrics have a clear advantage
over other systems for all datasets at the summary-
level. For instance, QA metrics outperform base-
lines on GD21, and show similar performance
on CLIFF (CNN/DM) and worse performance on
the CLIFF (XSum) dataset. However, across all
datasets, we see that there exists a substantial
mismatch between the performance of QA met-
rics at the summary- and span-levels. Notably,
for GD21, both QE and QAFE substantially out-
perform baseline models at the summary-level, but
exhibit much poorer span-level performance. Sim-
ilarly, QA metrics are comparable to baselines at
the summary-level for CLIFF (CNN/DM) but much
worse at the span-level. On the other hand, the er-
ror localization performance of the DAE model
is more consistent with its summary-level perfor-
mance. Surprisingly, the trivial exact match (EM)
baseline consistently outperforms QA metrics at
error localization for all datasets. These results
clearly show that our hypothesis is false: QA-based
metrics do not provide reliable span-level explana-
tions for their summary-level predictions.

Note that the diagonal lines in the span-level
ROC curves for QA metrics arise due to a large
number of spans being assigned the same factuality

scores. As discussed in Section 2.1, some spans
are filtered during the question filtering stage (Step
3) if their corresponding generated questions are
of low quality. We consider these to be factual and
assign them the maximum factuality score; this re-
sults in the diagonal line from (0, 0).3 We study the
effects of this span filtering on localization perfor-
mance in Appendix C. Additionally, QAFE assigns
the same factuality score (= 0) to all spans with
unanswerable questions resulting in the diagonal
line to (1, 1).

5 Why do QA metrics fail at span-level
error localization?

Consider the error localization task in the example
in Figure 1. Here, the QA metric needs to correctly
distinguish between the factual span “matchbox la-
bels” and the extrinsic error “for the past 15 years”.
For such summaries (containing a mix of factual
and non-factual spans), we observed that the gen-
erated questions for factual spans often inherit
non-factual summary spans. Given such questions,
e.g. “What have I been collecting for 15 years?”,
an ideal QA model should predict unanswerable
(even though that hurts localization) as the source
article does not include any mention of an item
being collected for 15 years. Based on this obser-

3Note that QE generates multiple questions for each span
and therefore rarely discards spans (it is not likely that all
questions are bad). Therefore, it has a shorter diagonal line.
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Figure 4: Generated questions broadly include two types
of errors: (1) inherited errors that copy non-factual spans
from the summary, and (2) errors introduced by imper-
fect QG models. While this latter set of errors may be
eliminated by stronger QG models, inherited errors can-
not be easily fixed.

vation, we hypothesize that such inherited errors
in generated questions adversely affect the local-
ization performance of automatic QA metrics by
misclassifying factual spans.

First, we draw a clear distinction between (1)
errors inherited from summaries, and (2) those in-
troduced due to generation errors by the QG model.
Figure 4 illustrates these two separate cases. We
note that the latter set of errors can potentially be
addressed by stronger QG models in the future.
Our analysis in this section only studies the former
set, i.e. inherited errors, as these will persist inde-
pendent of the improvement in QA/QG models.

What percentage of questions are impacted by
inherited errors? First, we determine the scope
of the limitation introduced by inherited errors. Ta-
ble 2 outlines how frequently generated questions
contain inherited errors; we report these numbers
only for the non-factual summaries as only these
are affected by inherited errors. We define errors in
a summary as inherited when a question copies at
least one token that is annotated as non-factual. We
use error type labels (extrinsic or intrinsic) present
in the CLIFF and GD21 datasets to report separate
numbers for these phenomena4. For the CLIFF
dataset, we include world knowledge errors within
the extrinsic type. In general, we observe that in-
herited errors are more common in QAFactEval
compared to QuestEval; this can be attributed to
the longer length questions generated by the former
(see Appendix B for details).

4Generated questions can inherit both types of errors. In
the tables in this section, “extrinsic error” denotes questions
that inherit at least one extrinsic error, but “only intrinsic error”
denotes questions that only inherit intrinsic errors.

QA Metric Type of GD21 CLIFF
Inherited Error XSum C/D XSum

QuestEval extrinsic error 19.2 9.1 44.8
only intrinsic error 25.7 17.3 3.6

QAFactEval extrinsic error 39.1 11.1 93.1
only intrinsic error 48.9 34.2 6.0

Table 2: Percentage of questions that inherit extrinsic
and intrinsic errors from summaries. We only consider
non-factual summaries, i.e., summaries containing at
least one non-factual span in this table.

QA Metric Type of GD21 CLIFF
Inherited Error XSum C/D XSum

QuestEval
extrinsic error 3.1 93.9 30.5

only intrinsic error 9.3 97.3 50.0
no inherited error 15.5 98.7 56.0

QAFactEval
extrinsic error 7.7 65.4 63.8

only intrinsic error 29.2 82.0 40.0
no inherited error 29.3 92.8 65.4

Table 3: Percentage of factual spans correctly classified
by QA metrics, i.e. yt = y∗t = 1. We use the same
thresholds as for F1 scores in Figure 3. Results show
that inherited errors lead to more erroneous classifica-
tion as non-factual across all datasets.

Do inherited errors in generated questions hurt
factuality prediction? To answer this, we zoom
in on factual spans in generated summaries (we con-
sider both factual and non-factual summaries here),
and investigate how often these are erroneously
classified as non-factual. We report this for three
different scenarios: (1) w/ inherited extrinsic error,
(2) w/ inherited intrinsic errors only, and (3) w/o
any inherited error. Table 3 outlines our results.
We observe that across all settings, factual spans
with inherited errors in their corresponding ques-
tions are more likely to be erroneously classified
as non-factual compared to those with no inherited
errors. Between error types, we observe that extrin-
sic inherited errors tend to harm localization more
than intrinsic errors.

Note that inherited errors are only observed for
summaries that are already non-factual. Therefore,
erroneous classification of factual spans as non-
factual hurts span-level but does not hurt summary-
level performance. In fact, Fabbri et al. (2022)
show that longer questions (which typically inherit
more extrinsic errors, but do not cause summary-
level error) exhibit better summary-level perfor-
mance compared to shorter questions (which can
be under-specified and cause summary-level error).
This indicates that there exists a trade-off in perfor-
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level evaluation. While “Cambridgeshire” is a factual
span, questions with inappropriate specificity can cause
QA models to make mistakes. It is impossible to know
what length of question is “just right” during question
generation.

mance between these different granularity levels.

Can we avoid inherited errors in generated sum-
maries? Since we do not have prior knowledge
of which spans in summaries contain factual errors,
we cannot trivially ensure that generated questions
do not inherit the errors. One possible strategy
could be to generate very short questions that in-
clude minimal details from the summary to avoid
inheriting non-factual spans from the summary.
However, these may then suffer from being too
under-specified. We illustrate this in Figure 5. Con-
sider the factual span “Cambridgeshire”. The short-
est question in the figure “Where was there heavy
rain?” is not under-specified for the summary,
since it is the only place name in the summary.
However, there are multiple possible answers in
the source document, and QA models may reason-
ably answer “Norfolk and Lincolnshire”, leading
to erroneous classification of “Cambridgeshire” as
non-factual. Therefore, there exists a trade-off
between under-specified (short) questions and
over-specified (long) questions and it is difficult to
predict the optimal level of specificity. This prob-
lem cannot be addressed by improving QA models;
an ideal QA model will return unanswerable to
questions with inherited errors and will be still con-
fused by under-specified questions. We explore
this issue further using human question generation
in Section 6.

6 Can Human QG Improve Localization?

In Section 5, we discussed how the number of inher-
ited errors can be indirectly influenced by varying
the length of generated questions and the accompa-
nying trade-offs: longer questions are more likely
to inherit errors but shorter questions may be under-
specified. Here, we investigate this using perfect
QG, i.e., replacing automatic QG with humans. We
evaluate two aspects: (1) How does question length
impact localization? (2) Does human QG improve
localization?

6.1 Experiment Design
For each summary and candidate span pair (S, ai),
we obtain human-written questions of varying
lengths and information content.5 Then, we replace
the QG module of QAFactEval with these human-
written questions to study the effect of question
length on error localization performance.6

Annotators generate 3 types of questions:

1. Shortest possible question such that given the
question-summary pair, humans can unambigu-
ously identify the correct span in the summary.

2. Longest question incorporating as much infor-
mation from the generated summary as reason-
ably allowed, often including almost an entire
summary sentence.

3. Intermediate questions with levels of informa-
tion content between the above two extremes.
We allow annotators to generate any number of
such intermediate questions.

Annotation and Setup We conduct this experi-
ment on 150 randomly selected summaries from the
CLIFF dataset. For the CNN/DM subset, we only
selected non-factual summaries, since CNN/DM
contains a small number of non-factual spans. Hu-
man annotators manually generated 2,186 ques-
tions (please refer to Appendix D for details).7 We
use half of the summaries as validation sets.

We evaluate localization performance using 4
different length configurations for human-written
questions: short, long, intermediate, and oracle.

5Question lengths could also be varied if we used distinct
automatic QG models, but by choosing human QG, we avoid
conflating the impact of varying question specificity/length
with errors or other performance differences in models.

6We also considered using human QA; however, we found
that the QA task is ill-defined for humans when questions
themselves contain extrinsic errors. Fabbri et al. (2022) also
show that QA performance has less impact on factuality.

7Human generated questions are provided at: https://
github.com/ryokamoi/QA-metrics-human-annotation

https://github.com/ryokamoi/QA-metrics-human-annotation
https://github.com/ryokamoi/QA-metrics-human-annotation


Figure 6: Statistics for questions generated by human
annotators and QAFactEval (QAFE). “% Questions with
Inherited Errors” is the percentage of questions that
inherit non-factual spans from non-factual summaries.
As expected, longer questions are more likely to inherit
factual errors from the generated summaries.

For intermediate questions, evaluation is always
done over three questions. We randomly sub-
sample (or over-sample) from this set if more (or
fewer) than three are available and report their av-
erage performance. If no intermediate question is
written, we randomly sample from the other two
categories. This only happens when the length dif-
ference between the shortest and longest questions
is small. For the oracle setting, we report results
using the question for each span that leads to the
best localization performance. In other words, we
use the highest scoring question for factual spans
and the lowest for non-factual spans.

6.2 Results

Figure 6 outlines statistics for questions gener-
ated by human annotators and the QG model of
QAFactEval (QAFE) generated for the same spans.
As expected in Section 5, it shows that the per-
centage of questions that inherit non-factual spans
in summaries increases with length. In this fig-
ure, we only analyze non-factual summaries since
questions generated for factual summaries do not
inherit errors. This result verifies our assumption
and shows that we can analyze a trade-off between
long questions that tend to inherit more non-factual
spans from summaries and short questions with
fewer inherited errors but can be under-specified.

Error Localization Figure 7 outlines the span-
level localization performance for these different
human question configurations and the QG model
of QAFactEval. First, we notice that human QG
does not improve the localization performance
of the QA frameworks, with all three configura-
tions exhibiting similar performance to the fully

CLIFF (CNN/DM) CLIFF (XSum)

Figure 7: ROC curves and F1 scores (in legend) for
span-level performances using human-written questions.
These results show that no single question length con-
figuration (except oracle) can outperform automatic QG.
∗ denotes that improvement over QAFactEval is statisti-
cally significant (paired bootstrap test, p-value < 0.05).

automatic QAFactEval (QAFE) model. However,
the oracle questions report significant improve-
ment over QAFactEval; this indicates that while
there does exist an optimal length question for most
spans, there isn’t a clear pattern that can help select
it during evaluation. We again note that it is not
possible to select an optimal question length for
each span without prior knowledge about errors in
summaries. We conclude that the overall failure
of human QG to improve over QAFactEval sug-
gests that there exist fundamental issues with the
QA-based factuality formulations which cannot be
simply fixed by stronger QG models.

7 Discussion

Analysis in our paper suggests that QA-based met-
rics have fundamental problems which will be dif-
ficult to address in future work. Our view is that
future system designers should favor entailment-
based approaches (Falke et al., 2019; Laban
et al., 2022) as a result. One reason for this is
that successful QA-based approaches actually im-
plement something similar to entailment. Both our
analysis and Fabbri et al. (2022) show that we can
improve summary-level performance by generat-
ing long questions to avoid underspecified ques-
tions. However, answering questions that contain
almost all the information about a sentence can
be regarded as a weak form of entailment evalua-
tion: it assesses whether the question-answer pairs
that include all information about the sentence are
entailed by the original document. Compared to
entailment, the answer comparison step can intro-
duce difficulties and long questions may still lead
to incorrect evaluation. Since this paper shows
that QA-based metrics do not lead to interpretable,
localizable judgments about errors, QA-based met-



rics do not seem to have any structural advantage
over entailment-based metrics.

8 Related Work

Recent work (Fabbri et al., 2021) has shown that
popular metrics like ROUGE (Lin, 2004) and
BERTScore (Zhang et al., 2019) correlate poorly
with human judgments of summary quality. Fac-
tuality, in particular, has been widely studied in
recent summarization literature (Kryscinski et al.,
2019; Falke et al., 2019), both from the perspec-
tive of identifying non-factual generations (Wang
et al., 2020; Durmus et al., 2020; Goyal and Dur-
rett, 2020) and improving the factuality of summa-
rization models themselves (Kang and Hashimoto,
2020; Cao and Wang, 2021).

The majority of the work in factual evaluation
has focused on summary-level metrics and is not
capable of localizing errors within summaries. Re-
cent work has decomposed factuality into sum-
maries’ dependency arcs (Goyal and Durrett, 2020)
or semantic-graph representations (Ribeiro et al.,
2022). These localization capabilities have several
downstream applications like post-editing (Zhao
et al., 2020; Chen et al., 2021), removing noisy
training data (Nan et al., 2021; Goyal and Durrett,
2021), among others.

9 Conclusion

In this work, we show that although QA-based fac-
tuality metrics are motivated by error localization,
in practice, they exhibit extremely poor localization
capabilities. We provide a detailed analysis of the
different issues in current metrics that hinder better
localization performance. Finally, we run a human
study to investigate whether human-level QG can
fix some of these issues and conclude that there
exist fundamental issues with the QA framework
that cannot be simply fixed by stronger models.

10 Limitations

Given the lack of prior study in error localization of
summarization evaluation, there is no large-scale
dataset with token-level or span-level factuality la-
bels. Constantly-evolving summarization models
also mean that any such dataset would be come out-
dated in a fairly short time. However, we believe
that the fundamental issues we discussed with QA
metrics would persist across different summariza-
tion model outputs, despite our evaluation over a
limited set.

Note that all our analysis is conducted on En-
glish language datasets and models of summariza-
tion, with a limited focus on newswire summaries.
We believe that the issues identified here will trans-
fer to other languages, but other domains such as
dialogue or narrative summaries may exhibit sub-
stantially different types of factuality errors. These
have not been studied as heavily in prior work, so
likely new techniques and analysis will be needed
for these settings.

Acknowledgments

We thank Juan Diego Rodriguez for helpful com-
ments on this work. This work was partially sup-
ported by NSF grant IIS-2145280, a gift from Sales-
force Research, and a gift from Amazon. The au-
thors acknowledge the Texas Advanced Computing
Center (TACC) at the University of Texas at Austin
for providing HPC resources used to conduct this
research.

References
Meng Cao, Yue Dong, Jiapeng Wu, and Jackie Chi Kit

Cheung. 2020. Factual error correction for abstrac-
tive summarization models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6251–6258,
Online. Association for Computational Linguistics.

Shuyang Cao and Lu Wang. 2021. CLIFF: Contrastive
learning for improving faithfulness and factuality in
abstractive summarization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 6633–6649, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the Original: Fact-Aware Neural Abstrac-
tive Summarization. AAAI Conference on Artificial
Intelligence (AAAI).

Anthony Chen, Gabriel Stanovsky, Sameer Singh, and
Matt Gardner. 2020. MOCHA: A dataset for train-
ing and evaluating generative reading comprehension
metrics. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6521–6532, Online. Association for
Computational Linguistics.

Ping Chen, Fei Wu, Tong Wang, and Wei Ding. 2018.
A Semantic QA-Based Approach for Text Summa-
rization Evaluation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32.

Sihao Chen, Fan Zhang, Kazoo Sone, and Dan Roth.
2021. Improving Faithfulness in Abstractive Summa-
rization with Contrast Candidate Generation and Se-

https://doi.org/10.18653/v1/2020.emnlp-main.506
https://doi.org/10.18653/v1/2020.emnlp-main.506
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.1609/aaai.v32i1.11912
https://doi.org/10.1609/aaai.v32i1.11912
https://doi.org/10.18653/v1/2020.emnlp-main.528
https://doi.org/10.18653/v1/2020.emnlp-main.528
https://doi.org/10.18653/v1/2020.emnlp-main.528
https://doi.org/10.1609/aaai.v32i1.11911
https://doi.org/10.1609/aaai.v32i1.11911
https://doi.org/10.18653/v1/2021.naacl-main.475
https://doi.org/10.18653/v1/2021.naacl-main.475


lection. In Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT),
pages 5935–5941.

Dorottya Demszky, Kelvin Guu, and Percy Liang. 2018.
Transforming Question Answering Datasets Into Nat-
ural Language Inference Datasets. arXiv preprint
arXiv:1809.02922.

Daniel Deutsch and Dan Roth. 2021. Question-Based
Salient Span Selection for More Controllable Text
Summarization. arXiv preprint arXiv:2111.07935.

Yue Dong, Shuohang Wang, Zhe Gan, Yu Cheng, Jackie
Chi Kit Cheung, and Jingjing Liu. 2020. Multi-
fact correction in abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9320–9331, Online. Association for Computa-
tional Linguistics.

Esin Durmus, He He, and Mona Diab. 2020. FEQA: A
question answering evaluation framework for faith-
fulness assessment in abstractive summarization. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5055–
5070, Online. Association for Computational Lin-
guistics.

Matan Eyal, Tal Baumel, and Michael Elhadad. 2019.
Question answering as an automatic evaluation met-
ric for news article summarization. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3938–3948, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Alexander Fabbri, Chien-Sheng Wu, Wenhao Liu, and
Caiming Xiong. 2022. QAFactEval: Improved QA-
based factual consistency evaluation for summariza-
tion. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 2587–2601, Seattle, United States. Asso-
ciation for Computational Linguistics.

Alexander R. Fabbri, Wojciech Kryściński, Bryan Mc-
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A Additional Implementation Details

A.1 QuestEval
We use version 0.2.4 of the implementation by the
authors with the recommended parameters (task
= ’summarization’, do_weighter = False).8

A.2 DAE
Our experiments use a trained model provided
by authors (DAE_xsum_human_best_ckpt). This
model is trained on a subset of XSum dataset
(Maynez et al., 2020) that is distinct from examples
in CLIFF and GD21.

A.3 Converting Tokens-level factuality scores
to span-level scores

For the EM and the DAE baselines provide token-
level factuality scores. We refer readers to the
original DAE paper for details on how token-level
scores are obtained (Goyal and Durrett, 2021).
However, all our evaluation is designed to be at
the span-level to align with QA metrics. To convert
token-level scores to span-level, we annotate a span
as non-factual if it contains any non-factual token.

A.4 Statistics for Ignored non-NP/NE tokens
The QA metrics do not evaluate the factuality of
any token outside the boundary of a named entity
of a noun phrase (discussed in Section 3.1). In
Table 4, we show which kinds of tokens are ignored
by the QA metrics but annotated as non-factual in
our human annotated factuality datasets. Figure 5
provides an illustrative example of such ignored
non-factual tokens in the different datasets).

GD21 CLIFF
XSum C/D XSum

adposition 30.8 25.3 29.9
verb 24.4 23.7 23.5

auxiliary 15.2 10.0 17.1
punctuation 12.6 21.2 17.5

particle 6.7 3.9 4.5

Table 4: Statistics for non-factual POS-tags ouside the
NP/NE boundaries and ignored by the QA metrics.

B Statistics of Generated Questions in
QA-Based Metrics

Table 6 provides statistics for the generated ques-
tions from QuestEval and QAFactEval, highlight-
ing the difference between these two metrics. On

8https://github.com/ThomasScialom/QuestEval

CLIFF (XSum)
An environmental permit has been revoked following a
fire at a fuel recycling plant in Manchester.

CLIFF (CNN/DM)
A Japan Railway maglev train hit 603 kilometers per
hour(374 miles per hour) on an experimental track in Ya-
manashi Tuesday. A spokesperson said the train spent
10.8 seconds traveling above 600 km per hour , during
which it covered 1.8 kilometers ( 1.1 miles ) That ’s nearly
20 football fields in the time it took you to read the last
two sentences . Japan Railways has been testing their train
to figure out the best operational speed for a planned route
between Tokyo and Nagoya scheduled to begin service
in 2027 .

GD21
high winds and heavy rain have caused flooding at a
derbyshire theme park, forcing it to close for the weekend.

Table 5: Example of non-factual tokens outside NP/NE
boundaries and ignored by the QA metric in factuality
evaluation.

Avg Question Length Avg No. Questions

GD21 CLIFF GD21 CLIFF
XSum C/D XSum XSum C/D XSum

QAFactEval 26.3 16.2 21.1 4.9 10.0 3.9
QuestEval 16.4 11.6 13.9 8.3 20.5 7.5

Table 6: Statistics for the generated questions for the
QuestEval and QAFactEval metrics.

average, QAFactEval generates much longer ques-
tions. On the other hand, QuestEval generates a
larger number of questions as it often generates
multiple questions per candidate span.

C Performance Loss due to Span
Filtering

In Section 3.1, we discussed that the current QA
metrics do not evaluate non-NP/NE spans. These
operational shortcomings prevent these metrics
from providing a complete picture of error local-
ization over all summary tokens. Here, we discuss
another similar issue arising due to the question
filtering step of the overall workflow (Step 3).

Although QA metrics select all NP/NE spans
for evaluation during the candidate selection stage
(Step1), some of these are filtered out if their corre-
sponding question is of low quality: ai for which
A(qi, S) ̸= ai are also discarded from further eval-
uation. Since no errors are detected in these spans,
they are considered to be factual.

We observed that this question filtering step re-
moves around 30% of the NE/NPs in the QAFactE-
val framework. This implies that this metric only



Model GD21 CLIFF
XSum CNN/DM XSum

EM 0.30 0.27 0.64D

DAE 0.32 0.20E 0.78

QE 0.19DE 0.06DE 0.45DE

QAFE 0.21D 0.13DE 0.49DE

Table 7: Span-level performance (F1 scores) over the
subset of NP/NEs that are not discarded by either of the
two QA metrics. D (or E) denotes that the performance
difference with DAE (or EM) is statistically significant
according to a paired bootstrap test (p-value < 0.05).
Even under this generous setting, we observe that the
QA metric show very poor performance.

evaluates 70% of the valid spans, potentially miss-
ing factual errors in the remaining NP/NEs. Note
that these numbers are considerably lower for
QuestEval (<5%) as it generates multiple ques-
tions for each candidate span and hence is more
likely to include an acceptable question.

As this impacted the results in Figure 3, we can
ask what is the performance of the QA metrics over
spans that they actually evaluate for factuality? If
this performance is high, we can reasonably as-
sume that the QA metrics’ localization capabilities
can be improved through better question generation
models. Table 7 outlines our results: we report F1
scores at the span-level when evaluating over the
subset of NP/NEs that are evaluated by both the
QE and QAFE models. Although the QA metrics
report improved results over those reported in Fig-
ure 3, these are still low enough so as to not be
useful for error localization in practical settings.

Figure 8 shows the corresponding ROC curves
for these. These show similar trends: the perfor-
mance of QAFactEval improves when evaluating
on this subset, but is still not better than the base-
line models. Interestingly, for CLIFF (CNN/DM),
we found that most of this improvement comes
from the subset of candidate spans whose questions
contain only a small fraction of factual errors (Fig-
ure 9). This aligns with our analysis in Section 5
that showed that errors in generated questions in-
herited from non-factual summaries was one of the
major reasons for performance degradation, since
questions generated from summaries with small
number of errors are expected to inherit fewer er-
rors.

Figure 8: ROC curves for span-level performance on
the subset of NE/NPs evaluated by all the QA metrics.

(a) Bottom 50% of the sum-
maries according to error rate

(b) Top 50% of the sum-
maries according to error rate

Figure 9: Comparison of ROC curves for the span-level
performance on CLIFF (CNN/DM). There shows results
on the subset of NP/NEs actually judged by QA metrics.
The graphs show that the performance of the QAFE is
better on the subset of summaries with a smaller number
of errors.

D Additional Details about Human QG
Annotation

The human annotation in Section 6 was done by
the authors of this paper. They were provided with
summaries and extracted answer candidate spans.
For spans that were judged to be invalid (e.g. “it”),
they were asked to manually discard these spans.
For all others, questions of varying lengths and
specificity were written. See an example in Table 8.
To aid in this question writing step, we also provide
the corresponding QAFactEval questions. For the
longest questions, we found that annotators often
chose to build on these questions albeit with correc-
tions to the structure and grammar of the automatic
questions.

Table 9 shows the number of summaries, spans,
and generated summaries annotated in our human
QG experiments. We use half of the summaries as
validation sets.



(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 10: Summary-level F1 performance on the GD21 test set at different thresholds

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 11: Span-level F1 performance on the GD21 test set at different thresholds

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 12: Summary-level F1 performance on the CLIFF (CNNDM) test set at different thresholds.

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 13: Span-level F1 performance on the CLIFF (CNNDM) test set at different thresholds.

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 14: Summary-level F1 performance on CLIFF (XSum) test set at different thresholds.

(a) EM Baseline (b) DAE (c) QuestEval (d) QAFactEval

Figure 15: Span-level F1 performance on the CLIFF (XSum) test set at different thresholds.



Summary
Plans to build a new hospital in Somer-
set have been given a £3m boost by the
government.

Selected Span a new hospital

Shortest What does the plan propose to build?

Intermediate What does the plan that has been given a
boost propose to build?

Longest
What does the plan that has been given a
£3m boost by the government propose to
build?

QAFactEval
What plans to build in Somerset have
been given a £3m boost by the govern-
ment?

Table 8: Example of human-generated questions.

CLIFF CLIFF
(CNN/DM) (XSum)

# Summary 30 120
# Span 323 470

# Questions 737 1449

Table 9: Number of summaries, spans, and generated
questions annotated by human QG.

E Summary and Span Level Evaluation

We provide additional results for our experiments
in Figure 3. Figure 10 to 15 show F1 scores, pre-
cision, and recall on test sets with different thresh-
olds. These show that QA-based metrics cannot
yield high precision at any threshold.


