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Abstract

Nonlinear node embedding techniques such as

DeepWalk and Node2Vec are used extensively in

practice to uncover structure in graphs. Despite

theoretical guarantees in special regimes (such

as the case of high embedding dimension), the

structure of the optimal low dimensional embed-

dings has not been formally understood even for

graphs obtained from simple generative models.

We consider the stochastic block model and show

that under appropriate separation conditions, the

optimal embeddings can be analytically charac-

terized. Akin to known results on eigenvector

based (spectral) embeddings, we prove theoret-

ically that solution vectors are well-clustered, up

to a sublinear error.

1 INTRODUCTION

Graphs are a classic abstraction for studying relationships

between objects. Graph data sets consisting of billions

of nodes have become commonplace, requiring efficient

and scalable algorithms to analyze them. An increasingly

popular class of algorithms is node embedding algorithms,

which aim to obtain vector representations of nodes that

capture node similarities and help understand the struc-

tural properties of a graph. These vector representations

can be used as inputs to various machine learning tasks,

such as community detection (Wang et al., 2017; Ng et al.,

2001; Von Luxburg, 2007; Rohe et al., 2011; Belkin &

Niyogi, 2001), node classification (Hamilton et al., 2017;

Perozzi et al., 2014; Grover & Leskovec, 2016; Tang et al.,

2015) and link prediction (Grover & Leskovec, 2016; Tang

et al., 2015; Backstrom & Leskovec, 2011). Embeddings

of nodes into geometric spaces is also a classic topic in

theoretical computer science, which has led to the devel-

opment of algorithms for clustering and partitioning of
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graphs (Linial et al., 1994; Spielman & Teng, 2007; Arora

et al., 2009).

A classic technique for node embeddings is the so-called

spectral embedding, which uses the top eigenvectors of

the Laplacian matrix to find node embeddings. Start-

ing with the work of Hall (1970); Alon (1986); Sinclair

& Jerrum (1989); Spielman & Teng (2007); McSherry

(2001) on the algorithmic side and works such as Belkin

& Niyogi (2001); Ng et al. (2001); Rohe et al. (2011);

Von Luxburg (2007), properties of spectral embeddings

have been studied extensively. More recently, non-linear

embedding methods (Grover & Leskovec, 2016; Perozzi

et al., 2014; Tang et al., 2015) have been shown to im-

prove upon spectral embeddings along multiple axes: they

provide better performance on partitioning tasks, they can

better encode structural properties of the graphs, and they

can be computed/updated locally when the graph is mod-

ified. These methods rely on random walks on the graph.

Roughly speaking, they are based on the skip-gram model

(Mikolov et al., 2013a,b) developed originally in natural

language processing. Random walks are viewed as the

analog of n-grams in sentences, enabling the application

of word embedding methods to networks.

Given their experimental advantages, an important theoret-

ical direction has been to understand the power of these

non-linear embedding methods. For the embeddings pro-

duced by DeepWalk (Perozzi et al., 2014) and node2vec

(Grover & Leskovec, 2016), existing theoretical results es-

tablish a connection between the algorithms and matrix fac-

torization: Levy and Goldberg (Levy & Goldberg, 2014)

show that when the embedding dimension is at least as

large as the number of nodes in the graph, then skip-gram

with negative sampling (SGNS) is implicitly performing

matrix factorization of a shifted point-wise mutual infor-

mation matrix. In a similar vein, Qiu et al. (2018) show

that LINE, DeepWalk, and node2vec can also be viewed as

matrix factorization problems when the embedding dimen-

sion is large. Chanpuriya & Musco (2020) later simplified

the expression derived by Qiu et al. (2018). However, the

characterization obtained holds only when the embedding

dimension is large, which is not usually the case in practice

(Perozzi et al., 2014).

However, even for very simple graph classes, it is not
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known if low dimensional embeddings obtained by algo-

rithms like DeepWalk and node2vec provably exhibit good

structural properties. In this work, we consider graphs gen-

erated by stochastic block models (SBMs). SBMs (see Sec-

tion 2 for a more detailed introduction) are a classic way

to model well clustered graphs arising in different appli-

cations. They have also acted as a testbed for reasoning

about embedding algorithms. For example, many theo-

retical works on the efficacy of spectral embeddings fo-

cused on graphs produced by block models (see McSherry

(2001); Abbe (2017) and references therein). In this paper,

we ask:

Can we prove theoretical guarantees on the em-

beddings obtained by DeepWalk and node2vec

on graphs generated by an SBM?

One key challenge turns out to be the non-linearity of the

objective used by the embedding algorithms. Similar diffi-

culties are known to arise in proving theoretical properties

of methods like t-SNE, which was only done recently in the

works of Linderman & Steinerberger (2019); Arora et al.

(2018). One tractable case, however, is the one where the

embedding dimension is large (> n, the number of nodes

in the graph). In this case, as shown by Levy & Goldberg

(2014), the optimal solution has a closed form. The re-

cent works of Zhang & Tang (2021); Barot et al. (2021)

analyzed low rank properties of this closed form solution

on graphs generated by SBM. But note that this is not the

same as analyzing the embedding algorithms directly (be-

cause the closed form only holds for large dimension).

Our goal in this paper is to establish structural properties of

the optimal solutions of the objectives used in algorithms

like DeepWalk. We study both the classic formulation, as

well as the formulation with negative sampling (SGNS; see

Section 2 for details). This is also in contrast with prior

theoretical works that focus on negative sampling.

Results. Our main contributions are as follows:

1. We first consider the case where the co-occurrence

matrix used to obtain the embeddings (see Section 2)

has a block structure. Here we show that, as expected,

optimal solutions to the DeepWalk and SGNS objec-

tives also have a block structure. [Theorems 3 and 4.]

2. Next we show (Theorem 5) that when the co-

occurrence matrix is obtained using random walks on

a graph drawn from an SBM, the optimum values

of the DeepWalk and SGNS objectives are approxi-

mately equal to the objectives computed on an appro-

priate block matrix.

3. As our main result, we show (Theorem 8) that for a

symmetric SBM with two components, the optimal

solution vectors (i.e., embeddings) are well-clustered,

and further have the structure that vertices in the two

components approximately map to antipodal vectors.

4. We finally consider the case of block matrices with

more than two blocks (where a simple antipodal struc-

ture is not optimal), and experimentally characterize

the structure of the optimal solution as the sizes of the

components vary. We also observe that for SGNS, the

ªnumberº of negative samples significantly affects the

embeddings obtained, which suggests that a careful

tuning is important in practice.

We will introduce the necessary background on SBMs and

the DeepWalk algorithm (along with SGNS) in Section 2.

We then consider the simplest case of block structured co-

occurrence matrices in Section 3. Then in Section 4 to con-

nect the optimal solution value in an SBM to that of a block

matrix using appropriate concentration inequalities. This

is then used in Section 5 to show our main result, which

argues that for a two-block SBM, the optimal embedding

vectors are necessarily well-clustered.

2 BACKGROUND AND PROBLEM

SETUP

Common Notation. For a matrix M we use the notation

|M·j | =
∑

i∈[n] Mij , |Mi·| =
∑

j∈[n] Mji, and |M | =
∑

i,j∈[n] Mij . We denote by ∥M∥1 its L1 norm after flat-

tening it along the columns (and similarly ∥M∥∞). For two

matrices M and X , we define M ·X =
∑

i,j MijXij .

For an graph G(V,E) with n nodes and |E| edges, the ma-

trix A denotes the adjacency matrix of the graph G. The

degree of node i is di =
∑n

j=1 Aij and the matrix D is

a diagonal matrix where Dii = di. We let W = D−1A
denote the transition matrix of the graph.

2.1 Stochastic Block Model

The stochastic block model (SBM) (Holland et al., 1983)

is a popular generative framework used in the theoretical

analysis of community recovery algorithms. SBMs have

been widely studied (see, e.g., Abbe (2017) and references

therein), and may be viewed as a natural generalization of

Erdős-Renyi random graphs.

A K block stochastic block model (SBM) generates a ran-

dom graph G = (V,E) by first assigning each node in

the graph to one of K blocks. These blocks are also re-

ferred to as categories or communities. We refer to Vk

as the set of vertices that belong to community k and de-

fine a community membership matrix Z ∈ {0, 1}n×K as

Zik = 1{i ∈ Vk}, whose entries are 1 if node i ∈ Vk and

0 otherwise. Let B ∈ [0, 1]K×K be a symmetric matrix of

probabilities of full rank whose entries Bij denote the prob-

ability of a node in cluster i and a node in cluster j being

connected. We define the matrix P as P := ZBZ⊤, which

is simply a block matrix of probability values defined by

the partitioning Z.
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The edges of the graph G(V,E) are then generated as

Aij ∼ Bern(Pij), Aij = Aji for all i < j. We also assume

that graphs do not have self loops, i.e., Aii = 0 for all i.
In a symmetric SBM, we further assume that each cluster

is of equal size, i.e., |Vk| = n
K . We also assume that the

entries of B are p on the diagonal and q off-diagonal. Thus

P is a block matrix with K equal-sized blocks. Finally, we

assume that the number of communities K is fixed and that

the number of nodes n tends to infinity.

2.2 DeepWalk

In this section we describe the Perozzi’s DeepWalk graph

embedding algorithm (Perozzi et al., 2014). Let G =
(V,E) be an undirected, connected graph with n nodes.

The DeepWalk algorithm consists of two key steps. The

first step generates r random walks of length L on the graph

and uses these walks to create an n× n co-occurrence ma-

trix C whose entries count the number of times that two

nodes appear a certain distance to each other in these ran-

dom walks. The second step uses the co-occurrence ma-

trix to compute the node representations by solving an op-

timization problem.

Generating Random Walks. The algorithm first generates

r random walks of length L and slides a window of size T
over each random walk. Let w(m) denote the mth random

walk represented as a sequence of L nodes. Let w
(m)
k de-

note the kth step of the mth random walk. To be consistent

with prior works, we assume that the starting node of each

walk is sampled from a stationary distribution on G

Pr
[

w
(m)
1 = i

]

=
di
2|E|

Using the sample random walks, the algorithm creates the

co-occurrence matrix C whose entries Cij contains the

number of times that a node j appears in a size T window

around a node i. Formally,

Cij =

T
∑

t=1

r
∑

m=1

L−t
∑

k=1

1{wm
k = i, wm

k+t = j}

+

T
∑

t=1

r
∑

m=1

L−t
∑

k=1

1{wm
k = j, wm

k+t = i}

Many of the prior theoretical works involve studying limit-

ing cases of this co-occurrence matrix as the length of the

walk L or the number of walks r goes to ∞ (Zhang & Tang,

2021; Barot et al., 2021; Qiu et al., 2018), or as the window

size T goes to ∞ (Chanpuriya & Musco, 2020). A few

works focus solely on obtaining concentration bounds on

this matrix (Qiu et al., 2020; Kloepfer et al., 2021).

Borrowing from prior works, we will make use of the fol-

lowing lemma in our analysis (Zhang & Tang, 2021; Barot

et al., 2021). The proof can be found in Appendix A.1

Lemma 1. Let A be an adjacency matrix of a fixed graph

G and let w
(m)
k denote the kth step of the mth random walk

generated by the DeepWalk algorithm. Let πi =
di

2|E| and

let (W t)ij = Pr [wt+1 = j|w1 = i]. Then as r → ∞,

Cij

r

a.s−−→ 2

T
∑

t=1

(L− t) · πi(W
t)ij (1)

Note that this limiting matrix can be constructed explicitly

from the adjacency matrix A without needing to sample

with random walks.

Computing Node Representations. Given a co-

occurrence matrix C, DeepWalk uses the skip-gram model

to learn a matrix of node embeddings X ∈ R
d×n and a ma-

trix of context embeddings Y ∈ R
d×n. The d-dimensional

node embedding xi ∈ R
d for node i is the ith column of

X, while the d-dimensional context embedding yi ∈ R
d for

node i is the ith column of Y . For a co-occurrence matrix

C, the node and context embeddings (X,Y ) are computed

by optimizing the following objective function:

Ldw(C;X,Y ) =

n
∑

i,j=1

Cij log

(

ex
⊤

i yj

∑n
k=1 e

x
⊤

i
yk

)

(2)

Skip-gram with Negative Sampling Most works analyze

the more computationally efficient skip-gram with nega-

tive sampling objective function with some simplifications

(Zhang & Tang, 2021; Barot et al., 2021; Levy & Goldberg,

2014; Qiu et al., 2018). In this case, the objective function

is

Lns(C;X,Y ) =

n
∑

i,j=1

Cij log σ
(

x
T
i yj

)

+

n
∑

i,j=1

CijsnEl∼PC
[log σ

(

−x
T
i yl

)

]

where sn is the ªnumberº of negative samples (a coefficient

that will affect the embeddings, as we will see), σ(·) is the

sigmoid function, and PC is the probability distribution on

[n] that samples j with probability |C·j |/|C|.
Note that the loss can be simplified as

Lns(C;X,Y ) =

n
∑

i,j=1

Cij log σ(x
T
i y)

+

n
∑

ij=1

sn
|Ci·||C·j |

|C| log σ(−x
T
i yj) (3)
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3 BLOCK STRUCTURED

CO-OCCURRENCES

To motivate community recovery using DeepWalk em-

beddings, we first explore a special case where the co-

occurrence matrix is a block-diagonal matrix, whose on-

and off-diagonal matrices are multiples of the all-ones ma-

trix. This is reminiscent of work on spectral clustering and

non-negative matrix factorization (Ng et al., 2001; Paul &

Chen, 2016; Von Luxburg, 2007). Indeed, the classical

analysis of spectral clustering on SBMs starts by show-

ing that the adjacency matrix is spectrally similar to the

block-diagonal matrix of edge probabilities. Similarly in

our setting, the block structure allows us to understand the

geometric properties of optimal DeepWalk and SGNS em-

beddings.

When the co-occurrence matrix C has a block structure,

we show that there exists an optimum solution to (2) in

which the context vectors have a block structure defined as

follows:

Definition 2 (Block Structure). Let C be an n × n ma-

trix. We say that C has a block structure with blocks

V1, V2, . . . , VK if {Vi} forms a partition of [n], and further,

for all i, j ∈ [K], the submatrix of C induced by the rows

Vi and columns Vj has constant entries. (The constant can

depend on i and j).

We say that a solution X,Y (each in R
d×n) has a block

structure with blocks V1, . . . , VK if {Vi} are disjoint, and

moreover, for every k, we have xi = xj for all i, j ∈ Vk,

and the same holds for the columns of Y . (Note that the xk

need not be related to yk in any way.)

In the following theorems, we use the term symmetric block

structure for the matrix C. This simply means that the en-

tries in the off-diagonal blocks are all equal. In other words,

if i ∼ j denotes whether i and j are in the same community

or not, then we say that C has symmetric block structure if

there exist scalars a, b such that for all i, j ∈ [n], we have

Cij = a if i ∼ j and b otherwise.

We note that our proofs can directly be adapted to deal with

general block structure, but we prove them for the symmet-

ric case due to simplicity, and because it is the setting that

we will use later.

Theorem 3. Let C be a matrix with a symmetric block

structure with blocks V1, V2, . . . , VK . Then there exists an

optimal solution (X,Y ) maximizing (2) whose node and

context embeddings X,Y also have a block structure de-

fined by {Vi}. Moreover, this also holds for constrained

maximization over any domain D, where the columns of

X,Y are required to belong to D.

The proof uses a natural convexity argument is deferred

to Appendix A.2. A similar result can be shown for the

negative sampling objective.

Theorem 4. Let C be a matrix with a symmetric block

structure defined by V1, V2, . . . , VK . Then there exists an

optimal solution (X,Y ) maximizing (3) whose node and

context embeddings X,Y have block structures defined by

the same {Vi}. This also holds for constrained optimiza-

tion of equation 3 over any domain D.

The proof for Theorem 4 is in Appendix A.3.

4 FROM BLOCK MATRICES TO

SYMMETRIC SBM

We now consider graphs sampled from the symmetric

stochastic block model that is defined by three parame-

ters (K, p, q). The vertex set V is divided into K clusters

V1, V2, . . . , VK , each of size n/K, and the edge probabili-

ties are p and q, between vertices within and across clusters,

respectively.

4.1 DeepWalk Solution Value for Symmetric SBM

Let G be a graph drawn from the symmetric SBM with pa-

rameters (K, p, q), and let M be the co-occurrence matrix

obtained from G by performing random walks with param-

eters L ≥ 3, window length T = 2 and r → ∞, as de-

scribed in Section 2. Using Lemma 1 the co-occurrence

matrix M (in the limit) satisfies

M =
(L− 1)

|E| A+
(L− 2)

|E| AD−1A, (4)

where D is the diagonal degree matrix and the length of the

random walk L is treated as a constant. We will argue that

the solutions obtained by solving the DeepWalk and SGNS

optimization problems using M are close to the solutions

obtained using the ªexpectedº matrix M . The matrix M is

defined as:

M =
2(L− 1)

n∆
E[A] +

2(L− 2)

n∆2
E[A2] (5)

where ∆ = np
K + (K − 1)nqK and E[A], E[A2] are the ex-

pected values of the adjacency matrix and its square (re-

spectively) when G is drawn from the symmetric SBM.

Note that M is not, strictly speaking, the expected value

of M because the denominator terms of M are also depen-

dent on the graph.

Theorem 5. Suppose the matrix M is obtained by per-

forming random walks on a graph drawn from the symmet-

ric SBM with parameters K, p, q as described above. Let

Ldw(M ;X,Y ) and Lns(M ;X,Y ) be the DeepWalk and

SGNS objectives respectively. Suppose also that p, q are

such that ∆ > (20 log n)
√

nd
ϵ , for some desired error pa-

rameter ϵ > 0. Then with probability at least 1 − n−4, we
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have

|Ldw(M ;X,Y )− Ldw(M ;X,Y )|

≤ O



Lϵ+ L

√

log3 n

∆



 , (6)

|Lns(M ;X,Y )− Lns(M ;X,Y )| ≤ O

(

Lϵ+ L

√

log n

∆

)

.

for all solutions X,Y whose columns have length ≤ 1.

Remark. While the theorem treats ϵ as a free parameter,

it is natural to set it so as to make the two terms on the RHS

equal. (In a sense, this is the ªleast valueº of ϵ.) For Deep-

Walk, this corresponds to ϵ = ∆−1/2 log3/2 n, in which

case the lower bound on ∆ becomes c(nd)2/3 log1/3 n, for

some (large enough) constant c. Likewise, in the SGNS

case, the condition becomes ∆ > c(nd)2/3 log n. Requir-

ing such a degree lower bound is a limitation of our analysis

and is discussed further in the following section.

4.2 Proof of Theorem 5

The proof proceeds along similar lines for both the loss

functions. We define an intermediate matrix M ′ as follows

M ′ =
2(L− 1)

n∆
A+

2(L− 2)

n∆2
A2,

where ∆ = np
K + (K − 1)nqK as defined earlier. M ′ turns

out to be more amenable than M , since it does not have

denominator terms that vary with G (i.e., terms such as |E|
and D−1). The following lemma relates M with M ′.

Lemma 6. For M,M ′ defined as above, we have that with

probability ≥ 1− n−5,

∥M −M ′∥1 ≤ O

(

L

√

log n

∆

)

.

The proof is deferred to Appendix B.2. The main technical

lemma is then the following:

Lemma 7. Let ϵ, β > 0 be parameters, and let Λ be any

fixed n × n matrix satisfying ∥Λ∥∞ ≤ β. Then for n >
8β/ϵ, we have

Pr[|(M ′ −M) · Λ| ≥ 2ϵL]

≤ 4 exp

(

−min

{

ϵ2∆4

8nβ2
,
ϵ∆2

4β

})

.

The lemma is proved using concentration inequalities for

quadratic forms of random variables, and is deferred to Ap-

pendix B.3. We now sketch the analysis for the case of the

DeepWalk loss function. The details, as well as the SGNS

case, are deferred to Appendix B.

We start by observing that for any candidate solution X,Y ,

Ldw(M ;X,Y ) =
∑

i,j

Mijαij

where

αij = log
ex

T
i yj

∑

k e
x

T
i
yk

.

Define Λ (which is dependent on X,Y ) to be the matrix

whose (i, j)th entry is αij , so we have Ldw(M ;X,Y ) =
M ·Λ. Then the goal of the theorem is to prove that w.h.p.,

|(M −M) · Λ| is small for all X,Y .

Proof outline. The proof starts by using Lemma 6 to show

that (M − M ′) · Λ is small for all X,Y . Next, we ar-

gue using Lemma 7 that for any fixed solution X,Y , equa-

tion 6 holds with an exponentially small failure probability.

Finally, we use an epsilon-net argument (a standard tech-

nique in random matrix theory, e.g., Vershynin (2018) to

take a union bound over a fine enough ªnetº over the possi-

ble X,Y . This lets us obtain the conclusion of the theorem

for all X,Y .

4.3 Discussion

Spectral analyses of the SBM usually require the ex-

pected degree to be poly-logarithmic (McSherry, 2001;

Rohe et al., 2011; Abbe, 2017; Vu, 2014). Theorem 5, how-

ever, assumes that the graph be much denser, requiring that

the degree be greater than n
1
2 log n. This limitation arises

in the proof of Lemma 7, which relies on the use of the

Hanson-Wright inequality where the degree must be large

enough in order to achieve such a strong bound. We conjec-

ture, however, that the overall results hold even for sparse

graphs and an interesting open problem is to see whether

this large degree requirement can be avoided, potentially

by arguing that a union bound over a smaller net would be

sufficient.

The ϵ-net argument also requires the degree to increase de-

pending on d. While this term is insignificant for us (as we

focus on the low dimensional case where d = O(1)), an

interesting open question is to obtain an analysis that does

not have this requirement.

We also note that M can be constructed explicitly from the

adjacency matrix A without needing to sample with ran-

dom walks. In practice, however, the co-occurrence ma-

trix is constructed by conducting walks. Assuming the ran-

dom walks are independent, the convergence rate can be

obtained as in Kloepfer et al. (2021). The error due to

constructing this ªempiricalº co-occurrence matrix can be

incorporated into the results just as we handle the terms

(M −M ′) in the proof of Theorem 5.

Finally, we believe that the arguments in this section can be

generalized to other generative graph models, such as the

degree-corrected SMB or the random dot product graph,
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as long as the degree remains large enough. However, the

analysis will need to be more involved as ∆ has to be re-

placed by an appropriate diagonal matrix. This is an inter-

esting avenue for future work.

5 NEAR OPTIMAL SOLUTIONS TO

TWO BLOCK SBM

We now show that for the case K = 2, it is possible to an-

alytically characterize an (approximate) maximizer of the

DeepWalk or SGNS objectives. Before defining our main

result, we introduce some parameters. As before, the walk

parameters will be L ≥ 3, T = 2, r → ∞, and the graph

is drawn from a symmetric SBM with K = 2 blocks, and

edge probabilities p, q.

a =
2(L− 1)

n∆
p+

(L− 2)

n∆2
(p2 + q2)n

b =
2(L− 1)

n∆
q +

(L− 2)

n∆2
(2pq)n. (7)

As a rough intuition, we can think of a and b as being pro-

portional to p and q respectively. This is because we can

think of ∆ ≈ np/2 (when q < p/4, say), and thus the

second terms above can be simplified to look similar to the

corresponding first terms. Our main result is then the fol-

lowing.

Theorem 8. Let M be a matrix obtained from random

walks on a graph drawn from the symmetric SBM as above,

and suppose ∆ > (nd)2/3 log n is chosen so that The-

orem 5 applies.1 Let OPTdw(M) and OPTns(M) de-

note the optimum objective value of Ldw(M ;X,Y ) and

Lns(M ;X,Y ), and let δ > 0 be a parameter. Then with

probability at least 1− n−4, we have

1. Suppose a/b > e2, and let X,Y be a feasible solution

(vectors of length ≤ 1) such that Ldw(M ;X,Y ) ≥
OPTdw(M)− δ. Then there exist unit vectors x∗

1 and

x
∗
2 and a constant γ > 0 such that x∗

1 = −x
∗
2, and

for k ∈ {1, 2},

1

|Vk|
∑

i∈Vk

∥xi −x
∗
k∥2 ≤ 1

an2γ
·O



δ +

√

log3 n

∆



 .

2. Suppose the negative sampling parameter sn satisfies
eb
a+b < sn < a

(a+b)e and let X,Y be a feasible solu-

tion such that Lns(M ;X,Y ) ≥ OPTns(M)− δ. Then

there exist antipodal unit vectors x∗
1,x

∗
2 as before, and

a parameter γ > 0 such that for k ∈ {1, 2},

1

|Vk|
∑

i∈Vk

∥xi − x
∗
k∥2 ≤ 1

nγ
·O
(

δ +

√

log n

∆

)

.

1We can also introduce an additional parameter ϵ
′ and use

Theorem 5 to obtain weaker results as long as ∆ >
√

nd, but
we skip this for the sake of simplicity of the presentation.

We note that the parameters γ, a, b will ensure that the

terms 1/(an2γ) and 1/(nγ) are constants, so that the av-

erage clustering error is only O(δ) plus an additional sub-

linear term. Also, there are two ways of interpreting the

condition eb
a+b < sn < a

(a+b)e . The first is that as long as

e2b < a, there exists a choice of sn that yields a solution

with a good cluster structure. Alternatively, for a fixed sn
small enough (say 1/2e), the solution satisfies a structured

property as long as b/a is small enough (around sn/e). We

empirically demonstrate the sensitivity of the solution to sn
in our experiments.

We make two further remarks before moving to the proof.

The first is on the robustness. Theorem 8 says that even

if an algorithm finds some ªnear optimalº solution (within

δ in objective value), we will have an approximate cluster

structure if δ is small enough. This robustness is important

because in continuous, non-convex optimization, we usu-

ally never find an exact optimum.

Secondly, the Theorem can be used to bound the number

of misclassified vertices. Assuming that k-means that is

solved (nearly) exactly on the resulting embeddings, we

can first argue that the k-means clusters are very close to

each x∗
i . Since the x∗

i are separated, Theorem 8 then im-

plies that the number of misclassifications is small.

We now sketch the proof of the theorem, assuming lemmas

that will be shown later. Let M be a matrix whose rows

and columns are divided into two blocks V1, V2. Suppose

that a, b denote the entries in the diagonal and off-diagonal

blocks respectively.

Proof sketch. Let us focus on the DeepWalk loss func-

tion (SGNS will be similar). We first apply Theorem 5

to conclude that a solution (X,Y ) that approximately

optimizes Ldw(M ;X,Y ) also approximately optimizes

Ldw(M ;X,Y ). Then, we observe that M (up to an O(1/n)
error resulting from the diagonal terms Aii being zero) is

a block matrix with entries a, b as defined in equation 7.

Then we apply Lemma 9 (the key lemma of this section)

with ϵ in the lemma statement set to O(δ +
√

log3 n
∆ ) to

show that X is well clustered, and this completes the proof

of the theorem.

We now outline the main technical lemmas described

above. For DeepWalk, we have:

Lemma 9. Suppose the parameters of the matrix M (de-

fined using V1, V2, a, b, as above) satisfy a
b > e2. Let

(X,Y ) be any feasible solution that satisfies

Ldw(M ;X,Y ) ≥ OPT − ϵ,

where OPT is the optimum value of the objective, and ϵ ≥ 0
is some parameter. Define γ = σ(2)

(

e−2 − b/a
)

. Then

there exist unit vectors x∗
1 and x

∗
2 such that x∗

2 = −x
∗
1 and
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for k ∈ {1, 2},

1

|Vk|
∑

i∈Vk

∥xi − x
∗
k∥2 ≤ 8ϵ

an2γ
. (8)

Note that we showed in Theorem 3 that the optimum solu-

tion has a block structure, but the lemma above is stronger

in two ways: (a) it argues that the vectors corresponding

to the blocks are actually antipodal, and (b) it shows that

an approximate block structure holds when we consider an

approximately optimal solution.

Proof. Consider any near optimal solution (X,Y ). We be-

gin by appealing to the proof of Theorem 3. There, we

showed that given any X , there exists a block structured

Y ∗ such that

Ldw(M ;X,Y ∗) ≥ Ldw(M ;X,Y ).

Note that Y ∗ may not be unique, but we can consider any

Y ∗ for our argument. Suppose y
∗
1 and y

∗
2 are the vectors

corresponding to the blocks V1 and V2 in the solution. We

can then write the objective Ldw(M ;X,Y ∗) as
∑

i g(xi),
where for any i ∈ V1, g(xi) is given by:

g(xi) =
n

2



a · log ex
T
i y

∗

1

n
2

(

ex
T
i
y
∗

1 + ex
T
i
y
∗

2

)





+
n

2



b · log ex
T
i y

∗

2

n
2

(

ex
T
i
y
∗

1 + ex
T
i
y
∗

2

)



 .

Writing ti = x
T
i (y

∗
1 − y

∗
2), we can write g(xi) as

g(xi) = −n

2
a log

(

1 + e−ti
)

− n

2
b log

(

1 + eti
)

− n

2
(a+ b) log

(n

2

)

.

Let us fix an i ∈ V1 and drop the subscript in ti for a mo-

ment. Then g(xi) is only a function of the scalar variable

t. Taking the derivative with respect to t,

dg(xi)

dt
=

n

2
a

(

e−t

1 + e−t

)

− n

2
b

(

1

1 + e−t

)

=
na

2

(

1

1 + e−t

)(

e−t − b

a

)

.

It is easy to see that this is a decreasing function of t. Hence

for any t ∈ [−2, 2], we have

dg(xi)

dt
≥ na

2

(

1

1 + e−2

)(

e−2 − b

a

)

=
na

2
· γ.

In the last step, we used the definition of γ from the state-

ment of the Lemma. By our assumption that a/b > e2,

γ is positive, and consequently, g is maximized when t
is as large as possible, i.e. when t = 2 (because ti ≤
∥xi∥∥y∗

1 − y
∗
2∥ ≤ 2). Furthermore, if we denote by g∗ the

value at t = 2, we have by the intermediate value theorem,

g∗ − g(xi) ≥ g′(η)(2 − ti), where η is some real number

between ti and 2. Since the derivative is a decreasing func-

tion, we have g′(η) ≥ g′(2). Next, let z denote the vector

of length 2 parallel to y
∗
1 − y

∗
2 .

Case 1. ti ≥ 0. In this case, we have

g∗ − g(xi) ≥ g′(2)(2− ti)

≥ g′(2)(2− ⟨xi, z⟩)
≥ g′(2)∥xi −

z

2
∥2

In the last step, we used also the property that ∥xi∥ ≤ 1.

Case 2. ti < 0. In this case,

g∗ − g(xi) ≥ 2g′(2) ≥ g′(2)

2
∥xi −

z

2
∥2,

simply because ∥xi − z

2 ∥ ≤ 2.

Now if we perform the same argument with any i ∈ V2, we

obtain g∗ − g(xi) ≥ g′(2)
2 ∥xi +

z

2 ∥2.

Thus, setting x
∗
1 = z

2 and x
∗
2 = −x

∗
1, we have (plugging

in g′(2) = na
2 γ)

OPT − Ldw(M ;X,Y ∗) ≥
naγ

4

[

∑

i∈V1

∥xi − x
∗
1∥2 +

∑

i∈V2

∥xi − x
∗
2∥2
]

.

(In obtaining the above, we are also implicitly using the fact

that it is possible to achieve a value of g∗ for every term,

by setting x
∗
i appropriately.) Thus, if we started with the

assumption that the LHS is at most ϵ (which holds because

Ldw(M ;X,Y ∗) ≥ Ldw(M ;X,Y )), we have that each of

the terms on the RHS is bounded, as desired.

We have an analogous lemma for the SGNS objective. The

proof can be found in Appendix C

Lemma 10. Suppose the parameters of the matrix M (de-

fined using V1, V2, a, b, as above) satisfy eb
a+b < sn <

a
(a+b)e . Let (X,Y ) be any feasible solution that satisfies

Ldw(M ;X,Y ) ≥ OPT − ϵ,

where OPT is the optimum value of the objective, and ϵ ≥ 0
is some parameter. Define

γ = min

{

na

2(1 + e)

(

1− (a+ b)sn
a

e

)

,

nsn(a+ b)

2(1 + e)

(

1− b

(a+ b)sn
e

)}

.
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(a) (b) (c)

Figure 1: Embeddings produced by optimizing over all possible orientations of (a) K = 2 block solutions and (b) K =
3 block solutions. Plot (c) shows K = 3 block solutions with clusters of varying sizes, namely |V1| = 25, |V2| =
50 and |V3| = 100. Only the node embedding vectors are shown because the context embedding vectors are equivalent.

Then there exist unit vectors x
∗
1 and x

∗
2 such that x∗

2 =
−x

∗
1 and for k ∈ {1, 2},

1

|Vk|
∑

i∈Vk

∥xi − x
∗
k∥2 ≤ 4ϵ

nγ
. (9)

Remark. Note that our proof of Theorem 8 is tailored to

the case K = 2. For K = 3, we can no longer reduce to

a single variable optimization problem, which makes the

analysis intricate. Further, for K = 2, the ambient di-

mension of the embeddings does not matter in the analysis,

while this is not the case for K ≥ 3 (i.e., d = 2 and d = 3
makes a difference). Analysis of the structure of optimal

solutions for higher K remains an open problem.

6 EXPERIMENTS

This section presents experimental results that support our

theoretical analysis. The first section presents the results

of a brute force search of the optimal orientation of node

and context embeddings with block structure on symmetric

block co-occurrence matrices with two and three blocks.

The second experiment shows how the orientation of em-

bedding vectors is strongly influenced by the number of

negative samples.

6.1 Optimal Orientations

This section provides experimental results supporting the

analytical results presented in 5. Assuming a co-occurrence

matrix with a symmetric block structure and block-

structured solutions as defined in Definition 2, the Deep-

Walk objective 2 was maximized by conducting a brute

force search over possible unit vectors for K = 2 blocks.

The off-diagonal block entries of b = 0.1 and on block-

diagonal entries of a = 8b were used. We fix y1 = (1, 0)
and for every value of y2 on the unit circle, in increments

of one degree, we find the pair (x1, x2) that maximizes the

objective. Finally, we take the pairs (x1, x2) and (y1, y2)
that produce the largest objective value.

The results, shown in Figure 1, show that for large enough

spread between a and b, the optimal node embedding vec-

tors x∗
1 and x∗

2 are anti-polar to each other. They are also

equivalent to their respective context embeddings y∗1 , y
∗
2 .

A similar experiment was conducted for K = 3 blocks us-

ing on and off-block values of b = 0.1 and a = 8b. The

brute-force search was conducted over a grid of angles in

increments of five degrees. The optimal orientation is one

in which the vectors x∗
1, x

∗
2 and x∗

3 are as spread out as pos-

sible, i.e. 120 degrees between each vector. Similar to the

K = 2 case, they are also equivalent to their respective

context embedding vectors y∗1 , y
∗
2 and y∗3 . This experiment

suggests a similar theoretical treatment for the K = 3 case

may be possible. Interestingly, if the community sizes are

not equal, however, the optimal orientation of the vectors

deviate from the 120 degrees that was optimal in the equal

community size case. This suggests that more general re-

sults might depend on the community sizes.

6.2 Sensitivity to Negative Samples

The SGNS result in Theorem 8 for the K = 2 case re-

lies on the sufficient but not necessary condition eb
a+b <

sn < a
(a+b)e where sn is the number of negative sam-

ples. Indeed, Mimno & Thompson (2017) experimentally

show that angles between word embedding vectors pro-

duced with negative sampling largely depend on the num-

ber of negative samples used. Similarly, Arora et al. (2019)

suggests that the performance of SGNS embeddings on

downstream classification tasks can be negatively impacted

if the number of negative samples is too large. We con-

duct a simple experiment in the K = 3 case to show that

the number of negative samples impacts the geometry of

SGNS embeddings of an SBM with K = 3 blocks, sug-

gesting that conditions on the number of negative samples
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(a) (b) (c) (d)

Figure 2: Embeddings produced by optimizing the skip-gram with negative sampling objective using (a) sn = 1/10, (b)

sn = 1, (c) sn = 2 and (d) sn = 10 negative samples.

similar to the K = 2 case may be necessary in general in

order to achieve satisfactory performance on downstream

tasks.

We sampled a graph from a stochastic block model with

K = 3 equally sized communities each with |Vk| = 200
nodes with parameters q = 0.1, p = 4q. The co-occurrence

matrix was constructed by performing r = 100 random

walks of length L = 100 for each node as a starting node.

The window length was T = 3. SGNS embeddings were

produced by optimizing (3) using gradient descent for sn =
1/10, 1, 2, 10 negative samples.

The results can be seen if Figure 2. The embeddings pro-

duced by optimizing the SGNS objective differ depending

on the number of negative samples used, especially among

the smaller values. A fractional number of negative sam-

ples sn = 1/10, which can be interpreted as taking one

negative sample for every 10 positive samples, produces

embeddings for two of the three communities that partly

overlap each other. Using sn = 1 negative sample produces

embeddings that separate those belonging to each commu-

nity well. In addition, the embeddings for each community

appear to be evenly spaced from those of the other com-

munities. The sn = 2 and sn = 10 cases produce very

similar embeddings. However, they are quite different than

those produced by sn = 1 despite being able to recover

each community. These results seem to justify the need

for some conditions on sn in order to achieve a satisfactory

clustering performance. The similarity between the embed-

dings for sn = 2, 10, however, suggest that there may exist

conditions on the number of negative samples in which the

embeddings might begin to stabilize.

7 CONCLUSION

We prove guarantees on the embeddings obtained by Deep-

Walk and SGNS on graphs generated by an SBM, estab-

lishing structural properties of their optimal solutions. We

show that the optimal values of the DeepWalk and SGNS

objectives are close to the optimal values computed on an

appropriate block co-occurrence matrix. As a result, for

a symmetric SBM with two communities, we are able to

provide conditions in which the optimal solution vectors

are well-clustered. Unlike previous works, we analyze the

low dimensional embeddings directly. The generalization

of our results to SBMs with more than two components and

to components of unequal size, is left for future work.
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A DETAILED PROOFS FROM SECTIONS 2 AND 3

A.1 Proof of Lemma 1

The proof proceeds by a direct computation of the terms Cij . This is similar to some of the analysis in prior works (Zhang

& Tang, 2021; Barot et al., 2021). We denote the degree of vertex i by di, and write D to denote the diagonal matrix of

degrees.

Proof. Recall that the entries of the co-occurrence matrix, can be written as

Cij

r
=

T
∑

t=1

L−t
∑

k=1

r
∑

m=1

[

1{w(m)
k = i, w

(m)
k+t = j}

r
+

1{w(m)
k = j, w

(m)
k+t = i}

r

]

=
T
∑

t=1

L−t
∑

k=1

[

r
∑

m=1

(

1{w(m)
k = i, w

(m)
k+t = j}

r

)

+
r
∑

m=1

(

1{w(m)
k = j, w

(m)
k+t = i}

r

)]

Taking the limit as the number of random walks r → ∞ and by the large of law numbers we have

Cij

r
→

T
∑

t=1

L−t
∑

k=1

(

Pr
[

w
(1)
k = i, w

(1)
k+t = j

]

+ Pr
[

w
(1)
k = j, w

(1)
k+t = i

])

=

T
∑

t=1

(L− t) (Pr [wt+1 = j|w1 = i] Pr [w1 = i] + Pr [wt+1 = i|w1 = j] Pr [w1 = j])

=

T
∑

t=1

(L− t)

(

Pr [wt+1 = j|w1 = i]
di
2|E| + Pr [wt+1 = i|w1 = j]

dj
2|E|

)

=
T
∑

t=1

(L− t)

(

2Pr[wt+1 = j|w1 = i]
di
2|E|

)

= 2

T
∑

t=1

(L− t) · πi(W
t)ij .

where the second to last step is because the powers of the transition matrix (D−1A) are symmetric after left multiplication

by D.

A.2 Proof of Theorem 3

Proof. As in the definition of symmetric block structure, let a, b be parameters for which the matrix C can be defined as

having Cij = a if i ∼ j and Cij = b otherwise.

We first show that given any fixed X , there exists an optimal solution in which Y has a block structure. Suppose nodes 1
and node 2 are in the same cluster, and suppose we start with an optimal solution with y1 ̸= y2. We consider two candidate

solutions: one in which (y1,y2) is replaced with (y1,y1) and another where it is replaced with (y2,y2), keeping the rest

of the solution the same. We argue that at least one of these solutions has an objective value at least as high as the original

(X,Y ). Note that this process maintains feasibility (belonging to some domain D), which is why our argument also applies

to constrained optimization.

Let us denote the log-sum-exp function, parameterized by xi and {yj}k>2, as

lse (y1,y2;xi, {yj}j>2) = log

[

ex
T
i y1 + ex

T
i y2 +

∑

k>2

ex
T
i yk

]

Note that lse corresponds to the denominator of our loss function. We will usually ignore the parameters xi and {yj}k>2

and just write lse(y1,y2). For simplicity and to emphasize y1 and y2, we write the objective as L(y1,y2). Then
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L (y1,y2) =

n
∑

i=1



axT
i (y1 + y2) +

∑

j∈V1\{1,2}
axT

i yj +
∑

j /∈V1

bxT
i yj − lse(y1,y2)





∑

j∈V1

a+
∑

j /∈V1

b









Taking the average of L (y1,y1) and L (y2,y2) we see that

L (y1,y1) + L (y2,y2)

2
=

n
∑

i=1



axT
i (y1 + y2) +

∑

j∈V1\{1,2}
axT

i yj +
∑

j /∈V1

bxT
i yj

−1

2
(lse(y1,y1) + lse(y2,y2))





∑

j∈V1

a+
∑

j /∈V1

b









≥ L(y1,y2)

where the last line uses an inequality of the form log(2A+Z)+log(2B+Z) ≤ 2 log(A+B+Z), for appropriate choices

of A,B,Z. This is a consequence of the AM-GM inequality (or equivalently, concavity of the logarithm).

This implies that either L(y1,y1) ≥ L(y1,y2) or that L(y2,y2) ≥ L(y1,y2). Regardless, when y1 ̸= y2 the objective

function is no larger than when y1 = y2. It follows that there exists a solution that maximizes the objective whose context

embeddings Y have a block structure.

The proof for X is actually easier. Once we have a block structured solution Y , since the objective splits based on the xi,

we will be solving exactly the same optimization problem for every i in a block, and thus there exists a block structured

solution X . This concludes the proof.

A.3 Proof of Theorem 4

Proof. As in the proof in Section A.2, we first show that there exists an optimal solution whose context embeddings Y
have a block structure. Start with some optimal solution, and assume that node 1 and node 2 are vertices in the same cluster

with y1 ̸= y2. As before, we write the objective as L(y1,y2). Let us define

h(y1,y2) =

n
∑

i=1



Ci1 log σ(x
T
i y1) + Ci2 log σ(x

T
i y2) +

∑

j>2

Cij log σ(x
T
i yj)





g(y1,y2) =

n
∑

i=1



sn
|Ci·|
|C|



|C·1| log σ(−x
T
i y1) + |C·2| log σ(−x

T
i y2) +

∑

j>2

|C·j | log σ(−x
T
i yj)









We can write L as

L (y1,y2) = h(y1,y2) + g(y1,y2)

Since node 1 and node 2 are in the same cluster, we have Ci1 = Ci2. Notice that
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h(y1,y1) =

n
∑

i=1



2Ci1 log σ(x
T
i y1) +

∑

j>2

Cij log σ(x
T
i yj)





h(y2,y2) =

n
∑

i=1



2Ci2 log σ(x
T
i y2) +

∑

j>2

Cij log σ(x
T
i yj)





h(y1,y1) + h(y2,y2) =
n
∑

i=1



2Ci1 log σ(x
T
i y1) + 2Ci2 log σ(x

T
i y2) + 2

∑

j>2

Cij log σ(x
T
i yj)





= 2h(y1,y2)

Similarly, since node 1 and node 2 are in the same cluster, |C·1| = |C·2|. So we have

g(y1,y1) =

n
∑

i=1



sn
|Ci·|
|C|



2|C·1| log σ(−x
T
i y1) +

∑

j>2

|C·j | log σ(−x
T
i yj)









g(y2,y2) =

n
∑

i=1



sn
|Ci·|
|C|



2|C·2| log σ(−x
T
i y2) +

∑

j>2

|C·j | log σ(−x
T
i yj)









g(y1,y1) + g(y2,y2) =

n
∑

i=1



sn
|Ci·|
|C|



2|C·1| log σ(−x
T
i y1) + 2|C·2| log σ(−x

T
i y2) + 2

∑

j>2

|C·j | log σ(−x
T
i yj)









= 2g(y1,y2)

It follows that

L(y1,y1) + L(y2,y2)

2
= L(y1,y2)

This implies that either L(y1,y1) ≥ L(y1,y2) or that L(y2,y2) ≥ L(y1,y2). Regardless, when y1 ̸= y2 the objective

function is no larger than when y1 = y2. It follows that there exists a solution that maximizes the objective whose context

embeddings Y has a block structure.

Once we have a block structured solution Y , since the objective splits based on the xi, we will be solving exactly the same

optimization problem for every i in a block, and thus there exists a block structured solution X . This concludes the proof.

B DETAILS OF SECTION 4

B.1 Proof of Theorem 5

B.1.1 DeepWalk Objective Function

We start by observing that for any candidate solution X,Y ,

Ldw(M ;X,Y ) =
∑

i,j

Mijαij , where αij := log
ex

T
i yj

∑

k e
x

T
i
yk

.

Define Λ (which is dependent on X,Y ) to be the matrix whose (i, j)th entry is αij , so we have Ldw(M ;X,Y ) = M · Λ.

Then the goal of the theorem is to prove that w.h.p., |(M −M) · Λ| is small for all X,Y .
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Outline. The proof starts by using Lemma 6 to show that (M − M ′) · Λ is small for all X,Y . Next, we argue using

Lemma 7 that for any fixed solution X,Y , equation 6 holds with an exponentially small failure probability. Finally, we use

an epsilon-net argument (a standard technique in random matrix theory, e.g., Vershynin (2018)) to take a union bound over

a fine enough ªnetº over the possible X,Y . This lets us obtain the conclusion of the theorem for all X,Y .

Proof. For bounding (M − M ′) · Λ, we observe that for any X,Y with ∥xi∥, ∥yj∥ ≤ 1, we have ex
T
i yj ∈ [ 1e , e] for all

i, j, and thus

αij ∈
[

log

(

1

ne2

)

, log

(

e2

n

)]

= [− log n− 2,− log n+ 2].

This implies that ∥Λ∥∞ ≤ 2 log n, assuming n > 10. Thus, we can use Lemma 6 to conclude that with probability

≥ 1− n−5, for all candidate solutions X,Y ,

(M −M ′) · Λ ≤ ∥M −M ′∥1∥Λ∥∞ ≤ O



L

√

log3 n

∆



 . (10)

Next, we bound (M ′ −M) · Λ for all X,Y . We do this via an epsilon-net argument. Let δ be a parameter we will choose

later, and let Sδ be a set of matrix pairs (X ′, Y ′) such that for every (X,Y ) with columns of length at most 1, there exists

(X ′, Y ′) ∈ Sδ such that ∥X−X ′∥F +∥Y −Y ′∥F ≤ δ. Using standard bounds on the sizes of epsilon nets (e.g., Corollary

4.2.13 of Vershynin (2018)), we have that there exists a net with

|Sδ| ≤
(

6n

δ

)2nd

.

(Indeed, a net of this size exists for the radius-2n ball in a 2nd dimensional space, which is a superset of the matrix pairs

(X,Y ) that we are interested in.)

Next, we apply Lemma 7 with parameters β = 2 log n and an ϵ that satisfies the condition:

min

{

ϵ2∆4

32n log2 n
,

ϵ∆2

8 log n

}

≥ 5 log n+ 2nd log

(

6n

δ

)

Then, we can use the union bound to conclude that with prob. ≥ 1− 4n−5, for all (X ′, Y ′) ∈ Sδ ,

|Ldw(M
′;X ′, Y ′)− Ldw(M ;X ′, Y ′)| ≤ 2ϵL.

Now, if we set δ = ϵ
n4 , we have that if (X,Y ) is any pair of matrices with columns of norm ≤ 1 and (X ′, Y ′) is the pair

closest to it in Sδ ,

|Ldw(M
′;X,Y )− Ldw(M

′;X ′, Y ′)| ≤ ϵL/2,

and the same inequality holds with M . Thus, using triangle inequality, we have that with probability at least 1− 4n−5, for

all pairs (X,Y ),
|Ldw(M

′;X,Y )− Ldw(M ;X,Y )| ≤ 3ϵL.

Finally, combining this step with equation 10, we have that with probability at least 1− n−4, for all (X,Y ),

|Ldw(M ;X,Y )− Ldw(M ;X,Y )| ≤ O



Lϵ+ L

√

log3 n

∆



 ,

as long as we have the inequality

min

{

ϵ2∆4

32n log2 n
,

ϵ∆2

8 log n

}

≥ 5 log n+ 2nd log
(

6n4
)

.

By a straightforward calculation, we see that this condition holds as long as

∆2 ≥ 400nd log2 n

ϵ
.

This completes the proof of the Theorem, for the DeepWalk objective.
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B.1.2 Negative Sampling Objective Function

Recall that the SGNS loss function corresponding to matrix M has two components:

Lns(M ;X,Y ) =
∑

i,j

Mij log σ(x
T
i yj) + sn

∑

i,j

|Mi·||M·j |
|M | log σ(−x

T
i yj),

where M is defined in equation 4.

Proof outline. We can split Lns(M ;X,Y ) − Lns(M ;X,Y ) into two terms as above. The first one,
∑

i,j(Mij −
M ij) log σ(x

T
i yj), is handled exactly as we did for the DeepWalk objective function. The second term can be handled

more directly and shown to be small.

Proof. Let us begin by looking at the second term, as it is unique to the SGNS loss. Note that by definition,

|E| ·Mij = (L− 1)Aij + (L− 2)
∑

r

AirArj

dr
,

where dr is the degree of the rth vertex. Thus we have

|E| · |Mi·| = |E| ·
∑

j

Mij = (L− 1)di + (L− 2)
∑

r

Air

dr

∑

j

Arj

= (L− 1)di +
∑

r

Air

dr
· dr = (2L− 3)di.

Similarly, we can see that |E| · |M·j | = (2L− 3)dj . This then implies that |M | =∑j |M·j | = 2(2L− 3). So we have

∑

i,j

|Mi·||M·j |
|M | log σ(−x

T
i yj) =

∑

i,j

(2L− 3)didj
2|E|2 log σ(−x

T
i yj).

For any vectors xi,yj of norm ≤ 1, the σ(−x
T
i yj) term is Θ(1) (and in fact, it is at most 1 in magnitude). Thus, we have

∣

∣

∣

∣

∣

∣

∑

i,j

(2L− 3)didj
2|E|2 log σ(−x

T
i yj)−

∑

i,j

2(2L− 3)∆2

n2∆2
log σ(−x

T
i yj)

∣

∣

∣

∣

∣

∣

≤ 2(2L− 3)
∑

i,j

∣

∣

∣

∣

didj
2|E|2 − 2∆2

n2∆2

∣

∣

∣

∣

.

As in the proof of Lemma 6, we have that for the range of ∆ of interest, for every i, j, the magnitude of the difference

is ≤ O
(√

logn

n2
√
∆

)

with probability ≥ 1 − n−5. This implies that the error in total is O

(

L
√

logn
∆

)

, and this shows

that with high probability, the difference between the second term in the SGNS loss for M and for M differ by at most

O

(

L
√

logn
∆

)

for all xi,yj .

Finally, we note that the first term in the SGNS loss can be bounded exactly as before (with the sigmoid terms playing

the role of the softmax). Indeed, we can use the slightly improved value of β = 2, because the sigmoid is bounded by a

constant. This completes the proof of the theorem.

B.2 Proof of Lemma 6

Proof. First, we argue that the following bounds hold with probability ≥ 1 − n−5 when a graph G is drawn from a

symmetric SBM with parameters (K, p, q) and p > n−1/2.
∣

∣

∣

∣

|E| − n∆

2

∣

∣

∣

∣

≤ O
(

(n∆)1/2(log n)1/2
)

, (11)

∀i, |di −∆| ≤ O(
√

∆ log n). (12)
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These inequalities follow from the standard Chernoff bound (see, e.g., Theorem 2.3.1 of Vershynin (2018)) on the sum of

independent Bernoulli random variables.

Next, whenever G satisfies the above conditions, we show that for all X,Y with columns of length at most 1,

Ldw(M ;X,Y ) − Ldw(M
′;X,Y ) is small. To this end, note that it is sufficient to bound

∑

ij |Mij − M ′
ij |. Writing it

out for a fixed i, j,

Mij −M ′
i,j = (L− 1)Aij

(

1

|E| −
2

n∆

)

+ (L− 2)

(∑

k AikAkj/dk
|E| − 2

∑

k AikAkj

n∆2

)

. (13)

Let us bound the two terms in the parentheses separately. By using equation 11, the first term can be bounded by

O
(

(n∆)−3/2(log n)1/2
)

. Let us consider the second term. We split it into two terms as follows:

∑

k AikAkj/dk
|E| − 2

∑

k AikAkj

n∆2
=

(∑

k AikAkj/dk
|E| − 2

∑

k AikAkj/dk
n∆

)

+

(

2
∑

k AikAkj/dk
n∆

− 2
∑

k AikAkj

n∆2

)

.

For the first term, we again use equation 11 along with triangle inequality and equation 12 to bound its magnitude by

O((log n)1/2)

(n∆)3/2

∑

k

AikAkj

dk
≤ O((log n)1/2)

∆(n∆)3/2

∑

k

AikAkj .

The second term can be bounded similarly using equation 12 by

2

n∆

∑

k

AikAkj

∣

∣

∣

∣

1

dk
− 1

∆

∣

∣

∣

∣

≤ O(
√
∆ log n)

n∆3

∑

k

AikAkj .

Note that this bound is strictly worse (by a factor n1/2) than our bound for the first term, so we only keep this one. Plugging

all of these into equation 13 and summing over i, j, we obtain

∑

ij

|Mij −M ′
ij | ≤ O(L

√

log n)





∑

ij Aij

(n∆)3/2
+
∑

ij

1

n∆5/2

∑

k

AikAkj



 .

Now,
∑

ij Aij ≤ 2n∆, as it is the number of edges. Likewise,
∑

ij

∑

k AikAkj counts the total number of length-2 paths

in the graph, which is also equal to sum of the squares of the degrees. This is thus bounded by 2n∆2. Putting everything

together, the above bound simplifies as

∑

ij

|Mij −M ′
ij | ≤ O(L

√

log n)
(

(n∆)−1/2 +∆−1/2
)

.

Since the last term dominates, this completes the proof of the lemma.

B.3 Proof of Lemma 7

Proof of Lemma 7. Recalling the definitions of matrices M ′ and M , we have

|(M ′ −M) · Λ| ≤
∣

∣

∣

∣

2(L− 1)

n∆
(A− E[A]) · Λ

∣

∣

∣

∣

+

∣

∣

∣

∣

2(L− 2)

n∆2
(A2 − E[A2]) · Λ.

∣

∣

∣

∣

(14)

If the LHS is ≥ t, at least one of the terms on the RHS must be ≥ t/2. We will thus bound the probabilities of these two

events separately. For convenience, we will call them the linear and quadratic terms respectively. We also denote by λij the

(i, j)th entry of Λ. The technical issue in bounding the probabilities of the events comes from (a) the symmetry conditions

Aij = Aji, and (b) the quadratic term A2.

The linear term on the RHS of equation 14 turns out to be straightforward. Due to the conditions Aij = Aji and Aii = 0,

we can write (A − E[A]) · Λ =
∑

i<j Aij(λij + λji). Using the Bernstein inequality for the sum of independent but

non-identical Bernoulli variables (e.g., Theorem 3.3 of Chung & Lu (2006)) and using the fact that each of the coefficients

is at most 2β, we have that for all s > 0

Pr [|(A− E[A]) · Λ| ≥ s] ≤ 2e
− s2

4β2n∆+2sβ . (15)
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Setting s = ϵn∆
2 , the RHS simplifies to 2 exp

(

− ϵ2n∆
4(4β2+ϵβ)

)

.

Next, let us focus on obtaining a large deviation bound for the quadratic term, i.e., analyzing Pr[|(A2 − E[A2]) · Λ| > s].
Since λij are fixed, by the linearity of expectation, we are effectively looking to bound Pr[|Y − E[Y ]| ≥ s], where

Y =
∑

i,j

∑

k

AikAkjλij .

Y is a quadratic polynomial in the random variables {Aij}i<j (again, because of symmetry, and because Aii = 0). Thus

we will apply the Hanson and Wright inequality (e.g. Theorem 6.2.1 of Vershynin (2018)) in order to obtain a tail bound.

This requires understanding the matrix B that defines the quadratic form Y , and more specifically, bounding its Frobenius

and spectral norms, ∥B∥F and ∥B∥2. Writing Y =
∑

k

∑

i,j ̸=k AkiAkjλij , we see that B is an
(

n
2

)

×
(

n
2

)

matrix, whose

entries are defined by pairs of indices {i, j} and {k, l}. We see that if {i, j} ∩ {k, l} = ∅, the corresponding entry of B is

zero. If the intersection is one, i.e., the indices are {i, j} and {i, k}, the corresponding entry of B is λjk +λkj . Finally, for

the diagonal terms (corresponding to say {i, j}, {i, j}), the entry is λii + λjj .

First, we can bound the Frobenius norm of B directly: using the basic fact that (a+ b)2 ≤ 2(a2 + b2) for all a, b, we have

∥B∥2F ≤
∑

i

∑

j,k

2(λ2
jk + λ2

kj) +
∑

i<j

2(λ2
ii + λ2

jj).

This is clearly upper bounded by 2n∥Λ∥2F .

Bounding the spectral norm turns out to be a bit more tricky. Let us define B′ to be the ªasymmetricº version of B, i.e., an

n(n− 1)× n(n− 1) matrix whose rows and columns are indexed by ordered pairs (i, j), i ̸= j. The diagonal entry in the

(i, j)th row is set to be 2λjj . Further, the entry corresponding to the (i, j)th row and (i, k)th column is (λjk + λkj). The

rest of the entries in the matrix are 0. In other words, we can can think of B′ as a matrix with diagonal blocks, where for

every i, we have an (n− 1)× (n− 1) block of Λ + ΛT , excluding the ith row and column.

The key observation is that we can relate the spectral norms ∥B∥2 and ∥B′∥2 in a simple manner. First, for any vector

x ∈ R
(n2), consider the vector x′ ∈ R

n(n−1) where x′
(i,j) = x′

(j,i) = x{i,j}. By construction, we have ∥x′∥2 = 2∥x∥2.

Claim. We have ∥Bx∥2 ≤ 2∥B′x′∥2. This is because for any x ∈ R
(n2), by definition, the {i, j}th entry of Bx is precisely

∑

k ̸=i

(λjk + λkj)x{i,k} +
∑

k ̸=j

(λik + λki)x{j,k}. (16)

On the other hand, the (i, j)th entry of B′x′ is
∑

k ̸=i(λjk + λkj)x(i,k). Thus the expression in equation 16 is exactly the

sum of the (i, j)th and (j, i)th entries of B′x′. This implies that ∥Bx∥2 ≤ 2∥B′x′∥2. Moreover, since ∥x′∥2 = 2∥x∥2, we

have
∥Bx∥2
∥x∥2 ≤ ∥B′x′∥2

∥x′∥2 .

Thus the spectral norm of B is at most the spectral norm of B′. The latter is easy to bound, as it is a block diagonal matrix.

We have

∥B′∥22 ≤ ∥Λ + ΛT ∥2F ≤ 4∥Λ∥2F .

Since ∥Λ∥2F ≤ n2β2, we have that

∥B∥2F ≤ 2n3β2 and ∥B∥22 ≤ 4n2β2.

Equipped with these bounds, we can use the Hanson-Wright inequality (indeed, the stronger form by Rudelson & Vershynin

(2013) which also applies to non-identical random variables). Noting that the sub-Gaussianity constant of a Bernoulli

random variable is ≤ 1, this implies that ∀ s > 0,

Pr[|Y − E[Y ]| > s] ≤ 2 exp

(

−min

{

s2

2n3β2
,

s

2nβ

})

.

Setting s = ϵn∆2

2 , this simplifies to 2 exp(−min{ ϵ2∆4

8nβ2 ,
ϵ∆2

4β }).
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We have thus obtained bounds on the probability of the linear and quadratic terms in equation 14 each exceeding ϵL.

Observe that as long as n > 8β/ϵ, the bound from the quadratic term is strictly larger than the bound from the linear term.

Thus, by using the union bound, we obtain the conclusion of the lemma.

C DETAILS OF SECTION 5

C.1 Proof of Lemma 10

Proof. The proof is similar to that of Lemma 9. We appeal to Theorem 4 to conclude that there exists a block structured

Y ∗ (with components y∗
1 and y

∗
2 , say), such that

Lns(M ;X,Y ∗) ≥ Lns(M ;X,Y ).

Once again, we decompose the loss as a sum g(xi), where for some i ∈ V1, we have

g(xi) =
na

2
log σ(ti) +

sn(a+ b)n

2
log σ(−ti) +

nb

2
log σ(t′i) +

sn(a+ b)n

2
log σ(−t′i),

where we have defined ti = x
T
i y

∗
1 and t′i = x

T
i y

∗
2 . We next observe that under our assumptions, this quantity is maximized

when ti = 1 and t′i = −1.

To do this, suppose we define hA,B(t) = A log σ(t) + B log σ(−t), where A,B are parameters that satisfy A/B ≥ 2.

Then,

dhA,B

dt
= A

(

e−t

1 + e−t

)

−B

(

1

1 + e−t

)

=

(

1

1 + et

)

(

A−Bet
)

=
A

1 + et

(

1− B

A
et
)

.

Once again, this is a decreasing function of t, so over the interval [−1, 1], the minimum value is attained at t = 1. Further,

if A/B > e, the derivative is positive.

As before, denote by g∗ the value of g(xi) obtained by setting ti = 1 and t′i = −1 (note that this may not actually be

attainable by some xi, for instance, if y∗1 and y∗2 are not antipodal unit vectors). By the observation about the derivatives

of hA,B , the mean value theorem, and the choice of γ, we have that for every i,

g∗ − g(xi) ≥ γ(1− ti) + γ(t′i + 1) = γ(2− x
T
i (y

∗
1 − y

∗
2)).

Now we are in exactly the same situation as in Lemma 9 (with γ playing the role of g′(2)). Using the same argument (and

once again, noticing that OPT achieves the value g∗ for every vertex), we have that

OPT − Lns(M ;X,Y ∗) ≥ γ

2

[

∑

i∈V1

∥xi − x
∗
1∥2 +

∑

i∈V2

∥xi − x
∗
2∥2
]

.

As before, this completes the proof of the Lemma.
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