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Abstract—Cloud-edge systems are important Emergency De-
mand Response (EDR) participants that help maintain power
grid stability and demand-supply balance. However, as users
are increasingly executing artificial intelligence (AI) workloads
in cloud-edge systems, existing EDR management has not been
designed for AI workloads and thus faces the critical challenges
of the complex trade-offs between energy consumption and Al
model accuracy, the degradation of model accuracy due to Al
model quantization, the restriction of Al training deadlines, and
the uncertainty of AI task arrivals. In this paper, targeting
Federated Learning (FL), we design an auction-based approach
to overcome all these challenges. We firstly formulate a non-
linear mixed-integer program for the long-term social welfare
optimization. We then propose a novel algorithmic approach that
generates candidate training schedules, reformulates the original
problem into a new schedule selection problem, and solves this
new problem using an online primal-dual-based algorithm, with
a carefully embedded payment design. We further rigorously
prove that our approach achieves truthfulness and individual
rationality, and leads to a constant competitive ratio for the
long-term social welfare. Via extensive evaluations with real-
world data and settings, we have validated the superior practical
performance of our approach over multiple alternative methods.

I. INTRODUCTION

Distributed cloud-edge systems often consume an enormous
amount of energy from the power grid and are well situated
for Emergency Demand Response (EDR) programs [1]-[3].
Typically, during an EDR period, the power grid sends signals
with a time-varying energy cap to the cloud-edge system, and
the latter must reduce its energy consumption to under the cap,
which helps ensure the stability and demand-supply balance
of the power grid. To do so, the cloud-edge system operator
needs to carefully manage its workload during EDR periods,
especially in the case of a public or shared environment where
different users submit workloads to the system. Yet, each user
often only cares about the execution of her own workload,
without accounting for the energy consumption or EDR of the
entire system—an issue known as “split incentives”.

One approach to address split incentives is based on auctions
[3]-[5]. That is, the cloud-edge operator acts as the auctioneer,
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Fig. 1: System scenario

and each user acts as a bidder that submits a bid with her own
valuation (i.e., amount of money to pay) for executing her
workload or task. The auctioneer then strategically selects the
winning bids considering EDR, and schedules the execution of
the corresponding tasks. Compared with asking the cloud-edge
operator to set prices on users’ tasks dynamically, which could
be tricky due to possible over-/under-pricing, auctions can
make users “EDR-aware” (e.g., when deciding bid valuations),
avoid mis-pricing for the cloud-edge operator, increase the
cloud-edge operator’s profit, and achieve market efficiency and
agility through real-time demand and supply [6].

Unfortunately, the emerging paradigm shift that users are
increasingly executing artificial intelligence (AI) or machine
learning (ML) workloads makes the auction approach much
more difficult, due to multiple fundamental challenges.

First, the unique features of ML workloads significantly
complicate the cloud-edge management under EDR. For ex-
ample, training an ML model in a distributed manner, such as
federated learning (FL) [7], [8], in the cloud-edge system has
unique computation and communication patterns due to local
training on edge servers and global aggregations in the cloud,
involving complex trade-offs among energy consumption and
model accuracy. ML models can also be quantized [9], i.e.,
updated, transferred, and stored in lower bitwidth, which can
save energy but impact the model accuracy. Users may enforce
deadlines for completing their ML tasks [10], intertwined with
energy and accuracy as well. All these complexities, as shown
in Fig. 1, need to be considered in the auction design.

Second, to pursue the long-term optimization, whether to
accept the bid and how to spread the training over future time
slots need to be determined dynamically in an online manner
in response to each ML task arrival. For example, if some bids
are accepted and scheduled for execution, then the system may
not be able to accept other bids of higher values in the future



due to the energy cap and resource constraints; further, ML
model training needs to choose between more training per
time slot over fewer time slots and less training per time slot
over more time slots. Any decision now will set an irrevocable
baseline for future decisions; as what bids or tasks will arrive
and what decisions will be made in the future are unknown,
making good decisions now on the fly is challenging.

Third, the auction mechanism also needs to attain the de-
sired economic properties of truthfulness (i.e., a bid maximizes
its utility when bidding its true valuation) and individual
rationality (i.e., every bid achieves non-negative utility) via
careful payment design. Here, the utility of a bid refers to the
difference between its true valuation and its payment, incorpo-
rating the deadline-violation penalty. Classic approaches such
as Vickrey-Clarke-Groves (VCG) auctions [11], [12] require
computing auction outcomes exactly, which are infeasible in
our case due to the intractability of our problem, as described
below. Also, unlike typical VCG situations, the bids in our case
arrive sequentially, instead of all at once, and are equipped
with adaptable quantization and execution scheduling, instead
of fixed commitments. These hinder the application of VCG.

Existing research is limited and insufficient for the scenario
targeted in this paper. None of the cloud and/or edge EDR
works [1]-[3], [13], [14] have considered AI/ML workloads.
Meanwhile, FL optimization [8], [15]-[18] is often focused on
a single FL system or an offline setting, and does not consider
multiple FL tasks in the online setting, not to mention auctions.
ML/FL task scheduling [19]-[23] also falls short due to lack
of EDR and fine-grained energy control. To the best of our
knowledge, this paper is the first to study AI/ML EDR in terms
of the online scheduling of FL tasks with quantization and
deadlines via auctions. See Section VI for detailed discussions.

In this paper, targeting FL, we firstly model and formulate
the continuous auction over time as a long-term social wel-
fare maximization problem, capturing the utility of both the
cloud-edge system and that of the FL tasks. Our formulation
incorporates all the factors of FL. computation/communication
patterns, model quantization, and training deadlines, while
guaranteeing the specified model accuracy and respecting EDR
energy caps and resource constraints. Our models make no
assumption on FL task and EDR dynamics, and are compatible
with both hard and soft deadlines. Our problem turns out to
be a non-linear mixed-integer program, which is NP-hard.

To solve this problem, we then design novel polynomial-
time online approximation algorithms. Our approach features a
non-trivial problem reformulation, converting the complicated
schedule computing problem for the FL tasks to an equiv-
alent but relatively “easier” schedule selection problem via
expanding and filtering out the candidate schedules and “ab-
sorbing” the non-linearity. For this new problem which is still
intractable, we explore online primal-dual optimization [24] to
design an online algorithm that cautiously maintains feasible
solutions to both the primal problem of schedule selection and
its dual problem and selects training schedules in a completely
online manner without any knowledge about unpredictable
future FL tasks. For performance analysis, we rigorously

prove that our online algorithm leads to a parameterized-
constant competitive ratio. As part of the auction process,
our approach embeds payment calculation for each winning
bid into the primal-dual design, and meets the conditions
as stated in the Myerson theorem [25], based on which we
further show truthfulness and individual rationality (assuming
deadline-violation penalty functions are always truly reported).

Finally, we conduct extensive evaluations for a varying
number of FL tasks that dynamically arrive in 168 hours [26]
based on real-world training data [27], [28], EDR events [29],
electricity prices [30], etc. We observe multiple results: (i)
Our approach achieves ~2x social welfare, compared to two
greedy bid selection and scheduling approaches and a state-of-
the-art scheduling approach, and is more advantageous when
deadline violation becomes more penalized; (ii) Quantization
needs careful control—increasing the bit precision can save
energy by reducing training iterations for attaining the desired
accuracy, but higher bit precision, i.e., exceeding 15 bits in
our case, can also increase energy due to the growth of the
model size in bits; (iii) Our approach achieves a relatively
stable empirical competitive ratio, reaching at least about 2/3
of the offline maximal social welfare; (iv) Our approach attains
truthfulness and individual rationality in practice; (v) Our
approach is efficient and runs fast to produce control decisions,
finishing in 25 minutes in total for 500 FL tasks in 168 hours.

II. MODELING AND FORMULATION
A. System Settings and Models

Cloud-Edge System: We consider a system consisting of a
cloud and a set A" = {1, ..., ||} of distributed and potentially
heterogeneous edges. Here, an “edge” refers to a micro data
center or server cluster co-located with a cellular base station
or a WiFi access point. The edges can communicate with the
cloud via wireline backhaul networks. We study the entire
system over a series of consecutive time slots 7 = {1, ..., |T]}.

Demand Response: The cloud and the edges are all pow-
ered by the electricity grid and join the Emergency Demand
Response (EDR) program. That is, as the EDR signal comes,
the cloud-edge system will receive an energy cap for each
time slot Fy, Vt € T, and must reduce the energy consumed
(by the federated learning tasks, as described next) from the
power grid to under the gap at each corresponding time slot.
There could be multiple EDR periods intermittently spreading
over the time horizon 7; we can think of F; = +oc for any ¢
when no EDR occurs. We can actually introduce the following
function f;(-) to capture the energy cost at the time slot ¢:

ft(et) _ {htet if €t S Et

)

+o00  otherwise

where h; is the electricity price of the grid and e; is the amount
of electricity consumed by the cloud-edge system at ¢.
Federated Learning (FL) Tasks: We consider a set 7 =
{1,...,|Z|} of federated learning (FL) tasks. An FL task ¢ € Z
is defined as A; = {t;,;,{Dix,Vk € N}, L;}, where t;
is the time slot when the FL task ¢ arrives at the system;
€; is convergence accuracy of the global model that is to



be trained of the FL task ¢; D;j refers to the set of the
training data located at the edge k for the FL task ¢, with
each data sample n € D; ; corresponding to the loss function
fn(*); and L; is the required number of “local iterations” that
need to be executed in each “global iteration” during training,
which will be elaborated next. If we use w, to represent the
global model to be trained in the FL task ¢, then the local
loss at the edge k is Fj p(w;) = ‘D m Znepl . fn(w;), and

the global loss is Fj(w;) = S IDl | Sl |le| ik (wi)).
The optimal model for the FL task i can be thus defined as
w! = argmin,, F;(w;). While w; remains unknown, our
goal here is to find out w; that satisfies F;(w;) — F;(w}) < ¢;
in a distributed manner which is further described below.

FL with Quantization: To control the energy consumption
of FL, we consider “quantization” in this paper. That is, for
the FL task ¢, we properly use n; € {1, ..., nmax } bits to store
every single parameter of the model to be trained, where nyax
is pre-specified. Without loss of generality, we consider fixed-
point quantization here [31]. We use a stochastic quantization
scheme, i.e., for any given model parameter w, we quantize it
by changing w to Q(w) so that we use n; bits to store Q(w):

with probability L“’H%

with probability “= L“’J’
where 7 = 2771 and here |w] refers to the largest integral
multiple of j that is no greater than w.

We now present an example algorithm of FL with quan-
tization for an FL task i. For this FL task, suppose we have
selected a set of (unnecessarily continuous) time slots 7; C 7,
which we further represent as 7; = {T;[1], T;[2], ..., T:[|T:|]}
to conduct the model training process. Then, at each time slot
t € T;, we perform r; € {1,...,"max} “global iterations”, as
shown by Algorithm 0. That is, in each global iteration &,
each edge k € N, downloads the global model from the
cloud, updates the downloaded model via the L; “location
iterations”, and eventually uploads the updated model to the
cloud and lets the cloud conduct the global aggregation. In
each local iteration y, without loss of generality, we could use
the mini-batch Stochastic Gradient Descent (SGD) approach
to update the model. That i 1s we do w” = w’

i,t,K,X 1t1—cx 1
ng ‘Zneék an(Q( W 1)), where wftnx is the

local model produced in the local iteration x of the global
iteration k at the edge k at the time slot ¢ for the task i;
1y is the learning rate; and fﬁt’ represents the one mini-
batch of data samples selected from D; ;, for the local iteration,
where one just uses standard approaches to divide D; ; into
multiple mini-batches. wft .. 1s the local model produced in
the global iteration ~ at the edge k, and w; ¢, is the global
model produced by the global iteration k. Note the lines in
Algorithm 0 where we apply the quantization function Q(-).

We highlight that, in order to achieve F;(w;) — F;(w}) <
€i, the number of global iterations, i.e., r; - , needs to be
ri|Ti| > gg given |\, K, L; and n;, with only common
and mild assumptions for F;(-). For readers’ reference, T is a
constant related to smoothness; «y is also a constant; and 9; =

Example Algorithm of FL for Task ¢

> Input: K, t;, L;, n;, 14, initial model w;, 7;;
select randomly the edges N; ;, where |N; 1| = K, Vit > t;;
W; T;11],0 = w;;
invoke Algorithm 0 for task ¢ at time slot 7;[1];
for t € {2,3,...,|7;|} do
Wi 7;1t],0 = Wi, Ti[t—1],m:>
invoke Algorithm 0 for task 4 at time slot 7;[t];

Algorithm 0: Quantized FL for Task i at Time Slot ¢

> Input: L;, n;, 7, Ni;

for k =1,2,....,7; do
> Local training on each edge k € N, ;:
download w; ¢ ,—1 from the cloud;
w?,t,n,o = Wi t,k—1>
for x=1,2,...,L; do

wvlit,fc,x u‘.f,t,n,x—l Z y fn< ( z,t,n X— 1))
\5
ot X negk

i,t, X
z NN Q( i,t,k,L; )
pload wft . to the cloud;
> Global aggregation on the cloud:
Witk = ( ZkeNY + 'Ltn)
Nl o 2L, (N -K;
SRLY ke + o3 (1 258 ) +4(Li— 1) 202+ 1R 1202,

where o and p relate to gradients, and w; is a constant [32]
FL Energy: First, for the global aggregations in the cloud,
we denote the energy per aggregation as E!'(n;) = oM;n;,
where ¢ is the energy for computing the per-bit aggregation;
M; is the size of the model in terms of the total number of
model parameters; n; is the number of bits in quantization used
to represent each model parameter. Second, for communicating
the model between the cloud and the edges, we analogously
write the energy per global iteration as EY , (n;) = ¢} M;n;
[33], where, in contrast to E(n;), ¢} is the energy for
transferring one bit of the model from or to the edge k. Third,
for the local training at each edge k, we use E;y(n;) to
refer to the energy consumption per local iteration. We have
E; k(n;) = O(n;®*), where 1 < B < 2, for computing the
SGD update upon a typical two-dimensional processing chip
at the edge k [34]. For the ease of the presentation in this
paper, we have omitted the exact form of E; ,(n;) [35].
Auctions: In our auction mechanism, the cloud-edge system
(or its operator) acts as the auctioneer and the FL tasks (or
their owners) act as the bidders. Upon arrival, the FL task @
submits a bid B; = {t;,&;, L;, d;, b;, g;(+)}, where t;, €;, and
L; are as in A; and have already been explained previously; d;
is the deadline required for completing the model training for
this task; and b; refers to the bidding price, i.e., the amount of
money the FL task ¢ would like to pay if the training is finished
before or by d;; and g;(-) refers to the penalty function for
the deadline violation. For more flexibility and better social
welfare, we allow deadline violation in this work. We define

gi(Ti) _ {gciéﬂ‘) if 7€ {0, 1,..., |T| — di}7

otherwise
where 7; represents the number of time slots for which the
completion of training exceeds the deadline d;, and g, (-) is a
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Fig. 2: Illustration of our auction model

non-decreasing function provided by the FL task i. Now, note
that d; + 7; is the FL task ¢’s time of training completion; and
b; — gi(7;) is the bidding price for training completion before
or by d; + 7, i.e., the FL task ¢ would pay less money in the
case of deadline violation. In this paper, we assume one FL
task issues one and only one bid. Fig. 2 shows how the auction
works dynamically upon receiving each bid (except “Step 17,
where EDR signals are received before all bids).

Control Decisions: The system operator makes the follow-
ing control decisions upon receiving the bid ¢ at the time slot
t;: (1) z; € {1,0}, denoting whether or not to choose the bid
i as a winning bid for the auction; (2) y! € {1,0}, Vt > t;,
denoting whether or not to train the FL task ¢ at the time slot
t; 3 €40,1,2,...,|T| —d;}, denoting the number of time
slots by which the last time slot for training the FL task ¢
has exceeded the desired deadline d;; (4) n; € {1, ..., max}»
denoting the number of bits to use for quantizing each model
parameter of the FL task i; (5) r; € {1,...,"max . denoting
the number of global iterations to conduct for each single time
slot for the FL task i; (6) e; > 0, V¢ > t;, denoting the amount
of energy to consume from the power grid at ¢; and (7) p; > 0,
denoting the amount of payment made by the bid i. Note that
we can dynamically update e;, V¢t > ¢; as the bid ¢ arrives.

Utility of Bidders: The utility of each bid or each FL task
consists of the corresponding bidding price, considering the
potential deadline violation, minus the payment made. So, the
total utility of all the bidders is » 7 (z:b; — gi(7s) — ps)-

Utility of Auctioneer: The utility of the cloud-edge system
consists of the received payments minus the energy cost for

training all the FL tasks: > ;7 pi — > o7 fi(et).

B. Problem Formulation and Algorithm Requirement

Social Welfare Maximization: The “social welfare” refers
to the total utility of the entire system. We formulate the social
welfare maximization problem P as follows. Note that the
payments are naturally cancelled in the formulation for now,
but still need to designed and calculated later.

P: max P=) ., (a?ibi - gi(Ti)) — > et feler) (1)

st ylt <di+7,Vi € IVt > t;, (1a)
Sier Yl <CVEET, (1b)
yt<a; VieZVteT, (1¢)
ZteTyztri > xz(%@ —7),Vi e I, (1d)

ez 0iri( S, (i (n) + 2B, (n)

—&—E;’(n,-)) <et,vteT, (le)

Algorithm 1 Online Auction Mechanism for FL Tasks

Input: {Et}, O, {ht}
1: initialize ¢, = 0, my =0, vy = hy, 2, =0, Vt € T;
2. fori=1,2,...,|Z| do
3:  collect the bidding information B; from the bid ¢;
4 select randomly the edges N; ;, where [N ;| =K;, Vt >

ts;

5. invoke Algorithm 2 to obtain Z;, {9!}, 7, 7i, Dis
6: if z; == 1 then
7: accept the bid 4, and charge p;;
8
9

get T; = {t|gt = 1,Vt > t;};
set initial model w; 7;(1),0 = wi;

10: invoke Algorithm 0 for i for L;, n;, 7 and N; 7,133
11 for t € {2,3,....|7;|} do

12: W; 7;[t],0 = Wi T;[t—1],7>

13: invoke Algorithm 0 for i for L;, 1, 75 and N; 714
14: end for

15:  else

16: reject the bid ¢;

17:  end if

18: end for

.’,Uj, e {05 1}7yf 6 {071}7’”“1 e {17 ---7nmax}a
T € {1; ---7rmax}77-i € {05 17"'7 ‘T| - dl}a

€t ZO,VkEM’t,V’LEI,VtET (lf)

The objective (1) maximizes the total utility of the bidders
and the auctioneer. Constraint (1a) ensures that training of an
FL task starts after it arrives and ends before or at d; + 7;.
Constraint (1b) ensures that the number of FL tasks trained
simultaneously respects the system capacity C. Constraint (1¢)
ensures that only the FL tasks that win in the auction can
be trained. Constraint (1d) ensures that a sufficient number of
global iterations are conducted for each FL task to achieve the
target accuracy. Constraint (le) ensures that sufficient energy
is consumed from the power grid for training the FL tasks
at each time slot. Constraint (1f) specifies the domains of the
control variables. This problem is NP-hard as it contains the
knapsack problem as a special case.

Algorithmic Goal: The goal is to design polynomial-time
online approximation algorithms to produce control decisions
that can lead to a provable competitive ratio

r=P*/P({z;, {y},Vt}, 70, i, 73, Vi }, {€, Vt}).

Here, » > 1. In r, the numerator is P*, i.e., the value of P
evaluated with the offline optimal solutions to P where all the
inputs over the entire time horizon are assumed known at once
in advance; and the denominator is the value of P evaluated
with {51 {9, Vt}, 7i, My, T, Vi}, {€;, Vt}, which are the
solutions produced by our online algorithms. Note that we
also need to determine the payment for each bid 7 to satisfy
truthfulness and individual rationality, as described later.

III. ONLINE ALGORITHM DESIGN

We propose an online auction mechanism, i.e., Algorithm
1, to conduct the auction and execute the training of FL tasks.



The key of Algorithm 1 is the invocation of Algorithm 2 which
generates the immediate auction outcome and the controlled
schedule of training as each FL task dynamically arrives.

Our technical roadmap to designing Algorithm 2 is to firstly
reformulate the original problem P to an equivalent “schedule
selection” problem P, then derive the dual problem D); for
Py, and finally design an online primal-dual approach to
simultaneously solve D1 and Py (and thus the original problem
P), while calculating the payment to each bid.

A. Problem Reformulation

In order to solve the original problem P, we reformulate
it as a “schedule selection” problem P;. For each FL task ¢,
we define a “schedule” as a concrete assignment of values
to {x;, {y!,Vt}, 7;,n;,r; }. That is, for a given schedule, the
decision variables z;, {y!,Vt}, 7, n;, and r; have concrete
values and are now constants. Each schedule for the FL task
i is thus a definite decision for ¢ on whether to accept the
bid, how to schedule the FL training, how to configure the bit
precision for quantization, and how many global iterations to
perform per time slot. We use &; to denote the set of all the
feasible schedules for the FL task ¢ which satisfy Constraints
(1a), (1c¢), and (1d) in the formulation of P. For the schedule
l € &, if we use {y!,,Vt} to denote the specific constant
values taken by the decision variables {y?,Vt}, then we can
define 7;; = {t|yf’l = 1,Vt > t;} to represent the set of time
slots when the FL task ¢ is trained using the schedule [ for
this FL task. Analogously, for [ € &;, we use 7;;, n;;, and
;1 to represent the specific constant values to configure the
decision variables 7;, n;, and 7;, respectively; we also use b; ;
to denote b; — g;(7;,;). Consequently, based on this concept of
“schedule”, the problem now becomes selecting one particular
schedule for each FL task as all the tasks dynamically arrive.

We present the formulation of the schedule selection prob-
lem IP;, based on the formulation of the original problem P.

Pi: max P, = ZieI Zle& Zi1big — ZteT filer) (@)
s.t. Zlegi iy <1,Viel, (2a)
Dicr 2ucenteT, Tit SO VEET, (2b)
ZiEZ Zle&i:teTi,l L4174, ( Zke/\/i,t (Ll
Bi(nia) + 2, . (ni0)) + Ef (n,0)) < e,

vteT, (2c¢)
v € {01}, Vi€ & VieTe, >0, e T.
(2d)

Note that our decision variables now become x; ; and e;, where
e has been described previously; and x;; = 1 if we select the
schedule [ for the FL task ¢ and z;; = 0 if not. Constraint
(2a) ensures that we select at most one schedule for each
FL task. Constraints (2b) and (2c) are equivalent to (1b) and
(1e), respectively. Constraint (2d) specifies the domains. The
problem PP; is equivalent to the problem [P, because a solution
to IP; corresponds to a solution to P, and vice versa.

B. Dual Problem

To solve the problem P; in an online manner, we derive
the Lagrange dual problem ); of the problem P;, and then
design a primal-dual-based online algorithm. To get D, we
relax x;; € {0,1} to ;; > 0 (and we do not need x;; < 1
due to Constraint (2a)), and introduce the non-negative dual
variables p;, m¢, and v; for Constraints (2a), (2b), and (2¢),
respectively. The dual problem ID; can be written as follows:

Dy :min Dy =) crpi + Y 1 Sg%{”tet — filed)}
+ ZtGT m G (3)
st py > by — Ztgm Uth,l(zke/\[m (LiE; k(niy)

2B, (nig)) + Eé'(”u)) = 2ers, M, (3a)
i >0,my > 0,0, >0VteT,VieI,  (3b)

where sup {vie; — fi(et)} is defined as
e >0

07 Ut é ht

esttg()){vtet — file)} = {(Ut —h)Ey, v >hy'

C. Online Primal-Dual Algorithm

Our online primal-dual-based algorithm simultaneously ob-
tains and maintains feasible solutions to the primal problem Py
and the dual problem D; and constructs approximate solutions
to the original problem P on the fly. The reasons for adopting
the primal-dual design are multi-fold. First, we can determine
the values of the discrete decision variables to cope with the
NP-hardness by leveraging the Karush-Kuhn-Tucker (KKT)
conditions. If we can control the dual variables until the dual
inequality constraint (3a) becomes tight, i.e., becoming an
equality, then the corresponding primal variable x; ; can be set
to a non-zero value, i.e., 1 in our case. This is by following the
“complementary slackness” in the KKT conditions. Second,
we can update the values of the continuous decision variables
e; on the fly each time when selecting the schedule for a
new FL task, and by utilizing the duality that the value of the
dual objective (3) is always an upper-bound for the value of
primal objective (2), we can ensure that our decisions can lead
to a provable competitive ratio, as shown later. Third, we can
also control our payment via the dual constraint (3a) to ensure
the desired economic properties of truthfulness and individual
rationality that will be defined next during this process.

To make (3a) tight, as the dual variable y; is non-negative,
we can set ji; as

J4; = max (0, maxjee, (b“ — Zteﬂ- , Mt — ZteTi Ut

ria( Senn,, (LiBrx(nid) + 2B, (ni)) + Bl (ni0)) ) ).

4)
Then, we also set the dual variables m; and v; as
U—h\&
—(L—h ( ) : 5
my = ( t) I h, &)
Ve = ht,Vt € T, (6)



Where U = max birmax , L — min (b'i_gi(‘,rl_d'i))rmax ,
€T e i€1 { Gi }
and G; = % — . Here, U and L represent the

maximum and the minimum costs per global aggregation in
the cloud, and z; represents the total number of FL tasks being
trained at the time slot t. We define 2{,Vt € T as the total
number of FL tasks being trained at ¢ after making the control
decisions for the task ¢, so z; is the final value of zg after all
tasks are processed. We initialize z? =0, V¢t € T. If the bid
i wins, we update 2! = 27l 41wt e Tl, where [ is the
schedule selected; otherwise, we update i = z;~*. m; and v
are carefully calculated to serve our theoretical analysis later.
In Algorithm 2, for the FL task ¢, we find the best schedule
by iterating n; and r; in Lines 2-35. In Lines 5-9, we find out
the set £ of the feasible time slots via capacity and energy
constraints. In Line 10, we figure out the number of time slots
w; that we need at least in order to conduct training to achieve
the target accuracy ¢;. In Lines 11-16, we construct the first
schedule [y, whose training completion time is ¢,,,. Line 12
corresponds to (4) as shown previously, and Lines 13-15 renew
the value of ¢(t,,) if the last training time slot passes the
deadline. Then, in Lines 17-29, we iteratively construct the
total |.£]| — w; best schedules whose training completion time
are the (w;+1)-th time slot in £, the (w;+2)-th time slot in £,
the (w;+3)-th time slot in £, and so on, respectively. To ensure
that the number of the time slots of a training schedule is w;,
we find out the best schedule which has the earliest training
completion time t., and replace the specific time slot ¢ where
the value of ¢(t) is biggest in {¢1, t2, ..., ty, } by t. in Lines 24-
28. This way, we divide the total Orv,ci\ schedules into |.£] —w;
groups according to the different training completion times,
and find out the best schedule for every different training
completion time. We figure out the “best of the best”” schedules
which has the smallest objective value in Line 30. In Lines
31-33, we find the smallest objective value for different n;
and 7;. In Lines 36-42, we update the values of our primal
and dual variables based on the KKT conditions as described
previously, and also determine the payment in Line 38.

IV. PERFORMANCE ANALYSIS
A. Time Complexity and Correctness

Theorem 1 Our approach terminates in polynomial time and
returns a feasible solution to the problem P.

Proof. Time Complexity: Algorithm 2 has O(nmax"max)
iterations. In particular, Lines 17-29 have O(|T]) iterations,
where in each iteration Line 24 takes O(|T). Thus, overall,
Algorithm 2 takes O(NmaxTmax|T|%).

Correctness: In Algorithm 2, Line 6 makes the solution
satisfy (2b) and (2c). For the specific schedule [ being chosen,
Line 37 sets x, ; to 1, satisfying (2a). (2d) is naturally satisfied.
Thus, we have a feasible solution for IP;. Further, in Algorithm
2, Lines 40 and 41 set m; and u; according to (5) and (4),
respectively, and together with (6), make the dual solution
satisfy (3a)-(3b), thus feasible for ;. As stated in Section
III, solving P; is equivalent to solving IP. Thus, we have a
feasible solution for the original problem P. (|

Algorithm 2 Schedule Generation and Selection for Task i

Input: Bi, {@}, O, {gt}, {mt}, {Ut}7 {Zt}
1: initialize P = 400, ; = 0, {y}} = {0}, Vt > t;;

2: for n; = 1,2, ..., nmax do

3 for r; =1,2,...,rmax do

4: £=0, i=1

5 for t =¢;,t;, + 1,t; +2,...,|T| do

6 if ;7' +1<C and ’“iezkem,t (LiE; 1 (n:) +

2E] (i) + Eé’(m)) + e, < E, then

7: £=L£U{t};
8: end if
9: end for
T’l97 g .
10: w; = [(FF0) — 5 /]
11: let Iy be the first w; slots {t1,%ta, ..., ty, } in £;

12: s(t) = Utri(ZkGNi,t (LZEL]C(’N%) + 2E/k(7’bl)) +
Ez//(n’b)) + tht € {tl,t27 7tw1}3

13: if ¢,,, > d; then

14: §(t ) = C( ) + gz( w; d,),

15: end if

6 R Tien,

17: whlle w; +J < £ d

18: i =1l

19: let ¢. be the (w; + j)-th time slot in £;

20: s(t) = vry ( Sken, (LiBig(ni) +2E] 1 (n)) +
E!(ni)) + my, Yt € {t1,t2, .., tw, } U {te}s

21: if t. > d; then

22: S(te) = <(te) + gi(te — ds);

23: end if

24: b = AIgMAXye (4, .. t,, 1} <(t);

25: if ¢(tw,) < <(tm) then

26: b = tw,i

27: end if

28: tw, =te, Pj = Zfeﬂ ), j=7+1L

29: end while

30: J = arg mlnj P;, pP= Pj.;

31: if P < P then

32: P Pl—l ni:ni,ﬁ-zri;

33: end if

34:  end for

35: end for

36: if b; — P > 0 then
37: 551 =1, :ljf =1, T,
di},O}, Vt € 7—if;

38 Di = Der, (mt + Utﬁ(zk@\/” (LiEi k() +
28] (1)) + EY(i) ) ):
Y1 @ = &+ 7 Teews, (LiBin() +

= 1, 7i = max{max,eT, {t —

. P i
39: Zi = 24

2E] (i) + Ez{/(ﬁi)))’ Vte T s
=
40: = (L - ht)( t) c , Vt e 7;’[;
41:  p;=b; — P;
42: end if

43: return Z;, {yt}, 7, Mi, Tis {€:}, Dis {mu}, {2}




B. Truthfulness and Individual Rationality

We formally define the utility of a bid, based on which
we further define truthfulness and individual rationality. We
then prove that our approach achieves both of these economic
properties. Truthfulness ensures a bid uses its true valuation
and has no motivation to lie about its bidding price, and
individual rationality ensures there is no loss for each bid no
matter it wins or loses in the auction. We assume the deadline-
violation penalty functions are always truly reported.

Definition 1 Utility: The utility of the bid i is

v —gi(m) —pi, ifx;=1
i = { 0, otherwise’ )
where v; is the true valuation of the bid i if the FL training
is completed before the deadline d;; g;(7;) is the penalty for

training that exceeds d;; and p; is the payment.

Definition 2 Truthfulness: An auction achieves truthfulness if
bidding the true valuation maximizes the utility for any bid,
i.e, for any b;, where b; # v;, we have u;(v; — gi(1;)) >
ui(bi — gi(7i))-

Definition 3 Individually Rationality: A bid always has non-
negative utility regardless of the auction outcome, i.e., for any
bid i, we always have u; > 0.

Theorem 2 According to the Myerson theorem [25], an auc-
tion is truthful if and only if (i) the auction outcome is
monotone, i.e., for any bid i with bidding prices b;; and b;l,
if biy > b}, Vi, then bidding ], wins the auction implies that
bidding b;; will also win; and (ii) the winning bid pays the
“critical payment”, i.e., if the bid 1 wins with the bidding price
bi,; and the payment p;, then it will also win if it bids b; | > p;,
while all the other inputs remain the same. Our approach
satisfies both conditions and thus achieves truthfulness.

Proof. Monotonicity: Based on (4) and Algorithm 2, we have

i = max (0, maxjee, (biyl = DteTi, Mt~ DteTi, Vt

il ( DoheN., (LiBig(nig) + 2B . (ni)) + E,’;’(m,l))))7W~

That is, if b;; > b} ;, VI and all the other inputs do not change,
then correspondinély we have p; > pl. If pl > 0, then we
have x; = 1; as p; > i, we have p; > 0, and still z; = 1.
Critical Payment: Suppose the bid ¢ wins the auction when
bidding b;; and paying p;. From Algorithm 2, we have the
following: if b; — P = b; ; —p; > 0, then x; = 1; if b;— P < 0,
then x; = 0. Therefore, if b;; > p;, we have z; = 1. O

Theorem 3 Our approach achieves individual rationality.

Proof. According to the definition of utility, if a bid ¢ loses in
the auction, then u; = 0. If a bid ¢ wins in the auction, then we
have z; = 1 and u; = v; —gi(7i) —Pi > bi—gi(Ti) —pi = b; —
9:(7) = Lier i = Leer vt ( Siens, (LiBunii) +
2E] . (1:)) + E{'(ﬁl)) = p; > 0. In this chain, we reach the
first inequality due to truthfulness; we further reach the second

equality due to how we calculate the payment in Algorithm
2; finally, because x; = 1, we can directly reach the third
equality based on (4). Thus, the utility is non-negative. (|
C. Competitive Ratio

Theorem 4 Our approach leads to

P*/P({%;, {9t Vt}, 7 s, 73, Vi }, {61, VE}) <

where o = maxe7 In( g:zz ), and U, L, and {h:,Vt} are as
defined previously.

Proof. See details in the Appendix. A key part of the proof
is organizing P; and D; into an inequality based on both the
weak duality [24], [36] and the online updates of the primal
and the dual variables after scheduling each FL task. ]

V. EXPERIMENTAL STUDY
A. Experimental Settings

FL Tasks: We consider |7| = 168 consecutive time slots,
where each time slot equals one hour [37]. We consider image
classification FL tasks. We use the MNIST dataset [27] and
the CIFAR-10 dataset [28]. We consider two models: (i) the
LeNet-5 [38], and (ii) a Convolutional Neural Network (CNN)
with two 3 X 3 convolutional layers (where the first layer has
16 channels and the second layer has 32 channels), with each
of them followed by ReL.U activation and 2 x 2 max pooling,
a fully-connected layer, and a softmax output layer. We have
two datasets and two models, a total of four types of FL tasks.

We consider 100 ~ 500 FL tasks in total, with each type
occupying a quarter of all FL tasks. The number of FL tasks
that arrive in each time slot is set in proportion to the dynamic
job arrival trace of Google clusters [26], where the last FL task
arrives no later than the 100th time slot to ensure successful
training. The number of edges K; for conducting training for
each FL task is taken from [10,30], based on Google data
as well. The deadline of each FL task is estimated using
Tmax and Nmax, With a linear deadline-violation penalty unless
otherwise specified. Without loss of generality, the number
of local iterations per global iteration is set to L; = 5; the
maximum number of global iterations per time slot is set to
Tmax = 9; the maximum bit precision for quantization is set
to nmax = 32; and the target accuracy is set to €; = 0.01. We
set the bidding price for the FL task ¢ from the range $[0.1, 1].

Cloud-Edge System: We envisage |N| = 50 edges and one
cloud. For energy, we adopt ¢ = 0.005 [18], ¢}, = 9.15x 1075
[33], and By, = 1.25 [35]. For system capacity, we set C = 110
in proportion to the Google clusters’ capacity versus their job
arrival trace [26]. For the other parameters, we have T = 1,
v=1,0r =1, and p = 0.02 [32].

Demand Response: We set the energy caps { £}, Vt} using
the real-world EDR events of Elia from September 3, 2019
through September 9, 2019 [29]. We set the electricity price
{h¢,Vt} based on the hourly real-time pricing data of ComEd
from March 31, 2022 through April 6, 2022 [30].

Algorithms and Implementation: We implement and com-
pare multiple different approaches: (1) the demand response of
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federated learning (MORE), which is our proposed approach;
(2) “Greedy Price”, which, for each time slot, chooses to
accept the FL task with the highest bidding price and trains the
task in time slots of the lowest energy price until reaching the
desired accuracy using ryax and npax; (3) “Greedy Deadline”,
which, for each time slot, completes training to reach the
desired accuracy as soon as possible using rpax and Mmax;
(4) the online algorithm RTL [39]; (5) the offline optimum
that solves [P via the Gurobi [40] optimization solver, where
all the inputs are assumed known at once in advance.

Our implementation contains about 4,000 lines of Python
codes, and we conduct all the evaluations on a desktop with
a 2.9-GHz Intel(R) Core(TM) i5 CPU and 8-GB memory.

B. Evaluation Results

Fig. 3 displays the energy cap of EDR, the energy price,
the real-time energy consumption of the FL tasks (scheduled
by our proposed approach), and the number of the FL tasks
arriving at each time slot. The energy price is almost in reverse
proportion to the energy cap which is respected at all times.

Fig. 4 exhibits how the FL energy consumption varies as
the bit precision for quantization changes for each bid. The
number of global iterations and thus the energy consumption
decreases as the bit precision for quantization increases. When
the bit precision exceeds about 15 bits, the number of global it-
erations remains basically unchanged; yet, the energy increases
since the size of the model becomes larger.

Fig. 5 shows the social welfare comparison for all the
implemented algorithms as the number of bids increases. Our
approach MORE achieves up to 2x more social welfare than
others, and is also closer to the offline optimum. Also, the more
bids the system has, the more social welfare it can achieve.
This is because the system has more flexibility to choose bids
of higher values to optimize the social welfare.

Fig. 6 compares the social welfare of different algorithms as
the weight that is associated to the deadline-violation penalty
increases. Our approach MORE beats other algorithms, due
to explicit consideration of deadlines. Greedy Price performs
worse and worse as the weight of deadline violation increases,
since it selects FL tasks based on the energy price only. A large
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weight of deadline violation may decrease the social welfare,
since, as the weight grows, our approach tends to reject tasks.
Fig. 7 demonstrates the empirical competitive ratio. We see
that, the smaller the value of U/ L is, the better the competitive
ratio is, aligned with our theoretical analysis. The number
of bids has little impact on the competition ratio, and our
approach has a relatively stable practical performance. Note
that, theoretically, « is also not related to the number of bids.
Fig. 8 depicts the impact of the deadline on the payment. As
an example, we select two bids with different bidding prices.
Bid 1, initially rejected by our algorithms, is accepted as the
deadline extends. Bid 2 pays less payment as the deadline
extends. Our algorithms can arrange training schedules more
flexibly when the deadline is extended, and tend to arrange
schedules at time slots of lower energy prices during EDR.
Fig. 9 confirms truthfulness and individual rationality of our
approach. As an example, we pick up one bid. The utility of
this bid is maximized when bidding the true valuation. The
bidding price, if higher than critical payment, always makes
the bid win in the auction. The utility is also non-negative.
Fig. 10 illustrates how the global loss, i.e., the objective
to be minimized in the FL tasks, is impacted by the bit
precision in quantization. The loss drops as the number of
global iterations grows. For running the same number of global
iterations, the loss becomes less as the bit precision grows.
TABLE I: Running time

100 200 300
7.67 14.09 1851

400
21.37

500
24.35

Number of bids

Runing time (min)

Finally, Table I displays the running time of our approach
(excluding the FL training time). Our algorithms finish within
25 minutes in total for 500 tasks in 168 hours. Our algorithms
are computationally efficient with acceptable execution time.

VI. RELATED WORK

Cloud/Edge Demand Response: Chen ef al. [1] propose to
switch off entire edge cloudlets to compensate for EDR energy
reductions. Cui et al. [2] study the mobile edge EDR via game
theory. Wang et al. [14] focus on the interactions between
power grid pricing and data center workload distribution in



EDR. Zhou et al. [3] design distributed algorithms across data
centers for EDR with auctions. Sun ef al. [13] use auctions to
incentivize tenants’ energy reduction in colocations.

These works focus on the EDR of cloud (or data center)
and edge systems, yet almost all of them have neglected
the AI/ML tasks. None of them have considered the unique
features, including model accuracy and quantization, and com-
puting/communication patterns of AI/ML workloads, and thus
their solutions are in general inapplicable to AI/ML EDR.

FL Optimization: Luo er al. [15] control client selection
and local iterations in FL to minimize total cost while ensuring
convergence. Vu et al. [16] optimize power and computation
resources of base stations and clients to save FL energy. Shi
et al. [17] study bandwidth allocation for devices to attain the
best accuracy for FL. Zeng et al. [18] jointly control band-
width, workload partitioning, processor speed of each device to
reduce FL energy. Nguyen et al. [8] study the optimization of
FL clients with computation and communication constraints.

These literatures mainly consider various optimization and
control in FL training and/or resource usage individually. They
largely ignore quantization, and also the training deadline from
a task execution perspective. They do not study the scheduling
of many FL tasks, not to mention online EDR and auctions.

AI/ML Task Scheduling: Zhou et al. [19] propose a novel
multi-task FL framework to enable parallel training. Bao et al.
[20] present a deep-learning-driven ML cluster scheduler that
places training tasks to minimize interference and maximize
performance. Zhang et al. [21] design an online scheduling
method to minimize the average completion time of ML tasks.
Shi et al. [22] allocate bandwidth and schedule FL to minimize
the expected training time with desired accuracy. Sun et al.
[23] focus on utilization fairness when scheduling ML jobs.

These works study the scheduling of AI/ML tasks, including
FL tasks. However, none of them focus on EDR. EDR presents
special challenges and requirements for AI/ML workloads,
such as auctions and fine-grained energy control via quantiza-
tion. Thus, such existing research still falls short generally.

VII. CONCLUSION

Demand response is an important paradigm for operating
AI/ML in cloud-edge systems and makes AI/ML, the systems,
and the power grid sustainable. While this has been largely
ignored in previous studies, our paper aims to bridge the gap.
We study the online scheduling of FL tasks that dynamically
arrive, while controlling the training and the quantization of
each FL task to conform to the demand response energy caps.
We design novel reformulation and primal-dual techniques
for social welfare optimization, and provably attain multiple
performance guarantees, which have also been confirmed by
our experimental evaluations. For future research, we will
continue to explore the direction of AI/ML sustainability.

APPENDIX

We prove Theorem 4 in this appendix.
Firstly, we prove that if there exists & > 1 such that P —
Pt > L(Di - Di™') for every task (or bid) i, then the

algorithm is a-competitive. Let P{ and D¢ denote the the value

of Py and D; after processing task . Obviously, Pm Pl‘II —
Py =3 .(Pj— P/™"). With P{ — P{' > 7(DZ Dy,
by summing up these inequalities, we have > (P} — PITh >

iZi(Dl D7 1) = a(Dm DO) = 1D‘Il Due to weak
duality [24], [36], we have DI*! > p* and thus P> 1p~

Secondly, we prove that if m; (2 — z{7") > LC(m} —
YWi e I,vt € T holds for a given o > 1, then the
algorlthm guarantees Pj— P} ! > L(D{—D{ ") foralli € T.
Suppose we interpret m? and e} as the ‘equipment” cost and
the amount of energy to consume from the power grid after
processing task i. We use v to denote the electricity price
after processing task 7. Note that Algorithm 1 guarantees P =
DY = 0. When the cloud rejects task i, then Pj — Pj™' =
D —Difl = 0. In the next part of the analysis, we assume that
task ¢ is accepted and suppose that [ is the best schedule for it.
After processing task ¢, the increment of the primal objective
function (2) is P} — P} ' = bii—Yier f(ft(ei)fft(ei_l)) -
w4 Tier, (mi™ + v Seens, LiBialngg) +
2B, (n:,)) + ' (n) ) = Seer  (fuled) = fulel™). Be-
cause the left-hand 51de of Constralnt (4) equals the right-

hand side when task 7 is accepted with schedule [, the
second equation is valid. Also, knowing ft(et) = hey,

Sier (fulel) = fulel™) = Lier v ”(E;% )+

ZkGMf (LEZ]V( zi) +2E;k( 1i)))
have P{ — P\~ = p; + ZtGT mi! Thus according to
the definition of v;, we have D1 = Zlel i+ ZteT m;C.

and v = hy, we

The dual objective value increases as D} — D“ = u; +
ZteT C(mt — mi~1). Following mi '(zi — 2z~ 1) >
iC’(mt —mi ') and 2z — 27! = 1, we have mi ! >

LC(mi —m;™"). In addition, when we sum up over all ¢ €
7. ;> we can obtain ZteTi My

1 Ha Zte?’i_i éC(mt myh).
Obviously, P} — Pi~ > p; +

L(Dj - Di_1 — 7). Due to

w; >0 and o > 1, we have P} — P’ > 1 (DZ Di_l).
Thirdly, we prove that if m.dz; > EC’dmt,Vi e I,Vt €
T holds for a given o > 1, then the algorithm guarantees
mé Y=z > LCmi —mih),Vie IVt € 7T.i- Note
that the computation resource consumed by a training task is
much less than the cloud capacity in the real world, i.e., 1 <

C. We have dz; = 2! — "' = 1. Based on differentiation, we

have dm; = m;(zt)dzt =me(2}) —me(ziY) = mi —mi !,
and my = mt_1 when bid 7 is submltted Then, we conclude
that m. (2 — 21~ 1) > Lo(mi —m Vi€ Vte T, ;.

Uht

Finally, we prove o = max;ec7 In(Z ) Following m; as
defined in Equation (5), we have its dlfferential as dm; =
(L — h)(¥= h*)Cl (%= h’) dz;. Also, note that, for oy >
In(Y=12), we have mydz; = (L—hy)(Y=) Fdzy > S (L
he) (5= hf)c In(F=p) ddz =
mydzy > dmt, Vt, we can use « to replace oy, Vt, where

—h
o = maxieT o = T—ht)-

Cdmt Therefore, to ensure

max;er In(¥
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