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Abstract—Al-powered Medical Imaging has recently achieved
enormous attention due to its ability to provide fast-paced
healthcare diagnoses. However, it usually suffers from a lack
of high-quality datasets due to high annotation cost, inter-
observer variability, human annotator error, and errors in
computer-generated labels Deep learning models trained omn
noisy labelled datasets are sensitive to the noise type and
lead to less generalization on the unseen samples. To address
this challenge, we propose a Robust Stochastic Knowledge
Distillation (RoS5-KI)) framework which mimics the notion of
learning a topic from multiple sources to ensure deterrence in
learning noisy information. More specifically, RoS-KD) learns
a smooth, well-informed, and robust student manifold by distilling
knowledge from mulfiple teachers trained on overlapping subsefs
of training data. Our extensive experiments on popular medical
imaging classification tasks (cardiopulmonary disease and lesion
classification) using real-world datasets, show the performance
benefit of RoS-KI), its ability to distill knowledge from many
popular large networks (ResNet-50, DenseNet-121, MohileNet-
¥2) in a comparatively small network, and its robustness to
adversarial attacks (PGD, FSGM). More specifically, RoS-KD
achieves > 2% and > 4% improvement on Fl-score for lesion
classification and cardiopulmonary disease classification tasks,
respectively, when the underlying student is ResNet-18 against
recent competitive knowledge distillation baseline. Additionally,
on cardiopulmonary disease classification task, RoS-KD outper-
forms most of the SOTA baselines by ~ 1% gain in AUC score.

Index Terms—Enowledge distillation, Noisy Learning, Car-
diopulmonary Disease Classification, Lesion Classification

I. INTRODUCTION

Deep learning advancements in the past decade have sig-
nificantly improved the development of Al-assisted medical
applications, particularly medical imaging interpretation, due
to their ability to impact millions of human lives. Researchers
from both academia and industry have explored several med-
ical imaging applications such as segmentation, detection,
classification, and summary generation. These applications
have shown impressive, and often unprecedented potential in
the assistance of healthcare specialists for preliminary diag-
nosis. However, the success of these applications is primarily
constrained by the unavailability of high-quality, accurately
annotated large training datasets. In medical imaging, dataset
annotations require domain expertise, and suffer from high
inter- and intra-observer variability, human annotator error,
and errors in computer-generated labels. While there has been
an abundance of work around developing medical imaging
algorithms [1}-[7], handling label noise has gone largely
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unnoticed. Many recently proposed studies have identified that
label noise can significantly impact the performance of deep
learning models which can have catastrophic implication in the
medical domain, considering its direct association with safety
of human lives [8], [9].

Fig. 1. Model architecture of our Robust Stochastic Knowledge Distillation
Framework. In our approach, the training dataset is divided into overlapping
subsets and multiple teachers ae trained using them. Knowledge from each
teacher is distilled using owr stochastic knowledge distillation module. To
ensure the smooth update by any participating teacher, our model Mmonen

is updated by averaging multiple checkpoints along the training trajectory.

Due to its resource-intensive nature, the challenge of la-
beling a large volume of medical images has encouraged
researchers to use automated tools with weak supervision. For
example, many publicly available large radiology datasets such
as NIH ChestX-rays and MRI, MIMIC-CXR, and Openl are
labelled using NLP-based label extraction tools on radiology
reports. To handle label noise with high variability, we borrow
fundamental ideas from ensemble learning and knowledge
distillation (KD), and propose a novel ensemble-based Robust
Stochastic KD framework: RoS-KD. In contrast to traditional
ensemble-based KD approaches in which all participating
teachers learn from the same training dataset [10]-[12], RoS-
KD unprecedentedly divides the training dataset into overlap-
ping subsets which allow each participating teacher to spot
unique noise patterns. Overlapping allows teachers to not be in
complete disagreement, while unique subsets of training data
help teachers break the symmetry of learning similar noise
patterns. Motivated by the work of [13], we propose to incor-
porate additional smoothening in the knowledge distillation
step of RoS-KD which helps in flattening the global minima
during the optimization, improving generalization.

RoS-KD is inspired by a classroom scenario, where a
student learns the same concept from multiple teachers (shar-



ing core fundamentals along with individual noisy knowl-
edge), to be able to segregate noisy knowledge from the
core fundamentals. Our extensive experiments on two popular
medical classification tasks illustrate the superior performance
of RoS-KD with respect to several recent competitive KD
baselines. Additionally, we provide ablation to understand the
importance of learning from overlapping datasets. To ensure
that the student should learn by assimilating the knowledge
from multiple teachers instead of abruptly updating itself by
a single teacher, we propose a smooth parameter update using
weight averaging. Furthermore, we show that RoS-KD based
students are more robust to adversarial attacks. To the best of
our knowledge, we find that this is the first work to study the
adversarial robustness perspective of knowledge distillation in
the medical imaging domain using two challenging real-world
datasets of cardiopulmonary disease classification and lesion
classification. Our main contributions can be summarized as:

e We propose a novel stochastic knowledge distillation
framework (RoS-KD) which distills knowledge from
multiple teacher networks trained on overlapping subsets
of noisy labelled data and dynamically assign weights
to teacher models to enhance deterrence to noise and
improve generalization on unseen data during inference.

« We propose to use smooth parameter averaging update
with our novel knowledge distillation framework to ef-
fectively moderate any abrupt learning by the student.

o Our extensive experiments on two popular real-world
dataset based medical classification tasks show the per-
formance benefit of RoS-KD over several baseline meth-
ods. More specifically, RoS-KD achieves > 2% and >
4% improvement on F1-score for lesion classification and
cardiopulmonary disease classification task respectively,
when underlying student is ResNet-18. Additionally, on
cardiopulmonary disease classification task, RoS-KD out-
performs most of the state-of-the-art baselines by ~ 1%
gain in AUC score.

« We experimentally verify that RoS-KD produces students
which are highly robust to adversarial attacks compared
to different baseline methods. RoS-KD students also have
highly smooth loss landscape, which can explain their
better generalization capability on unseen data.

II. BACKGROUND WORK

Knowledge Distillation (KD) [14] is an effective way to
compress large models into smaller ones with comparable per-
formance. KD is based on a teacher-student learning paradigm
in which the student learns from the soft-targets of the teacher
network. Recently, some methods employ multiple teachers
and show great promises in further boosting student model
performance effectively [10]-[12]. Most of these existing
methods using multiple teachers simply assign equal weight to
all teacher models during the whole distillation process. More-
over, they primarily use the same training data to train each
participating teacher network which make all teachers prone
to learning the similar noise pattern available in the training
data. Recently, [15] identified that individual teacher models

may perform differently on different data-points due to opti-
mization strategy and parameter initialization. This encourages
us to assign different weights to teacher models for different
training instances during training. RoS-KD provides a noise-
tolerant perspective of knowledge distillation and introduces
smoothening as a key to improving its performance. Compared
to previous knowledge distillation methods using multi-teacher
models usually fix the same weight for a teacher model
on all training examples, RoS-KD design allows stochastic
assignment of weights to each participating teacher models
for each training example during training.

III. THE PROPOSED APPROACH
A. Model Architecture

A schematic representation of our RoS-KD framework is
given in Figure 1. The core RoS-KD framework is based on
ensemble-based knowledge distillation where multiple teacher
networks are used to teach the student network. In RoS-KD,
the training data D is divided into k overlapping subsets with
an overlap ratio of p% such that D = {D'UD?...UD*}. We
train k different model architectures {M ,%)1,]\/-%2, ey M Ek}
corresponding to each D® using cross-entropy loss. We use
the overlapping dataset instead of a traditional non-overlapping
complete dataset D to ensure that each teacher has sufficient
agreement on the common representation of D along with its
unique share of disagreement due to noise. This setting mimics
the situation that each teacher knows the same topic in its
own unique style. Our student network M is trained using
our stochastic knowledge distillation module which combines
the soft-labels generated for each training example z; € D
by an individual teacher. To mitigate the abrupt impact of
any teacher in the student’s learning process, we propose
to average multiple checkpoints of A along the training
trajectory to update Mgo0th, Which is our final student
network (RoS-KD). Smooth parameter averaging is extremely
easy to implement, which can improve standard generalization
of students, and has almost no computation overhead.

B. Robust Stochastic Noise-Tolerant Knowledge Distillation

Many large-scale medical imaging datasets [2], [16] are
labelled using automated tools under the weak supervision
of domain experts and have highly variable noise across data
samples. Many recent studies have shown that label noise can
significantly impact the performance of deep learning models
and lead to degraded generalization. Our robust stochastic KD
(RoS-KD) framework is motivated by the idea that teachers
know not only the common fundamental details of the topic
but also some unique explanations. Therefore, if a student
learns from multiple teachers, it enables the student to learn
multiple unique explanations of the topic along with the
common fundamentals of the concept. This will help the
student be better than individual teachers due to the diversity
of information the student has learned along with identifying
any conflicting information about the same topic. RoS-KD
incorporates this setting by proposing to divide the training
dataset into overlapping blocks and training multiple teachers



architectures (e.g., ResNet-18, DenseNet-121, and MovileNet-
V2) on the overlapping datasets. RoS-KD differs from the
conventional ensemble KD approaches which use the same
dataset to train each participating teacher network, because
RoS-KD allows the teacher network to be consistent with each
other and learn additional unique information.

Next, we aggregate knowledge from the multiple trained
teachers using stochastic weighted distillation. In each itera-
tion, we randomly sample the weight of each teacher from
an exponential distribution. The weight is used to decide the
teacher’s contribution for updating student M in that iteration.
This aggregation process simulates that the student learns the
knowledge from one teacher and compares it to others. Our
stochastic weighted distillation ensures that only one teacher
plays a significant role in the update at one time. Therefore,
we do not need to jointly minimize KL divergence among
multiple teachers with an equal contribution at the same time.
Furthermore, to improve the generalization capability of our
RoS-KD framework, we propose to use smooth parameter
averaging update to effectively moderate any abrupt learning
by the student. This ensures that no teacher will be allowed to
make significantly large updates which helps students to relax,
think, and update gradually.

1) Smooth Parameter Averaging Update: In our RoS-KD
framework, we use a smooth parameter averaging update
to improve the generalizability. The update can effectively
moderate any abrupt learning by the student, thus ensures that
no teacher will make a significantly large update.

It is widely believed that the loss surface at the final learned
weights for well-generalized models is relatively “flat” [13]. To
ensure the smooth update of our final student model Mgy, 00th,
we propose to enforce weight smoothness, by averaging mul-
tiple checkpoints along the training trajectory. Our parameter
averaging update can be interpreted as approximating the fast
geometric ensembling [17], by aggregating multiple check-
point weights at different training times [18].

T I,{;:vinofh X+ WJ\E
ijfsmooth = — ﬁ/+ 1 (1)
Wi = Wi+ AWE 2)

where T indexes the training epoch, n is the number of past
checkpoints to be averaged, Why,,,..,, denotes the averaged
network weight, W, represents the current network weight,
and AW, indicates the SGD update.

The Smooth Parameter Averaging Update provides an op-
portunity to make the student network to be robust and learn
flatter solutions. Smooth parameter averaging is straightfor-
ward to implement with almost no computational overhead.

2) Loss Function: For a C-class classification task, given
a teacher network m; = M}D trained on a data subset D* and
input z°, we leverage the logit 2 € R® (final output before
the softmax layer) from m; to supervise the desired student

network M. Following the setting of knowledge distillation,

the logit 2° is distilled to the knowledge ¢ € R® by the
temperature 7 according to the following:

exp(z}/7)
S exp(zl/7)

where q§ denote the jth element of ¢* and o, (.) represents
the standard softmax function with the distilling temperature
7. Usually, 7 is a positive value greater than 1, and a higher
value for 7 can produce a softer probability distribution over
classes.

Next, we sample weights from the exponential distribu-
tion for K participating teacher models {mi,...,mg} as
{w;, ...,wg }. Then, we supervise the student network M by
minimizing the following mini-batch loss [ over L samples:

3)

¢ = o (2}) =

L K
I = Z{a72 Z {wm KL(q), ,p")}+(1—a)CE(M (z*),y")}

i=1

“)
Here, L and CE& represent KL divergence and cross-entropy
loss, respectively. p' = o, (M(z?)). y* is hard label of x'.
The hyper-parameter « € [0, 1] balances the KL divergence
and the cross-entropy loss. 7 is a specified temperature.

m=1

IV. EXPERIMENTAL RESULTS
A. Task Formulation

While in principle, our method of multi-teacher learning
should be applicable to any deep learning task, we restrict our
focus to problems where the dimension of the output vector
is small. Such a constraint will remove tasks that require
intensive training for all the teacher networks, for example,
in tasks such as segmentation, localization. Thus, we restrict
our experiment and analysis to classification tasks to keep
focus on understanding the benefits of our design. In this
work, we evaluate the effectiveness of our RoS-KD framework
on two popular medical imaging classification tasks - lesion
classification and cardiopulmonary disease classification. The
skin lesion dataset consists of 25,331 skin lesion images
divided into eight different clinical scenarios [19]. We aim
to build a model to classify an image into one of the eight
clinical scenarios. The NIH Chest X-ray dataset consists of
112,120 chest X-rays collected from 30,805 patients, and each
image is labeled with 8 cardiopulmonary disease labels [2]. We
followed the same protocol as [20], to shuffle our dataset into
three subsets: 70% for training, 10% for validation, and 20%
for testing. In order to prevent data leakage across patients,
we ensure no overlap within our train, validation, and test set.

B. Experimental Settings

To prove the efficacy of our RoS-KD framework, we
have selected two popular medical imaging tasks - lesion
classification and cardiopulmonary disease classification. For
both tasks, we divide the training split of the dataset into 5
overlapping subsets (with overlap ratio 0.4) and train 5 teacher
networks (ResNet-18,34,50, MobileNet-v2, and DenseNet-
121) using an SGD optimizer with a momentum of 0.9 and



weight decay of 2e~%. The initial learning rate is set to 0.1,
and the networks are trained for 50 epochs with a batch size
of 64. The learning rate decays by a factor of 10 at the 25th
and 40th epoch during the training. For all our experiments,
we have kept temperature hyperparameter 7 = 0.5. We set
a = 0.9 to regulate the weight between the distillation and
cross-entropy loss during RoS-KD training. Additionally, we
provide an initial warmup of 10 epochs to Mg00tn during
the smooth parameter averaging update. All our models are
trained using 4 Quadro RTX 5000 GPUs.

C. Baselines

1) Baseline I: RoS-KD proposes a noise-tolerant stochastic
knowledge distillation framework which distills knowledge
from multiple teacher networks in a student network. For eval-
uation of RoS-KD, we have selected ResNet-18 architecture
as the default student network. Our first baseline is a standard
ResNet-18 architecture trained on cardiopulmonary and lesion
classification task.

2) Baseline II: Our second baseline follows the standard
knowledge distillation setting proposed in [14] and train the
ResNet-18 student network with the assistance of compara-
tively larger teacher network DenseNet-121.

3) Baseline III: We implemented a multi-teacher ensemble
model similar to [12] where every teacher model is assigned
an equal weight in KD, and the student model (ResNet-18)
learns from an aggregated distribution by averaging teacher
outputs.

4) Baseline IV: Recently, [15] proposed reinforcement
based method to perform adaptive weight assignment to each
participating teachers in a multi-teacher learning framework.
We adapted their method for our tasks, and surprisingly found
that RoS-KD which randomly sample the weights from the
exponential distribution for each teacher, can significantly
outperform their computationally inefficient RL-based design.

5) Baseline V: Our baseline IV is the RoS-KD framework
which only uses overlapping subset of training data along with
stochastic importance to individual participating teacher net-
work. Note that this baseline doesn’t use smooth parameter
averaging during distillation.

D. Results and Discussion

1) Lesion Classification Task: The lesion classification task
is a one-class classification problem where RoS-KD assigns
one class to each input image among 8 class categories.
Table I presents the performance comparison of RoS-KD
with respect to several baseline methods explained in Section
IV-C. RoS-KD achieves a significant performance gain of
+3.2% in Fl-score over traditional single teacher based KD
framework (Baseline II). It addition, it also outperforms fixed
weight multi-teacher KD framework (Baseline III) by +2.2%.
Note that Baseline IIl uses the exact same set of teacher
architectures and training hyperparameters for fair compari-
son. Surprisingly, RoS-KD beats recently published RL-based
dynamically weighted baseline [15] significantly by +3.9%.

Moreover, when compared to the performance of a stan-
dard network (ResNet-18), RoS-KD based ResNet-18 model
achieves +5.8% better Fl-score. In order to investigate the
performance consistency of RoS-KD across different student
architectures, we experimented with popular ResNet-18/34/50,
MobileNet-v2, and DenseNet-121 as students. Noticeably, for
DenseNet-121 and ResNet-34, RoS-KD achieves +3.2% and
+3.1% gain in Fl-score respectively.

Lesion Classification Cardiopulmonary Classification

Settings
Precsion Recall F1 Precision Recall F1
Baseline I 0.653 0.664 0.658 0.298 0.301 0.299
Baseline II 0.680 0.692 0.684 0.312 0.348 0.329
Baseline IIT 0.691 0.704 0.694 0.300 0.316 0.308
Baseline IV 0.683 0.669 0.677 0.304 0.310 0.307
Baseline V 0.703 0.714 0.705 0.341 0.327 0.334
RoS-KD 0.713 0.726 0.716 0.360 0.339 0.349
TABLE I

PERFORMANCE COMPARISON OF ROS-KD WITH RESPECT TO BASELINES
ON THE LESION AND CARDIOPULMONARY CLASSIFICATION TASK.

Before Attack After Attack

Dataset Attack Settings

Precsion Recall F1 Precision Recall F1

Lesion PGD Baseline 111 0.691 0.704 0.694 0.363 0.293 0.309
RoS-KD 0.713 0.726 0.716 0.417 0.359 0.354

FSGM Baseline 111 0.691 0.704 0.694 0.445 0.377 0.385

RoS-KD 0.713 0.726 0.716 0.475 0.422 0.447

Cardio. PGD Baseline 111 0.312 0.348 0.329 0.150 0.131 0.139
RoS-KD 0.360 0.339 0.349 0.189 0.175 0.182

FSGM Baseline 11T 0.312 0.348 0.329 0.162 0.144 0.152

RoS-KD 0.360 0.339 0.349 0.201 0.187 0.194

TABLE I

PERFORMANCE COMPARISON OF ROS-KD WITH VARYING STUDENT
ARCHITECTURE WRT. BASELINE III. NOTE THAT WE HAVE USED EXACTLY
SAME TEACHER MODELS FOR KD IN BOTH BASELINE IIT AND ROS-KD

FOR FAIR COMPARISON. NORM IS l3. RADIUS € = %

2) Cardiopulmonary Disease Classification Task: The car-
diopulmonary disease classification task is a multi-class clas-
sification problem. RoS-KD assigns one or more labels among
8 cardiopulmonary classes. Table I presents the performance
comparison of RoS-KD with respect to several baseline meth-
ods explained in Section IV-C. RoS-KD achieves a significant
performance gain of +2.0% in Fl-score over traditional single
teacher based KD framework (Baseline II). It addition, it also
outperforms fixed weight multi-teacher KD framework (Base-
line IIT) by +4.1%. Note that Baseline IIT uses the exactly
same set of teacher architectures and training hyperparameters
for fair comparison. Moreover, when compared to the per-
formance of a standard network (ResNet-18), RoS-KD based
ResNet-18 model achieves +4.5% better Fl-score. Finally, in
comparison with [15], which uses dynamic weight assignment
(Baseline IV), RoS-KD archives 2.7% better performance. To
investigate the performance consistency of RoS-KD across
different student architectures, we experimented with pop-
ular ResNet-18/34/50, MobileNet-v2, and DenseNet-121 as
students. It can be clearly observed that RoS-KD performs
significantly better across all student architecture. Noticeably,
for MobileNet-v2 and ResNet-18, RoS-KD achieves +3.8%
and +4.1% gain in Fl-score respectively.



Unlike the lesion classification task, cardiopulmonary dis-
ease classification task is comparatively well-studied by the
medical-imaging community and there exists many well es-
tablished baselines [1], [4]-[6], [21]-[23] to evaluate the
performance of newly proposed algorithms. We compare RoS-
KD performance with reference models, which have published
state-of-the-art performance of disease classification on the
NIH dataset [21]. We have used Area under the Receiver
Operating Characteristics (AUC) to estimate the performance
of our RoS-KD in Table III. Our results also present the 3-
fold cross-validation to show the robustness of our reported
AUC scores. Compared to other baselines, RoS-KD achieves a
mean AUROC score of 0.838 using DenseNet-121 across the 8
different classes, which is 1% higher than the best performing
baseline on disease classification.

= Baseline Il
m— Smooth-LTH

ResNet18  ResNet-34  ResNet-50 MobileNet-v2 DenseNet-121
Student Model

Lesion Classification Task

Cardiopulmonary Disease Classification Task

Fig. 2. Performance comparison of RoS-KD with varying student networks
wrt. Baseline IIT on lesion and cardiopulmonary disease classification task.

3) How does overlapping impact the performance?: One
key contribution of this work is to identify the hidden gem
to use overlapping subsets of training data to train individual
teacher networks in a Multi-Teacher Knowledge Distillation
Framework. Figure 3 illustrates the performance comparison
of RoS-KD trained with overlapping subsets in comparison
with Baseline III. An overlap ratio of 0% imply that the train-
ing subsets are disjointed while overlap ratio of 100% implies
that all teachers are trained using exactly the same data. We
observed that distillation with 0% overlap have comparatively
better performance than 100% overlap. Based on our empirical
observations, we argue that with 0% overlap, each individual
teacher will attempt to learn its own discriminative features
which have unique properties compared to other teachers,
and these features can add significant value to the student
learning. To ensure minimal disagreement among teachers
trained on disjointed subsets, we investigated how sharing
training samples across the teachers will impact the RoS-
KD performance. For both lesion and cardiopulmonary disease
classification task, we observed that overlapping significantly
improves the performance of RoS-KD.

mm=Baseline Il (0% Overlap)
m=RoS-KD

100 % 0% 100 %

25% 3
of overlap across subsets

25% 50
% of overlap across subsets %
(a) Cardiopulmonary Disease Classification Task

(a) Lesion Classification Task

Fig. 3. Impact of overlapping ratio in training subsets of teacher models
trained with RoS-KD. Baseline III doesn’t use any overlapping training subset.

E. Adversarial Robustness

Al-assisted medical imaging can be used to make critical
medical decisions and directly impact patient life. Recently,
adversarial attacks have received significant attention in which
an adversary tries to malice the Al-classifier by adding a small
magnitude of noise to change its prediction [24]. Considering
high stakes of medical imaging in clinical decision-making,
it is very important to ensure that Al-algorithms are robust to
adversarial attacks. Table II presents the robustness of RoS-KD
in comparison to Baseline III under two representative attacks:
FSGM [25] and PGD [26]. FSGM and PGD attacks exploit the
gradients of the neural network to build an adversarial image
with goal of fooling the trained network. Our experiments
on the lesion classification task show +4.5% and +6.3%
higher robustness of RoS-KD than Baseline III on FSGM and
PGD attacks, respectively. Similarly, on the cardiopulmonary
disease classification task, RoS-KD has +4.3% and +4.2%
higher robustness than Baseline III under FSGM and PGD
attacks, respectively.

FE. Smoothness

Introducing smoothness into the training paradigm of neural
networks has been widely accepted as it is a technique to
improve generalization and optimization. Smoothness can be
implemented by replacing the activation functions, adding
skip-connections in NNs [27], [28], using soft labels replacing
the hard labels [29]. In this work, we propose to enforce
weight smoothness, by averaging multiple checkpoints along
the training trajectory during the knowledge distillation. Our
experiments in Table I illustrate the significant gain by the
RoS-KD when we incorporate parameter averaging. To vali-
date the induced smoothness, we plotted the counter plots of
final loss landscape by Baseline III and RoS-KD using [13].
Figure 4 shows the comparison of counterplots of loss land-
scape of models trained with Baseline III and RoS-KD. We
observed that RoS-KD has comparatively larger counter shape
in the landscape with bigger basin for both lesion classification
and cardiopulmonary classification, strengthening our claim of
improved smoothness and better generalization of RoS-KD.

V. CONCLUSION

In this work, we propose a novel robust stochastic knowl-
edge distillation framework (RoS-KD) which distills knowl-
edge from multiple teacher networks trained on overlapping
subsets of noisy labelled data to enhance deterrence to noise
and improve generalization on unseen data. We additionally
propose to incorporate smoothing in the knowledge distillation
step of RoS-KD, which helps in flattening the global minima
during the optimization, and improving generalization. Our
extensive results on two popular real-world medical datasets
demonstrate the effectiveness of RoS-KD, its state-of-the-art
performance, and its robustness to adversarial attacks.
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Method Atel. Cardio.  Effus. Infilt. Mass Nodule Pneum. Pneumo. Mean
Wang et. al. [21] 0.72 0.81 0.78 0.61 0.71 0.67 0.63 0.81 0.718
Wang et. al. [1] 0.73 0.84 0.79 0.67 0.73 0.69 0.72 0.85 0.753
Yao et. al. [4] 0.77 0.90 0.86 0.70 0.79 0.72 0.71 0.84 0.786
Raj. et. al. [22] 0.82 091 0.88 0.72 0.86 0.78 0.76 0.89 0.828
Kum. et. al. [23] 0.76 091 0.86 0.69 0.75 0.67 0.72 0.86 0.778
Liu et. al. [5] 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89 0.801
Seyed et. al. [6] 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88 0.821
RoS-KD (Ours) 0.83 091 0.89 0.77 0.85 0.78 0.79 0.88 0.838
(std) +0.00 +0.01 +0.01 +0.01 +0.02 +0.00 +0.01 +0.02
TABLE III

COMPARISON WITH THE BASELINE MODELS FOR AUC OF EACH CLASS AND AVERAGE AUC (THREE INDEPENDENT RUNS).
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Fig. 4. Comparison of loss landscape of models trained with Baseline III and RoS-KD framework for lesion classification and cardiopulmonary disease
classification task. Loss plots are generated with the same original images randomly chosen from the test dataset for Baseline III and RoS-KD. Z-axis denote
the loss value clamped at 8.0 for better visualization. We choose Baseline III because of its best performance.
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