Experiences in Managing CHEESEHub: A
Cloud-based Cybersecurity Education Gateway

Sara Lambert
National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign
Urbana, USA
lambert8 @illinois.edu

Rob Kooper
National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign
Urbana, USA
kooper@illinois.edu

Abstract—CHEESEHub is a web-accessible, public science
gateway that hosts containerized, hands-on demonstrations of
cybersecurity concepts. There are now a plethora of services
and tools designed to simplify modern gateway deployment and
configuration such as commercial and academic composable
cloud, the Terraform infrastructure as service tool, Kubernetes
and Helm for container orchestration, as well as CILogon for
simplified user authentication. Despite leveraging these tools, our
day to day experience with deploying, upgrading, scaling, and
extending CHEESEHub has not been entirely straightforward.
We describe here some of the major challenges we have encoun-
tered in managing CHEESEHub and developing web-accessible
demonstrations for the last five years. We hope this will help
both new and seasoned gateway developers to effectively leverage
these modern tools while avoiding these same pitfalls, while
also providing starting points for discussions around gateway
development and deployment best-practices.

Index Terms—gateway, containers, deployment, experiences,
cybersecurity

I. INTRODUCTION

CHEESEHub [1] was developed in response to the growing
need for cybersecurity expertise in the IT workforce and to
narrow the skills gap between classroom instruction and hands-
on practical training in the current cybersecurity curriculum.
Consisting of containerized demonstrations of cybersecurity
concepts (such as the ARP poisoning attack, HeartBleed bug,
and SQL Injection attack, to name a few), and complementary
learning and assessment materials; CHEESEHub is designed
to complement classroom instruction by providing students
with the means to reproduce these security attacks themselves
and evaluate possible solutions.

To lower the barrier to entry and expand its users to include
those who may be unfamiliar with system administration,
CHEESEHub is designed to be web-accessible and uses con-
tainers to both package and isolate the insecure code or secu-

Funded by the National Science Foundation (NSF) awards:
1820573 and 1820608.

Presented at Gateways 2022, San Diego, USA, October 18-20,
2022. https://zenodo.org/communities/gateways2022/

West Lafayette, USA

Rajesh Kalyanam
Research Computing
Purdue University

Baijian Yang
College of Information Technology
Purdue University
West Lafayette, USA

rkalyana@purdue.edu byang@purdue.edu

rity exploits relevant to a cybersecurity demonstration. Once
logged in, users can launch a particular demonstration with just
a couple of button clicks on the CHEESEHub web gateway.
Behind the scenes, one or more containers are launched and
the user is presented with the web-accessible interface to these
containers: often a Jupyter interactive computing environment
or an entire Linux desktop via noVNC.

CHEESEHub is built on the National Data Service (NDS)
Labs Workbench gateway framework [2] that can be deployed
to a Kubernetes cluster on most commercial and campus cloud
resources via publicly available Helm charts. Furthermore,
Labs Workbench supports federated user authentication via
ClILogon, which allows for customization to either only allow
users from one (or more) institutions, or more widely anyone
with a Google account. Finally, Labs Workbench supports a
customizable and extensible application catalog via a repos-
itory of JSON configuration files, which contain all of the
details needed to launch an application from the catalog as a
Docker container.

CHEESEHub has now been in production operations for five
years and has been used to complement various undergraduate
and graduate courses at Purdue University, and in both in-
person and virtual hands-on workshops for the IT education
community. While we heavily leverage modern cloud and
container orchestration tools such as Terraform, Kubernetes,
and Helm to simplify the management, porting, extension,
and upgrade of CHEESEHub over these five years, there are
also several challenges around deployment that have revealed
themselves during this period. Just as importantly, we have
also faced challenges in designing applications that are both
easy to develop, but are also user friendly with a low barrier to
access and use by users unfamiliar with server administration.
In this paper we provide an account of such challenges
that may not necessarily be apparent during the design or
initial deployment phases. We should note that CHEESEHub
presents some unique challenges around security, since we are
after all deploying containers with security exploits and need



to avoid malicious users adversely affecting the platform or
other users’ ability to use the platform. While we do not
discuss these challenges here, interested readers may refer
to the authors’ prior publication [3] describing these security
challenges and solution strategies.

II. CHALLENGES IN MANAGING AND DEVELOPING FOR
CHEESEHUB

We divide the challenges into three broad categories: de-
ployment and upkeep, user management, and application de-
sign.

A. Deployment and Upkeep

When deploying CHEESEHub over the past five years,
we have had to not only keep up with technology changes
but also adapt to new use cases, and infrastructure and/or
software updates. Key among these challenges was designing
a deployment solution for a variety of cloud environments
and OpenStack flavors, learning new tools such as Terraform
for maintaining the deployment process, and keeping up with
updates to the Kubernetes API to ensure graceful redeployment
after making updates to different parts of the platform.

1) Cloud Migration Challenges: One large problem that
we have faced has been supporting the growing number of
commercial cloud providers, who vary in their own support
and deployment patterns. Our initial choice of using Ku-
bernetes to run the underlying platform was very valuable
toward this goal: we still have the option to deploy standard
virtual machines in any shared network environment, install
Kubernetes on them to join them into a cluster, and deploy
CHEESEHub on the cluster. Due to the increasing native
support for Kubernetes by commercial cloud providers, we are
seeing more options for deploying it with native support within
their respective ecosystems such as AWS Elastic Kubernetes
Service (EKS), Google Kubernetes Engine (GKE), and Azure
Kubernetes Service (AKS). The result of using these new
native services is a cluster that is all-around easier to monitor,
upgrade, and scale, but the testing and documentation of
these deployment steps with slight differences on various
clouds does generate additional overhead. Furthermore the
deployment steps and cluster requirements can already seem
very complicated to those unfamiliar with containers and or-
chestration, and adding branching notes about which steps are
required or optional under particular providers can certainly
make the documentation even harder to follow.

2) Variance in On-Premises Hardware Patterns: For those
with access to on-premises hardware, our Terraform deploy-
ment process works with select versions of OpenStack to
deploy a Kubernetes cluster with all of the required pieces.
We also provide a Helm chart that will launch the application
atop the cluster once deployment is finished. We rely mainly
on Terraform’s built-in support for various different OpenStack
version. Although the API is generally compatible using this
approach, in our experience every OpenStack deployment has
unique quirks. For example, OpenStack’s volume and network
setups can vary between deployments; there are times when

we need to specify the name of a network or pool, while other
times we need to provide an ID instead.

One curious observation is that the pain points of supporting
various different OpenStack clusters are indeed the same
as those for differences in support between on-premise and
various commercial cloud providers: differences in the native
support and behavior of networking and volumes. These seem
to be the most variable part of any deployment, as the security
and data needs can vary uniquely from use case to use case.

3) Adding Nodes via Terraform: While adopting Terraform
for deployment has indeed been very valuable, it is yet another
complex deployment tool that has taken additional time to
learn. It has been particularly troublesome attempting to use
this pattern to maintain only one or two nodes, only to find that
Terraform is now accidentally operating on the full cluster. For
example, in attempting to scale up the cluster by adding a new
node we found that the existing nodes were having their data
volumes being re-mounted under a different incorrect path.
While a restart would fix the problem and mount the data in the
correct location, we were left wondering why was operating on
the old nodes at all when it was only asked to create and join a
new one. Ultimately, this was not a bug in Terraform, but due
to how our deployment scripts weren’t properly performing
change checking for its steps. While rebooting the nodes would
remount the data to the correct location, we later determined
that we weren’t providing Terraform with enough information
about how to determine whether or not it had already run some
of the deployment steps, namely the step that mount the data
volumes, so the tool had determined that this step needed to
be re-run every time.

4) Kubernetes API Challenges: Kubernetes is a wonder-
fully complex piece of software. Their API is very well
thought-out, with regular new releases occurring every 3
months, and changes to the API are supported across multiple
major versions. Despite the generous rolling window, keeping
up with these changes has been a real challenge, particularly
with the Golang Kubernetes client. Golang has gone through
several iterations of dependency management technology since
the original backend for Labs Workbench was implemented,
turning simple package dependency upgrades into a non-trivial
task. Compliance with this new pattern could not be guaran-
teed without significant changes to rewrite or modify the code
to run as a “go module”, so we are instead working to move the
backend to Python where these common development patterns
are more stable than what we’ve found with Golang.

B. User Management

While CHEESEHub is considerably less complex than
other gateways that require distinct user roles and role-based
resource authorization, we have tried to further simplify the
adoption of CHEESEHub in educational and training activities
by eschewing account creation before first use. Consequently,
we employ CILogon for user authentication and authorization
via institutional credentials. Nevertheless, this is not a panacea
as we discovered when working with diverse institutions that
look to utilize CHEESEHub in their training.



1) ClLogon Integration and Identity Management: Every
institution has a unique login system. Even though they all
tend to use the same protocol, there are still specific parameters
for each university that must be used for authentication.
This is where a system like CILogon becomes very handy.
ClILogon is identity management software that does the work
of keeping track of individual universities and supporting their
login flows, which usually involves working with the target
institution’s IT staff to some degree. While CILogon does
support a vast number of institutions and providers, it is still
not a perfect solution to this problem. For example, there
have been cases where support for lesser-used universities
has lapsed over time. This is understandable from an outside
perspective, as it must be very difficult to maintain support for
every possible institution. We have found this to be especially
true when dealing with smaller institutions that have limited
IT resources. In these cases, we have been able to pass along
the details of what would be needed on their end for CILogon
to add them to the list of providers, but little more can be done
from our end to ensure that their IT staff follows through on
the instructions.

There have been cases where the steps needed are simply
too much for them to guarantee at the given time, and so we
have to find alternative login methods for the students in these
cases. Our go-to fallback has been for people to use a Google
account, as it is simple to register a throwaway account if they
don’t have a personal Google account or are not comfortable
using it in this context. Unfortunately this makes it a bit too
easy to register for an account, as even a malicious user can
register for a Google account. Since we are providing access to
running containers, this would be a problem if not for the time-
limited usage of our use case in the classroom or workshop
setting.

2) Various User Profiles: We have recently enhanced
CHEESEHub by integrating with Keycloak, an open-source
software that allows us to manage users. This has opened
up a lot of possibilities for us. We can now easily assign
roles to groups and users, add new authentication client
options, and provide a mechanism for authenticating via JSON
Web Token (JWT) [4] to provide all of this information, all
without building any of that logic into our own application.
Keycloak is very complex to configure, but it is certainly
worth the time investment to understand it in order to save
on extra development effort toward a hardened and extensible
authentication mechanism. There are some slight gaps in their
use cases that we have found when using CILogon, which
allows people to authenticate using credentials from various
organizations and institutions. For instance, there are cases
where a user may have two different valid sets of credentials
from two different institutions. This is a case that Keycloak
does not support, as it attempts to do a database insert to
assign the linked identity. This fails, as the CILogon identity
is already linked to the account and we cannot link another
one with the same provider. One way to solve this might
be to upsert when linking a new identity to overwrite the
existing link with a new one when using new credentials.

Another might be to customize Keycloak’s OIDC handling to
allow for multi-providers to use a specified field to maintain
their uniqueness by specifying a claim name to append. This
might result in two linked identities (e.g. cilogon-ncsa
and cilogon-uiuc).

C. Application Design

CHEESEHub is intentionally designed to be accessible via
web browser and to be used on a variety of hardware such
as tablets, chromebooks, etc. that are common in educational
settings. Consequently, all of our applications have to be
designed to be easy to interact with in these environments. At
the same time, CHEESEHub seeks to allow the broader com-
munity to easily contribute demonstrations of cybersecurity
concepts as reproducible containers with minimal overhead;
hence we cannot expect highly interactive and user friendly
web applications.

1) Use of Interactive Computing: To emulate a desktop
environment in the cloud, there are several options available
including noVNC and Xpra. These options are fairly limited
in the operations that they support, with notable limitations
that inhibit basic usage. For example, copying and pasting
between the host and the emulated desktop has always been
notoriously difficult for such a simple and common operation.
However, certain demonstrations do require an entire desktop
environment. For instance, the demonstration of HeartBleed on
CHEESEHub illustrates how a malicious hacker can leverage
the HeartBleed bug on unpatched servers to steal session cook-
ies from authenticated web sessions and gain access to these
sessions in their own browser. This demonstration requires the
user to use both a terminal to run commands to attempt to steal
the session cookie and a browser to evaluate whether the stolen
cookie works in gaining access to authenticated sessions. The
only option in this case is to embed documentation locally
within the noVNC-based container to allow users to easily
copy and paste between the included documentation and the
terminal or browser, which is not very user friendly.

2) When a Terminal Will Do: In certain demonstrations,
all that is needed is a terminal into the running container.
For this reason, we use Websockets to facilitate the exchange
of data behind the scenes to provide a web-based terminal
within the user interface. This allows users to send commands
and receive their output using a familiar interface. Due to
the security implications of sending raw commands to the
underlying container, however, it is necessary to protect access
to this resource. As such, we have implemented a timeout
that automatically closes the console after several minutes of
inactivity. Since we are using Websockets to handle potentially
long-running CLI processes, the definition of “inactivity”
here can be subjective or situational. For example, say we
are running a CLI command that takes several minutes to
complete. If this process does not send any new output during
our timeout period, the user likely will not be sending new
input until the command has completed. At this point the
connection could be classified as “inactive”, as it is not seeing
any output coming back from the command or any new input



coming through from the user. Given this possibility we would
like to set the timeout sufficiently high to allow the user to
finish their lesson, but not so long that it would pose a potential
security risk, making this configuration something that would
need periodic evaluation and revision.

3) Providing Instructions Alongside the Hands-on Activ-
ities: One significant challenge that we have encountered
is how to provide users with step-by-step instructions to
reproduce a demonstration. Our current solution is to use
the Software Carpentries model to publish a separate web-
accessible lesson plan, however this requires users to con-
stantly switch between the lesson website and the web con-
tainer environment where they need to type their commands.
We have experimented with using Jupyter as a self-contained
interactive environment with both step-by-step instructions (in
Jupyter notebooks) and terminal access. This too can often
be challenging when there are three separate ‘“servers” to
enter commands on; for instance, the demonstration of ARP
poisoning attacks requires the user to repeatedly function as
the “hacker”, “server”, or “hacked user”, entering commands
in the corresponding terminals. With no way to identify which
is which, we often have to resort to providing the server or
the terminal user with an identifiable name based on its role
in the demonstration (i.e, hacker, server, or user).

III. DISCUSSION

We note that while some of the aforementioned challenges
are of broad scope and applicable to most modern gateways
that leverage container orchestration on commercial and aca-
demic cloud, some others are specific to CHEESEHub and
its user base. Specifically, gateways designed for educational
activities may need to prioritize ease of following instructions
more often than those designed for savvy researchers. Simi-
larly, gateways that decide at the outset on a specific hosting
platform and authentication solution to use, may not need to
build in the generality, but only adapt to changing technologies
and solution availability.

We conclude with a summary of questions that we wish we
had asked ourselves earlier when designing our web-accessible
gateway for cloud deployment:

1) Do you intend to host on a single cloud platform or
provide solutions for various cloud providers?

2) Have you identified between these platforms in how they
manage and reference deployed resources?

3) Is there any official deployment documentation from
the target cloud platform(s) that could be leveraged to
simplify your own?

4) Is there a sufficient dependency management pattern in
your target language that will allow for easy upgrade of
external API clients to newer versions?

5) Have you considered the various institutions that may
either deploy, integrate with, or use your gateway and
their computing and support resources?

6) Could user, group, and identity management be handled
separately from the rest of the application?

7)

8)

9)

[1]

[2]

[3]

[4]

Are there web-based alternatives available for container-
ized software products that typically run as graphical
native desktop software?

Would a web terminal suffice for this lesson or demon-
stration? Are any necessary timeout parameters set high
enough to avoid interrupting the user during the lesson?
Could lesson plans be more thoroughly integrated with
the software to grant users a hands-on educational
experience without forcing them to frequently switch
contexts?

REFERENCES
R. Kalyanam, B. Yang, C. Willis, M. Lambert, and C. Kirkpatrick,

“CHEESE: Cyber Human Ecosystem of Engaged Security Education,”
2020 IEEE Frontiers in Education Conference (FIE), pp. 1-7, IEEE,
October 2020.

C. Willis, M. Lambert, K. McHenry, and C. Kirkpatrick, “Container-
based analysis environments for low-barrier access to research data,”
Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact, pp. 1-4. 2017.
M. Lambert, R. Kalyanam, R. Kooper, and B. Yang, “Securing
CHEESEHub: A Cloud-based, Containerized Cybersecurity Education
Platform,” Practice and Experience in Advanced Research Computing.
Association for Computing Machinery, New York, NY, USA, Article 43,
pp. 1—4. 2021.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)”,
RFC 7519, DOI 10.17487/RFC7519, May 2015, ;https://www.rfc-
editor.org/info/rfc7519;.



