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Abstract

We study variants of the online linear optimiza-
tion (OLO) problem with bandit feedback, where
the algorithm has access to external information
about the unknown cost vector. Our motivation
is the recent body of work on using such “hints”
towards improving regret bounds for OLO prob-
lems in the full-information setting. Unlike in the
full-information OLO setting, with bandit feed-
back, we first show that one cannot improve the
standard regret bounds of O(+/T') by using hints,
even if they are always well-correlated with the
cost vector. In contrast, if the algorithm is empow-
ered to issue queries and if all the responses are
correct, then we show O(log T') regret is achiev-
able. We then show how to make this result more
robust—when some of the query responses can
be adversarial—by using a little feedback on the
quality of the responses.

1. Introduction

Online linear optimization (OLO) is an elegant abstraction
that captures the essence of many online decision mak-
ing problems (Zinkevich, [2003} [Hazan, 2016). Informally
speaking, it is a T-round game between an algorithm and
an adversary that is played over a convex domain. In each
time step the algorithm first plays a vector after which an
adversary replies with a cost vector; the loss at this time step
is the inner product of the cost and the played vectors. The
algorithm’s performance, called regret, is measured as the
difference between the total loss incurred by the algorithm
and that of an algorithm that plays the best single vector
in hindsight at all time steps. There are two popular OLO
settings: in the full-information feedback setting, the algo-
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rithm gets to see the cost vector and in the more challenging
bandit feedback setting, only the loss but not the cost vector
is visible to the algorithm. OLO is well-studied in both
these settings, and the optimal regret is known to be ©( \/T)
for both (Abernethy et al., |[2008)).

A substantial body of research aims to understand vari-
ants of OLO where the /T regret bound can be improved,
ideally, to logT. A promising such variant is the use of
“hints”: before the algorithm plays a vector, it receives a hint.
There have been recent results achieving logarithmic regret
for OLO, even when each hint is only mildly correlated
(i.e., “good”) with the yet to appear cost vector (Hazan &
Megiddo, 2007 Rakhlin & Sridharan, 2013}; |Dekel et al.,
2017} |Bhaskara et al.l |2020). These algorithms are also
robust, namely, their regret gracefully degrades with the
number of time steps in which the hints are “bad” and in
the limit when all hints are bad, the regret is O(v/T). An
important detail is that these hint-based algorithms operate
in the full-information setting and crucially depend on the
availability of the cost vector. This poses a natural question:
are there hint-based algorithms for bandit OLO and how
much hints can help with reducing the regret in this case?

In this paper we study this question. Our first result is some-
what surprising and strong: we show that having access to
good hints is insufficient to obtain better than O (v/T') regret
for bandit OLO; furthermore, this negative result holds even
in two dimensions when the domain is simply the unit ball!
This is in stark contrast with the logarithmic regret that is
possible in the analogous full-information setting, dashing
any hopes of taking advantage of hints for bandit OLO.
The proof is based on constructing a pair of distributions
on the plane and arguing that no low-regret algorithm can
distinguish them (Section [3).

Necessitated by this lower bound, we turn our attention to a
different yet natural way of obtaining hints, namely, answers
to queries. In this model, the algorithm can actively query
the correlation (inner product) of a point of its choice with
the cost vector before playing. We present such an algorithm
that obtains logarithmic regret even if the query points are
chosen at random. The main intuition behind the result
is that a good response to a random query can be used to
provide an unbiased estimate of the cost vector; in addition
it can also be used to construct a proxy hint for the algorithm.
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We also show that the algorithm is robust, i.e., the regret
gracefully degrades if some of the responses to queries are
allowed to be bad/incorrect; however, the degradation is
linear in the number of bad responses (Section ).

To improve the robustness so that the regret bounds would
still be O(\/T ) even when all the query responses are bad,
we aid the algorithm with additional binary feedback about
the “goodness” of the response after playing. Exploit-
ing this information is challenging because exploring to
hedge against a potentially “bad” response is in tension
with exploiting a potentially “good” response. This explo-
ration/exploitation tradeoff is more fraught than the standard
one encountered in bandits as we need more “exploitation”
in order to achieve logarithmic rather than /7" regret. Nev-
ertheless, in this enhanced model, we show that we can
recover the optimal robustness bounds (Section [5).

1.1. Related work

Our work connects naturally with the recent literature on al-
gorithms that can leverage ML-based predictions (e.g., (Lyk-
ouris & Vassilvtiskii, [2018; [Kumar et al., [2018)). Much
of this line of work assumes that an ML “oracle” makes
problem-specific predictions, that are used by an algorithm
for obtaining better guarantees, especially for combina-
torial optimization (Gollapudi & Panigrahi, 2019; Jiang
et al., 2020; Rohatgi, 2020; Bamas et al.| [2020; [Im et al.,
2021; Mitzenmacher, |2020; [Kumar et al., [2019; |Lavastida
et al 2021). In the online learning community, this set-
ting has been studied under the name of optimistic regret
bounds (Rakhlin & Sridharan| [2013}; [Steinhardt & Liang],
2014; |Dekel et al., 2017; Wei1 & Luo, 2018; Bhaskara et al.,
2020). Our query model is different in that the algorithm
interacts with the oracle and is thus able to obtain better
regret. Recently, Bhaskara et al.|(2023)) introduced a query
model similar to ours, but could only obtain guarantees
in the full-information setting, or in the case of stochastic
multi-armed bandits.

Our model is also related to the “observe before play” model
introduced in [Zuo et al.| (2019). However, the key differ-
ence is that they consider policy regret, i.e., they compete
against policies that also make observations before playing
an arm, while our work competes against the more classic
benchmark of the best fixed action in hindsight, as in the
work on optimistic regret bounds. Another difference is that
our focus is on adversarial bandits, while|Zuo et al.| (2019)
primarily study the stochastic case.

One of the challenges we face in Sections [ and [5] con-
cerns dealing with incorrect query responses. This is a
well-known challenge for learning with bandit feedback, as
a small number of incorrect responses can throw off the esti-
mates that an algorithm uses to maintain information about
the arms. Recent work such as (Lykouris et al., [2018; (Gupta!

et al., [2019; |Ito, 2021} [Wei et al., 2020) develop different
techniques to handle this issue. It is an interesting question
to see if such ideas can let us handle incorrect responses
without receiving feedback as in Section

2. Formulation

Let [T] = {1,...,T}. LetB? = {z € R? | ||z|| < 1}
denote the unit Euclidean ball in d dimensions. Let ¢ =
c1,...,cr denote the sequence of cost vectors, where each
c; € B,

The online linear optimization (OLO) problem with limited
feedback, aka, the bandit OLO setting, is a game between
an algorithm .4 and an adversary over 1" rounds. In each
time step ¢ € [T, an adversary chooses the cost vector
¢; € BY; this cost vector is not revealed to the algorithm.
The algorithm plays a point x; € B¢ and receives feedback
(ct,xy); it is said to incur a loss of ¢; = (ct, ) in this
time step. The total loss of the algorithm A is defined as
loss 4 (€) = > e ry Ue-

The regret of the algorithm A is the difference between its
total loss and that of the best algorithm that is constrained
to play the same point in B¢ at all time steps:

T
RA(€) =lossa(C) — mmZCt,

d
r€B =1

The goal is to design an algorithm with minimum regret.

In this paper we consider the following variants of the bandit
OLO setting.

(i) Hints. Before playing z;, the algorithm receives a hint
hy € B?. A hint is said to be good if (hs,c;) > a and bad
otherwise; here « is a fixed parameter.

(i) Queries. Before playing x;, the algorithm can query
an arbitrary point s; € B? and receive a response ¢;. A re-
sponse is said to be good if q; = {(c;, s;) and bad otherwise.

(iii) Response Feedback. The setting is same as (ii))—
before playing zy, the algorithm gets a response g, to a
query s;. In addition, after it plays x;, it receives feedback
gi, which is 1 if the response ¢; was good and is 0 otherwise.

2.1. Notation

For a > 0, we define
clip, () = max(—a, min(a, x)).

We also let ¢1.; denote S'_, ¢; and let ||c[|?,, denote

t 2
Diz el
For a distribution D, we let x ~ D to denote that the ran-
dom variable x is drawn from D. For two distributions
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P, Q, let di, (P; Q) denote the total variation distance and
let dkr, (P; Q) denote the KL-divergence. Pinsker’s inequal-
ity states that di, (P; Q) < v/dkr(P; Q)/2. Let N(u, 02)
denote the one-dimensional Gaussian distribution with mean
4 and variance o2.

3. Limitations of Hints

In this section we show it is not possible to reduce the regret
below O(+/T) for bandit OLO optimization, even if good
hints are available to the algorithm at every step.

Theorem 3.1. For any bandit online learning algorithm
A, there is a distribution over a sequence c, . .., cr € B¢
of cost vectors and a sequence hy, ..., hy € B of hint
vectors such that the following hold:

1. (he,ee) > 1/4 for all t € [T (with high probability),
and

2. 1/4 < |let]] < land ||he]| = 1 forall t € [T] (with
high probability), and

3. expected regret of Ais Q(\/%)

The proof follows the general template of lower bounds in
bandit settings, and proceeds by constructing two distribu-
tions and arguing about whether an algorithm can distin-
guish them or not, and proving a high regret bound in either
case. Our lower bound construction will only require two
dimensions, and so the theorem holds even for d = 2.

Define the following two distributions over cost vectors.
Let €, o be parameters that will be chosen later. We define
D, to be the distribution over R? where a random point is
generated as (N(1,0%),N(+¢,0?)). Similarly, we define
D_ to be the distribution where a random point in R? is

generated as (N(3,02), N(—¢,0?)).

Too1og T+ This
will ensure that ¢; ~ D (or ~ D_) satisfies 2 < [|c;[| < 1
for all ¢, with probability > 1—7~%. We also set h; = (1,0)
for all £. Once again, the choice of o, e will ensure that
{ct, hy) > 1/4 for all t, with probability > 1 — T4,

Our construction will use € < 1/4, and o2 <

We now provide an outline of the proof. Consider any (possi-
bly randomized) algorithm that plays the point x; = (ay, b;)
and observes loss ¢; at time ¢. We consider the distribution
of the losses ({1, . .., ¢7) under the input distributions D
and D_. We argue that if the loss distributions in the two
cases are close, then the algorithm must be playing “similar
points” in the two cases, and must therefore incur high re-
gret in one of the two cases. Otherwise, we show that the
algorithm must place a significant mass on b; (in magnitude)
on average, which then leads to a high regret for one of the
two distributions. We now formalize this argument.

Proof of Theorem[3.1] Let A be a (possibly randomized)

algorithm that is constrained to play a point x; = (a,b;) €
B? at every time step. Let /; denote the loss that A incurs
at time ¢. Note that this is a random variable that depends
on the costs at time < ¢, as well as the randomness in A. If
the ¢;’s were drawn from D_ , then we can write

0 = % + eby + vy + Bib, (1)

where oy, 3; ~ N(0,0?). We let P be the joint distribution
of (¢1,...,¢r) inthe case where ¢; ~ D . Similarly, define
@ to be the joint distribution in the case where ¢; ~ D_.
We consider two cases.

Case 1. di(P;Q) < 1/3. Intuitively in this case, A
cannot distinguish between whether ¢; ~ Dy or ¢y ~ D_.
We now argue that in one of the cases, .4 needs to incur a
large regret. Let I; be the binary variable that indicates if
b, > 0. For convenience, let us write E [Z] for a random
variable Z to denote the expected value when c¢; ~ D and
write E_[Z] when ¢; ~ D_.

The first observation is that for every ¢, [E [I;] — E_[I;]| <
1/3. This is true by the assumption d;, (P; Q) < 1/3, and
by using the fact that the points played by A (and hence
I;) only depend on the losses observed by the algorithm
so far. Thus, if we define N = ), I;, we have |[E[N] —
E_[N]| < T/3. Thus, we must either have E [N] > T'/3
or E_[N] < 2T/3 (because of neither holds, the difference
will be > T/3).

Assume first that E[N] > T/3. In this case, we have
> El] = >, E[% + eb] (this is because ay, b; only
depend on the losses and costs at time steps < t). Since
(a¢, by) € B2, we always (i.e., regardless of I;) have

/1
%'Fd)tz— i+€25

and furthermore, if I; = 1, we get a stronger bound of

where the second inequality is from Taylor expansion. Next,
note that if E [N] > T'/3, we must have I; = 1 for at least
T'/3 steps, and thus

1 Te?
g E[l] > =T/~ 24—
t [¢:] > 1 + €2 + 6

However, the optimal comyarator in hindsight incurs an
expected loss of —E[[> >, ¢ < —|E Zthl c| =

=T/ % + €2 by Jensen’s inequality. This shows that the

expected regret is Q(T'¢2). The proof for the case E_[N] <
2T'/3 is similar (and here, the argument implies that the
regret is high for ¢, ~ D_). Together, this completes the
proof for Case 1.
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Case 2. di,(P;Q) > 1/3. By Pinsker’s inequality, note
that we must also have dkr,(P; Q) > 2/9.

Let us now obtain a bound on dkr,(P; Q) using the chain
rule for KL-divergence. For convenience, denote ﬁ‘i =
(¢1,...,¢:). Then we have

G (PiQ) < 3 Byrdia(le | D7t | D- 7).
t

Here, ¢; | Dy, E’i_l refers to the distribution of ¢; when ¢,
is drawn from D, and we condition over the losses in the
first t — 1 steps. Also note that the expectation over Eﬁfl
corresponds to ¢; ~ D ; this is due to the asymmetry in
the definition of dkr,. Since E‘i_l determine the values of
at, by, we can use the expression in (and the analogous
expression for the case of D_) to obtain:

4e%b?

dgr(b; | Do 074, | Dy = ——t
kL (bt | Dy 07 5l | Do, 0777) o2 (aZ + b2)

(We are using the standard formula for the KL-divergence
between univariate Gaussians (Tsybakov, 2009).)

212
Whenever a? + b? > 1/2, this quantity is < 8¢ th, and

further, it is always < 46 So if we denote by J; the binary
variable that indicates 1f a? + b7 < 1/2, we have that

4€2b2 4€2

7!] 8e2b?
o%(af +b7) ~ ot .

o2

Let us write M = ), J;. Then, the bound dxr,(P; Q) >
2/9 implies that

2 0'
+ZZE+b Pt

Thus, one of the terms on the LHS must be > ‘é 5, and we
consider two sub-cases. For both the cases, we choose the

parameters o, € such that 5z > 40T €%

Case 2a. B4 [M] >
whenever J; = 1,

A Y & e By E
5 Teb > Vi € g teT s

This implies that the total regret in this case is > 407T'¢? /3.

ag-z- In this case, it is easy to see that

Case 2b. EL [y, b7] > -3 > 20T€>.

In this case, the idea is to argue that b7 is “too large” on
average, and use this to conclude that we have high regret.
Let (u1, ug) be the unit vector along (—1/2, —¢). Thus, to
minimize % + eb;, we must have by = uy. We start with
the following easy claim that quantifies the regret when

bt 75 ug.

Claim. Suppose v = (x,%), and 22 + y? < 1. Then,

/1 (y — ug)?
D e R
4+€ + 1 .

To prove the claim, note that for any given y, in order to
minimize the LHS, x must be made as small as possible,
i.e., we can set x = —4/1 — 92, and thus we may assume
that v is a unit vector. Then, if we denote u = (uy,uz) to
be the unit vector along (—1/2, —e), we have (since both
are unit vectors),

x+ S
g "=

o= oll® (= ua)”
2 - 2

1—(u,v) =

Thus, we have

1 x 1 (y — u2)?
— 2 = > _ 2.
\/4+e+(2+€y)—\/4Jre 2
completing the proof of the claim. (|

Using this for all ¢, we have that the expected regret is at
2
least E {Zt %] . To bound this, we note that
0 if b2 < 4u?
(b —ug)? > 9 o . "
by /4  otherwise.
b2

Thus, the regret can be lower bounded by Zt:bf >4u2 16°

Finally, since

o+ > b} =206,

t:bf<4u§ t:b?24u%

. 2
and the first sum is at most 4u37T = iiz; < 16€2T, the
4
. 2
second term must be > 4¢2T, and thus the regret is > %.

This completes the proof of Case 2, and hence also the proof
of the theorem.

Choice of parameters. Note that in order for all the
inequalities needed in the proof to hold, we can set 02 =

To0IcaT 10 - and €2 == f With this setting, we get a regret
lower bound of T'e? /4, i.e., ( i T.T) ) O
og

4. Sublinear Regret with Queries

Theorem@] shows that, unlike the full-information setting
(Bhaskara et al., 2020; 2021)), passive hints regarding up-
coming cost vectors are not sufficient to obtain logarithmic
regret guarantees in the bandit setting. Motivated by re-
cent work (Bhaskara et al., 2023, we now consider a setup
where the algorithm can actively query the value of the cost
function at a point of its choice before playing. Our main
result is the following:
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Algorithm 1 Bandit OLO with Queries.

fort=1,...,7T do
s¢ + uniform random vector on unit sphere in R¢
gt < Q(st) > Query and response

Ce—d-q- St > Estimate cost

a; = clip_s_ (1)
d
> Construct hint
> FTRL step

ht — @ s QiS¢
Ty < argming cga (1.4-1(2) + ||2]|?

_ 271
Playxt:jt—}—m-ht

Incur loss (c¢, x¢)
7 . «
Define 4;(+) := (&, ) + % . %(H . ||2 —1)
end for

Theorem 4.1. For the bandit OLO problem with queries, Al-
gorithmobtains expected regret O(d®/? log T+d? log( B+
1) + dB), where B is the number of bad responses.

In particular, when the responses to all queries are good
(i.e., B = 0), the regret is O(d3/2 log T'). We also remark
that while our algorithm assumes that the query responses
are perfectly accurate (in all but B steps), our methods can
also be used in weaker settings. For example, if we know
that ||c;|| = 1 for all ¢, then simply receiving the sign of
(ct, s¢) suffices. This is because the sign suffices to obtain
the guarantees of Lemma4.2] and thereby the desired regret
bounds. We omit these details for brevity.

4.1. Algorithm

The algorithm exploits the simple fact that a random query
can be used to get a low variance estimate of the cost vector
as well as to construct a good hint. The details are presented
in Algorithm [T} The random query s; and the response g; to
this query are used to obtain an unbiased estimate ¢; of the
cost vector. They are also used to construct a good hint h;.
Note that we also need to “clip” g; for constructing the hint;
this is important for achieving the claimed regret bound but
makes the analysis tricky. The hint A, is then leveraged to
construct a strongly-convex surrogate loss function, as in
prior works (Bhaskara et al., 2020).

4.2. Analysis

We first establish some simple and useful properties of the
estimated cost vector and the constructed hint. Let E;_1[]
denote the expected value conditioned on the history until
time ¢t — 1. The following lemma relies on properties of a
point sampled uniformly from the unit sphere and we defer
the proof to Appendix [A]

Lemma 4.2. In Algorithm[l} the following hold: (i) || h|| <
1 and ||x¢|| < 1. If the response is good at time t, then

(ll) ]E[ét} = Ct,
(iii) By_1[da?] > (1/4)|cq||?
(iv) E[l|é]?] = dl|e:]*.

>

We next bound the regret incurred by Algorithm ] by the re-
gret incurred by the FTRL procedure against the constructed
surrogate loss functions, during time steps when the query
response is good.

Lemma 4.3. If the response q; at time t is good, then

E[(ce, zs — u)] < E[ly(Z) — £y(u)], Yu € B,

Proof.

5 ., Vd
ik

E[l,(z)] = E | (6.70) + X0 {0500 10 12y

2

When the response ¢; is good, from Lemma[.2](ii), we have
E[é:] = ¢;. Since é; and T; are independent, the expectation
of the first term is exactly (¢, Z;). This implies:

B[7,(20)] = Eller, 7).
Next, note that for any |Ju|| < 1,
Bf(w)] = & () + 9% gl - 1)
= e + & | 502 g2 - 1) < v

once again because (¢, s;)a; > 0if ¢¢ = (¢4, s¢). Putting
these together completes the proof of the claim. O

So, now all we need to show is that the FTRL procedure
obtains low regret on the surrogate losses ¢;(+).

Lemma 4.4. E[>]_ 0,(z;) — li(u)] < O(d3?logT +

d*1og(B + 1)) where B denotes the number of time steps
when the response is bad.

Proof. For convenience, let oy := %qtat. Then by defini-
tion, ¢; is o-strongly convex wrt norm || - ||. Consider the
regularizer r(z) = ||z[|.

We have !71:,5+1 +7is (01:441 +2)-strongly convex wrt norm
|l - |- Equivalently ¢1.;41 + r is 1-strongly convex wrt norm

H'H(t) = \/01:441 + 2 H'H-LetH'H(t) (m) [l

be the corresponding dual norm.

Let g; denote the gradient of ?,. Then applying (McMahan,
2017, Theorem 1), we get

oSt -100] <8

T

1 -
r(u) + 3 Z H9t||%t71),*

t=1
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r(u)—I-fZ ||9t||2
2 =1 2 -+ O1:¢

B T

1

32

¢
—~2+o01
e ||

| 1 2 1 1ge 1>
ru) + 5y P SN L
() 2§2+01:t—1 2%2+01:t—1

where I C T denotes the set of times at which the responses
are bad.

=E

The first term is simply ||u||?. For the second term, we note
that even for ¢ € I:

1Ge]1 < 2[|e¢||* + 207 < 2d%¢7 + 20y < 2(d* + 1)oy,

where the last inequality uses |q;| <
we have the following

1 Ak 1
E[Z gl ]SE[
2t612+01:t71 2
1
52
tel
< (d*+ 1E

% | |. Substituting,

D

¢
tel 1+ ZSStISEI s

<E

2(d* +1)oy
14> <tser Os
[log(1+ Z at)]

tel

< (d* +1)log(B +1).

Finally for the third term, we have:

D

te1

¢ _E (Y Ei—1(/lg: 1]
2+ Zs<t|s¢1 Ts el 2+ Zs<t|s¢[ Os

where [E;_; indicates the expectation given the history
T1,... Ti—1,q1,---,q—1 and E*~1 indicates expectation
over only the history x1,...,%¢—1,q1,...,q:—1 SO that by
the tower rule, E = E*~'E,_;. The equality follows from
the tower rule of expectation and the fact that 3, o7 0
is deterministic given the history zi,...,x;_1, so that

B afll@l® E llg:11 } N
et = K, . Now, to bound
2+ octjsgr Os t=1 2+ o ctjsgr Os

E;_1[||3¢||?], we utilize the fact that all ¢+ ¢ I we have the
following:

E

_ . Vd o
1Ge]] < ||éel| + e yielding

- . d

Eoa[131°) < 2Boa [[1&]°) + gBen [g707]

By Lemman(parts (iii) and (iv)), we have E;_1[||é]|?] =
dljce]]? < 4d2IEt 1[a?]. Also, since ¢ < 1, the second
term is at most 2E;_; [o7]. Thus,

d
+ 2Ei1[af] < 51 [of]

Ee-1[)|g:%] < 8d°E¢-1[of] 3

_

40'15

\/th

= 9d2Et,1 |:th . :| S 36d3/2Et,1[0t].

Hence we get,

Lot
+3E [Z
t¢l
since ) <t|sgl Ts is constant given the history up to time
t—1,and E*"E,_,

36d%/2Ey_1 [0y
2+ Zs<t|s¢[ Os

= E by the tower rule,

1 d3/2
<1+ (d®+1)log(B+1)+E ,ZM
2757 2+ Dactisgr s |
since oy < 1,
1 364320,
<1+ (d?*+1)log(B+1)+E —
_2 %; L+ chser s |

<1+ (d*41)log(B +1) + 184%/*E [1og(1 + ZUS)] ,
s¢l
where the last step follows from the inequality
Zf:l 13— < log(l + ayr) for any non-negative
real numbers aq, ..., ar. O

Proof of Theorem[d.1| Lemma [{.2] Lemma [A.3] and
Lemma [4.4] complete the proof when there are no bad re-
sponses (i.e., B = 0).

Now we focus on the case when some of the responses can
be bad (i.e., B # 0). The intuitive difficulty in this case is
that if an estimate ¢; is incorrect for a certain time ¢, the
value z; will continue to be “incorrect” even for time steps
after £. Our core observation is that this can be managed.

Define I C [T to be the set of times at which the responses
are bad. First, note that even with bad responses, the al-

gorithm always plays a feasible point x;. We have the
following.
E[Z(chxt —u)] = ZE[(ct,xt —u)]
t tel
+ Z]EK% zy — u)]
tegl
<2B+ Y E[ly(z) — l(u)]
tel
) T
<2B+E (|3 (@) — bu)| + 3 (0 (u))
tel t=1

The last term can, once again, be bounded by Lemma@
To bound the middle term, note that we always have £;(z) <
(¢, x) < ||é&|| < d. Thus, we have £4(Z,) — £,(u) < 2d for
any ¢t € I, and this completes the proof. O



Bandit Online Linear Optimization with Hints and Queries

5. Robustness with Response Feedback

In this section we enhance our model in order to improve
our robustness to bad responses. Previously, we achieved
logarithmic regret when all responses are good, with a linear
decay in the number of bad responses B. If B is small this
is still a non-trivial robustness guarantee, but if B = T then
we could simply ignore all responses and run a standard
bandit algorithm to achieve regret O(+/B). It is interesting
to ask if there is a single algorithm that can achieve this “best
of both worlds” guarantee. Unfortunately, we are not aware
of such an algorithm, and designing one is an interesting
open problem (note that this is known to be possible in
the full-information setting (Bhaskara et al.| |2023))). The
challenge arises because in a bandit setting, the algorithm
may never know if a query response was good or bad.

We thus study a new model in which we allow our algorithm
some extra knowledge about the bad responses. Specifically,
the algorithm is told whether a response ¢; is bad, but only
after it has played x;. Formally, in each time step, the
algorithm first makes a query s;, receives a response ¢,
and then must play a point x;. After this, the algorithm the
receives the loss (¢, x¢) as well as a feedback g; € {0,1}
such that if g, = 1, then q; = (¢4, s¢).

Even with this extra knowledge, it is unclear how to han-
dle bad responses. Recall that in Algorithm[I] we use the
response to generate an unbiased estimate of the unknown
cost. If the response is revealed to be bad, then we are at
liberty to ignore this corrupted estimate. However, if we
ignore an estimate, then we cannot make an update in that
time step, which again leads to a linear dependence on B.

Ideally, we might hope to divide the time steps into two
groups: those where g; = 1 and those where g; = 0. Then,
we could run a standard bandit algorithm on the time steps
where g; = 0 and use Algorithm[T|on the rest. The problem,
of course, is that we do not know the value of g; before
playing z;, and so we do not know which algorithm to use.

A more nuanced approach would be to instead incorporate
some kind of extra “exploration” into Algorithm[I] That is,
we play &; = x; + e; for some mean-zero random vector
e; on each time step. This is a common tactic in bandit
analysis, and would allow us to form an unbiased estimate
of ¢; via the one-point regression ¢&; = (i, ¢;)E[ese, |~ Ley.
The key difficulty is choosing an appropriate distribution for
e; such that the variance of the estimate is small.

Intuitively, in standard bandit algorithms, the variance is
kept small by forcing z; not to get too close to the boundary
of the domain, e.g., x; is usually implicitly constrained to be
inside the ball of radius 1 — % However, such a constraint
would not allow us to obtain logarithmic regret when all the
query responses are good. Moreover, typically there is a very
intricate relationship between the update step to generate

241 from x; and ¢; and the exploration distribution used to
sample e;. Thus, our challenge is to incorporate this careful
exploration alongside exploitation of the queries.

Our approach is again inspired by previous literature on
using hints in the full-information setting, but via the very
different algorithmic construction of |Bhaskara et al.| (2021)).
This more recent construction is designed to make use of
only O(v/T) hints, and yet still obtain logarithmic regret.
This is plausibly useful for our purposes because it suggests
that the algorithm’s actions depend only very mildly on the
hints and so are less likely to disturb the delicate balance
required for bandit exploration/exploitation tradeoffs. The
formal specification is provided in Algorithms [2]and[3]

Algorithm 2 Bandit OLO with Response Feedback.

Require: Parameters 7,y > 0
2

Define ¢(x) := —log(1 — [[z|2) and ro(x) := %L |x||?
T 0
fort=1,...,Tdo

s; + uniform random vector on unit sphere in R¢

qr < 9Q(st) > Query and response

o clip 4 (q¢)

Vi

ht — @atst
w; < uniform random vector on unit sphere in R?
2t — Tt + V2¢(i’t)71/2wt
Get p; € [0,1/2] from Algorithm 3]
Play Ty = _ptht + (1 — pt)zt
Incur loss 4; = (ct, z¢)
Receive g; € {0,1}, (g: = 1 if the response is good)
a, 2 /m \1/2 ) > Feedback
ét<—{ TV (T¢) 2wy %fgt:()
d-q- St ifg: =1
Define o := g;||¢;]|? and r¢(z) := %||x|\2 with 0; =
n
Tya1 argminl‘ml‘g(élzt, x) + roe(z) + yo(x)
Send (cy, —pihy + (1 — pi)ze) = {4 to Algorithm 3]
If g; = 1, also send {c;, hy) = %atqt to Algorithm
end for

We informally discuss the main ideas here and defer the
formal proof and technical details to Appendix[C|] At each
time step, we will play a linear combination:

xy = —pihy + (1 — pe)ze
Zt = Tt + €y,

where p; ~ 1/+/T is a weighting factor, Z; is the output of
a more “standard” base bandit algorithm, and e; is a random
exploration term. Note that since p; is rather small, the algo-
rithm actually does not deviate much from the predictions
of the base bandit algorithm. This property will allow us to
blend bandit analysis with queries.
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Algorithm 3 Hint Weight Learner

Require: B = number of bad queries , parameter A
p1 — 0
Dy« \/m
fort=1,.

Play p;
Receive feedback (¢, —pihe + (1 — pt)z)
If g; = 1, also receive feedback (ct, hy)

<1/2.
, T do

Define v; = —<Ct, ht> — <Ct, Zt> > for analysis
Vg 4— GVt > v; can be computed if g; = 1
Define 1, = ~——2—

It = DFBTz,

Define Dy = min ( 1, m)
1:t
Output ps11 = max(0, clipp, ., (pt — meBr))
end for

In time steps in which g; = 1, we can form a low-variance
estimate of the cost ¢; via dqysy, exactly as in Algorithm
However, in time steps in which g, = 0, we can still form

)E
an unbiased estimate of ¢; via & = M As

is typical in bandit OLO, we will rely on tools from self-
concordant analysis to ensure that (c;, z;)E[ese,] ] ~1e; does
not have prohibitively high variance, and then rely on the
fact that p; = 1/ VT, and in particular p; < 1/2, to ensure
that ¢; will continue to not have high variance.

In more detail, z; will be set via the FTRL update:

[ ]?
— d*/*V/Blog(1 — ||z||?).

Tppq = argmin(éy.g,
llzll<1

NCES ST
4

This is an FTRL update with a regularizer that is a mix-
ture of the standard quadratic regularizer popular in full-
information settings and the self-concordant barrier regu-
larizer — log(1 — ||||?) popular in bandit settings. The ex-
ploration e; is generated by V2¢(Z;) ™'/ %w; where ¢(z) =
—log(1 — ||z]|?) and w; is uniform on the unit sphere. This
is the classical Dikin ellipsoid exploration that is ubiquitous
in bandit analysis (Abernethy et al., 2008; [Bubeck et al.
2012 |Lattimore & Szepesvari, [2020).

To analyze this procedure, we write the regret as follows:
T
Z ct, —pthe + (1 = pr)ze — U)}

t

[
5

4L

T
pelee, —he = 21) + Y (et 2 — u>1
t=1

T

(pe — pi){ce, —he — 24) +Zpt (ct, —he — 2¢)
t=1

=E

t

Il
-

T

+Z<Ct,$t —u)|,

t=1

where p} is an arbitrary sequence of scalars and we move
from z; to x; in the final equation because E[z;] = x;. Our
analysis then proceeds in several steps.

First, we show that for any sequence p; with p; set to an
unknown constant that is O(1/+/.S) for the first S iterations
and then 0 afterwards there is a strategy for choosing p;
such that Zt ((pe — p){ce, —hy — z) = O(\/dB). This
is accomplished by choosing p; itself via an OLO algorithm
operating on the linear losses p — p{ci, —hy — 2¢) (de-
scribed formally by Algorithm[3). Critically, when g; = 1
we can exactly compute (¢;, —h; — ;). However, for time
steps with g, = 0, we cannot compute this loss, but we
bound the influence of these B time steps by restricting
p: to the range [0,1/+/B]. This result is formalized in
Lemma@]Thus, after this step is finished, we need only
show that there exists an appropriate p; that causes the
remaining terms to be small.

Next, we consider the regret of the “base” FTRL algorithm:

E [ZtT:1<Ctv 2t — u)} =E {Z?:1<Ct7i't - u)} In stan-
dard bandit analysis, we would use exclusively the estimate
é = d{cy, zt>V2¢(i’t)1/2wt. In this case, we instead have
the estimate ¢; = 1_—dpt<ct, zt>V2¢(ft)1/2wt when g; = 0
and dg;s; when g, = 1. Our analysis will also partition the
iterates by the value of g;. When g; = 0, notice that since
pt < 1/2, the variance of our ¢; is only a factor of 4 worse
than the variance of the standard bandit estimator. There-
fore, classical bandit analysis based on self-concordance
allows us to control the total regret over these time steps
at a rate of O(d°/*y/B) using the —d3/*v/Blog(1 — ||z||?)
term of the regularizer.

For time steps with good responses, we observe that the vari-
ance of ¢, is bounded by d (and in particular does not depend
on any careful exploration/exploitation tradeoff) so we can
deploy techniques from full-information analysis of FTRL
(e.g., (McMahan, 2017)) based on strong convexity to bound
the regret of the z; using the ||z||? term in the regularizer by
O(VdT). Overall then, we see that the regret of the FTRL
iterates 7; can be bounded by O(VdT + d°/*\/B). The
d®/* arises from the d3/* coefficient on the self-concordant
barrier, and is required to balance a stability term that ap-
pears in the next step of the analysis.

Now, for the final most technical challenge: we need
to show that by an appropriate choice of p;, the term
Zle py(ct, —hy — z) will be a negative value that “can-
cels out” the O(v/dT') term in FTRL regret. The first step
of this is to actually improve the bound of FTRL. Specif-
ically, we show that if there is a time point .S for which

IS0 el = Qa2 /d2 + S0 [|é]|?), V' > S, then
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the v/ dT" term in the FTRL bound may be improved to v/dS.
The intuition for this result is the following: when the sum

of the costs is 2(d3/21/d? + 3", ||&|2), then the FTRL
update “looks like” a projection onto a ball of radius roughly
1 — d°/*\/B/t. This d®/* in the numerator arises from the
d3/* coefficient in the self-concordant barrier and is in ten-
sion with the d°/*\/B term in the regret of FTRL, justifying
our use of this non-standard coefficient (rather than the d
one might expect). Now, past analysis of this projection
algorithm (Huang et al.| 2017} Bhaskara et al.,2021)) show
that the regret accumulated over indices ¢’ > S will be only
O(d3/?). These results are captured in Lemma

Finally, we choose the correct values for p;. The idea is
to set p; ~ d3/2/\/§fort < S,andp; = 0fort > S.
With this setting, we can show that for the first S steps,
B[S0 (ee, het2e)] = Q(S/d), so that —p; Y7 (ce, he+
2;) < —+/dS, which is enough to completely cancel the
/dS term in the regret accumulated by FTRL. The final
Theorem is formally presented in Theorem

Theorem 5.1. Suppose we run Algorithm 2| with n = 4,
v =d¥*/Band A = 3-4-(32-52)%-d+(32-52)v/3dB +
V/3-32-52-d32. Suppose also that the number of times
gt = 0 is at most B. Then:

E < O(d? + ¥V B).

T
Z(ct,xt —u)
=1

Notice that this result requires an upper bound on B as
input. However, this can be easily removed via a doubling
trick (e.g., see (Shalev-Shwartz et al.,[2012)): we maintain a
“guess” for the final value of B, and every time our guess is
violated we restart the algorithm and double the guess. This
will worsen the constants, but not the asymptotics.

6. Conclusions

In this paper we study OLO with bandit feedback when the
algorithm has access to additional information via hints and
queries to the upcoming cost vector. Surprisingly, unlike the
full-information setting, we show that even receiving good
hints at all time steps is not sufficient to obtain regret better
than O(+/T)). We then introduce the query model and show
that it is possible to obtain the desired logarithmic regret
bounds in this setting. Extending our robustness results from
Section [5| when the algorithm does not receive feedback on
the response is an interesting research question.
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A. Missing Proofs
Lemma 4.2. In Algorithm[l} the following hold: (i) ||hi|| < 1 and ||a|| < 1. If the response is good at time t, then

(ll) E[ét] = C¢,
(iii) By_1[da?] > (1/4)]|cs
(iv) Effle]|*] = dle.]|*.

2

>

Proof. For part (i), we note that || h;|| = @ - Ja¢| < 1 by the definition of a;. To bound ||z||, we use the following simple
argument (e.g., Bhaskara et al.| 2020, Lemma 3.2),

i Uzl - 1) i Uzl — 1)
el < el + 2= ) < e+ HEL =2 <,
where the last inequality uses ||Z¢|| < 1.
We next focus on parts (ii)—(iv). Due to rotational symmetry, we may assume that ¢; = (7,0, ...,0) € R for some fixed
v € [0, 1]. Also, let us write s; = (g1, ..., ga), for convenience. So we have ¢; = (¢, s;) = yg1. Since s; is a unit vector,

gi, gj are not independent for ¢ # j. However, we still have the property that E[g; | g1 = z] = 0 forall z € [—1,1] and
j # 1. To see part (ii), observe that:

E[ét] = E[dqt‘st] =d- (’Y]E[g%]v E[QlQQ]v ce 7E[glgd]) = (’77 0,... 70) = Ct,
where because of symmetry, E[g7] = E[(¢7 + - -+ + ¢3)/d] = 1/d and E[g1g,] = E[g1E[g;|g1]] = 0, Vj # 1.
Now, for part (iii), observe that E[dg?] = ||c;||?, so that it suffices to show E[¢?] — E[a?] < (3]|e:||?)/(4d). To this end,

16-2° 16-2'17 16- 2 16-2 16-227] 16 - 22
E[qf—af]<Pr{q§€< : ” +Pr[qt2€< : ” +

d d d d d d
oo
16 - 2k—1 16 - 2F
2
Erfe- 227 (52)
k=1
But, by Markov’s inequality, we have

16 - 2k—1
d

2 92k—2 41 72 2
Pr[qt2> 4 16= - 2 }< E[Qt] d < HCtH 3

= Pr |:qt > 42 = 162 .22k—2 — 162 .922k—2’

where the last inequality follows from E[g}] = 7*E[g}] < 72 - m (see Lemma . Substituting, we get

e o= 162 3leell?

2 2 _

E[Qt_o‘t]§< i) Tt g
k=1

Finally, for part (iv), we have
E[ll&:%) = E[d*q7] = d°*E[y*¢7] = dr?. O

B. Properties of Uniform Distribution on the Sphere

Lemma B.1. If (x1,...,24) € R? is a uniform random point on the unit sphere, then (i) E[z]] = m and (ii)

E[z{z3] = m-

Proof. Tt is known that for any i € [d],

1 d-1
2
x; ea<2, 5 ),

see, e.g., (Ranosova, 2021, Theorem 13 and Remark 1) for a proof. Also, if Z ~ Beta(c, ), then its second moment is

ala+1)

E[Z%] = (a+B+1)(a+B)

2)

11
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Hence, E[x}] is the second moment of 2%, which can be computed from (2) setting o = 1/2 and 3 = (d — 1)/2. This, after
simplification, yields (i). For (ii), notice that since (1, ..., x,) is on the unit sphere, we get

2

Zx? Zm +2 Z x?m?
i€[d]

i€(d] i#j€[d]

Taking expectation, using (i), and by rotational symmetry, we obtain (ii). [

C. Improved Robustness via Response Feedback

Theorem 5.1. Suppose we run Algorlthmlwzth n=4v=d’*VBand \ =3 -4-(32-52)%-d+ (32-52)\/3dB +
V33252 d3/2. Suppose also that the number of times g, = 0 is at most B. Then:

T
E ct,xt—u

< O(d®*? + d°/*V/B).

Proof. First, observe that since E[z;] = Z;, we have for any sequence p7, ..., pk:
T T T T
E Z {eo, 20 —u 1 =E Z<Ct, —pihs — pize + Ty — U>1 =E lzpt“ctv —hi) — (ct, 21)) + Z<Ctajt - “>1
t=1 t=1 t=1 t=1

T T
Zptvt + Z<Ct, Ty —u)
t=1 t=1

T T T
Z%(Pt —pp)+ thpt* + Z(ct,it - u)] :
t=1 t=1 t=1
Let a = 1/(16d°/?) and let S be the smallest index such that ||¢1.|| > a(d? 4 o1.;) /5 forall t > S. Applying Lemma

T
V& T oy, 1642B  16(n+1+~/d) (8
Z(éhxt—u)] SE[1+:UI‘S+Mog(T)+ ELUR S 7 )+(;7+4)1o (1+"1t>]

E
2
p o « d

S

l[é1:s + Z(@jﬁ

t=1

+E

Next, by Lemma if we set p} such that p; = ¢ for some fixed § < Dg forall ¢ < S and p; = 0 for¢ > .S, we have:

T
th,pt pr) < A+ 2\log(4\ + B +T) + VB,
t=1

and for t < S and g; = 1:

E[(vt, pr)] = E[0{ct, —ht) — 0{ct, 2t)] = E[6{ct, —ht) — 6{ct, Te)] = E —Mqtat - 6(ct,xt>]

4

5vd

<E % 5<Ct7xt>‘| <E [—

5 ) . }
——|lee||* — 6{cy, T
ol - ez
=E O el §le, %) | =E 0 §ley, @

= —WHQH —6(ct, Tt) | = _Wat_ <Ct,$t> )

where the second inequality and the penultimate equality follow using Lemma[4.2] Alternatively, when g; = 0,

El(vr, p})] < E[26] < E[36 — d(cr, 7)) < E[36 — 3¢, 7)) < E {3

il 5<at,ft>] .

12
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Therefore:

Thus, overall we have:

T
E Ct, Tt —U
t=1

T

— 6> (&, 71) +3VB|.

J1:8
16d3/2

M“]

vt7pt ] = [_5

t=1

16d°B  16(n+1+~/d 8
|:1+710g + (n v/ )_|_ (77_|_4> log (1_|_0.12t>:|
« « d
[ . Vd? + 015 > o O ]
+E Og}sréfDS*—FHcl SH—FtEl e, Ty) + A+ 2X\log(4\+ B+ T) +4VB 516d3/2 —5t§:1<0t,xt>
16d?B 80 + 16v/d 32
E |1+ ~log(T) + + / + +4 1g<1_~_7>
a d?
[ . Vd2+01:8 ~ 5 A = / 018 d A = ]
+ E OS%IleDS#‘F||ClSH+tzgl<Ct,l't>+>\+2A10g(4)\+B+T)+4 B—516d73/2—5t:§1<0t,$t>

3)

Further, observe that by Lemma[C.3}

5 4d?B
t=1

-d+ (24 -52)V3dB + /3 - 24 - 52 - d*/2, suppose A\ + B + d? + 01.5 < A. Then we have:

N
12 <n + V&S o (l2n
7

where the last inequality follows since 7 = 4. With 6 = 0:

S
NG
%H\ Crsll + D (e, @) + A+ 2X\log(4N + B+ T) + 4VB — 6013

t=1

1
) d? +o01.5 +
n

With A = 3 -4 - (24 - 52)?

1 1
) P+ ors + + 3> A < 520,
n n

T
) E Ct, l‘t
t=1

< 53\ + 2\ log(4\ + B+ T) + 4VB. &)

In the remaining argument, we assume 4\ + B + d2 4 1.5 > A. Now, observe that even in this scenario we still have:

Vd? + o . 5 .
% +llensll+ Y (e 7)< ylog(S) +

t=1

4d*B

13
(1277 + 77) d? 4 o01.5 +

4d*B

< ~vlog(S) +52vd? + o1.5 +

Our goal will be to show that either the term v/d? + 0.5 is small, or that it can be canceled out by negative terms multiplied
by 4. To do this, we consider a few cases. First, suppose that v/d? 4+ 1.5 < %. Then, observe that by setting 6 = 0:

+ (32 +4) g(1+ dz)]

T

E ct,xt—u

16d*B
v

8400 + 16v/d
N v/

(%

1 <E {l—l—vlog(T) +

+E [A+2)\log(4)\+B+T)+4\/§}. )

13
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Moreover, if alternatively we have 7”{2:”15 + [[éns]| + Zle(ét, Z;) < ¥4 then we also can set § = 0 to obtain:

16 °
T
E lZ(ct, Ty — u)

d 16d*’B 80 + 16v/d 8
1+£+’ylog(T)+ + W/)+<+4>10g(1+2>
p 16 y @ «a d

<E

+1E[A+2A10g(4A+B+T)+4\/§}. ©6)

Let us now consider the situation in which v/d? + 01,5 > 1 and also 7”12;;‘71‘5 + ||éns]] + Zfﬂ(éh Ty) > ‘1/—68. In this
case, we want to choose 9 such that (recalling n = 4):

§ILS 52 (66, 2¢) > 12(n + 1/n)V/ @ + 01,5 = 52/ + 01,5

16d3/2

We claim that in this case (i.e., v/d? + 01,5 > 12 and also Y4-+ous d2+"1 S+ ||ér.s]l + Zt {8, Ty) > ‘1/—(;2), we have:

S
01:8 PO 1 2
W + E <Ct,1’t>] >E |:32d3/2(d + CTl:S):| .

To see this claim, suppose otherwise. Then E [Zle(ét, fﬁ} <E [% - m%pal;g]. This in turn implies (recalling
o= 1/16d%2 and ) = 4 and that [|¢.s]| < “E75) by definition of S):

\/d2 + 015 ~ 5 A = \/d2 + 015 O[(d2 +01:S) \/g 1
E T + ||01;S|| + ;<Ct,xt> S E 1 + n 372 - WO—LS
_p | VP tous  (P+os)  Vd 1 E ~

V& +o1s (A +o01.s) \/&1<\/g

1 644372 32 32018 1 64d5/2 16| = 167

where the last inequality follows from the assumption v/d? + o1.5 > % = 160d°/2. But, this contradicts our assumption
Vd&Fois . S -
B [YEEES 1 fevs|| + X0y (6 20)| > ¥2.

Now, we set A = 3 -4 - (32-52)% - d + (32-52)V3dB + /3 -32-52-d*? and 6 = ﬁ = Dg. Notice that

§ < 1 since we previously dispensed with the case A\ > 4\ + B + d? + 01.5. Then we have:

)\2(d2 + Ul:S) [
N (d* + o1.5)
)\2(d2 + UI:S)

3-4-(32-52)%d\(d* 4+ 01.5) > 3-4-(32-52)%d3),
3-(32-52)% - dB(d* 4 01.5) >3- (32-52)*Bd®,
3-(32-52)%d - d?(d® 4 01.5) > 3- (32 52)%d30.1.

AVARLY,

Putting these together yields:
N2 (d? 4 01.5) > 4-(32-52)2\d® + (32 -52)2Bd® + (32 - 52)*d®01.5,
— M2 + o015 > (32-52)d%2\/4\+ B + 01.5.

Thus, we have:

S
015 o 5 Ad? 4 01.5)
s LS _ s ’ >_ " (d o) = > 52 d?
16472 * ;<Ct 2 g o) = R TN T B orr o

So that in this last case we obtain:

164°B 80 +16v/d (32
<]E[1+wlog(T)+ + v/d <+4) log <1+2)]
y @ @ d

T

Z(ct,xt — u)

t=1

E

14
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- - . g T A
I E 7V:‘715 lexsll+ ) (e, T4) + A+ 2Xlog(4X + B+ T) + 4VB — 6013 6Z<ct7xt>]
L t=1 t=1
16d°B 80 +16y/d (32
S]E{l—&—ﬂog(T)—i— + v/ +( +4>log(1+01;)}
vy o d
B T
+E [52\/d2 + 01.5 + A+ 2\ log(4\+ B+ T) + 4VB — 5"15 52@,:@]
L t=1

16d2B 80+ 16v/d . (32
§]E[1+710g(T)+ 1 016/ +( +4> (1+02)}
¥ «a d

+E[A+2\log(4A + B+T) +4VB| . )

Putting @), ), (6), and (7) together, we have:

T
16d°B 80+ 16y/d (32
E —u)| <E |14 ylog(T Z 44 log(1+ =L
> e u>]_ [+vog()+ (s (147
S T
Vd
+E i%f{:"15+||15||+th,xt+A+2A10g(4A+B+T)+4f 5"15 52@,@}]
t=1 t=1
Vd 16d>B 8400 + 16+/d 8n 1
14+ ~—+7lo — +4)log (1+ =2
<E + 5 T log g(T) + S + " +(a+)og(+d2)

+E[530 + 2\ log(4A + B+ T) + 4VB| .

Recalling A\ = 3-4-(24-52)2 - d + (24 -52)V3dB + /3 -24-52-d%2, = 4, a = 1/16d%/? and v = d*/*V/B, we
obtain the desired result. O]

Lemma C.1. Let (p},...,p%) be any sequence such that for some time index S, we have p; = p, < Dg,¥Vt < S, and
p; =0forallt > S. Then:

T

Zut(pt —pf) < 2X+2X\log(4\+ B+ T) + VB.
t=1

Proof. Observe that |v;| < 2. Then |9; — v¢| < 2, and further |9; — v¢| = 0 for all but B indices ¢. Following the standard
analysis of online gradient descent yields:

(pr1 — 7)< (pe — mde — p})? = (pe — p})? — 2me(pe — PF) + M7 07,
(pe —})*  (per —DF)*  mdF

~ *
O(pr —py) < - + ,
t(pe =) 2n 2m 2
*\ 2 *\2 ~2
) < (pr — p7) _(pt+17pt) _|_ntvt + Dy, — v,
v (Pt Pt) > e M 2 ¢|0r — vy

Using these,

. T—1 * 2 *)2
p1 p1 1 1 Z (P41 — Piy1)” — (pe+1 — pr)
E vi(pe — p;) < + Z — ) (277,5 - 27)751) " 21

t=1 o

~

02
+ nt +Dlz|vt—vt|

1
2771 —~ 277t 2 2ns ~ 2

15
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_ D} T 1 1 D2 T 02
<Ly D?(— >+M+ZW+BD1
2771 =2 20 2m 2ns =1 2
We bound each term in the RHS separately as follows:
T T 52
vat:)\z t ; <)\log(4/\—|—B—|—v1T)
t=1 t=1 4 + B + Zz*l 7
DB < VB,
1t _#%
ui M—1 A
D? D2 a 1 1 A (4\+ B+ 2 a 02
71_|_ S+1+ZDE<_ >§ ﬁﬁ-l—FZUifﬂ
2m 2ns — 20 2mp— 2 4 + B — AN+ B+ 97,
A (4 + B+ 9%
< | ———=4+1+1log(4\+ B
_2< SO + 1+ log (4X + +U1T)>
<2 + Alog(4\+ B+ 1T).

Putting all these together shows the claim.
Proposition C.2. In Algorithm the following hold for all t € [T:

(i) |lze] < 1.

(ii) oy < d2.
(iii) Eloy] < d.

(iv) E[é|ze, ..., 2] = ¢

() If ge = 1, B[ (b, c)] < [lee]|? /4V/d.
(vi) When g, = 0, ¢[ V3¢ (z,)~'e;, < 4d>.

(vii) Forall ||z]| <1, \/zTV2¢(z) 'z < §

s o o
(viii) 0y < P B

Proof. (i) Since || < id, it is clear that ||| < 1. Therefore, it suffices to show ||z;|| < 1. Now, observe ¢ is a
self-concordant barrier for the unit ball, and that by definition z; is on the Dikin ellipsoid centered at z,, so that
2] < 1.

(ii) By definition, o, = g¢||é:||. If g; = 0, we have o; = 0. Otherwise, we have oy = ||¢;]|?> = d?¢? < d°.

(iii) We have E[o;] < E[d?¢, s;s/ c;] = E [d2 = Ict} <d.

(iv) When g; = 1, we have g; = (ct, s¢) so that E[¢;] =E[d - ¢ - s¢] = ¢t by Lemma When g; = 0, we instead have:

— /
(pehe £ (1= po)20), ) V2 (70)" th} + E[dV2¢(z) Y 2wew] V2p(34) e

E[¢)] =E [d =

—E[dV%( 0'? dV%( )1%]:@.

(v) When g; = 1, we have

E[(ct, ht)] = @E [(ct,st> -clip% (<ct,st>)} < @E[(ct,sty] = @E[cthts:ct} = @]E [cz—éct} = !lc\t/g

(vi) We have
t
(1—pe)?

where the inequality follows from |¢;| < 1 and p; € [0,1/2].

ATv2¢( t) t — d2 Tv2¢( )1/2v2¢( ) 1v2¢< )I/Qw < 4d wt wy —4d2

16
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(vii) A simple calculation shows:

21 n dox T
L=z~ (L= =)

V() =

2
Clearly, x is an eigenvector of this matrix with eigenvalue % Thus,

]| (1 — [|l]*)?
T2 1, —
xTV2p(x) ta ET e

Numerical evaluation of this expression for ||z|| € [0, 1] shows that its maximum is less than 0.5.
(viii) By concavity of the square root function:

5 = V& + 014 — \/d? + 01,41 < Ot < Ot < ot
t — = = = ’
n 20/ A2 + o141 A2+ 0141 T VA + o1y
where the last step follows from o; < d2. O

Next, we obtain a bound on the regret incurred by Algorithm[2] Since Algorithm [2]is an instance of the classic FTRL, we
can utilize tools from (Bhaskara et al.,[2021) for a tight analysis of FTRL.

Lemma C.3. Forany S and ||u|| < 1:

s
1 4d’B
E (64,7 — u) < ylog(S)+ 13 (774—77) d? 4 o1.5 + y
t=1 ’

Proof. First, define 4 to be the projection of u to the ball of radius 1 — 1/S. Then clearly we have:

S S S
E[Z(ct,ftu th,xtu]— th,xtu]. (8

t=1 = =

S

2|3 ||cls|]
by Tt — T

We now focus on bounding Zthl (é¢, Ty — ). From (Bhaskara et al., 2021, Lemma B.2), i.e., the FTRL Lemma, we have:

s
ro.5(Zs41) +V6(Fs11) + (Cres, Bsyr) + Y re(Ferr) + (6, Taga) < rou(w) +76(a) + (ér.s, u),
t=1
so that we have:
s 5 5
. X N L Vd? + o1 f -
Z<Ct79€t — ) < v¢() + ro:s(a) + Z(Ctaxt — Ze41) < vlog(S) + Tls + Z<Ct7 Tt — Ttq1)-

t=1 t=1 t=1

Now by the standard FTRL Lemma, e.g., (Bhaskara et al., 2021, Lemma B.1), we have:

T T T

Lo Vd? + oy A
D (e ® — @) < yh(@) +ror(u) + (e E — Tepa) < ylog(T) + TlT ) (e T — Tg).
t=1 t=1 t=1

By Lemma|[C.8}

dotl|Ctll w2z,
Vi(d? 4 o1.4)3/4

(6, — Trp) < |eellwzgp@n) 1 1B — T llvzpe) < 4l1él1%2p@,) -1
When g; = 0, we have g; = 0 and hence
(6, T — Tur) < Al|ellZ gz, -1

17
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We also have by Proposition , lléel|% w1 < #, and therefore

o B 4d2B
Z (G, Ty — Tpq1) <
g+=0 v
When g; = 1, since V29(Z;) = %I, we have:
nllé?

e Bap a1 < e
’ d2 + 01t

Therefore:

doil|Cell w2z < dnoy doy NG < (4n +4)oy
V(@24 014)3* = V@ + o1y NVE+ o VE + o1 T VE+ o1

(Ct, Tt — Tyq1) < 4||ét||2v2zp(zt)*1

Thus:
s
. (4n+ 4)oy 12
(61, Tt — Tpy1) < < (8 +8)Vd* + o1 < (120 + — | Vd* + o1,
gtzzl =1 V d2 + o1t n
where the last step follows since 1 < 7 + 5- O

Lemma C4. Suppose v > 1, let S be the smallest index such that ||¢1.+|] > ol +"1 t forallt > S and let |u|| < 1 (note
that S is a random variable). Then Algorithm[2|ensures:

T
Vd? . 16d*B  16(n+1 d 8
th,xt—ulgE[l—i——;fls—l—vlog(T)—&— + (n +7/>+(n+4)log(1+)]

~ @ d?

S

l[é1:s + Z(@jﬁ

t=1

+E

Proof. First, define 4 to be the projection of u to the ball of radius 1 — 1/T. Then clearly we have:

T T T
E Z<Ctajt U] Z Ct, Ty — H 1TT|] <E[l +Z Cty, Ty — = Z Ct, Ty — )

= t=1

We now focus on bounding ZZ;I (ét, T+ — 4). Since ||é1.5] > Zf:1<ét, Zs41), it suffices to show that

NCET 164°B 16 8
Z<at,zt—u>§7:‘”'s -+ (n+7)+( ”+4)log(

+ vlog(T) + . 1+—).

S
Z<ét’ Ts41 — fL> + 2
t=1

t>9
From (Bhaskara et al.,[2021, Lemma B.2), i.e., the FTRL Lemma, we have:

T

ro:s(Zs11) + ¥0(Ts41) + (1.9, Fs1) + Y re(@ag1) + (66, Taga) < rou(u) +96(0) + (Grr, ).
t=1

Dropping negative terms and observing that ¢ (@) < —log(1 — (1 — 1/7)?) = log(T?/(2T — 1))) < log(T'), we have:

(C1:5,Ts41 — @) +Z G, Ty — ) < ro.s(u +Z7"t —1¢(Teq1) +yo(0 +Z Cty Ty — Tyy1)

t>5 t>5 t>5
Vv d2 + 01:.5 6 ~ _ P _
s +vlog(T) + ) §t(||u||2 21 l?) + D (e, B — Tr1)
t>S t>S

18
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< Vd2+0'1:5 Z
N n

+’}/10g 1 — ||fft+1||2) +Z<ét7ft —Q_?t+1>. (10)

t>S t>S

Let us focus on bounding first ), ¢ 6—5 (1 — ||Z441]*)- The high-level intuition is that for t > S, ||Z;1]| is close to 1, so
that the ||@]|? — ||Z¢41]|? is very small.

To get started on this, we need to understand ||Z;1||. To this end, observe that since ro..(z) + vy¢(x) is a radially-symmetric
function that achieves its minimum at the origin, we must have that Z;; = fkﬂzi—zﬂ for k = ||Z411||. Further, since ¢ is a
barrier function, by first-order optimality conditions we have:

¢t + V1o (Tes1) + YVO(Zry1) = 0,

A T T

C1:t + t;l \/m + 2’)/1 ﬁ']; =0,
R k k

_Hcl:t” + Em‘i‘ 2’}’@ =0.

Let M be the smallest index greater than S such that \/d? + o1.37 > > = . Then fort¢ > M, we have

(d2+01:t)
d—&—z d*>+o1y < ————.
=1 'd2 2

Thus, for t > M, since ||é1.¢|| > @, we have

k . k d2+0';
297 = el = SV v > el - %\/dg o > A Fon)

1-k

where the first inequality follows since k£ < 1. Using k£ < 1 again, we obtain

1 a(d® + o1.4) 9 dnry
2 > — = 1-kF<———.
T2 = 2n ~ a(d®+o014)
Therefore, using Propos1t10nwh1ch tells us that 5’ < \/T? we have:
M-1
0y VA& + 014 — /A + 01,41 9
Yoozl < Y : (L= EealP) + Y ﬁ (1= IZe41]7)
=52 t=5+1 2n a1 2V A+ o1y

< 1\/12—:1 V&2 + o1 —\/d? + o141 +Z 2y0y

2 3/2
t=5+1 2n S old +o14)Y
2 < dx 4 4
< VB ¥ o+ 7/ s < -+, (1)
a Jgpo o x a  ad

where the last step follows from the definition of M. We focus next on bounding  °, ¢(¢¢, Zt — Z¢41). To this end, observe
that by Lemma [C.8] we have:

40}

120 = Zepallvzy, @) < 4llee+ V@)l vz, @)+ < 4léllo2y, @) + NG R
where ||z||%4 = 2" Az for any matrix A. Thus,

dotl|Ctllv2y, (21
VI(d? +o1.4)3/4

(e, 20 = Trp1) <|edllvzgy@) -1 170 = Zeallvzu, @ < 4l T2y, @) (12)

Now since V2 (%) = 7”%);”’1'1 +V2¢(Z¢), we can apply Propositionto obtain:

4=d2

1
A 112 U,
leellS2y, z)-1 < ;Ctv (Tr)er < — 5

19
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Whenever g; = 0, we have 0, = 0 and hence (12)) yields:

N 16d> 16d%2B
Z (€1, & — Tyy1) < Z < . (13)

t>S,9:=0 g9:=0 v v

For the time steps when g; = 1, we have:

" || "
C 2 -1 < < '
[€:l192g, @)1 < VEto1: VBt o1

Using this in (T2)), we obtain:

4o
A = — ~ 112 t
(61, — Tyq1) < 4||Ct|\vz¢,t(jt)71 + Eron

Since

) 4o
t
_STt oy (1 —) 14
;dz-i-dm_ o8 +d2 (1
it remains to bound:

Z 4”675”2V2¢t(ft)71

t>S, g+=0

Recall that by definition of M, we have \/d? + o1.p7_1 < g. Thus:

S fn-m < Y Al < MZ L
Cty Tt — Tt41) S Ctllvzy (7)1 = Y
S<t<M, gi=1 t=1 o =1 V% + o1y =1 VA& + o1y

16
< An\/2d% + 201011 < —77 (15)

Thus, we need to bound the remaining sum:

Yoo nm ) < Y AlalRey, )

t>M, gi=1 S<t<M, g;=1
For these, we recall that 1 — ||7;|? < % for all t > M. Then, we have:
B I .fti‘—r Oé(d2 + Ul't)
V2(%y) = 2 — 44 -t - .
T—fzfl> (1= [[z]?)? 21
Therefore for all t > M and g; = 1:
e
Aoz, o cgp del® g oy
||ctHV2’d)t(ZEt) 1= na(dQ + O'l»f) na(dQ + O'l;t)
= 3 4al < Miog (1422 (16)
Gt V24 ()~ = a 0g dz /-

t>M,g,=1
Combining (10} [T1] [T3] [T4]15]} [16), we obtain:
<61:Sa 'fs-‘rl - ﬂ> + Z<ét7 'ft - ﬂ')

t>S
V1+oq.
STw+710g +Z (1—] |$t+1H -I-Z Ctr Ty — Teq1)

t>S t>S
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V1 . 4 d 16d*B . 16 8 .
< +01'S+'y]og(T)+ +7/ + +4log (1+£)+J+£log(l+2>
7 o) ol d? ! ! d?
V1+oy. 16d’B  16(n+1+~/d 8 .
< Yo TIBS 4 jog(T) + L 160 - /) (O’Z n 4) log (1 n %) .

So, finally adding back the 1 from @) we have:

T
R V14 o 16d*B  16(n+1+~/d 8 .
g(ct,ft7u>§1+7n01's+’ylog(T)+ 5 + (n 5 7/)+<C:’+4>log<1+(;12't)
t=1

T

+ ||61:SH +Z<ét7i‘t> ]
t=1

For the remainder of this section, let ¢ be a self-concordant barrier on a space (2. For a symmetric positive-definite matrix
M, define the norm ||h||p; = k" Mh. The following is a standard fact about self-concordant barriers:

Proposition C.5. For all x,z" € Qwith ||z — 2'||v24() < 1 and all vectors h:

12llv2 ()
L— |z — 2'|lv2g)

[hllv2g(2) (1 = |z = 2'[|v2(2)) < [Ihllv2p@y <
This proposition has the following immediate corollary:
Corollary C.6. Forall x,2' € Qwith ||z — 2'||v24(z) < 1, we have:

All26(2)-1
|2 — 2’| v2g(x)

1hllv2g-1(2) (1 = |z = 2" [ v24()) < [[hllv2g@@)-1 < T

vz ZE/ 71h
Proof. Set 2/ = th\:éﬁ' Observe that (2',h) = [|h]|g2¢(.)-1 and also [|2’[[g2¢(.) = 1. Now, by the Cauchy—

Schwarz inequality,

12" |72 (21 _ 2]l w2 ()1
lz —zlvep@) 11— [l7—2llv2g)

1llv2en -1 = (z'sh) < [Ihllv2o0) 112 [ v26) < 1Rllv2om) 17—

Vi(x)~'h

Similarly, let z = [Ey——— that (z, h) = [|h[|v2¢(z)-1 and also [|z][v24(z) = 1. Then:

) 12l v2g@)  _ llhllv2g@n -
1=z —zlveg@) 11—z —2lveg@)
= [[hllvzg@)—1 (1 = Iz = zlv2g()) < [[hllw2p@)-1- O

[hll w2601 = (2, h) < [|hllw2g@)-1 112 920w < Ihllv2g-

Now, we can generalize this:

Proposition C.7. Let ¢)(z) = 3||z||* + v¢(z). Then for all z,2' € Q with ||z — 2'||y24(z) < 1 and all vectors h:

1Allv2p(2)
|7 — 2|92 ¢(a)

[hllv2p@) (1 = |z = 2 |v2g2)) < [[hllveg@) < =

Proof. By Proposition[C.3}

12012 5
|z — 2'[|v2¢(a))?

1P)1Z2 g2y (1 = [l = 2 [l w29(2))? < [BlIZ2 50r) < -]
Further,
121132y = ARG +YIAIZ2 400 -
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Combining these observations:

12200
(L= le = @ llvzgw)?

MR + AR 1Z2 g0y (1 = Nl = 2l v26(2))* < [PlIG2p@ny < AlIBIP +

observing that 1 — ||z — 2'[|v2¢(2) € [0,1):

MBI + ARz o)

1=z — 2'llv24(2))*’

IR + Y12 l1T240a)) (L = Nl = &' 920())* < 7Ty < (
which implies the desired result. O
Now, we prove a some key bounds on Z; — Z;41:

Lemma C.8. Define ¢y (x) = ro4(z) + vé() for ¢(x) = —log(1 — ||z||?). Then:

4Jt

1% — Tetallwzy, @) < 4llee + V(@) veg, @)1 < 4lléllvep, @)1 + N T

Proof. By definition, we have:
Ty = argmin(éy.4—1, ) + Yp—1(x) and  Typq = argmin(Cy., ) + ().
Therefore, by since lim ;1 1¢(2) = oo, by first-order optimality conditions we have:
Vip—1(Z) = —G1yu—1  and Vo (Tpg1) = —E1.4.

By mean-value theorem, there are two points y and ¢’ on the line segment connecting Z; and Z; 1 such that:

1Z¢ = Ze11[132,
Vi(Zt) = Vie(Ti1) + (Ve (Teg1), T — Togr) + 5 Vi)

Hft - jt-|-1||2v21/,,5(y/)
2

Yi(Tpg1) = Ve(Te) + (VUe(Zy), Ty — Ty) +

10 = 7e1a0e g, 01

= (Ty) + (VU—1(Z1), Tpp1 — Tt) + (Vre(Te), Teq1 — Te) + 5

Adding these equations and simplifying, we have:

_ — 2
17 = Ze1 192, () 49200 ()

0= (Vpy_1(Zt) — Ve (Zy41) + Vri(Tt), Tug1 — Te) +

2
— (E 4 Vr(), B — Tya) = 1Ze = Zer1lR2y, 0y | 1% = TerallTag, )
t t\Lt)y Lt t+1/) — D) 2 .
By Lemma |C.9} [T — Zi41/32y,(z,) < 3 and 50 [T — Y[Rz, z,) < 3 and [|Ze — ¥/[1%2y,(z,) < 3. Thus by
Proposition |C.35]
Hi‘t B i‘t—i—lH2v2¢t(y/) ”it B £t+1”2v2¢t(y) > Hit B j1’L+1||2V21/Jt(50t) Hjt B jt"_l||2v21/1t(56t) _ 1”— _ 7 ||2
2 2 = 8 8 = 31 T Telivey, @)

= 4e + V() T — Tep1) 2 |0 — Tera 2, 20
Now, applying the Cauchy—Schwarz inequality, we have:

12 = Zra1 T2, 20y < 46+ Vre(@) lo2g, 201 1B = Zeaallvzy, @)

= Tt — Tet1llvzy, @) < 46+ V(@) w2y, @)1
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Finally, we consider two cases depending on the value of g;. First, if g; = 0, then7; = 0 and so [|¢;+V7(Z¢))|| w2y, (z,)-1 =

l|é¢ll w24, (z,)-1 - Alternatively, if g, = 1, then if we define 6; = HJ”:}V 781 e have:
_ _ _ - / n Ot
Vr(Z:) = 6% — ||Vri(z b ()~ = ||z ) < ,
t( t) tdt H t( t)HVZUt(x,,) 1 tH tHV2’¢'t($t) 1 t m \/ﬁ(dQ +01;t)3/4
where the first inequality follows since V2, (z;) > Y&toue |, O

n

The following technical statement is helpful in the proof of Lemma[C.8]
Lemma C.9. Define by (x) = ro.1(x) + 6 () for d(x) = —log(1 — [2|2). Then || — Ze11 | w2002 < 3

Proof. To prove this, we claim for all v with ||v||v2¢(z,) = 5. ¥e(Z + v) + (€1, T + v) > V() + (14, ). This
will establish [|Z; — Zy41]|v2(z,) < 3 since Zyp1 = argmin(éy, x) + ¥ (x). To establish the claim, define §; =

2
VT F 10—/t o1 . . e _

ot - T g6 that 1y (2) = %t ||z||2. Further, notice that ||v|| < 1 since the Dikin ellipsoid centered at Z; must be
contained in the unit ball. Then, we have:

- _ Ot -
U(Ty +0) + (re, Te +0) = Yo1 (T +0) + 1T+ 0P + (ere, T + )
by mean value theorem, there is some y € [Z4, T; + v] such that:

10122, ()
2

0122y,
= o (#) + (@) + —— 5

) R
=_1(Ze) + (V1 (Zy), v) + + Et”jt + 0% + (1.4, Tt + V)

5 :
+ S 17+l + (e )

sl iy,

tH2 || + <Ct,’U> + v ; —1(y)

& |2 ) 8o:¢—1]|v

tH2 || +<Ctav>+

3¢ ||v|?
2

= Vy(Zy) + (Crt, Tp) + 0:(T4, ) +

12+ 110132,

2
(50;t,1||’l) + ’7”””%2@5(@)
2 2
9 2
Soelvl? VIeg,)
2 8 ’
where the inequality follows from Proposition[C.3} Applying the Cauchy—Schwarz inequality:

= (Zy) + (Crit, Tt) + 0c(T, v) +

I?

> Ve (Zy) + (Crut, Te) + 04(Tt, v) + + (&, v) + (1—ly - thV%(a’ct))Q

= Vu(Z4) + (Cr:t, Tt) + 04(Tt,v) + (G, ) +

2
L doellvll® MollT2z,)

Yi(Ty + ) + (Crts Tt +v) < Vp(Ty) + (Crue, Te) + 0:(Te, v) + (G, v) 9 3

2
_ . _ R Soa—1lvl? | Mleg,)
< u(Ze) + (Crt, ) — 0el| Tl w2z -1 10Iw26(z) — lCllv2o@o -1Vl v2g) + 3 + 3 -
1) ¢ 24(3,)—1
= V(@) + (Crut, Tt) — gt\\ftHv%(@)*l - ”tuv% + %

From Proposition we have [|&]lv2g(z,)-1 < 2v/d and ||Z¢[|g2¢(z,)-1 < 1/2. Now, notice that 6; < avies S
Voi/n < d/nsince o, < d?. Therefore, we have:

. _ . d
Pe(Te + ) + (Crit, T +0) < Ve(Tt) + (Crit, Tt) — @ —Vd+ ;3
Since v > 8% + 324/d, the claim follows. O

D. Experimental Results

In this section, we include an experimental evaluation of Algorithm[T]on synthetic data.
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Dependence on the dimension. The regret bound provided by Theorem .1 degrades with the dimension. Note that this is
in contrast with the dimension-independent regret guarantees available with hints in the full-information setting (Bhaskaral
et al.| 20205 2021). We consider the following experimental setup. For each time step ¢ independently, the cost vector ¢; is
generated as follows: the first coordinate of ¢; is fixed to be 0.5, and the remaining d — 1 coordinates are drawn uniformly at
random from a (d — 1)-dimensional sphere of radius v/1 — 0.52 so that each cost vector has unit length. We set B = 0, i.e.,
there are no bad query responses and set the time horizon 7" = 5000. Figure |[la|shows a plot of the regret incurred after

T = 5000 time steps for varying dimensions. Intriguingly, the regret degrades sublinearly with the dimension even though
Theorem [4.1| suggests a superlinear dependence.

c_t[0] = 0.5, c_t[1:d-1] ~ Uniform on d-1 sphere B = 1000 bad query responses
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Figure 1. Experimental results.

Dependence on number of bad responses. We now demonstrate that the regret incurred by Algorithm [I|indeed does
depend linearly on the number of bad query responses. Intuitively, since the algorithm only uses the query responses to
construct estimates of the cost vector (and does not use any additional exploration), it is unable to be robust to bad query
responses. We consider the following setup. We fix d = 3 and for each time step ¢ independently, the cost vector c; is
generated as follows: ¢; = p-(1,0,0) + (1 — p) - u; where u; is a uniformly random unit vector on the sphere in R3. We set
the 7" = 5000 and let the first B = 1000 query responses to be adversarially bad. More precisely, we let Q(s;) = (s¢, —ct)
for the first B = 1000 time steps. Figure [Ib[shows the regret curve obtained for different values of p. As p increases, the
adversarial responses hurt the algorithm more, but in either case the regret increases linearly for the first B time steps.

Non-adversarial bad responses. In this set of experiments, we evaluate the effect of bad but non-adversarial query
responses on the regret obtained by Algorithm[I] The experimental setup is same as the one above but we fix p = 0.5. For
different values of B € {0,1,...,1000}, we repeat the experiment and record the regret incurred after ' = 5000 time
steps. We consider two scenarios as follows: (i) Figure [lc|shows the regret incurred when the bad responses are chosen
adversarially (i.e., Q(s;) = (s¢, —¢t)); (i) Figure shows the regret incurred when the bad responses are chosen randomly,

i.e., Q(s¢) = (s¢,yr) where y; is a chosen uniformly at random from the unit sphere. In either case, we observe that the
regret increases linearly with the number of bad hints.
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