EAVS: Edge-assisted Adaptive Video Streaming
with Fine-grained Serverless Pipelines

Biao Hou*, Song Yang*, Fernando A. Kuipers', Lei Jiao®, Xiaoming Fu?
*School of Computer Science and Technology, Beijing Institute of Technology, China
TDelft University of Technology, The Netherlands
$Department of Computer Science, University of Oregon, USA
nstitute of Computer Science, University of Gottingen, Germany
Email: {houbiao, S.Yang}@bit.edu.cn, F.A.Kuipers@tudelft.nl, jlao@cs.uoregon.edu, fu@cs.uni-goettingen.de

Abstract—Recent years have witnessed video streaming grad-
ually evolve into one of the most popular Internet applications.
With the rapidly growing personalized demand for real-time
video streaming services, maximizing their Quality of Experience
(QoE) is a long-standing challenge. The emergence of the server-
less computing paradigm has potential to meet this challenge
through its fine-grained management and highly parallel comput-
ing structures. However, it is still ambiguous how to implement
and configure serverless components to optimize video streaming
services. In this paper, we propose EAVS, an Edge-assisted
Adaptive Video streaming system with Serverless pipelines, which
facilitates fine-grained management for multiple concurrent video
transmission pipelines. Then, we design a chunk-level optimiza-
tion scheme to address video bitrate adaptation. We propose
a Deep Reinforcement Learning (DRL) algorithm based on
Proximal Policy Optimization (PPO) with a trinal-clip mechanism
to make bitrate decisions efficiently for better QoE. Finally, we
implement the serverless video streaming system prototype and
evaluate the performance of EAVS on various real-world network
traces. Our results show that EAVS significantly improves QoE
and reduces the video stall rate, achieving over 9.1% QoE
improvement and 60.2% latency reduction compared to state-
of-the-art solutions.

Index Terms—Video streaming, Serverless computing, Deep
reinforcement learning, Quality of Experience.

I. INTRODUCTION

The proliferation of 5G offers unprecedented opportunities
for video service providers to deliver video streaming to users,
boosting the popularity of video applications such as live
streams and short videos. As reported by Cisco [1], two-thirds
of all video streaming applications will be ultra-high-definition
by 2023, which also illustrates the ever-increasing Quality of
Experience (QoE) requirements. Even though 5G can increase
network bandwidth, the Internet may soon be overwhelmed by
massive video streaming traffic, which will affect the users’
QoE [2]. Consequently, providing video streaming services to
users with satisfactory QoE remains a tremendous challenge
for video service providers.

Numerous video service providers, such as Youtube, Hulu,
and Netflix, apply the Dynamic Adaptive Streaming over

Song Yang is the corresponding author.

This work has been partially supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 62172038, by the U.S. National
Science Foundation under Grants CNS-2047719 and CNS-2225949, and by
the EU H2020 COSAFE project (Contract No. 824019) and EU Horizon
CODECO project (Contract No. 101092696).

HTTP (DASH) protocol to deliver video streaming through
Content Delivery Networks (CDN). In such scenarios, the
cloud server splits the video into chunks of equal duration
and encodes the video chunks at different bitrate levels. Then,
client players run an adaptive bitrate (ABR) algorithm to
select the appropriate bitrate for the video chunks [3]. In
order to prevent significant losses in revenue caused by QoE
degradation, video service providers have to optimize critical
components, such as bitrate adaptation strategy [4], [5], buffer
management [6], [7], and QoE enhancement scheme [8],
[9]. In particular, most existing ABR algorithms for bitrate
adaptation try to balance the trade-off between video bitrate
and network bandwidth under fluctuating network conditions
[10], but only the size and download speed of video chunks
are considered. Such coarse-grained bitrate adaptation cannot
adapt efficiently to dynamic network environments [11], which
may incur frequent video bitrate switching and break playback
smoothness. This is because initial chunk bitrate decisions may
not be necessarily the optimal choice for downloading chunks
later, and once made, such decisions cannot be rolled back. In
addition, existing approaches often make bitrate decisions at
the client-side according to client conditions locally [12], lack-
ing a global view. Given the large-scale distributed nature of
the Internet, individual nodes only observe a partial fragment
of the video streaming system, which results in poor long-
tail performance [13]. An edge platform can provide video
streaming service in close proximity to users. Nevertheless,
current edge-based solutions primarily leverage edge caching
[6] to reduce video transmission latency. Even though the
edge platform has a broader view than end users, these
solutions rarely take bitrate adaptation decisions at the edge.
Consequently, there is a need for an edge-assisted fine-grained
video adaptation scheme to ensure proper QoE for users.

To provide tailor-made services, cloud service providers
have proposed the serverless computing paradigm [14], typi-
cally in the form of Function-as-a-Service (FaaS) [15]. In the
serverless architecture, FaaS handles intuitive event-triggered
requests to guarantee inter-linked stateless function availability
and elasticity [16]. Serverless computing is an ideal candidate
for video streaming applications with high data-level paral-
lelism and intermittent activities [17]. Inspired by recent ad-
vances in serverless video analytics [18], [19], we leverage the

Cloud

Functlons (fb
Contalner

1
i Result

- —

- Scheduling

2w - Ea

Serverless
Pipeline

Events

Controller

Invoker

Fig. 1. Architecture of a serverless computing paradigm.

serverless computing paradigm to deploy fine-grained video
delivery pipelines at the edge for video streaming applications.
To that end, we first propose a high-performance serverless
video streaming system enabled by fine-grained video delivery
pipelines. Then, we use serverless functions to enhance the
response of video request events, thus making bitrate decisions
at the edge by leveraging its computation resources. Due to
the Markov property of video bitrate adaptation, we devise
a Deep Reinforcement Learning (DRL) algorithm based on
Proximal Policy Optimization (PPO) [20] together with a
trinal-clip mechanism to efficiently address the challenge of
bitrate adaptation decisions [21]. Moreover, we incorporate
dynamic video chunk quality into the QoE metric to configure
the QoE model, by assigning a single priority weight to each
video chunk.

To the best of our knowledge, we are the first to propose
an edge-assisted adaptive video streaming system with fine-
grained serverless pipelines. In particular, this paper makes
the following contributions:

o We design a high-performance edge-assisted serverless
video streaming system, which uses stateless functions at
the edge to make fine-grained bitrate decisions.

e We propose a trinal-clip PPO-based ABR algorithm to
boost the robustness of video bitrate decisions for im-
proving QoE during playback.

« We implement a prototype of our edge-assisted serverless
video streaming system. Extensive results show that the
proposed solution achieves less latency compared with
existing approaches, and the proposed PPO-based ABR
algorithm outperforms the baselines in terms of QoE.

II. BACKGROUND AND MOTIVATION

This section first presents our implementation setup and
the status quo of serverless computing paradigm. Then we
use empirical analysis to explain the limitations of existing
solutions that underscore our motivation.

A. Implementation Setup

Video streaming system implementation. Based on dash.js
[22], an open source DASH player, we implement a video
streaming system prototype. Videos from Youtube [23] are

=)
S

o

g\i [_] Bandwidth Consumption . [_] Response Ratio

S 80 [S Response Latency 202 [N Process Rate 4
S ! °

=4 8>‘ = 15)
£ o @)
2 60 152 o 3
2 4 249 2
S ® 5 @
O 40 1.0 2 o 2 8
£ s 3 ~
3 & o5 o
2 20 058 T 1

g o

m 0 0 0.0

FaaS

Cloud

(a) Response latency.

(b) Response ratio vs. process rate.

Fig. 2. Performance comparison of FaaS and Cloud for video streaming.

used for all experiments, as it is the type of reference videos
for dash.js. We deploy an Nginx server based on HTTP/2 to
serve the video chunks and use Linux utility TC [24] on the
cloud server to control the egress traffic.

ABR parameters setting. We utilize TensorFlow [25] to
train a DRL model. Eight vectors taken as input are transmitted
to a convolutional layer (1D-CNN) with 128 filters, and each
filter has a size of 4 that is applied with a stride of 1. Then, the
results obtained from these layers are aggregated to a hidden
layer that applies 128 neurons with ReLu activation function
and uses a softmax for the output layer. The critic network
has the same neural structure. During the training phase, we
set the value of the discount factor v = 0.95. Moreover, we
set the learning rate to 0.0001 for the actor network and 0.001
for the critic network. The entropy factor [is configured to
decay gradually from 1 to 0.1 over 100,000 iterations.

Serverless video pipeline configuration. We implement
the primitive of the video streaming pipeline in serverless
functions using Python and deploy it on the cloud server and
the edge. We configure parallel acceleration to provide high-
performance function processing. To deploy the serverless
computing architecture at the edge, we use Docker [26] con-
tainer instances at the edge to execute the serverless function
invocations when the invoker receives the chunk request events
from clients and interacts with the container environment.

B. Serverless Video Service

To generate a processing pipeline dedicated to handling
specific tasks in serverless computing platforms, developers
only need to decouple monolithic applications into multiple
independent stateless functions [27]. Fig. 1 shows a serverless
computing architecture for a video streaming service. When
serverless computing infrastructure is applied to video stream-
ing, the serverless platform is responsible for asynchronous
execution of the appropriate stateless function instances with
fine-grained response actions in real-time. Once predefined
video events invoke, serverless functions concurrently run in
response to the occurrence of the corresponding events.

Taking bitrate adaptation function in the video pipeline as
an example, we illustrate the advantages of FaaS in video
streaming transmission. As shown in Fig. 2(a), FaaS reduces
the response latency by 39.4% at only a minimal penalty in
bandwidth consumption compared with cloud service. In con-
trast to plain cloud service, FaaS decouples video streaming

100% — —

300 Lumos5G : -
_ ——FCC 8o%li [
§ 2501 . Ghent /-/
S 200 W 60%L
£ 5 P
B 150 Pl
g O 40%} i |
2 100 | | iy
3 Wt i FCo
TN R
o MMLWJM N ol ., ——Lumos5G
0 50 100 150 200 250 "0 50 100 150 200 250 300

Time (s) Bandwidth (Mbps)

(a) Bandwidth. (b) CDF for bandwidth.

Fig. 3. Bandwidth statistics among different network traces.

requests into multiple functions that can execute a number of
bitrate decisions of a video file in parallel. It is worth noting
that we use fixed bandwidth, while bandwidth is dynamically
changing in practice, which may further change the latency
value but the decreasing trend still holds. Fig. 2(b) shows the
time spent on performing video bitrate adaptation events. FaaS
has a 25.8% higher response ratio (which is defined as the ratio
of the sum of waiting time and execution time to the execution
time) than the cloud service. Meanwhile, the bitrate adaptation
processing rate (events per second) of FaaS is higher than
the cloud service by 43.2%, achieving rapid and scalable
responses. Therefore, we can see that serverless computing can
provide the fine-grained response actions needed for service
providers to develop video streaming applications.

C. Adaptive Video Streaming

We investigate the influences of ABR algorithms on video
streaming by conducting an in-depth investigation of QOE,
using prior measurements on commercial networks [28]. We
use the 4G datasets FCC [29], Ghent [30] and the 5G dataset
Lumos5G [31], respectively, and feed those to the ABR
algorithms to study their performance under different net-
work conditions. Overall, we find that some ABR algorithms
(e.g., RL-based) can not maintain high performance under
5G networks. Specifically, ABR algorithms suffer from poor
performance over 5G for the following reasons:

Sophisticated network conditions. The different network
bandwidth traces dynamically fluctuate up to hundreds of
Mbps in Fig. 3(a). In addition, we investigate bandwidth
distributions on various sets of 4G and 5G network traces, as
shown in Fig. 3(b). Some ABR algorithms integrate network
throughput into making bitrate decisions. To some extent, their
performance depends on the accuracy of the network through-
put prediction. The dramatically fluctuating 5G network brings
high available throughput while posing a challenge for bitrate
adaptation. Therefore, establishing an accurate throughput
prediction scheme is crucial for making video bitrate decisions.

Fine-grained bitrate adapation. We examine the perfor-
mance of four ABR algorithms under different network traces,
FCC [29] and Lumos5G [31], as depicted in Fig. 4. Among
four ABR optimization algorithms, namely Rate-based (RB)
[4], Buffer-based (BB) [5], Model Predictive Control (MPC)
[10], and RL [6], we observe a explicit increasing trend in

o TR o AL
w©0.9 RL ==>} ' ©0.9F MPC
= MPC *===-=--=* 5
m
08 0.8}
g BB § BB
Ho7 =07 RB
E RB g
o .
é’ 06 Better 2 0.6 Better
05 05
0 2 4 6 8 10 12 0 2 6 8 10 12

4
Stall Rate (%) Stall Rate (%)

(a) QoE impact of 4G trace. (b) QoE impact of 5G trace.

Fig. 4. QoE factors of ABR algorithms under 4G & 5G network conditions.

video stall rate by 47.6% on average for RL when running
over 5G. In most cases, ABR algorithms under 5G achieve
almost similar normalized bitrates in 4G settings at only 2.8%
degradation, as shown in Fig. 4(a) and Fig. 4(b). Video stalls
are a major problem for video streaming services under 5G.
For example, the average video stall for MPC and RL increases
by 73.2% and 130.2%, respectively. RL outperforms the other
algorithms in 4G but incurs the highest video stall time over
5G networks. A possible explanation is that sometimes the
coarse-grained selection of the highest bitrate chunk may lead
to high stall times, and it is difficult to alleviate the impact of
such wrong decisions on users’ QoE. Therefore, we advocate
that ABR algorithms should make fine-grained decisions and
better adapt to the highly fluctuating network conditions.

III. SYSTEM DESIGN

This section first introduces the architecture of our server-
less video streaming system. Then we discuss core technolo-
gies, video streaming with fine-grained serverless pipelines, a
PPO-based ABR algorithm, and the QoE metric.

A. System Architecture

We design EAVS, an edge-assisted adaptive video streaming
system with serverless pipelines, which facilitates fine-grained
management for multiple concurrent video bitrate adaptation
events to maximize video QoE. Fig. 5 demonstrates our EAVS
architecture, which mainly consists of three parts: clients,
edges, and cloud servers. The edge handles video requests
from multiple clients and interacts with the geo-distributed
cloud servers. Video streaming services can be delivered from
the user’s nearest cloud server to reduce transmission latency.

At the client side, we extract the JavaScript console logs
from the Chrome browser with an integrated dash.js player
to collect the state information of the video chunks, player
buffer, and network condition using iPerf from the client.
Then, the ABR controller organizes state metadata information
and forwards it in groups to invoke chunk downloading request
events. The corresponding video request invocations are sent
to the edge using HTTP via serverless functions.

At the edge side, the functions database is the intelligent
core of the whole system and interacts with the container
that executes serverless functions. The throughput monitor
module probes the network link between the client and cloud

Client Edge Cloud Server
Vid | Functions l Throughput |_ _ Video Data
Database Monitor !
L I3)1080P
i &P
(Transcode [+][] 360P

Buff
H T vy L2
. : Configurator |» Scheduler
Buffer||Chunk ||Network| S : =,
State || State || State SIVeness [—
i T T Invoke:r
N Request 4 /[Decisions | i i
ABR |S Events | [Invocations /2 .7 B T e Session Stream
CaiiEltr I) Controller || Push
Video —
Chunks

Bandwidth
Allocation

----- Information Data
— Video Data

Serverless Pipeline

Fig. 5. An overview of our serverless video streaming system.

servers for estimating future throughput. In response to client
video request events, the edge decrypts the request information
immediately. Specifically, the edge utilizes the information
from request events (e.g., buffer occupation and chunk bitrate)
and throughput prediction to determine the optimal bitrate
using serverless functions. Then the edge delivers the bitrate
decision results to the nearest cloud server. Since the edge
has a broader view than the client, it can effectively improve
video QoE by considering more relevant information, such as
client requests and available bandwidth. The serverless video
streaming pipelines have an additional streaming ingestion
stateless function, which is responsible for orchestrating the
execution of the video streaming workflow. During each
timeslot, a serverless configurator invokes a stateless function
for video streaming events and feeds back pipeline messages.
The edge instructs invokers to execute stateless functions for
making fine-grained bitrate decisions.

At the server side, each of the cloud servers stores the
entire video content and encodes video chunks at different
bitrate levels. Once the cloud server receives the video bitrate
decision results from the edge through the session controller, it
immediately allocates the available bandwidth and determines
the optimal streaming push strategy. Finally, the cloud server
delivers appropriate video chunks to the client player on the
allocated bandwidth using the DASH protocol.

B. Serverless Video Streaming Pipeline

Serverless pipelines provide the off-the-shelf infrastructure
to handle fine-grained concurrent video streaming services in
real time. By dynamically adjusting the serverless function
according to the edge available resources, we aim to: (1)
achieve high throughput for video streaming services by
serverless pipelines, and (2) adjust the workloads of dynamic
video delivery adaptively. To efficiently integrate resources
from the edge and cloud server, we deploy an edge-assisted
adaptive video streaming system to automatically tune the
serverless pipelines. The primary responsibility of the edge is
to invoke serverless functions execution and deliver execution
results. As a result, the serverless pipeline design follows the
single responsibility principle: each stateless function instance
takes on a single task independently. The serverless function
instantiates when it is invoked and destroys when it is done.
During video streaming sessions, this translates to having one
fine-grained bitrate decision function for every video event.

Serverless pipelines. We extend the fine-grained serverless
computing architecture to boost video streaming service. In
order to efficiently deliver video content with a better QoE,
cloud service providers need to decompose the monolithic
video streaming workflow into a set of sequential stateless
functions. For example, the video streaming pipeline is de-
composed into inter-linked stateless functions, to be executed
by a containerized runtime environment. Therefore, the entire
video streaming system becomes serverless pipelines consist-
ing of stateless functions. Operations are not reprofiled when
serverless pipeline composites and video requests change.
To handle the unstable serverless environment, we propose
a video streaming system with event-driven multi-process
support [32]. For example, the arrival of video requests invokes
serverless functions to make bitrate decisions for download-
ing chunks. The above process repeats function invocations
asynchronously until the video streaming session terminates.

Serverless invoker. During the video session, the serverless
invoker module enables the system to orchestrate the exe-
cution of all function invocations and maintains the server-
less pipeline state, ensuring serverless functions’ perfor-
mance, availability, and responsiveness. The invoker uses a
semaphore-based mechanism to control request access to the
container. Whenever triggering requests arrive at the edge, it
responds by invoking serverless function instances on time
and records the invocations statistics in detail, which are used
to update the profile required for video service. In addition,
our system aims to reduce the overall pipeline latency while
minimizing the cost (resource usage). Therefore, we optimize
the overall pipeline execution by iteratively and dynamically
optimizing the invocation of each operation using up-to-date
information about the state of video streaming requests and
resource availability. Additionally, we set different latency
slack values for each function invocation. We dynamically
reduce the system latency by continuously configuring func-
tion operations for serverless pipelines subject to meeting a
slack value at minimal cost. Through dynamic slack target
assignment, pipeline latency can be reduced without consid-
ering possible conditional paths. Finally, the serverless video
pipeline information is packaged and sent to the configurator.

Configurator. To meet the latency target for the serverless
video pipelines, the configurator module identifies two key fac-
tors: (1) how much latency slack to set for each function invo-
cation, and (2) how to allocate resources efficiently to meet the
latency target. The volatility of independent function execution
processes and system resources requires the configurator to
dynamically determine the most efficient resource allocation
for each function invocation. The configurator continuously
detects available resources (e.g., memory and CPU) on the
serverless backend. In addition, the configurator module opens
a connection to the functions database and searches for avail-
able serverless functions to select the invoked operation. After
a configuration option is selected, the configurator forwards the
function invocation with the configuration decision profiles to
the scheduler for execution. We use this latency mechanism
to improve the performance of the serverless functions.

Environment

Agent

State Pseudo Siamese

Architecture

Training Process
State s,

ConvNets

Network Information it [melads)
Experience I ;
Tuple Reward T i Actor NN !
QoE Metric ConvNets ! TrinalClip
PPO
- Player Information ™ Critic NN :
Trajectory T
Memol —H @ Vo (se)

Y ConvNets

Fig. 6. End-to-end DRL architecture of trinal-clip PPO-based ABR algorithm.

Chunk Information

K-best Self-Play Procedure

Scheduler. After the configurator module completes a func-
tion invocation configuration profile, the invocations are dis-
patched to the scheduler module for execution. The scheduler
performs the serverless function invocation on the container
environment specified by the configurator. During serverless
function execution, operation invocation may execute asyn-
chronously and concurrently. The scheduler keeps track of
execution time for function invocations. If the configuration la-
tency target is exceeded or the scheduler receives an execution
error, the scheduler notifies the serverless invoker to recreate
a function invocation. This duplicate invocation is then passed
to the configurator to reset the slack allocation and execute
the configuration process. We set latency targets for different
video request invocations to improve pipeline responsiveness,
thus ensuring that the function invocation runs in the optimal
configuration. When function invocation executes successfully,
the scheduler provides the function output results to the cloud
server. After processing the input workload, function instances
automatically terminate and release the occupied resources.

C. PPO-based ABR Algorithm

We design an end-to-end reinforcement learning framework
that performs bitrate adaptation decisions for video stream-
ing. End-to-end means that the framework directly accepts
information from video streaming services and outputs actions
without the need to encode hand-crafted features as input
or iterative reasoning in the decision process. In the DRL-
based video streaming scheme, ABR state-space informa-
tion includes current and historical video streaming informa-
tion, network information, and action information. The agent
chooses the video chunk bitrate based on the current state-
space information and tries to win more rewards. To capture
the complex relationship among the video streaming state,
desired actions, and QoE rewards, we design a pseudo-siamese
architecture to learn the intrinsic relationship.

Reinforcement learning (RL) is a classic strategy for solving
sequential decision problems in dynamic environments. Deep
neural networks (NNs) can also handle multi-dimensional
input conditions to extract features in-depth. Consequently,
the adaptive streaming bitrate decision problem is within this
realm and can be solved possibly by DRL-based solutions. We
transform this problem into a Markov Decision Process (MDP)

task and devise a DRL-based solution through the interactions
between agent and environment. An MDP consists of a set of
finite states S = {s1, S2, ..., $¢ }, a set of actions A = {at}tT:l,
and a reward function r : S x A — R. After taking action
a; € A at each state s; € S, the agent will acquire a new
state s;41 according to the transition probability strategy and
receive a reward r (sty1|st, a¢). The agent’s goal is to max-
imize the cumulative reward R = > ;2 7' 1r (s¢41]se, ar),
where 7 € (0, 1] is the discount factor.

As shown in Fig. 6, at each timestamp 7, the input of
the DRL architecture comprises state representations of video
chunks and network information, which are sent to the top
and bottom streams of the conjoined architecture, respectively.
Since actions and state representations provide different kinds
of information for learning, we isolate the parameter sharing
of the conjoined architecture so that these three ConvNets
can learn adaptive feature representations, which are then
fused through the fully connected layer to produce the desired
actions. The agent can choose an action based on the output
probability distribution. To train the DRL model, we resort to
a trinal-clip loss function that updates the model parameters
using Stochastic Gradient Descent (SGD). We obtain the final
model through a self-playing procedure that plays the current
model with a pool of K best historical versions, so as to sample
different training data from a huge state space.

State representation. Existing works typically classify
video and network information into distinct groups and use
their tandem encoding vectors as representations of states
to make iterative reasoning processes feasible. However, the
abstracted encoding vectors lose important state information
and may not capture the complex relationship between the
video information and the optimal bitrate decision. To obtain
an efficient and appropriate feature representation that learns
directly from the state to the desired bitrate decision, we design
a new multi-dimensional feature representation to encode
current and historical video chunks and action information.

In the video streaming system, the video information and the
action information exhibit different characteristics. Therefore,
we represent them as two separated three-dimensional tensors
and let the neural network learn the system model empirically.
We design the tensor as nine channels representing the agent
network information, chunk information, player information,
and historical decisions. Each channel is a 4 % 13 sparse bi-
nary matrix with each position representing the corresponding
information. For the actor tensor, since there are usually at
most four consecutive actions per round, we design it in four
channels. Each channel is a 1 *n; sparse binary matrix where
ny represents the different bitrates of the video chunk.

Action component. Fig. 6 depicts the overall architecture
of the PPO. For the time-series input type (e.g., past chunk
download time, etc.), we use a ConvNets layer to extract
the basic features efficiently. Then, all processing results are
concatenated into a fully connected (FC) layer to learn the
intrinsic relationships of the complex features. The output
results are finally converted into a softmax layer to calculate
the probability distribution of the actions. By adjusting the

parameter 6 of the neural network, the policy my can be
optimized. So when downloading video chunks, the agent
chooses the action that can maximize the long-term cumulative
QoE reward during a video streaming session.

Trinal-clip PPO. With a multidimensional feature repre-
sentation, the pivot factor in policy-gradient training is a deep
learning paradigm with a suitable loss function. We employ
an actor-critic framework with on-policy training. The agent
directly learns a parameterized policy 7y based on the gradient
of the expected return concerning the policy parameter 6.
The actor-critic paradigm trains a value function Vj (s;) and
a policy 7y (a¢|s¢) and updates them iteratively by sampling
from the replayed experiences.

We use the vanilla Proximal Policy Optimization (PPO)
algorithm [20] to achieve policy improvement via gradient-
based parameter updates. The PPO defines the ratio function

re (0) = % as the probability ratio between the current

policy mg and the old policy 7, . The advantage function A,
(t € [0, T]) describes the improvement between two consec-
utive states s;41, S¢, over selecting an action a; according to
current policy g, and the policy loss function £V is:

£y (9) = Ee [min <rt (0) Ay, clip (r¢ (0),1 —e,14¢) At>] (1)

where clip (r¢ (0),1 — e,1 4 ¢) ensures that 7; (0) lies in the
interval (1 —e,1 + ¢), and ¢ denotes the clipping range with
typical value 0.2 [33]. The value loss £} is defined as:

£} (0) = Br |(&] = Vi (5)’] @

in which R} represents the traditional y-return. We use the min
function to control the original and truncated items, preventing
the policy update drift beyond a predefined interval.

We apply the optimization method with advantage function
estimation and additional entropy rewards to improve the
PPO algorithm performance. Moreover, using Generalized
Advantage Estimation (GAE) [33] to construct the advantage
function can reduce the variance so that the algorithm does
not produce large fluctuations. By following the T-step update
method TD error 0;, we calculate GAE as:

At = 8t + ((.d)\) 8t+1 + ...+ (WA)T7t+1 8T71 (3)

where
O = Ri +wVy (5t+1) —Vy (St) 4)

However, above PPO loss function has difficulty to converge
during large-scale distributed training. We analyze two main
reasons for this problem: (1) the policy loss £} (#) introduces
unbounded variance when mg (a¢|s;) > my (atls;) and the
advantage function A; < 0. (2) the value loss L7 (8) is
often extremely large due to the uncertainty of the bitrate
distribution in video streaming. To speed up and stabilize the
training process, we implement a trinal-clip PPO loss function.
It introduces an additional clipping hyper-parameter o, for the
policy loss and two clipping hyper-parameters oo and o3 for
the value loss when A, < 0. The policy loss function £i of
the trinal-clip method [34] is defined as:

LIP(0) = B, [min (clip (r+ (0) ,clip (re (0),1 —e,14¢€),01) At)] 5)

Fig. 7. Implementation of our serverless video streaming system prototype.

where 01 > 1+« indicates the upper bound, and ¢ denotes the
original clip range in the PPO algorithm. The clipped value
loss function £{* for trinal-clip PPO is defined as:

L (0) =By |(clip (R), —02,03) — Vo (5¢))° (6)

In the DRL training process, the hyper-parameters oo and
o3 represent the total number of video chunks the player has
downloaded and the server has stored, respectively. Thus, these
two hyper-parameters do not require manual tuning but are
dynamically calculated according to the chunks played during
video playback. We implement a distributed version of the
trinal-clip PPO algorithm to accelerate the training speed and
enhance the training performance. This stringent restriction
significantly reduces the variance of the value function and
also eliminates the influence of policy irrationality.

QoE metric. A QoE metric is used as the DRL reward
to train our trinal-clip PPO-based ABR algorithm using our
proposed system under different network conditions. We use
two PCs as video server and client, respectively. The edge is
a Jetson Agx Xavier to perform the bitrate decisions. Fig. 7
shows our serverless video streaming prototype implemented
by different devices. We reuse existing QoE metrics [21] and
assign a weight for each video chunk according to its inherent
video content. Hence, we assign a particular weight for each
video chunk to encode content quality sensitivity. We perform
a video chunk weighting of the QoE metric as follows:

i=1

where w; denotes the weight of chunk; and n is the number
of video chunks during the video streaming session, reflecting
the priority of this chunk. The DRL model is encouraged to
download video chunks at higher bitrates by using a QoE
reward function. The adopted QoE metric in our solution is:

n 7 n—1
QoE = ZQ(Ri) —MZTi —52 lg (Ri1) —q(R;)| (8)
=1 =1 =1

where R; is the bitrate of chunk;, ¢(-) is a utility value which
represents the video quality, T; denotes the video stall penalty,

I 4G 12} I 4G

15| A5G ez sc
'g_ @107
Ke) L
gm g 8
o F 6t

[T a
.L o i '

0

Fugu NEIVA A3C EAVS QFlow Fugu NEIVA A3C EAVS QFlow

(a) Bitrate of video chunks. (b) Stall time.

Fig. 8. The performance of different methods in various network traces.

and |g(R;4+1) — g (R;)| represents the smoothness penalty
when switching bitrates. In Eq. (8), ¢ and § are non-negative
weights, which are set to 4.3 and 1.0, following existing works
[2] [21]. In a nutshell, QoE increases with high bitrates, but
diminishes with stall-time, and lack of smoothness.

IV. PERFORMANCE EVALUATION
A. Dataset and Methodology

Network trace datasets. We consider different 4G and 5G
network traces to evaluate the performance of serverless video
streaming under real-world network conditions. In particular,
we set up ABR experiments in the serverless pipeline-enabled
video streaming scenario. The parameter settings are the same
as for Section II-A. We select two public network datasets
FCC [29], and Lumos5G [31] which represent the 4G and 5G
network conditions, respectively. All traces are formatted by
the Mahimahi tool [35]. We randomly split the network dataset
into three groups: training, validation and test, with a share of
80%, 10%, and 10% of the dataset.

Video datasets. We evaluate videos from Youtube [23]. For
each video, we split the video into fixed-length chunks and
encode them at five different bitrate levels (300, 750, 1200,
1850, 2850) Kbps using the FFmpeg [36] tool, corresponding
to (240, 360, 480, 720, 1080) P levels.

Baselines. We compare the following state-of-the-art base-
lines to demonstrate the performance of our proposed solution.
All algorithms are implemented in the same environment:

o Fugu [2]: It replaces the network throughput predictor
based on a classical controller with a deep neural network
of upcoming chunk transmission time, designed to be
feasibly trained using supervised learning in situ.

o A3C [6]: It adopts an asynchronous advantage actor-critic
(A3C) method, one of the DRL-based algorithms, to solve
the corresponding MDP issue of bitrate decisions, by
jointly considering video transcoding and edge caching.

o« NEIVA [10]: It improves network throughput predic-
tion accuracy by training the predictor with the Hidden
Markov Model (HMM), then incorporates Model Predic-
tive Control (MPC) for mobile video streaming.

e QFlow [37]: It develops a model-free Double Deep Q
Network (DDQN) that enables bitrate decision adaptation
to video feedback control loop to maximize QoE.

[~ NEVA A I NENA
20— Fuau T @O e
S | —EAVS 4 S | - EAS 4
< 5| / a0l A3C A
o) @ QFlow o
8 g S
110 120t p
E’ _,‘JL_) 7 e Vel
5 5 Sl TS
@ @ S

0 y a A N N N N N N 0 /‘ZI/ N N N N N N
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Chunk Index Chunk Index

(a) Buffer variations for 4G trace. (b) Buffer variations for 5G trace.

Fig. 9. The buffer level of different methods in various network traces.

B. QoE Metrics Analysis

To understand the QoE metrics obtained by the ABR algo-
rithms, we carefully investigate the meta-metrics implemented
for each video player in different network conditions. We
demonstrate the performance of the ABR algorithms under
different network traces in Fig. 8. Apparently, the 5G traces
(green) provide higher throughput than the 4G network traces
(red) and hence a 53.8% higher average video chunk bitrate,
as shown in Fig. 8(a). Our proposed EAVS performs best,
with a video chunk bitrate improvement of about 9.1%-42.7%
compared to the other benchmark algorithms. Fig. 8(b) shows
the stall time of different ABR algorithms under network
traces. We observe that the stall time of EAVS is about 19.1%
and 15.6% lower compared to A3C and Fugu, and 11.3% and
8.7% lower compared to NEIVA and QFlow. Through fine-
grained chunk bitrate adaptation decisions, EAVS is able to
consciously adapt to dynamic network conditions, with higher
video bitrates and smaller stall time.

Fig. 9 illustrates buffer occupancy of one identical video
(140s) across various network traces. We notice that there
are significant differences in buffer management by different
algorithms. As shown in Fig. 9(a) and Fig. 9(b), the buffer
occupancy drastically fluctuates under 5SG networks compared
with 4G networks. ABR strategies try to maximize the bitrate
of video chunks, but coarse-grained bitrate management often
leads to significant variances. EAVS carefully explores the
bitrate improvement space within the bandwidth constraint
through fine-grained control. Overall, the buffer footprint
gradually flattens during the process of downloading chunks.

We only show the QoE results for the 5G network in Fig.
10 and Fig. 12. Fig. 10 presents the QoE performance for
a fixed buffer among different ABR algorithms. The change
in QoE is shown as a percentage difference in quality and
an absolute increase in stall rate. As shown in Fig. 10(a),
NEIVA, QFlow and A3C, face a nearly 55% decrease in
video quality combined with a slight rise in stall rate. Fugu
maintains high quality (less than 20% decrease in quality)
but does so at the expense of a significant increase in stall
rate. EAVS has less than 40% decrease in quality, but with
a lower stall rate than Fugu. Fig. 10(b) demonstrates the
frequency and magnitude of bitrate switching over the entire
video streaming session. NEIVA leads to the most frequent

80 1.0 0.4 15
[Quality Decrease [Switch Frequency

9 [stall Rate 08 = [Switch Magnitude o
5 60 o3 o
S S
& 2s 102
3 088 3 S
(%] [0} &
g 40 = o2
a 048 L =
=] 055
g2 Sod kS
3 02 H
3 7
0 0.0 0.0 0.0
NEIVA A3C EAVS Fugu QFlow NEIVA A3C EAVS Fugu QFiow

(a) Video quality v.s. stall rate.

(b) Video switch events.

Fig. 10. Video QoE performance of different methods on fixed buffer.

35 4 300 20
Throughpul Throughput
’330 i A —=— Bitrate $250 —=— Bitrate
825 il i 3§
= | 44) §200
Sotn Tl o1 | 2 2
2 a1 ﬂ‘ AR 2o o150
SI5HHE A | B A e 4 8 S
ESI BN LA g oo
210 || 4 | (Wi 2
= LY La EETIY) L=
= sl i | 50
E
0 0 0 0
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Chunk Index Chunk Index

(a) PPO for 4G trace. (b) PPO for 5G trace.

Fig. 11. A case of bandwidth and chunk bitrate by different network traces.

quality switching. The reason is that buffer occupancy levels
fluctuate in the presence of video rebuffering, resulting in more
bitrate switching. The frequent network fluctuations result
in an inability to accurately estimate throughput, which in
turn causes a negative drift in video content performance.
In contrast, EAVS tends to have a shorter stall by adapting
to dynamic network conditions in real-time, which inevitably
leads to some video quality degradation. A better trade-off
between video bitrate and stall time would improve QoE.

The video chunk bitrate positively correlates with the
available throughput, as shown in Fig. 11. We observe that
network throughput affects the video chunk size when the
bandwidth varies drastically. In Fig. 11(a), from the 25th chunk
the bandwidth suddenly decreases from 30Mbps to 3.6Mbps
and remains at decline for the following nine video chunks,
thus ensuring smooth playback. However, due to the lack of
rapid feedback on the bandwidth, EAVS raises the bitrate in
three consecutive video chunks from the 61st chunk, which
may lead to stall-time, as shown in Fig. 11(b). The average
network throughput of the 5G trace is higher than the average
bitrate of the video. Under this network trace, EAVS always
chooses a higher bitrate, but it can still cause stall-time. Due
to the flexibility of fine-grained bitrate decisions, EAVS can
efficiently guarantee to get out of tight corners and provide
better video streaming service.

C. End-to-end QoE Improvement

We further validate the robustness of our proposed EAVS
solution. To investigate QoE improvement, we show the QoE
performance for different video chunk lengths over a 5G net-
work in Fig. 12. We find that longer video chunk sizes cannot
enhance the QoE metric defined in Eq. (8), but rather diminish

== NEIVA

A3C
=Y Fugu

EAVS
QFlow

¥Zi 1 Client & 3 Clients == 5 Clients

/7

NNNNNNNNNNNN\Y

7

Normalized QoE
Normalized QoE

~ HHRRRRHHHHHARRRRA

V77777777777

AT
+ FT AR

V777777777,

A

Chunk Length (s) Chunk Length (s)

(a) Various methods. (b) Number of clients.

Fig. 12. QoE performance with different chunk length in Dash.js.

1.0 = 1.0
- QFlow NEIVA
NEIVA /0 e A3C !
0.8f —-— Fugu ; 0.8 ---- QFlow Ly
rrrrr A3C ; —-— Fugu 5
| —EAVS ! ——EAVS /
L 06 i L 06 b
8 o / o /
0.4} T O o4t Iy
)
- R/
0.2f - 3)
0.2 s
00T 0.Q—== =,
40 60 80 100 120 140 20 40 60 80 100 120 140

Average QoE Reward Average QoE Reward

(a) Diverse methods for 4G trace. (b) Diverse methods for 5G trace.

Fig. 13. CDF of average QoE reward by various algorithms.

QoE due to the download time. As shown in Fig. 12(a), EAVS
experiences a 29.8% QoE degradation. Nevertheless, the QoE
of EAVS achieves 4.7%-9.1% improvement, compared to the
average QoE of other baselines. As shown in Fig. 12(b), the
QoE degradation with an increasing number of clients does not
exceed 12% when using EAVS to optimize bitrate decisions.
It is limited by the performance of edge devices, which cannot
support a large number of serverless functions.

Fig. 13 illustrates the CDF of QoE improvement for various
ABR optimization schemes under different network condi-
tions. Fig. 13(a) and Fig. 13(b) display the average QoE reward
under 4G and 5G networks, respectively. Compared to the
other baselines, we note that EAVS performs well in terms
of QoE reward. For example, compared to 4G, the QoE of
EAVS improves by 36.4% under 5G network conditions. In
addition, the raw values of QoE show that EAVS is the only
ABR algorithm that ends up with the maximum average QoE
reward. This indicates that EAVS can adapt to underlying
dynamic networks faster to improve QoE, because it enables
fine-grained serverless service.

D. Serverless Pipelines Performance

We finally compare these ABR algorithms with and without
serverless pipelines at the edge. We demonstrate, for the 5G
network trace, the comprehensive performance of serverless
video streaming pipelines in Fig. 14. With the edge-assisted
serverless video pipelines, EAVS significantly reduces the
average response latency by up to 27.4%-60.2% compared to
without a serverless pipeline scheme, as shown in Fig. 14(a). It
indicates that the serverless configurations can perform well on
video bitrate adaptation, and EAVS can pick up an appropriate
function for video delivery workloads. Fig. 14(b) shows the

[Iwio serverless
ngg Z) wi serverless
=25
)

c
L0t
©]
4 /
@ 15} B
o /
8_ 101 %
3
o 5

0

NEIVA A3C EAVS QFlow Fugu

Response Latency (ms)

(a) Response latency. (b) CDF for response latency.

Fig. 14. Overall performance among serverless pipelines.

CDF of five algorithms under 5G network conditions, where
80% of the response latency of EAVS is less than 10ms. By
executing serverless functions in parallel, EAVS can schedule
serverless pipelines in response to bitrate decision tasks. This
means that our proposed EAVS solution is more effective
in reducing the response latency for dynamic changes of
incoming workloads in the serverless runtime environment.

We plot the variation of video serverless functions (encoding
function) during the video playback in Fig. 15. We observe that
in Fig. 15(a) the serverless function execution duration varies
increasingly as the video definition increases. For example,
the execution duration of the longest 1080P (6,675ms) is 3.7
times higher than the shortest execution duration (1,924ms),
and the increment is even bigger than the average execution
duration of 720P (3,789ms). In addition, higher definition
encoding functions require higher memory space and gradually
stabilize during video encoding. As shown in Fig. 15(b), 1080P
video is 41.8% higher than 720P and 78.5% higher than 480P,
respectively. EAVS gradually indicates a more stable execution
duration regardless of the memory footprint. Considering that
EAVS invokes concurrently serverless functions for video
bitrate adaptation decisions, it may cause competition for
resources with other co-located function instances. As a result,
the underlying infrastructure is primarily responsible for the
apparent performance changes over time.

V. RELATED WORK

Serverless computing. The emergence of serverless com-
puting has extensively simplified deploying applications on
the cloud. In the serverless computing infrastructure, functions
are orchestrated logically to construct applications. It enables
applications to run in a serverless-native manner, including
data processing [16] and video analytics [17], [18]. For
example, Wukong [15], a new serverless parallel computing
framework, provides decentralized scheduling and supports
large-scale data processing workloads. Additionally, serverless
computing also gains popularity in video scenarios. Zhang
et al. [19] integrate edge and cloud resources to unleash
the potential of serverless computing in enabling scalable
real-time video analytics. Llama [38] presents a heteroge-
neous serverless video processing framework that executes
general video pipelines. Konstantoudakis et al. [39] propose a
serverless immersive media streaming framework that executes

600L --=- 1080P ——720P --«--480P

w6
s
SNV VI
2L AN NN LN .
-ow- 1080P ——720P ----480P el T
0 40 80 120 160 200 % 50 100 150 200
Time (s) Time (s)

(a) Memory footprint. (b) Process duration.

Fig. 15. Changes in execution time for the encoding function.

video transcoding profiles in a centralized manner. The works
closest to us are [19], [38], which leverage the serverless
computing technique to decouple video analytic workflow.
Unlike these systems, our work is designed for video streaming
by decoupling monolithic video streaming applications into
independent serverless functions. We further devise a trinal-
clip PPO-based ABR algorithm to select the appropriate video
bitrate at the edge for QoE improvement.

Adaptive bitrate (ABR) algorithms. ABR algorithms are
widely used to select bitrates adaptively according to network
conditions. There are two traditional optimization categories:
(i) parametric methods that leverage the video information
and throughput estimation to make bitrate decisions, such as
rate-based algorithms [4], [8], buffer-based algorithms [5], [7],
[40], and control theoretic approaches [2], [9], [10]. However,
their reliance on accurate throughput estimations limits their
performance enhancement. (ii) Learning-based methods that
train DRL models to learn bitrate adaptation procedures to
make bitrate decisions [41], such as QFlow [37]. However,
DRL models in this context are inefficient to train online
and hardly converge in highly dynamic environments [42].
Compared with the existing DRL-based ABR algorithms, our
proposed trinal-clip PPO-based ABR algorithm can improve
sampling efficiency and convergence speed. Moreover, Luo
et al. [6] present a DRL-based approach to enhance video
streaming performance by jointly considering edge caching,
playout buffer dynamics and network conditions. Our work
is orthogonal to their work [6], [40], because EAVS mainly
focuses on making bitrate adaptation decisions via edge-
assisted fine-grained serverless pipelines together with a trinal-
clip PPO-based ABR algorithm to maximize QoE.

VI. CONCLUSION

In this paper, we have proposed EAVS, an edge-assisted
adaptive video streaming system with fine-grained serverless
pipelines. By fully unleashing edge capabilities to facilitate
fine-grained serverless management, EAVS can provide good
QoE for video streaming services. Moreover, we have devised
a trinal-clip PPO-based DRL algorithm to efficiently make bi-
trate adaptation decisions. Extensive results with our serverless
video-streaming prototype have shown that EAVS effectively
reduces the average response latency by 60.2% and improves
QoE by 9.1%, compared to state-of-the-art solutions.

[1]
[2]

[3]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Cisco, “Cisco annual internet report (2018-2023) white paper,” Cisco:
San Jose, CA, USA, 2020.

F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in NSDI, 2020, pp. 495-511.

B. Wang, M. Xu, F. Ren, and J. Wu, “Improving robustness of DASH
against unpredictable network variations,” IEEE Transactions on Multi-
media, vol. 24, pp. 323-337, 2021.

Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and
B. Sinopoli, “CS2P: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proc. of the ACM SIGCOMM
Conference, 2016, pp. 272-285.

K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptation for online videos,” IEEE/ACM Transactions on Net-
working, vol. 28, no. 4, pp. 1698-1711, 2020.

J. Luo, F. R. Yu, Q. Chen, and L. Tang, “Adaptive video streaming
with edge caching and video transcoding over software-defined mobile
networks: A deep reinforcement learning approach,” IEEE Transactions
on Wireless Communications, vol. 19, no. 3, pp. 1577-1592, 2020.

T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun, “Stick:
A harmonious fusion of buffer-based and learning-based approach for
adaptive streaming,” in IEEE INFOCOM, 2020, pp. 1967-1976.

A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang,
D. Rybkin, Z. Yang, Z. M. Mao et al., “A variegated look at 5G in the
wild: performance, power, and QoE implications,” in Proc. of the ACM
SIGCOMM Conference, 2021, pp. 610-625.

X. Zhang, Y. Ou, S. Sen, and J. Jiang, “SENSEI: Aligning video
streaming quality with dynamic user sensitivity,” in NSDI, 2021, pp.
303-320.

C. Qiao, G. Li, Q. Ma, J. Wang, and Y. Liu, “Trace-driven optimization
on bitrate adaptation for mobile video streaming,” IEEE Transactions
on Mobile Computing, vol. 21, no. 06, pp. 2243-2256, 2022.

T. Feng, H. Sun, Q. Qi, J. Wang, and J. Liao, “Vabis: Video adaptation
bitrate system for time-critical live streaming,” IEEE Transactions on
Multimedia, vol. 22, no. 11, pp. 2963-2976, 2020.

Z. Meng, Y. Guo, Y. Shen, J. Chen, C. Zhou, M. Wang, J. Zhang, M. Xu,
C. Sun, and H. Hu, “Practically deploying heavyweight adaptive bitrate
algorithms with teacher-student learning,” IEEE/ACM Transactions on
Networking, vol. 29, no. 2, pp. 723-736, 2021.

F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein, “Pantheon: the training ground for internet congestion-
control research,” in USENIX ATC, 2018, pp. 731-743.

M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: vision and challenges,” in Australasian Computer
Science Week Multiconference, 2021, pp. 1-10.

B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: A scalable and locality-enhanced framework for serverless
parallel computing,” in Proc. of ACM SoCC, 2020, pp. 1-15.

A. Agache, M. Brooker, A. lordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in NSDI, 2020, pp. 419-434.

M. Zhang, F. Wang, Y. Zhu, J. Liu, and B. Li, “Serverless empowered
video analytics for ubiquitous networked cameras,” IEEE Network,
vol. 35, no. 6, pp. 186-193, 2021.

J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang, “Towards demystifying serverless machine learn-
ing training,” in Proc. of the International Conference on Management
of Data, 2021, pp. 857-871.

M. Zhang, F. Wang, Y. Zhu, J. Liu, and Z. Wang, “Towards cloud-
edge collaborative online video analytics with fine-grained serverless
pipelines,” in Proc. of the 12th ACM Multimedia Systems Conference,
2021, pp. 80-93.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

S. Sengupta, N. Ganguly, S. Chakraborty, and P. De, “HotDASH:
Hotspot aware adaptive video streaming using deep reinforcement
learning,” in /IEEE ICNP, 2018, pp. 165-175.

Dash.js, https://github.com/Dash-Industry-Forum/dash.js.
“NBA playoffs 2021: Best moments to
https://www.youtube.com/watch?v=zw3TIOESmVg.
TC, http://lartc.org/lartc.html.

remember,”’

[25]
[26]
[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

TensorFlow, https://www.tensorflow.org/.

Docker, https://www.docker.com/.

C. Lin and H. Khazaei, “Modeling and optimization of performance
and cost of serverless applications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 3, pp. 615-632, 2020.

X. Yang, H. Lin, Z. Li, F. Qian, X. Li, Z. He, X. Wu, X. Wang, Y. Liu,
Z. Liao et al., “Mobile access bandwidth in practice: Measurement,
analysis, and implications,” in Proc. of the ACM SIGCOMM Conference,
2022, pp. 114-128.

FCC, “Measuring broadband raw data releases -
https://www.fcc.gov/oet/mba/raw-data-releases, 2021.

J. Van Der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, “HTTP/2-based adaptive streaming of
HEVC video over 4G/LTE networks,” IEEE Communications Letters,
vol. 20, no. 11, pp. 2177-2180, 2016.

A. Narayanan, E. Ramadan, R. Mehta, X. Hu, Q. Liu, R. A. Fezeu,
U. K. Dayalan, S. Verma, P. Ji, T. Li et al., “Lumos5G: Mapping and
predicting commercial mmWave 5G throughput,” in Proc. of the ACM
IMC, 2020, pp. 176-193.

V. Mittal, S. Qi, R. Bhattacharya, X. Lyu, J. Li, S. G. Kulkarni, D. Li,
J. Hwang, K. Ramakrishnan, and T. Wood, “Mu: an efficient, fair and
responsive serverless framework for resource-constrained edge clouds,”
in Proc. of the ACM SoCC, 2021, pp. 168-181.

D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang, X. Wu,
Q. Guo et al., “Mastering complex control in moba games with deep
reinforcement learning,” in Proc. of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 6672—-6679.

E. Zhao, R. Yan, J. Li, K. Li, and J. Xing, “Alphaholdem: High-
performance artificial intelligence for heads-up no-limit poker via end-
to-end reinforcement learning,” in Proc. of the AAAI Conference on
Artificial Intelligence, vol. 36, no. 4, 2022, pp. 4689—4697.

R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mick-
ens, and H. Balakrishnan, “Mahimahi: Accurate record-and-replay for
HTTP,” in USENIX ATC, 2015, pp. 417-429.

FFmpeg, https://ffmpeg.org/.

R. Bhattacharyya, A. Bura, D. Rengarajan, M. Rumuly, B. Xia,
S. Shakkottai, D. Kalathil, R. K. Mok, and A. Dhamdhere, “QFlow:
A learning approach to high QoE video streaming at the wireless edge,”
IEEE/ACM Transactions on Networking, vol. 30, no. 1, pp. 32-46, 2022.
F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama: A
heterogeneous & serverless framework for auto-tuning video analytics
pipelines,” in Proc. of ACM SoCC, 2021, pp. 1-17.

K. Konstantoudakis, D. Breitgand, A. Doumanoglou, N. Zioulis,
A. Weit, K. Christaki, P. Drakoulis, E. Christakis, D. Zarpalas, and
P. Daras, “Serverless streaming for emerging media: towards 5G
network-driven cost optimization,” Multimedia Tools and Applications,
vol. 81, no. 9, pp. 12211-12250, 2022.

F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video caching
at network edge: A multi-agent deep reinforcement learning approach,”
in IEEE INFOCOM, 2020, pp. 2499-2508.

H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han, “Neural adaptive content-
aware internet video delivery,” in OSDI, 2018, pp. 645-661.

X. Zuo, J. Yang, M. Wang, and Y. Cui, “Adaptive bitrate with user-level
QoE preference for video streaming,” in /IEEE INFOCOM, 2022, pp.
1279-1288.

fixed,”

