
Complementary Explanations for Effective In-Context Learning

Xi Ye♢∗ Srinivasan Iyer♠ Asli Celikyilmaz♠ Ves Stoyanov♠

Greg Durrett♢ Ramakanth Pasunuru♠

♢ The University of Texas at Austin ♠ Meta AI
♢{xiye,gdurrett}@cs.utexas.edu

♠{sviyer,ves,aslic,rpasunuru}@meta.com

Abstract
Large language models (LLMs) have exhibited
remarkable capabilities in learning from expla-
nations in prompts, but there has been limited
understanding of exactly how these explana-
tions function or why they are effective. This
work aims to better understand the mechanisms
by which explanations are used for in-context
learning. We first study the impact of two dif-
ferent factors on the performance of prompts
with explanations: the computation trace (the
way the solution is decomposed) and the natural
language used to express the prompt. By per-
turbing explanations on three controlled tasks,
we show that both factors contribute to the ef-
fectiveness of explanations. We further study
how to form maximally effective sets of expla-
nations for solving a given test query. We find
that LLMs can benefit from the complemen-
tarity of the explanation set: diverse reasoning
skills shown by different exemplars can lead
to better performance. Therefore, we propose
a maximal marginal relevance-based exemplar
selection approach for constructing exemplar
sets that are both relevant as well as comple-
mentary, which successfully improves the in-
context learning performance across three real-
world tasks on multiple LLMs.

1 Introduction

Large language models (LLMs) have achieved
promising progress in learning from only a few
exemplars in prompts via in-context learning (ICL)
(Brown et al., 2020; Chowdhery et al., 2022). To
scale to complex tasks, recent work in the past year
has shown that LLMs can benefit from explanations
in prompts, particularly for tasks involving multi-
step reasoning (Nye et al., 2021; Wei et al., 2022;
Wang et al., 2022b; Madaan et al., 2022; Jung et al.,
2022). However, while including explanations in
prompts has been demonstrated to be useful, little
has been shown regarding what particular features
make them effective and how they function in ICL.

∗ Work done during an internship at Meta AI.

Question:

Gold Explanation:
The last letter of  "Bill" is "l". The last letter of "Gates" is 
"s". Concatenating “l" and "s" is “ls". So the answer is ls.

 Trace  NL  

Take the last letters of the words in "Bill Gates” and 
concatenate them.

Figure 1: Prompting OPT (Zhang et al., 2022) with
explanations where we perturb the computation traces
or natural language. Perturbing either traces or natural
language will lead to performance degradation.

Our work aims to better understand the mecha-
nisms by which explanations are used for ICL. As
shown in the example for a multi-step reasoning
task in Figure 1, we view an explanation as a combi-
nation of a computation trace and natural language
which glues together the states in the trace. We
design a series of probing experiments that perturb
the explanations (as shown in Figure 2) and test
LLMs’ performance to understand the sensitivity
of LLMs on these two factors. The results suggest
that both factors contribute to making effective ex-
planations, as LLMs see substantial performance
degradation when prompted with defective expla-
nations. Nonetheless, incomplete explanations are
still beneficial compared to no explanations at all
(Figure 1). This suggests that LLMs “faithfully”
follow the reasoning process specified by the ex-
planations to some extent, as opposed to naively
following the template patterns while disregarding
critical information (Min et al., 2022c).

The observations from our probing experiments
lead us to focus next on understanding what makes



an effective set of exemplars with explanations for
solving a given test query. We primarily focus on
two aspects, the exemplar-exemplar interplay (how
exemplars work together) and the query-exemplar
interplay. On the former, we find that the com-
plementarity of the exemplar set is beneficial, as
LLMs can fuse different reasoning processes ex-
hibited by individual exemplars in-context. For
these studies, we probe LLMs with a mixture of
two types of exemplars; each type only specifies
a part of the reasoning process (see Figure 3 for
detailed instances). We also test how the relevance
between the query and the exemplars impacts the
performance. Choosing the nearest neighbors (NN)
of the query to prompt LLMs has been shown to
be effective in the standard prompting setting (Liu
et al., 2021). Our experiments covering three sim-
ilarity metrics show that this is also applicable in
the setting that prompts LLMs with explanations.

Our analyses inspire us to rethink the exemplar
selection process of using explanations for ICL.
The prominent NN-based paradigm only considers
relevance (Shin et al., 2021; Liu et al., 2021; Rubin
et al., 2022), which could result in selecting mostly
similar exemplars. We argue that complementar-
ity should also be considered when constructing
explanation-infused prompts. Therefore, we pro-
pose an exemplar selection strategy based on the
maximum marginal relevance (MMR) (Carbonell
and Goldstein, 1998) approach which selects ex-
emplars that are both relevant as well as diverse.
The underlying rationale is that a diverse set of ex-
emplars is more likely to showcase complementary
reasoning types that are required to illustrate the
reasoning required in the query. We test our MMR-
based strategy on three real-world datasets span-
ning multiple reasoning tasks. On a powerful LLM,
text-davinci-002, our MMR-based strategy is
able to improve the accuracy over the baseline of
using random exemplars by 4.0%, 3.9%, and 8.5%
on GSM, ECQA, and E-SNLI, respectively.

In summary, our main findings are: (1) We show
that both the computation trace and natural lan-
guage contribute to making effective explanations
for ICL. (2) We show that LLMs can benefit from
exemplar sets that exhibit both complementarity
and relevance to a given test query. (3) We pro-
pose an MMR-based exemplar selection strategy
considering both complementarity and relevance
and demonstrate that it is more effective than solely

choosing the nearest neighbors.1

2 Background

In-Context Learning Our study is focused on
the usage of explanations in in-context learning
(ICL). Let q be the test query to solve. The standard
ICL prompts a language model, M , with a set of
exemplar input-output pairs, {(q1, a1)...(qm, am)},
and predict an answer â for the query:

â = argmax
a

pM (a | q, {(q1, a1)...(qm, am)}).

In addition to just input-output pairs, we can
also include explanations (in the style of Scratch-
pad (Nye et al., 2021) or chain-of-thought (Wei
et al., 2022)) in prompts, which leads the LLM to
generate explanations for its predictions as well:

â = argmax
a

∑︂
e

pM (a, e | q, C),

where C = {(q1, e1, a1)...(qm, em, am)} is the set
of input-explanation-output triplets in prompts.
Ideally, inference in this requires marginalizing out
the explanation e, which is impractical, especially
with LLMs. Following Wei et al. (2022); Ye and
Durrett (2022), we employ greedy decoding to
make an approximate prediction during inference.

The end task performance of ICL is sensitive to
the selected exemplars (Liu et al., 2021). While
much prior work uses a fixed set of manually se-
lected exemplars (Wei et al., 2022; Wang et al.,
2022b), there is also work devoted to studying how
to select more effective exemplars from a pool of
exemplars. Given a test query q, the task is to
select a set of m exemplars from a pool of n exem-
plars D = {(q1, e1, a1)...(qn, en, an)} to construct
a prompt for solving q. We note that this yields
varying exemplar sets for different queries.

Datasets & Large Language Models Our anal-
ysis is based on model performance on various
reasoning datasets. For probing experiments, we
mainly use symbolic reasoning datasets, including
1) LETTER CONCATENATION (LET CAT) (Wei
et al., 2022) which requires extracting the last let-
ters of two words and then concatenating them, 2)
COIN FLIPS (Wei et al., 2022) which reasons about
the states of a coin after two steps of operations
(flipping or not flipping), and 3) GRADE SCHOOL

1Code is available at https://github.com/
xiye17/ComplementaryExpl.

https://github.com/xiye17/ComplementaryExpl
https://github.com/xiye17/ComplementaryExpl


MATH (GSM) (Cobbe et al., 2021) which focuses
on grade school-level arithmetic reasoning prob-
lems expressed in natural language.

To investigate the effectiveness of different ex-
emplar selection strategies, we use two more tex-
tual reasoning datasets, namely ECQA (Aggar-
wal et al., 2021) and E-SNLI (Camburu et al.,
2018), in addition to GSM. The task of E-SNLI
is to decide whether a premise entails a hypothesis.
ECQA asks multiple-choice commonsense ques-
tions. These three tasks include human-annotated
explanations and cover diverse reasoning abilities.

Our experiments cover an array of LLMs,
including OPT-175B (Zhang et al., 2022), GPT-3
(davinci) (Brown et al., 2020), InstructGPT

(text-davinci-001) (Ouyang et al., 2022),
and text-davinci-002. In addition, we also use
GPT-3 Codex models (Chen et al., 2021) that
are finetuned on a large scale of code snippets
in our exemplar selection experiments, namely
code-davinci-001 and code-davinci-002.
Though codex models primarily target code-related
applications, we find that they are strong in textual
reasoning tasks as well.

3 Do LLMs Follow Explanations?

We first investigate what makes explanations effec-
tive for LLMs to learn from. We view an explana-
tion as a computation trace (T ) that is transformed
by a natural language function (L) which maps the
trace to a complete natural language explanation.
A computation trace T is the chain of intermedi-
ate steps (instantiated as tokens in explanations),
s1, . . . , sn, that are used to derive the final answer.
For instance, the trace for LETCAT is the two
last letters of the two words and the concatenated
two-letter tokens; the traces for GSM are the inter-
mediate equations. These computation traces are
wrapped by natural language function L to form the
final explanation L(s1, . . . , sn), which presumably
makes the generation of these traces more “natural”
with respect to language modeling.

Setup We choose the three symbolic reasoning
datasets mentioned in Section 2 for our probing ex-
periments for two reasons. First, LLMs see substan-
tial benefits from including explanations in prompts
for these tasks. Second, we can easily manipulate
the traces in their explanations. The gold explana-
tions are directly taken from or adapted from Wei
et al. (2022). More details on the gold explanations
used for these tasks can be found in Appendix A.

L
E

T
C

A
T

Question: Take the last letters of the words in "Bill Gates" and concatenate
them.

Gold: The last letter of Bill is l . The last letter of Gates is s .

Concatenating l and s is ls . So the answer is ls.
Mask1: The last letter of Bill is _. The last letter of Gates is _. Concate-
nating l and s is ls. So the answer is ls.
Mask2: The last letter of Bill is l. The last letter of Gates is s. Concatenat-
ing _ and _ is _. So the answer is ls.
Incorrect: The last letter of Bill is y. The last letter of Gates is e. Concate-
nating y and e is ye. So the answer is ye.
No NL: Bill, l. Gates, s. l, s, ls. So the answer is ls.

C
O

IN
F

L
IP

Question: A coin is heads up. Ka does not flip the coin. Sal flips the coin.
Is the coin still heads up?

Gold: The coin started heads up. Ka does not flip the coin, so it becomes

heads up. Sal flips the coin, so it becomes tails up. So the answer is no.
Mask1: The coin started heads up. Ka does not flip the coin, so it becomes
_ up. Sal flips the coin, so it becomes tails up. So the answer is no.
Mask2: The coin started heads up. Ka does not flip the coin, so it becomes
heads up. Sal flips the coin, so it becomes _ up. So the answer is no.
Incorrect: The coin started heads up. Ka does not flip the coin, so it
becomes tails up. Sal flips the coin, so it becomes heads up. So the answer
is yes.
No NL: heads, heads, tails. So the answer is no.

G
S

M

Question: Leah had 32 chocolates and her sister had 42. If they ate 35,
how many pieces do they have left in total?

Gold: Leah had 32 chocolates and Leah’s sister had 42. That means there
were originally 32+42=74 chocolates. 35 have been eaten. So in total

they still have 74-35=39 chocolates. The answer is 39.
Mask1: Leah had 32 chocolates and Leah’s sister had 42. That means
there were originally 32+42=_ chocolates. 35 have been eaten. So in total
they have _-35=39 chocolates. The answer is 39.
Mask2: Leah had 32 chocolates and Leah’s sister had 42. That means
there were originally _ chocolates. 35 have been eaten. So in total they
have _ chocolates. The answer is 39.
Incorrect: Leah had 32 chocolates and Leah’s sister had 42. That means
there were originally 32+42=62 chocolates. 35 have been eaten. So in total
they have 62-35=27 chocolates. The answer is 27.
No NL: 32+42=74, 74-35=39. The answer is 39.

Figure 2: Examples of gold explanations and perturbed
explanations. We perturb the trace in gold explanations
( colored ) by masking intermediate states or substitut-
ing them with incorrect values.

We experiment on both LLMs trained with
vanilla language modeling objectives (OPT,
davinci) and LLMs that are aligned with human
expectations via different forms of instruction
tuning (text-davinci-001, text-davinci-002).

3.1 Explanations or Triggers?

We start by investigating whether actual compu-
tation traces matter. If the correctness of the in-
context demonstration is unimportant, then that
serves as evidence that explanations act as trig-
gers that induce LLMs to follow certain patterns
and perform slot-filling. To study this, we prompt
LLMs with perturbed explanations, i.e., by perturb-
ing computational traces and measuring the impact
on performance in an ICL setting.

Figure 2 shows concrete examples of how we
perturb the gold explanations. We experiment with
two ways of perturbing the inputs. The first way is



LETCAT COINFLIP GSM
OPT davinci txt-01 txt-02 OPT davinci txt-01 txt-02 OPT davinci txt-01 txt-02

Standard 8.5 8.5 10.5 16.0 51.5 83.0 68.0 99.0 5.5 7.5 11.0 26.5
Gold 50.0 59.0 85.0 100. 94.0 89.5 100. 100. 32.5 26.0 25.0 57.5

Mask1 11.0 16.0 21.5 100. 71.0 88.0 61.5 100. 19.0 21.0 12.5 29.5
Mask2 32.5 49.5 68.0 100. 84.0 91.5 99.0 100. 10.0 16.0 11.5 27.5

Random 10.0 25.0 28.0 13.0 52.5 54.5 67.0 69.0 3.0 3.0 1.0 34.5
Incorrect 40.0 53.0 67.5 99.5 60.5 86.0 52.0 100. 18.5 17.0 10.0 16.5

No NL 29.0 15.0 46.5 100. 59.5 86.0 99.0 100. 8.0 19.5 14.5 45.5

Table 1: In-context performance obtained using various perturbed explanations on three datasets. Perturbed
explanations achieve inferior performance than complete ones, but many of the perturbed explanations still grant
performance gains over standard prompting.

masking out the intermediate states by replacing a
state si (or several states) in s1, . . . , sn with a mask
token (e.g., empty string), which tests whether
LLMs can implicitly infer the intermediate states.
The second way is to replace a state si with an in-
correct one, which tests whether LLMs can recover
the correct computation from corrupted traces.

Construction of Perturbed Explanations We
carefully design the way to mask out the intermedi-
ate states. We experiment with various choices of
masks in our preliminary experiments. We do not
observe large variance caused by different masks,
and we choose to use empty string which leads
to less performance degradation in general, as our
goal here is to probe LLMs’ maximum capabili-
ties in recovering the reasoning process from per-
turbed explanations. More details on the prelimi-
nary experiments on choosing masks can be found
in Appendix B. When constructing incorrect expla-
nations, we also experiment with different sets of
random values used to substitute the correct ones.
Furthermore, we also include complete random
explanations (taken from other exemplars), which
replace the whole gold traces with incorrect ones.

Results Table 1 shows the results obtained us-
ing prompts with various perturbations on the
three tasks. First, LMs are indeed relying on
the actual computation traces. Perturbing the
traces of the explanations will lead to performance
degradation in various degrees on all these three
tasks for OPT, davinci, and text-davinci-001.
text-davinci-002 does not exhibit performance
degradation when being prompted with incomplete
explanations on the simple tasks, LETCAT and
COINFLIP: when the trace is straightforward, a
powerful enough LLM is able to “shortcut” some
particular steps. While for the more challenging
tasks, i.e., GSM, text-002 is also affected by per-
turbations in explanations. Nonetheless, LLMs can

still benefit from partially complete or partially cor-
rect explanations and outperform standard prompt-
ing without using explanations. In particular, on
the LETCAT task, even completely irrelevant ran-
dom explanations can be beneficial, although they
lag gold explanations. Overall, incorrect and in-
complete or even totally irrelevant explanations are
able to elicit reasoning, but LLMs do rely on gold
explanations to work well.

3.2 Is Natural Language Necessary?

Next, we question whether the natural language
(NL) is really necessary and test whether LLMs
can infer the reasoning steps from the computation
traces alone. We perturb gold explanations by not
wrapping computation traces with natural language
transformation L, as shown in the examples from
Figure 2, and only retain the traces.

Results We show the performance obtained by
using these prompts in Table 1. Natural language
also plays an essential role in making effective ex-
planations. Removing the NL leads to substantially
worse performance. On LETCAT, the accuracy of
OPT, and davinci drops by more than 20, respec-
tively, compared to using gold explanations. On
GSM, removing NL consistently leads to perfor-
mance degradation. Meanwhile, including interme-
diate states without NL can still improve the per-
formance compared to not using any explanations.

3.3 Discussion

As suggested in the experimental results in Sec-
tion 3.1 and Section 3.2, LLMs do generally follow
the explanations in the prompts. Both concrete
computation traces and natural language contribute
to making effective explanations for ICL. Perturb-
ing certain parts of the explanations will accord-
ingly result in performance degradation, but partial
explanations are still beneficial to LMs.



By contrast, recent work shows LLMs are not
sensitive to perturbations on the ground-truth input-
label mapping in the standard prompting paradigm
that does not use explanations (Min et al., 2022c).
Our work shows that LLMs are sensitive to per-
turbations in the input-explanation mapping and
other more subtle perturbations in the explanations.
Using explanations in prompts is a promising way
to guide LLMs in learning a new task via ICL.

4 What Makes A Good Exemplar Set?

Our probing experiments have established how the
general factors, computation trace and natural lan-
guage, impact explanations’ effectiveness in ICL.
We now study how a set of exemplars, as a whole,
functions together in solving a particular test query.
We study this problem from two angles, the inter-
play between exemplars and the interplay between
the query and the exemplars.

4.1 Exemplar-Exemplar Interplay
As in Section 3, LLMs can learn to follow the rea-
soning processes as specified in exemplars. As rea-
soning processes can be composed, we hypothesize
that LLMs might also be able to fuse the reasoning
processes of different exemplars together to solve a
test query. We design a set of probing experiments
that successfully verify this hypothesis.

Experiment Design At the abstract level, we
compare the performance of LLMs when being
prompted with three sets of exemplars. The first
and second set of exemplars each focuses on a par-
ticular part of the reasoning process, and these two
parts are disjoint. That is, for a computation trace
s1, . . . , sn, the first and second set contain exem-
plars where si and sj are perturbed, and i ̸= j. The
third set of exemplars includes the mixture from
the first and second sets. We test the ICL perfor-
mance of the prompts constructed from these three
types of exemplar sets on the test set that requires
combining two types of reasoning. If the third type
gives superior performance than the first two types,
that means LLMs can pick up the disjoint reasoning
and fuse them in-context.

To better illustrate such a hypothesis, we give a
concrete example as follows. We have introduced
two different types of masked explanations in
Figure 2 for LETCAT, where the first type masks
the last letter extraction part, and the second type
masks the letter concatenation part. These two
different masked explanations specify two steps

A
dd

O
nl

y Q: Marion received 20 more turtles than Mia at the animal rescue center.
If Mia received 40 turtles, how many turtles did they receive together?
A: Since Marion received 20 more turtles than Mia, she had 20 + 40 = 60
turtles. The two received 60 + 40 = 100 turtles. The answer is 100.

M
ul

O
nl

y Q: Super Clean Car Wash Company cleans 80 cars per day. They make
$5 per car washed. How much money will they make in 5 days?
A: Each day they will make 80 * $5 = $400. They will make $400 * 5 =
$2000 in 5 days. The answer is 2000.

A
dd

&
M

ul Q: Peter purchased 20 popsicles at $0.25 each. He also purchased 4 ice
cream bars at $0.50 each. How much did he pay in total in dollars?
A: The popsicles cost 0.25 * 20 = 5 dollars. The ice cream bars cost 0.5 *
4 = 2 dollars. He paid 5 + 2 = 7 dollars. The answer is 7.

Figure 3: Examples of GSM data points that involve
only addition operators, only multiplication operators,
and both of them at the same time. We note that Add &
Mul are only used at the test time.

of the reasoning process needed; combining these
two steps will yield the complete reasoning steps
needed for solving this task. We test whether
LLMs can combine these two reasoning steps
in-context if being prompted with a mixture of
these two corresponding types of masked prompts.

For GSM, we use a more organic way to parti-
tion the reasoning process. We separate the reason-
ing skills needed for a test query based on the oper-
ators (addition and multiplication) that are used in
the steps. Concretely, we filter the GSM dataset
by looking at the provided explanations paired with
examples, and obtain disjoint sets that 1) only in-
volves addition operators in the explanation 2) only
involves multiplication operators in the explana-
tion (See Figure 3 for examples). Next, we test
the performance on a test set consisting of exam-
ples that require both operators at the same time
(Add and Mul in Figure 3). This forms a test-bed
for investigating whether LLMs can better learn to
solve problems where both operators are present
at the same time while being prompted with the
mixture of these two operators, even if no explicit
combinations are shown in the prompts.

Setup We experiment on the same three datasets
as used in Section 3. On LETCAT and COINFLIP,
we test whether LLMs can combine the reasoning
steps specified in two different types of masked
explanations; on GSM, we test whether LLMs
can compose addition and multiplication. The mix-
ture type prompts include half of the exemplars
from the first type and second type which bear dif-
ferent reasoning. For each setting of GSM, we
experiment with 4 different sets of randomly drawn
exemplars and report the average. More details
about the setting can be found in Appendix C.



OPT davinci txt-01 txt-02

L
E

T
C

A
T Mask1 11.0 16.0 21.5 100.

Mask2 32.5 49.5 68.0 100.

Mixture 37.0 56.5 82.0 100.

C
O

IN

Mask1 71.0 88.0 61.5 100.
Mask2 84.0 91.5 99.0 100.

Mixture 93.5 91.0 100. 100.

G
S

M AddOnly 6.8 13.5 14.1 50.3
MulOnly 4.7 17.2 16.7 50.1

Mixture 7.0 18.9 18.2 52.0

Table 2: The accuracy of prompting LLMs with ex-
emplars focusing on single parts of the reasoning or
a mixture of them. LLMs achieve better performance
when being prompted with exemplars covering multiple
aspects of the reasoning process.

Results As in Table 2, on LETCAT, the prompts
with mixed explanations largely surpass Mask1,
and outperform Mask2 by 6.0, 7.0, and 12.0 on OPT,
davinci, text-davinci-001, respectively. Par-
ticularly, the mixture prompts is able to perform
roughly on par with the complete prompt (Gold-
Expl in Table 1) for LETCAT on davinci, and
text-001. On COINFLIP, using mixture prompts
also leads to improvements on OPT.

On the realistic GSM dataset, prompting
text-davinci-002 with only addition or multipli-
cation exemplars leads to a performance of 50.3
and 50.1, respectively, whereas prompting with a
mixture of these two types of exemplars achieves
a better performance of 52.0. On davinci,
and text-001, addition exemplars give worse
performance than multiplication exemplars. Never-
theless, including these inferior addition exemplars
in prompts together with multiplication exemplars
still leads to better performance, as they can com-
plement the reasoning. In general, results on three
datasets suggest LLMs are able to fuse the reason-
ing process that is spread over different exemplars.
Therefore, we can expect the exemplars to be able
to complement each other and collaborate together
to solve the reasoning needed in the test query.

4.2 Query-Exemplar Interplay

Next, we explore how the interplay between the
query and exemplars impacts the ICL performance.
Recent work has studied how to make good in-
context exemplar sets for a given query in the stan-
dard prompting setting: choosing nearest neighbors
that are more similar to the query leads to better
performance (Liu et al., 2021; Shin et al., 2021).
Our work investigates how choosing relevant exem-

plars impact the performance in the setting when
using explanations in prompts. We compare the per-
formance obtained by constructing prompts using
nearest neighbors against using randomly selected
exemplars. The results verify that choosing the
nearest neighbors is also beneficial in this setting.

Similarity Measurements We test three differ-
ent ways to measure the similarity S(q, qi) be-
tween a test query q and an exemplar qi.2 1) CLS-
based: Liu et al. (2021) use smaller LMs (e.g.,
BERT (Devlin et al., 2019)) to extract the CLS
embedding of the input q and qi and then use co-
sine similarity to score the embedding pairs, i.e.,
cos(CLS(q),CLS(qi)). 2) LM-based: the simi-
larity is given as the probability of generating the
query when the language model is conditioned on
the exemplar, i.e., LM(q | qi) (Shin et al., 2021;
Rubin et al., 2022). 3) BERTScore: we also exper-
iment with using BERTScore (Zhang et al., 2020)
as the similarity score, in addition to the two ap-
proaches that are commonly used in prior work.

It is worthwhile to note that measuring similar-
ity using large LLMs is expensive. As it requires
querying a large number of query-exemplar pairs.3

Setup We experiment on three realistic datasets,
GSM, ECQA, and E-SNLI. leaving out synthetic
tasks which feature formulaic explanations that
are all similar to each other. We set the number of
exemplars to be 8 for all three test datasets. We
compare the performance of selecting nearest exem-
plars against that of selecting random exemplars.

Given the intensive cost of querying LLMs, we
set the train exemplars pool size to be 512, and
allocate computational resources to experimenting
over 4 sets of randomly selected 512 exemplar
pools to alleviate the influence of randomness.
We focus on more capable LLMs, including
code-davinci-001, and code-davinci-002, and
text-davinci-002, leaving out OPT and davinci

which have inferior performance. We note that we
do not use text-002 to measure similarity, owing
to its high cost. Rather, we take the similarity
scores computed by code-002 and use those for
text-002. So the performance of text-002 when

2The similarity is measured only based on the input part
and excludes the explanations part, as we do not have access
to the explanation of the query in the test phase.

3For instance, calculating the similarity between 500
queries and a pool of 500 exemplars for a dataset whose typi-
cal question token number is 50, would cost $500 using GPT-3
API (rate: $0.02/1000 tokens).



code-davinci-001 code-davinci-002 text-davinci-002
GSM ECQA E-SNLI AVG GSM ECQA E-SNLI AVG GSM ECQA E-SNLI AVG

Random 16.3 53.6 47.2 39.0 64.6 74.7 74.9 71.3 48.8 71.9 75.1 65.3

CLS 16.5 55.0 54.1 41.8 65.4 74.9 74.8 71.7 50.4 72.1 77.4 66.6
LLM 18.5 56.0 57.4 43.9 65.8 76.8 81.6 74.7 52.0∗ 74.3∗ 83.9∗ 70.0
BERTScore 18.5 54.6 53.7 42.3 66.7 75.9 75.6 72.8 51.0 72.8 78.7 67.6

Table 3: Comparison between the performance obtained by choosing relevant exemplars using CLS embedding,
LM, or BERTScore. AVG denotes the average across the three datasets. Selecting relevant exemplars leads to
performance improvements, especially when using LLMs themselves to measure the similarity. Using Bertscore
also consistently improves the performance across all tasks, even surpassing LM-based scores on GSM. We note
that the results on text-davinci-002 use the LM-based scores provided by code-davinci-002 (denoted by ∗).

using the LM-based measure might be suboptimal
given the discrepancy.

Results As shown in Table 3, choosing rele-
vant exemplars is also useful in the setting that
includes explanations in prompts. Using the LM-
based similarity measurements brings performance
improvements across all three datasets, and has
the most significant impacts on E-SNLI, though
this is achieved with non-negligible computation
cost. Using CLS-embeddings for selecting exem-
plars mildly improves the performance on GSM
but does not result in any performance gains on
ECQA. The limited improvements can be at-
tributed to the size of the exemplar pools that we
use. In our experiments, the size is 512, which is
significantly smaller than that in Liu et al. (2021)
(typically tens of thousands of exemplars). Never-
theless, this size is large enough for the LM-based
method and BERTScore to take advantage of.

In addition, the results suggest that choosing
relevant exemplars using BERTScore is also able
to improve the performance across all datasets.
Specifically, BERTScore-based exemplar selection
achieves an accuracy of 66.7 on GSM using
code-002, which even surpasses the performance
of LM-based exemplar selection. While using
BERTScore lags the LM-based on ECQA and
E-SNLI, it still outperforms choosing random ex-
emplars or CLS-based exemplar selection. Overall,
using BERTScore to select the closest exemplars
can lead to credible performance improvements
while does not require heavy overheads caused by
using LLMs to score query-exemplar pairs.

5 MMR for Exemplar Selection

We have established that emplar-exemplar interplay
together with the query-exemplar interplay impacts
the performance of using explanations in ICL. This
leads us to rethink how to select good exemplars
for a given query. Based on our prior analysis on

Algorithm 1 MMR-Based Exemplar Selection

1: procedure MMRSELECT(D, q, k,S)
input: exemplar pool D = {q1...qn}, test query q, num-
ber of shots m and similarity measurement S
output: selected exemplars T = {q1...qm}

2: S := [[S(qi, qj)]]qi,qj∈D; ▷ the pairwise similarity
between exemplars in D

3: Q := [S(q, qi)]qi∈D; ▷ the similarity between query
and exemplars in T

4: T := {};
5: while |T | < k do
6: q̂ := Equation(1); ▷ get the next exemplar

based on Eq (1)
7: T.add(q̂)

8: return T ;

the effects of complementarity and relevance in
Section 4.1, we argue that a good set should consist
of relevant exemplars that collaboratively cover the
reasoning skills required for solving the query.

The prominent paradigm, i.e., NN-based exem-
plar selection strategy, only considers the relevance
between the exemplars and the query. Yet, select-
ing nearest neighbors could result in mostly similar
exemplar sets, which can possibly limit collabo-
ration. We argue that complementarity should also
be considered in the exemplar selection process,
so that the selected set could have a higher chance
to illustrate the required reasoning processes.

In practice, it is tricky to decide whether the
reasoning underlying a set of exemplars is comple-
mentary categorically. We therefore use diversity
as a proxy, since a set of less similar exemplars
is arguably more likely to exhibit complementar-
ity. To that end, we propose a maximal-marginal-
relevance (Carbonell and Goldstein, 1998) (MMR)
based exemplar selection strategy. The idea is to
select exemplars that are relevant to the query while
being diverse enough to be collaborative. Suppose
for the given query q, we have already selected a
set of exemplars T = {qi}, then we will pick up
the next exemplar according to:



code-davinci-001 code-davinci-002 text-davinci-002
GSM ECQA E-SNLI AVG GSM ECQA E-SNLI AVG GSM ECQA E-SNLI AVG

LLM NN 18.5 56.0 57.4 43.9 65.8 76.8 81.6 74.7 52.0∗ 74.3∗ 83.9∗ 70.0∗

LLM MMR 18.7 57.2 59.5 45.1 67.0 77.4 81.5 75.3 52.8∗ 75.3∗ 83.7∗ 70.6∗

BERTScore NN 18.5 54.6 53.7 42.3 66.7 75.9 75.6 72.8 51.0 72.8 78.7 67.6
BERTScore MMR 19.4 56.3 53.9 43.2 68.2 78.1 77.8 74.7 52.0 73.7 78.2 68.0

Table 4: Results of using MMR-based exemplar selection strategy on three datasets (AVG denotes the average).
Using MMR generally selects better exemplars on all datasets, using either LM-based method or BERTScore. The
results on text-davinci-002 use the LM-based scores provided by code-davinci-002 (denoted by ∗).

argmax
qj∈D/T

λS(q, qj)− (1− λ)maxqi∈TS(qj , qi) (1)

where S denotes similarity and λ is a parameter
that controls the balance between relevance and
diversity. We rely on MMR to iteratively select
exemplars from the exemplar pool, as shown in
Algorithm (1). Note that this requires scoring all
exemplar pairs within the pool. To run inference
over m queries using a pool of n exemplars, MMR
requires to score the similarity of nn+mn pairs.

Results We apply the MMR strategy on top of
LM-based method and BERTScore, leaving out
the CLS-based approach which has inferior per-
formance. The experimental setup largely follows
Section 4.2, please refer to Appendix D for details.

We show the results in Table 3. In the setting
that uses BERTScore, MMR-based selection suc-
cessfully improves the performance for almost all
LLMs for all datasets, compared to using nearest
neighbors. On LM-based method, MMR is also
able to improve the performance for GSM and
ECQA across all LMs, and only marginally under-
performs NN for E-SNLI.

In particular, using the MMR-based selection
strategy achieves an accuracy of 68.2 and 78.1
on GSM and ECQA respectively, even outper-
forming LM-based method that requires a large
number of queries to the LM. This suggests that
BERTScore and MMR as a combination are able
to construct effective explanation-infused prompts
that approach that of actually querying LLMs.
Furthermore, the fact that LLMs achieve better
performance from the exemplars selected using
our MMR-based method is congruent with our
analysis in the previous section: LLMs can exploit
complementary explanations.

5.1 Analysis
Impacts of the Trade-off Between Relevance
and Diversity We conduct an analysis to inves-

λ GSM ECQA E-SNLI

1.0 66.7 75.9 75.6
0.8 66.9 75.6 76.6
0.6 68.2 77.9 78.1
0.5 68.2 78.1 77.8
0.4 66.8 75.7 76.0
0.2 65.9 75.9 74.9
0.0 63.5 75.5 75.5

Table 5: The performance of MMR exemplar selection
strategy with varying λ.

GSM ECQA E-SNLI

Random 65.41.3 74.10.5 74.01.2
NN 68.60.7 75.40.5 75.91.1
MMR 69.41.0 77.80.7 77.80.9

Table 6: Meanvariance of the performance across 5 ran-
dom order. Using better exemplars has more significant
impact than varying exemplar order.

tigate how the trade-off between diversity and rel-
evance impacts the performance. We test the per-
formance under varying λ on code-davinci-002

with BERTScore as the similarity metric. We note
this is done on one pool of training exemplars. Gen-
erally, when λ is large (0.8), the performance is
similar to NN (λ = 1.0). MMR typically works
well with a λ of 0.6 or 0.5 (roughly balancing the
two terms). The performance starts to degrade
while decreasing λ from 0.4 to 0, as the selected
exemplars are not relevant enough.

Sensitivity to Different Order We have shown
choosing exemplar sets using MMR can lead to
better ICL performance, which could be affected
by other confounders such as the order of exem-
plars. We conduct experiments to show that us-
ing better exemplar sets has more impact than re-
ordering exemplars. Specifically, we experiment
with 5 random orders of the exemplar sets for each
query and report averaged performance and vari-
ance of the accuracy. We note this is done on one
pool of training exemplars for each dataset using



code-davinci-002 with BERTScore as the metric.
As shown in Table 6, MMR is still substantially
better than NN and Random under varying order.

6 Related Work

The growing scale of pretrained language models
has granted them the ability to learn a new
task from a few examples via in-context learning
(Brown et al., 2020). Various approaches have been
proposed to improve ICL in recent years, including
meta-tuning LLMs (Min et al., 2022b; Chen et al.,
2022), calibration of ICL (Zhao et al., 2021; Han
et al., 2022), automatically determining the orders
of exemplars (Lu et al., 2022), and alternative
formulation of ICL based on PMI (Holtzman et al.,
2021) or noisy-channel (Min et al., 2022a). More
closely related to our work, prior research also con-
tributes to better understanding ICL as Bayesian
inference (Xie et al., 2022) or experiments that
study what makes in-context learning works (Min
et al., 2022c). Our work focuses on understanding
the usage of explanations in ICL, as opposed to
standard prompting where the LLMs are presented
with only input-output pairs.

In particular, our work is connected to prior re-
search on effective ways for selecting in-context
exemplars (Shin et al., 2021; Liu et al., 2021; Ru-
bin et al., 2022; Qiu et al., 2022; Su et al., 2022).
While past work primarily focuses on the effec-
tiveness of using relevant examples in the stan-
dard prompting paradigm, we examine the benefits
of the complementary exemplars when prompting
with explanations. We also propose an MMR-based
strategy, which is more effective than the NN-based
approach on various LLMs across three tasks.

Lastly, including textual explanations in prompts
has exhibited remarkable benefits for LLMs to
learn various reasoning tasks. Using Scratchpad
(Nye et al., 2021) or Chain-of-Thought (Wei et al.,
2022) significantly boosts ICL performance on
multi-step reasoning tasks such as arithmetical rea-
soning and symbolic reasoning. Using free-text ra-
tionales is also helpful for more unstructured tasks
like QA and NLI (Ye and Durrett, 2022; Wang
et al., 2022a). While recent work largely aims to
find better ways to prompt LLMs with explanations
(Kojima et al., 2022; Zhou et al., 2022a; Press et al.,
2022; Zhou et al., 2022b), we focus on analyzing
the role of explanations in ICL and what makes
effective explanations.

7 Conclusion

We have presented a series of studies on what
makes effective explanations for in-context learn-
ing. We first investigated the impacts of compu-
tation traces and natural language in explanations.
Through a set of probing experiments, we found
that LLMs rely on both of them to effectively learn
from explanations. We further examined the inter-
play among exemplars within prompts and the in-
terplay between exemplars and the query. Our anal-
ysis uncovered the benefits of constructing prompts
by selecting complementary explanations that are
relevant to the query. Lastly, we proposed an MMR-
based exemplar selection strategy, which success-
fully improved the end task performance across
three important datasets.

8 Limitations

The models chosen in this work are selected to rep-
resent the state-of-the-art at the time the work was
conducted, and in some cases omit weaker models.
For example, our exemplar selection experiments
do not cover those LLMs trained with vanilla lan-
guage models objectives, namely OPT and davinci,
as we find their performance substantially lags
code-davinci-002 and text-davinci-002. For
the same reason, we only consider the substan-
tially large language models, omitting LLMs of
smaller scales (e.g., text-curie-001). Running
experiments using smaller LMs or vanilla LMs may
provide insights into how scale or instruction fine-
tuning impacts the ability of LMs in learning from
explanations, but our investigation mainly focus on
selecting exemplars to achieve the best in-context
learning performance with state-of-the-art models.

In addition, certain aspects of our approach are
computationally intensive, particularly using LM-
based similarity scores. However, we think this is
still feasible in practice: if practitioners are deploy-
ing a real-world system, investing more computa-
tion upfront to improve its performance is likely in
reach for those deploying LLMs in practice.

Finally, our experiments consider a certain sub-
set of NLP reasoning tasks written in English.
While we believe the results here transfer to other
tasks in this vein which have been frequently used
to evaluate LLMs, it is unknown how well they
handle other languages, dialects, or genres of text
such as social media data.



Acknowledgments

Thanks to anonymous reviewers for their helpful
feedback and colleagues at Meta AI for helpful
discussions. This work was partially supported by
NSF CAREER Award IIS-2145280 and the NSF
AI Institute for Foundations of Machine Learning
(IFML).

References
Shourya Aggarwal, Divyanshu Mandowara, Vishwa-

jeet Agrawal, Dinesh Khandelwal, Parag Singla, and
Dinesh Garg. 2021. Explanations for Common-
senseQA: New Dataset and Models. In Proceedings
of the Annual Conference of the Association for Com-
putational Linguistics (ACL).

Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert
Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea San-
tilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu,
Gunjan Chhablani, Han Wang, Jason Alan Fries,
Maged S. Al-shaibani, Shanya Sharma, Urmish
Thakker, Khalid Almubarak, Xiangru Tang, Xiangru
Tang, Mike Tian-Jian Jiang, and Alexander M. Rush.
2022. PromptSource: An Integrated Development
Environment and Repository for Natural Language
Prompts. arXiv, abs/2202.01279.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Proceed-
ings of the Conference on Advances in Neural Infor-
mation Processing Systems (NeurIPS).

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language explana-
tions. In Proceedings of the Conference on Advances
in Neural Information Processing Systems (NeurIPS).

Jaime Carbonell and Jade Goldstein. 1998. The Use
of MMR, Diversity-Based Reranking for Reordering
Documents and Producing Summaries. In Proceed-
ings of the Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR). Association for Computing Ma-
chinery.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael

Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis,
and He He. 2022. Meta-learning via language model
in-context tuning. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Baindoor
Rao, Parker Barnes, Yi Tay, Noam M. Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben-
ton C. Hutchinson, Reiner Pope, James Bradbury, Ja-
cob Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghe-
mawat, Sunipa Dev, Henryk Michalewski, Xavier
García, Vedant Misra, Kevin Robinson, Liam Fe-
dus, Denny Zhou, Daphne Ippolito, David Luan,
Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan Sankara-
narayana Pillai, Marie Pellat, Aitor Lewkowycz, Er-
ica Oliveira Moreira, Rewon Child, Oleksandr Polo-
zov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele
Catasta, Jason Wei, Kathleen S. Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah
Fiedel. 2022. Palm: Scaling language modeling with
pathways. ArXiv, abs/2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT).

Zhi Han, Yaru Hao, Li Dong, and Furu Wei. 2022.
Prototypical calibration for few-shot learning of lan-
guage models. ArXiv, abs/2205.10183.



Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi,
and Luke Zettlemoyer. 2021. Surface form competi-
tion: Why the highest probability answer isn’t always
right. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brah-
man, Chandra Bhagavatula, Ronan Le Bras, and
Yejin Choi. 2022. Maieutic prompting: Logically
consistent reasoning with recursive explanations. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. ArXiv,
abs/2205.11916.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? ArXiv,
abs/2101.06804.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022a. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022b. MetaICL: Learning to learn
in context. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022c. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. ArXiv,
abs/2112.00114.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Francis Christiano, Jan Leike, and
Ryan J. Lowe. 2022. Training language models to
follow instructions with human feedback. ArXiv,
abs/2203.02155.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. ArXiv, abs/2210.03350.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi,
Jonathan Herzig, Emily Pitler, Fei Sha, and Kristina
Toutanova. 2022. Evaluating the impact of model
scale for compositional generalization in semantic
parsing. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the Annual Conference of
the Association for Computational Linguistics (ACL).

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, and Denny Zhou. 2022a. Rationale-
augmented ensembles in language models. ArXiv,
abs/2207.00747.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022b. Self-consistency
improves chain of thought reasoning in language
models. ArXiv, abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. ArXiv, abs/2201.11903.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Xi Ye and Greg Durrett. 2022. The unreliability of ex-
planations in few-shot prompting for textual reason-
ing. In Proceedings of the Conference on Advances
in Neural Information Processing Systems (NeurIPS).

https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI


Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. OPT: Open
Pre-trained Transformer Language Models. ArXiv,
abs/2205.01068.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating Text Generation with BERT. In Proceed-
ings of the International Conference on Learning
Representations (ICLR).

Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022a.
Least-to-most prompting enables complex reasoning
in large language models. ArXiv, abs/2205.10625.

Hattie Zhou, Azade Nova, H. Larochelle, Aaron C.
Courville, Behnam Neyshabur, and Hanie Sedghi.
2022b. Teaching algorithmic reasoning via in-
context learning. ArXiv, abs/2211.09066.



A Details of the Explanations Used for
LETCAT and COINFLIP on OPT

L
E

T
C

A
T

Question: Take the last letters of the words in "Bill Gates" and
concatenate them.

Ours: Add space to "Bill" and get "B i l l", the last letter is l. Add
space to "Gates" and get "G a t e s", the last letter is s. Concatenating
l and s is ls. So the answer is ls.
Wei et al. (2022): The last letter of Bill is l. The last letter of Gates
is s. Concatenating l and s is ls. So the answer is ls.

C
O

IN
F

L
IP

Question: A coin is heads up. Shaunda does not flip the coin.
Shalonda flips the coin. Is the coin still heads up?

Ours: The coin started heads up. Shaunda does not flip the coin, so
it becomes heads up. Shalonda flips the coin, so it becomes tails up.
So the answer is no.
Wei et al. (2022): The coin was flipped by Shalonda. So the coin
was flipped 1 time, which is an odd number. The coin started heads
up, so after an odd number of flips, it will be tails up. So the answer
is no.

Figure 4: Examples of original chain-of-thoughts from
Wei et al. (2022) and ours used for OPT.

LETCAT COINFLIP

Standard 8.5 51.5

(Wei et al., 2022) 29.5 61.0

Ours 50.0 94.0

Table 7: Performance of original chain-of-thoughts and
our explanations used for OPT.

For GSM, we directly use the gold explanations
provided in Wei et al. (2022). For LETCAT and
COINFLIP, we take the original explanations from
Wei et al. (2022) and manually engineered them,
as the original ones are sub-optimal for OPT and
do not lead to credible gains compared to standard
prompting.

We show examples of the original explanations
(chain-of-thoughts) used in Wei et al. (2022) and
the explanation we adapted for OPT in Figure 4.
For LETCAT, we add another step of tokenizing
the two words. For COINFLIP, we change the
way of decomposing the problem. As shown in
Table 7, our adapted explanations lead to more sub-
stantial performance improvements over standard
prompting. We use engineered explanations for the
probing experiments on OPT, which allows more
distinguishable performance differences. We re-
fer readers to the supplementary materials of Wei
et al. (2022) for the complete set of exemplars and
explanations.

B Details of the Choice of Masks

We conduct preliminary experiments on the LET-
CAT dataset using davinci to determine the choice

N/A [mask] ? _ Empty Str

Standard 8.5
Gold 59.0

Mask1 14.0 14.0 15.0 13.5 16.0
Mask2 48.0 48.0 48.5 43.0 49.5

Table 8: Results of using different mask tokens for
LETCAT on OPT.

of masks. We tested masking with "N/A", "[mask]",
"?", "_", and empty string. The results obtained
using different masks are shown in Table 8. What-
ever masks are used, LLMs see performance degra-
dation compared to gold explanations, but can
still learn from partially complete explanations.
We use an empty string as the mask token across
all datasets, which leads to the least performance
degradation.

C Details of the Setup for
Exemplar-Exemplar Interplay
Experiments

For LETCAT, we experiment with 4 exemplars
where the first steps are perturbed, 4 exemplars
where the second steps are perturbed and a mixture
of 2 from each of these explanations. For COIN-
FLIP, we use 8 exemplars and follow the same
setting. For the mixture type of prompts, we exper-
iment with 4 random combinations for mixing two
types of masked exemplars.

For GSM, we use three types of prompts con-
structed by 1) 8 addition-only exemplars, 2) 8
multiplication-only exemplars, and 3) a mixture
of 4 exemplars from each of the two types. We
note that unlike what’s in LETCAT and COINFLIP

which uses identical exemplars perturbed in differ-
ent ways, the exemplars in the three sets, for GSM
are drawn from different pools. We experiment
with 4 different sets of randomly drawn examples
and report the average in the setting. We note the
test set for GSM that requires composing addition
and multiplication contains 1,150 data points in
total.

D Details of the Setup for MMR-Based
Exemplar Selection Experiments

We evaluate the effectiveness of our MMR-based
exemplar selection strategy on the three realis-
tic datasets used in Section 4.2. Also, the ex-
periments on text-davinci-002 using the LM-
based method rely on similarity scores obtained



from code-davinci-002, given the prohibitive
cost needed to run these experiments. We do not
tune λ in our experiments. λ is set to roughly bal-
ance the variance among the two terms in Equa-
tion (1), which is 0.5 across all datasets and meth-
ods, except for using the LM-based method on
code-davinci-001. For this particular setting, we
set lambda to be 2

3 , as we observe higher variance
among the diversity with exemplars.

E Details of Prompts for Real-world
Datasets

We showcase how we format the prompts for
GSM, ECQA, and E-SNLI in Figure 5, with
one exemplar for each of the three datasets. We
note the prompt format for E-SNLI is taken from
PromptSource (Bach et al., 2022).

GSM

Q: Leah had 32 chocolates and her sister had 42. If they
ate 35, how many pieces do they have left in total?
A: Leah had 32 chocolates and Leah’s sister had 42. That
means there were originally 32 + 42 = 74 chocolates. 35
have been eaten. So in total they still have 74 - 35 = 39
chocolates. The answer is 39.

ECQA

Q: Where can you get a bugle to take home with you?
Answer Choices:
(a) farmer’s wife
(b) music store
(c) military base
(d) military band
(e) american army.
A: Bugle is a musical instrument. Musical instruments are
available in a music store. Music store is a building. So
the answer is (b).

E-SNLI

Premise:
"A man at a flea market browsing."
Based on this premise, can we conclude the hypothesis "A
man is sleeping at a flea market." is true?
OPTIONS:
- yes
- no
- not possible to tell
A: One cannot be sleeping and browsing at the same time.
The answer is no.

Figure 5: Detailed examples of prompts for GSM,
ECQA, and E-SNLI.

F License of Datasets

• GSM (Cobbe et al., 2021): MIT license.

• E-SNLI (Camburu et al., 2018): MIT license.

• ECQA (Aggarwal et al., 2021):Community
Data License Agreement - Sharing - Version
1.0.

• LETTER CONCATENATION and COINFLIP

(Wei et al., 2022): MIT license.


