Check for
Updates

Exploiting Windows PE Structure for
Adversarial Malware Evasion Attacks

Kshitiz Aryal
karyal42@tntech.edu
Tennessee Tech University
Cookeville, Tennessee, USA

ABSTRACT

The last decade has seen phenomenal growth in the application of
machine learning. At this point, it won'’t be wrong to claim that
most technological change is directly or indirectly connected to
machine learning. Along with machine learning, cyber-attacks
have also bloomed in this period. Machine learning has been a
great aid to cybersecurity, but the security of machine learning
has not been a topic of attention until recently. Among numerous
threats posed to the machine learning community, the Adversarial
Evasion attack is the latest menace. The adversarial evasion attack
has exposed the vulnerability of the modern deep neural network to

a few intentionally perturbed data samples. The adversarial evasion

attacks originated from the image domain but have now spread
across major application domains of machine learning. This work
will discuss the state-of-art adversarial evasion attacks against the
Windows PE Malware detectors. The structure of a file plays a
significant role in how an adversarial evasion attack can be carried
out to a file. We will discuss the robustness and weakness of the
Windows PE file structure toward the adversarial evasion approach.
We will present the existing approaches to exploiting Windows PE
file structure and their limitations. We will also propose a noble way

to manipulate Windows PE structure to carry out an adversarial
evasion attack.

CCS CONCEPTS

* Security and privacy - Malware and its mitigation.

KEYWORDS

Adversarial Evasion Attack, Windows PE Structure, Windows Mal-
ware, Malware Detector, Machine Learning

ACM Reference Format:

Kshitiz Aryal, Maanak Gupta, and Mahmoud Abdelsalam. 2023. Exploiting
Windows PE Structure for Adversarial Malware Evasion Attacks. In Pro-
ceedings of the Thirteenth ACM Conference on Data and Application Security
and Privacy (CODASPY '23), April 24-26, 2023, Charlotte, NC, USA. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3577923.3585044

1 INTRODUCTION

Machine learning is thriving and automating many technologies
that required lots of manual human intervention in the past. The

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODASPY 23, April 24-26, 2023, Charlotte, NC, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0067-5/23/04.

https://doi.org/10.1145/3577923.3585044

Maanak Gupta
mgupta@tntech.edu
Tennessee Tech University
Cookeville, Tennessee, USA

279

Mahmoud Abdelsalam
mabdelsalaml@ncat.edu
North Carolina A&T State University
Greensboro, North Carolina, USA

phenomenal growth of machine learning has revolutionized modern
technology, and the achievements of machine learning are driving
major advances. With increased reliability and widespread adoption,
machine-learning models are attracting the attacker recently in
the ongoing cyber war. The latest threat to machine learning has
arrived in the form of adversarial evasion attacks where small well-
directed synthetic perturbations can thwart away the advanced
machine learning architectures. The first few works of adversarial
evasion attacks [3, 5] explored the vulnerability of machine learning
models by adding a few imperceptible perturbations to an image.
Adding perturbations to the image was easy as the only constraint
was to make it imperceptible to the human eye. However, as the
adversarial evasion attacks shifted to other domains, the domain-
specific constraints limited the flexibility in carrying out the attack.

The adversarial attack on a malware detector is made by attack-
ing a malware file before passing it to a malware detector. The
malware needs to be recognized as a benign file by a detector while
preserving the functionality and executability of a file. Recent works
have made some progress in carrying out the adversarial attack
in a malware domain [1, 2]. The crafting of adversarial malware
examples is completely a different game than in the image. The
strict semantic requirement of binary files can easily break the
file even with minimal changes in the file. The adversarial evasion
attacks in malware have always faced the trade-off between efi-
ciency and practicality. More eficient attacks have lost practical
value, while practical attacks are not suficiently eficient. Initial
attacks on the malware file were made in feature space, where the
practicality of attacks was overlooked [1]. The feature space attacks
can be generated by crafting adversarial noise in the feature space.
However, the malware features with this noise can not be mapped
back to an executable file. Due to this limitation, recent advances
in adversarial evasion attack has focused on problem space attacks.

The adversarial examples are generated by injecting a random
ineffectual perturbation inside malware which will eventually help
to bypass the malware detector. Random perturbations are an in-
eficient approach to attack; thus, different techniques are used to
generate perturbations. The most common approach is by taking
the gradient of a model under attack. The evolving attacks use more
advanced approaches like reinforcement learning, GAN, and deep
neural nets to generate perturbations. Even if the optimization al-
gorithm has improved to a great extent, the process of perturbation
injection still limits the adversarial evasion attacks in malware. In
this work, different adversarial optimization algorithms are out
of scope, and we will focus on the Windows PE file structure and
its challenges. As we discussed earlier, the biggest challenge is to
preserve the file from breaking while injecting these perturbations.
We will discuss the structure of Windows PE file format and
its vulnerabilities to adversarial evasion attacks. We will discuss
how

https://orcid.org/0000-0001-8000-1086
https://orcid.org/0000-0001-9189-2478
https://orcid.org/0000-0001-5627-52398
https://doi.org/10.1145/3577923.3585044
https://doi.org/10.1145/3577923.3585044

CODASPY ’23, April 24-26, 2023, Charlotte, NC, USA

PE Header

Section Header

Sections

Figure 1: Basic Structure of Windows PE File

adversarial evasion attacks are performed by exploiting the struc-
ture of Windows PE files to inject perturbations. While discussing
the limitations of existing work, we will also propose a novel way
to manipulate Windows PE structure to insert adversarial pertur-
bations for malware evasion.

2 BACKGROUND

2.1 Malware Detection

Malware detection is broadly classified into static, and dynamic
detection [6]. Static detection deals with reverse engineering a file
and feature analysis to detect malware without executing it. While
dynamic analysis is the approach where malware is executed in an
isolated environment, and based on the behaviors of the malware,
the detection is done. All of the adversarial attacks in malware in
done against static detection techniques, as the goal is to preserve
the behavior of malware. The recent adversarial evasion attacks
are mostly against end-to-end malware detectors like MalConv [9].

2.2 Windows PE File Structure

Windows PE file format is an executable file format based on the
Common Object File Format (COFF) specification. The basic struc-
ture of Windows PE is shown in Figure 1. The PE header comprises
the MS-DOS MZ header, the MS-DOS stub program, the PE file
signature, the COFF file header, and an optional header. The PE
header is one of the most sensitive regions in a file where small
modifications can entirely break the file. While saying this, there
are regions like an optional header that can be used to inject pertur-
bations. Section headers contain information like Name, physical
address, virtual address, size of raw data, a pointer to raw data, and
different characteristics flags. Any modification in the section re-
quires the section headers to be modified accordingly. The sections
are the main contents of the PE file, which have different sections
for various data stored. The executable codes are placed inside the
.data section; uninitialized codes are inside the bss section; the
.rdata section contains read-only data like constants, and the .rsrc
section contains resource information.

3 ADVERSARIAL EVASION ATTACKS ON
WINDOWS PE FILE

Different attacks over time have exploited different regions of Win-
dows PE files to perform an adversarial evasion attack. The most
common approach has been by appending the perturbations at
the end of PE file [7, 8] as shown in the left of Figure 2. There is
a unique advantage of appending perturbations at the end, as no
alterations are made to the functionality of a file. The end regions

280

Kshitiz Aryal, Maanak Gupta, and Mahmoud Abdelsalam

PE Header

PE Header

Section Header

Section Header

[%2]
f T (T g
1 1 >
- Q
L ! Perturbations 2
1 S
Sections > . < &
- - Sections
[Perturbations |
Figure 2: Append attack and Slack attack
e ™
PE Header
PE Header
- Perturbations Section Header
Section Header T
\ 1
' T
1 [l
: Section 1
[, Perturbations
Sections -
L [Section 2]

Figure 3: Header attack and Inserting Code Caves

are outside the header description and are never executed during
the file execution. However, there are certain demerits of append
attacks. Appending at the end will increase the size of a file while
making perturbations easily detected by a malware detector. In
addition, a malware detector like MalConv [9] takes only the first
2 MB of the file for detection, making appended bytes after 2 MB
ineffectual for detection decision. To solve this problem, Suciu et
al. [10] discovered regions in the executable that are not mapped
to memory and used these slack regions to insert perturbations, as
shown on the right side of Figure 2. These slack regions use exist-
ing empty regions inside a file placed due to a mismatch between
the raw and virtual size of the file. The architecture requires an
amount of space used in memory to be multiple of the page size of
the operating system. So, it’s very likely that some empty space is
available on the memory’s last page, which has been exploited to
store malicious code. However, there is no guarantee that enough
space is available to insert perturbation. And some files may not
have any slack regions within them.

Demetrio et al. [4] claimed that machine learning models are
learning meaningful features from header regions of a PE file rather
than the body of a file. So they could generate adversarial binaries
by changing only a few tens of bytes of file header as shown in
the left of Figure 3. This work did well in terms of eficiency, as
few perturbations were enough to overturn the decision of the
malware detector. However, with increased eficiency, this approach
also increased the chances of breaking the file while manipulating
header contents. Conversely, the perturbations injected in header
regions are more likely to get detected by a malware detector.

In another work, Yuste et al. [11] introduced the idea of injecting
code caves inside malware binaries as in the right of Figure 3. The
code caves are not mapped to memory allowing free manipulation
of bytes without affecting the file. This allows for increasing the

Exploiting Windows PE Structure for
Adversarial Malware Evasion Attacks

[PE Header

Section 1

Code Caves
Section 1 |

[Sections]

Figure 4: Code Caves within a Section

]
[st et]
.

size of a given binary dynamically. The approach inserts code caves
between the PE file’s two sections. Since the approach works on
unused space and extends the existing space, it gives flexibility
over previously discussed approaches. However, there are still a
few limitations to this work. Malware detectors can easily detect
the perturbations between the sections as they become an obvious
place to hide malicious content. In addition, adding the spaces also
alters the relative virtual addresses of contents and may lead to
breaking down the file.

4 PROPOSED APPROACH

To address all the challenges discussed above, we try to exploit a
Windows PE Structure differently. We propose a technique to insert
code caves within the sections of a file. Inserting code cave within a
section gives a major advantage of hiding the perturbations inside a
file’s original content. Modifying the contents inside the section is
full of challenges, as the chances of breaking the file are very high.
To resolve this, we introduce a metamorphic behavior to a malware
file, where the file restores its originality on execution. Once the
code cave is created in a dynamic environment, any adversarial sam-
ples can be optimized inside it without worrying about preserving
the file. The steps involved in our approach are as follows:

* Reverse engineer a malware file for its detailed analysis on
available slack space, sections present, size of the section,
section characteristics

Record the structural details of a file and choose the target

section for code caves

Dynamically insert the required code cave of size available

inside the given section

Transfer the original content of the cave to other locations,
including the end of the file or in slack regions present any-
where inside the file

Modify the characteristics flag for permissions of different

sections as required

Insert shell code that will restore the original program, i.e.,
overwrite the code cave with the original contents of the file
Shell-code should pass the control of a program to the origi-
nal entry point at the end

Optimize the code caves and insert more caves if required

till evasion or threshold condition

The order of steps above might shufle in specific cases. Since
the file is restored to its original form at the end, we don’t need to
worry about breaking it. Code caves and metamorphic behavior
allow us to insert anything inside the caves without altering the

281

CODASPY ’23, April 24-26, 2023, Charlotte, NC, USA

program behavior. This shellcode generation for restoring the file is
a big challenge in this approach. The shellcode can differ based on
the CPU architecture and changing relative virtual addresses. There
could be different ways to resolve this, but we are disabling the
base relocation of a file. Regardless of the challenges to inserting
code caves and preserving the file, this technique allows dynamic
code cave insertion while giving flexibility in the size and loca-
tion of a cave. Our initial experiments have shown some exciting
possibilities, which we will publish in our extension of this work.

5 CONCLUSION

This paper discussed how adversarial evasion attacks could be car-
ried out on Windows PE malware files. We presented all the existing
techniques used to make space in a PE file to inject perturbation
and also analyzed the shortcomings of different approaches. While
discussing adversarial, the detailed description of malware detec-
tors, machine learning models, threat modeling, and adversarial
generation algorithms are the most but are out of scope for this
work. Describing the existing works and vulnerabilities, we pro-
pose a noble approach to introduce adversarial examples inside a
Windows PE file by inserting code caves. The approach is
currently under analysis and shows some good upshots. This
work also re-veals vulnerabilities in Windows PE file structure,
which can easily be exploited to carry out adversarial evasion
attacks.

ACKNOWLEDGEMENTS

This work is partially supported by the National Science Foundation
grants 2025682 at Tennessee Tech University, and 2150297 at North
Carolina A&T State University.

REFERENCES

[1] Kshitiz Aryal, Maanak Gupta, and Mahmoud Abdelsalam. 2021. A survey on
adversarial attacks for malware analysis. arXiv preprint arXiv:2111.08223 (2021).
Kshitiz Aryal, Maanak Gupta, and Mahmoud Abdelsalam. 2022. Analysis of
Label-Flip Poisoning Attack on Machine Learning Based Malware Detector. In
2022 IEEE International Conference on Big Data (Big Data). IEEE, 4236—4245.
Battista Biggio, lgino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndi¢,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic,
September 23-27, 2013, Proceedings, Part |1l 13. Springer, 387—402.
Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro Ar-
mando. 2019. Explaining vulnerabilities of deep learning to adversarial malware
binaries. arXiv preprint arXiv:1901.03583 (2019).
lan JGoodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).
Jeffrey C Kimmel, Andrew D Mcdole, Mahmoud Abdelsalam, Maanak Gupta, and
Ravi Sandhu. 2021. Recurrent neural networks based online behavioural malware
detection techniques for cloud infrastructure. IEEE Access 9 (2021), 68066—68080.
Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio
Giacinto, Claudia Eckert, and Fabio Roli. 2018. Adversarial malware binaries:
Evading deep learning for malware detection in executables. In 2018 26th European
signal processing conference (EUSIPCO). IEEE, 533-537.
Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and
Joseph Keshet. 2018. Adversarial examples on discrete sequences for beating
whole-binary malware detection. arXiv preprint arXiv:1802.04528 (2018), 490-510.
Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K Nicholas. 2018. Malware detection by eating a whole exe. In Workshops
at the thirty-second AAAI conference on artificial intelligence.
Octavian Suciu, Scott E Coull, and Jeffrey Johns. 2019. Exploring adversarial
examples in malware detection. In 2019 IEEE Security and Privacy Workshops
(SPW). IEEE, 8-14.
[11] Javier Yuste, Eduardo G Pardo, and Juan Tapiador. 2022. Optimization of code
caves in malware binaries to evade machine learning detectors. Computers &
Security 116 (2022), 102643.

[2

3

[4

5

[6

[7

[8

[9

[10]

