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Abstract

This paper investigates when one can efficiently recover an approximate Nash Equilibrium (NE)
in offline congestion games. The existing dataset coverage assumption in offline general-sum games
inevitably incurs a dependency on the number of actions, which can be exponentially large in congestion
games. We consider three different types of feedback with decreasing revealed information. Starting from
the facility-level (a.k.a., semi-bandit) feedback, we propose a novel one-unit deviation coverage condition
and give a pessimism-type algorithm that can recover an approximate NE. For the agent-level (a.k.a.,
bandit) feedback setting, interestingly, we show the one-unit deviation coverage condition is not sufficient.
On the other hand, we convert the game to multi-agent linear bandits and show that with a generalized
data coverage assumption in offline linear bandits, we can efficiently recover the approximate NE. Lastly,
we consider a novel type of feedback, the game-level feedback where only the total reward from all agents
is revealed. Again, we show the coverage assumption for the agent-level feedback setting is insufficient in
the game-level feedback setting, and with a stronger version of the data coverage assumption for linear
bandits, we can recover an approximate NE. Together, our results constitute the first study of offline
congestion games and imply formal separations between different types of feedback.

1 Introduction

Congestion game is a special class of general-sum matrix games that models the interaction of players with
shared facilities (Rosenthal, 1973). Each player chooses some facilities to utilize and each facility will incur
a different reward depending on how congested it is. For instance, in the routing game (Koutsoupias &
Papadimitriou, 1999), each player decides a path to travel from the starting point to the destination point in
a traffic graph. The facilities are the edges and the joint decision of all the players determines the congestion
in the graph. The more players utilizing one edge, the longer the travel time on that edge will be. As
one of the most well-known classes of games, congestion game has been successfully deployed in numerous
real-world applications such as resource allocation (Johari & Tsitsiklis, 2003), electrical grids (Ibars et al.,
2010) and cryptocurrency ecosystem (Altman et al., 2019).

Nash equilibrium (NE), one of the most important concepts in game theory (Nash Jr, 1950), characterizes
the emerging behavior in a multi-agent system with selfish players. It is commonly known that solving for the
NE is computationally efficient in congestion games as they are isomorphic to potential games (Monderer &
Shapley, 1996). Assuming full information access, classic dynamics such as best response dynamics (Fanelli
et al., 2008), replicator dynamics (Drighes et al., 2014) and no-regret dynamics (Kleinberg et al., 2009)
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provably converge to NE in congestion games. Recently Heliou et al. (2017) and Cui et al. (2022) relaxed
the full information setting to the online (semi-) bandit feedback setting, achieving asymptotic and non-
asymptotic convergence, respectively. It is worth noting that Cui et al. (2022) proposed the first algorithm
that has sample complexity independent of the number of actions.

Offline reinforcement learning has been studied in many real-world applications (Levine et al., 2020).
From the theoretical perspective, a line of work provides understandings of offline single-agent decision
making, including bandits and Markov Decision Processes (MDPs), where researchers derived favorable
sample complexity under the single policy coverage (Rashidinejad et al., 2021; Xie et al., 2021b). However,
how to learn in offline multi-agent games with offline data is still far from clear. Recently, the unilateral
coverage assumption has been proposed as the minimal assumption for offline zero-sum games and offline
general-sum games with corresponding algorithms to learn the NE (Cui & Du, 2022a,b; Zhong et al., 2022).
Though their coverage assumption and the algorithms apply to the most general class of normal-form games,
when specialized to congestion games, the sample complexity will scale with the number of actions, which can
be exponentially large. Since congestion games admit specific structures, one may hope to find specialized
data coverage assumptions that permit sample-efficient offline learning.

In different applications, the types of feedback, i.e., the revealed reward information, can be different in
the offline dataset. For instance, the dataset may include the reward of each facility, the reward of each
player, or the total reward of the game. With decreasing information contained in the dataset, different
coverage assumptions and algorithms are necessary. In addition, the main challenge in solving congestion
games lies in the curse of an exponentially large action set, as the number of actions can be exponential in
the number of facilities. In this work, we aim to answer the following question:

When can we find approximate NE in offline congestion games with different types of feedback, without
suffering from the curse of large action set?

We provide an answer that reveals striking differences between different types of feedback.

1.1 Main Contributions

We provide both positive and negative results for each type of feedback. See Table 1 for a summary.

One-Unit
Deviation

Weak
Covariance
Domination

Strong
Covariance
Domination

Facility-Level 4 4 4
Agent-Level 8 4 4
Game-Level 8 8 4

Table 1: A summary of how data coverage assumptions
affect offline learnability. In particular, 4 represents
under this pair of feedback type and assumption, an
NE can be learned with a sufficient amount of data;
on the other hand, 8 represents there exists some
instances in which a NE cannot be learned no matter
how much data is collected.

1. Three types of feedback and corresponding
data coverage assumptions. We consider
three types of feedback: facility-level feedback,
agent-level feedback, and game-level feedback to
model different real-world applications and what
dataset coverage assumptions permit finding an
approximate NE. In offline general-sum games, Cui
& Du (2022b) proposes the unilateral coverage
assumption. Although their result can be applied to
offline congestion games with agent-level feedback,
their unilateral coverage coefficient is at least as
large as the number of actions and thus has an
exponential dependence on the number of facilities.
Therefore, for each type of feedback, we propose a
corresponding data coverage assumption to escape
the curse of the large action set. Specifically:
• Facility-Level Feedback: For facility-level
feedback, the reward incurred in each facility is provided in the offline dataset. This type of feedback
has the strongest signal. We propose the One-Unit Deviation coverage assumption (cf. Assumption 2) for
this feedback.
• Agent-Level Feedback: For agent-level feedback, only the sum of the facilities’ rewards for each agent
is observed. This type of feedback has weaker signals than the facility-level feedback does, and therefore we
require a stronger data coverage assumption (cf. Assumption 3).
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• Game-Level Feedback: For the game-level feedback, only the sum of the agent rewards is obtained.
This type of feedback has the weakest signals, and we require the strongest data coverage assumption
(Assumption 4).
Notably, for the latter two types of feedback, we leverage the connections between congestion games and
linear bandits.
2. Sample complexity analyses for different types of feedback. We adopt the surrogate minimization
idea in Cui & Du (2022b) and show a unified algorithm (cf. Algorithm 1) with carefully designed bonus
terms tailored to different types of feedback can efficiently find an approximate NE, therefore showing our
proposed data coverage assumptions are sufficient. For each type of feedback, we give a polynomial upper
bound under its corresponding dataset coverage assumption.
3. Separations between different types of feedback. To rigorously quantify the signal strengths
in the three types of feedback, we provide concrete hard instances. Specifically, we show there exists a
problem instance that satisfies Assumption 2, but with only agent-level feedback, we provably cannot find
an approximate NE, yielding a separation between the facility-level feedback and the agent-level feedback.
Furthermore, we also show there exists a problem instance that satisfies Assumption 3, but with only game-
level feedback, we provably cannot find an approximate NE, yielding a separation between the agent-level
feedback and game-level feedback.

1.2 Motivating Examples

Here, we provide several concrete scenarios to exemplify and motivate the aforementioned three types of
feedback. Formal definitions of the problem can be found in Section 2.

Example 1 (Facility-level feedback). Suppose Google Maps is trying to improve its route assigning
algorithm through historical data based on certain regions. Then, each edge (road) on the traffic graph
of this region can be considered as a facility and the action that a user will take is a path that connects a
certain origin and destination. In this setting, the cost of each facility is the waiting time on that road, which
may increase as the number of users choosing this facility increases. In the historical data, each data point
contains the path chosen by each user and his/her waiting time on each road, which is an offline dataset
with facility-level feedback.

Example 2 (Agent-level feedback). Suppose a company is trying to learn a policy to advertise its products
from historical data. We can consider a certain set of websites as the facility set, and the products as
the players. The action chosen for each product is a subset of websites where the company will place
advertisements for that product. The reward for each product is measured by its sales. In the historical
data, each data point contains the websites chosen for each product advertisement and the total amount of
sales within a certain range of time. This offline dataset inherently has only agent-level feedback since the
company cannot measure each website’s contribution to sales.

Example 3 (Game-level feedback). Under the same setting above, suppose now another company (called
B) is also trying to learn such a policy but lacks internal historical data. Therefore, B decides to use the
data from the company mentioned in the above example (called A). However, since company B does not
have internal access to company A’s database, the precise sales of each product is not visible to company B.
As a result, company B can only record the total amount of sales of all concerning products from company
A’s public financial reports, making its offline dataset have only the game-level feedback.

1.3 Related Work

Potential Games and Congestion Games. Potential games are a special class of normal-form games
with a potential function to quantify the changes in the payoff of each player and deterministic NE is proven
to exist (Monderer & Shapley, 1996). Asymptotic convergence to the NE can be achieved by classic game
theory dynamics such as best response dynamic (Durand, 2018; Swenson et al., 2018), replicator dynamic
(Sandholm et al., 2008; Panageas & Piliouras, 2016) and no-regret dynamic (Heliou et al., 2017). Recently,
Cen et al. (2021) proved that natural policy gradient has a convergence rate independent of the number
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of actions in entropy regularized potential games. Anagnostides et al. (2022) provided the non-asymptotic
convergence rate for mirror descent and O(1) individual regret for optimistic mirror descent.

Congestion games are proposed in the seminal work (Rosenthal, 1973) and the equivalence with potential
games is proven in (Monderer & Shapley, 1996). Note that congestion games can have exponentially large
action sets, so efficient algorithms for potential games are not necessarily efficient for congestion games.
Non-atomic congestion games consider separable players, which enjoy a convex potential function if the
cost function is non-decreasing (Roughgarden & Tardos, 2004). For atomic congestion games, the potential
function is usually non-convex, making the problem more difficult. (Kleinberg et al., 2009; Krichene et al.,
2014) show that no-regret algorithms asymptotically converge to NE with full information feedback and
(Krichene et al., 2015) provide averaged iterate convergence for bandit feedback. (Chen & Lu, 2015, 2016)
provide non-asymptotic convergence by assuming the atomic congestion game is close to a non-atomic one,
and thus approximately enjoys the convex potential. Recently, Cui et al. (2022) proposed two Nash-regret
minimizing algorithms, an upper-confidence-bound-type algorithm and a Frank-Wolfe-type algorithm for
semi-bandit feedback and bandit feedback settings respectively, and showed both algorithms converge at a
rate that does not depend on the number of actions. To the best of our knowledge, all of these works either
consider the full information setting or the online feedback setting instead of the offline setting in this paper.

Offline Bandits and Reinforcement Learning. For related works in empirical offline reinforcement
learning, interested readers can refer to (Levine et al., 2020). From the theoretical perspective, researchers
have been putting effort into understanding what dataset coverage assumptions allow for learning the optimal
policy. The most basic assumption is the uniform coverage, i.e., every state-action pair is covered by the
dataset (Szepesvári & Munos, 2005). Provably efficient algorithms have been proposed for both single-agent
and multi-agent reinforcement learning (Yin et al., 2020, 2021; Ren et al., 2021; Sidford et al., 2020; Cui
& Yang, 2021; Zhang et al., 2020; Subramanian et al., 2021). In single-agent bandits and reinforcement
learning, with the help of pessimism, only single policy coverage is required, i.e., the dataset only needs
to cover the optimal policy (Jin et al., 2021a; Rashidinejad et al., 2021; Xie et al., 2021b,a). For offline
multi-agent Markov games, Cui & Du (2022a) first show that it is impossible to learn with the single policy
coverage and they identify the unilateral coverage assumption as the minimal coverage assumption while
Zhong et al. (2022); Xiong et al. (2022) provide similar results with linear function approximation. Recently,
Yan et al. (2022); Cui & Du (2022b) give minimax sample complexity for offline zero-sum Markov games. In
addition, Cui & Du (2022b) proposes an algorithm for offline multi-player general-sum Markov games that
do not suffer from the curse of multiagents.

2 Preliminary

2.1 Congestion Game

General-Sum Matrix Game. A general-sum matrix game is defined by a tuple G = ({Ai}mi=1, R), where
m is the number of players, Ai is the action space for player i and R(·|a) is a distribution over [0, rmax]m

with mean r(a). When playing the game, all players simultaneously select actions, constituting joint action
a and the reward is sampled as r ∼ R(·|a), where player i gets reward ri.

Let A =
∏m
i=1Ai. A joint policy is a distribution π ∈ ∆(A) while a product policy is π =

⊗m
i=1 πi with

πi ∈ ∆(Ai), where ∆(X ) denotes the probability simplex over X . If the players follow a policy π, their
actions are sampled from the distribution a ∼ π. The expected return of player i under some policy π is
defined as value V πi = Ea∼π[ri(a)].

Let π−i be the joint policy of all the players except for player i. The best response of the player i to policy

π−i is defined as π
†,π−i
i = arg maxµ∈∆(Ai) V

µ,π−i
i . Here µ is the policy for player i and (µ, π−i) constitutes a

joint policy for all players. We can always set the best response to be a pure strategy since the value function

is linear in µ. We also denote V
†,π−i
i := V

π
†,π−i
i ,π−i

i as the best response value. To evaluate a policy π, we
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use the performance gap defined as

Gap(π) = max
i∈[m]

î
V
†,π−i
i − V πi

ó
.

A product policy π is an ε-approximate NE if Gap(π) ≤ ε. A product policy π is an NE if Gap(π) = 0.
Note that it is possible to have multiple Nash equilibria in one game.
Congestion Game. A congestion game is a general-sum matrix game with special structure. In particular,
there is a facility set F such that a ⊆ F for all a ∈ Ai, meaning that the size of Ai can at most be 2F ,
where F = |F|. A set of facility reward distributions

{
Rf (·|n)

∣∣n ∈ N
}
f∈F is associated with each facility f .

Let the number of players choosing facility f in the action be nf (a) =
∑m
i=1 1 {f ∈ ai}, where a is the joint

action. A facility with specific number of players selecting it is said to be a configuration on f . Two joint
actions where the same number of players select f are said to have the same configuration on f . The reward
associated with facility f is sampled by rf ∼ Rf

(
·
∣∣nf (a)

)
and the total reward of player i is ri =

∑
f∈ai r

f .

With slight abuse of notation, let rf (n) be the mean reward that facility f generates when there are n players
choosing it. We further assume Rf (·|n) ∈ [−1, 1] for all n ∈ [m]. It is well known that every congestion
game has pure strategy NE.

The information we get from the game each episode is
(
ak, rk

)
, where ak is the joint action and rk

contains the reward signal. In this paper, we will consider three types of reward feedback in congestion
games, which essentially make rk different in each data point

(
ak, rk

)
.

• Facility-level feedback (semi-bandit feedback): In each data point
(
ak, rk

)
, rk contains reward

received from each facility f ∈
⋃m
i=1 a

k
i , meaning that rk =

{
rf,k

}
f∈

⋃m
i=1 a

k
i
.

• Agent-level feedback (bandit feedback): In each data point
(
ak, rk

)
, rk contains reward received by

each player, meaning that rk =
{
rki
}m
i=1

, where rki =
∑
f∈aki

rf,k.

• Game-level feedback: In each data point
(
ak, rk

)
, rk contains only the total reward received by

all players, meaning that rk =
∑m
i=1 r

k
i , which becomes a scalar. This type of feedback is the minimal

information we can get and has not been discussed in previous literature.

2.2 Offline Matrix Game

Offline Matrix Game. In the offline setting, the algorithm only has access to an offline dataset D ={(
ak, rk

)}n
k=1

collected by some exploration policy ρ in advance.
A joint action a is said to be covered if ρ(a) > 0. Cui & Du (2022a) has proved that the following

assumption is a minimal dataset coverage assumption to learn an NE in a general-sum matrix game. The
assumption requires the dataset to cover all unilaterally deviated actions from one NE.

Assumption 1. There exists an NE π∗ such that for any player i and policy πi ∈ ∆(A), a is covered by ρ
as long as (πi, π

∗
−i)(a) > 0.

Cui & Du (2022b) provides a sample complexity result for matrix games with dependence on C(π∗),
where C(π) quantifies how well π is unilaterally covered by the dataset. The definition is as follows.

Definition 1. For strategy π and ρ satisfying Assumption 1, the unilateral coefficient is defined as

C(π) = max
i,π′,ρ(a)>0

(π′i, π−i) (a)

ρ(a)
. (1)

Surrogate Minimization. Cui & Du (2022b) proposed an algorithm called Strategy-wise Bonus +
Surrogate Minimization (SBSM) to achieve efficient learning under Assumption 1. SBSM motivates a general
algorithm framework for learning congestion games in different settings. First we design r̂i(a) which estimates
the reward player i gets when the joint action is a. Offline bandit (reinforcement learning) algorithm usually
leverages the confidence bound (bonus) to create a pessimistic estimate of the reward, inducing conservatism
in the output policy and achieving a sample-efficient algorithm. Here we formally define bonus as follows.
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Definition 2. For any reward estimator r̂i : A → R that estimates reward with expectation ri : A → R,
bi : A → R is called the bonus term for r̂ if for all i ∈ [m],a ∈ A, with probability at least 1− δ, it holds that

|ri(a)− r̂i(a)| ≤ bi(a). (2)

The formulae for r̂i and b vary according to the type of feedback as discussed in later sections. The
optimistic and pessimistic values for policy π and player i are defined as

V
π

i = Ea∼π [r̂i(a) + bi(a)] , V πi = Ea∼π [r̂i(a)− bi(a)] . (3)

Finally, the algorithm minimizes maxi∈[m]

[
V
†,π−i
i − V πi

]
over the policy π, which serves as a surrogate of

the performance gap (see Lemma 1). We summarize it in Algorithm 1. Note that we only take the surrogate
gap from SBSM but not the strategy-wise bonus, which is a deliberately designed bonus term depending on
the policy. Instead, we design specialized bonus terms by exploiting the unique structure of the congestion
game, which will be discussed in detail in later sections.

Algorithm 1 Surrogate Minimization for Congestion Games

Require: Offline dataset D
1: Compute r̂(a), b(a) for all a ∈ A according to the dataset D.
2: Compute the optimistic value V

π

i and pessimistic value V πi for all policy π and player i by (3).

3: Compute V
†,π−i
i = maxπ′i∈∆(Ai) V

π′i,π−i
i .

4: return arg minπ maxi∈[m]

[
V
†,π−i
i − V πi

]
.

The sample complexity of this algorithm is guaranteed by the following theorem.

Theorem 1. Let Π be the set of all deterministic policies, and let b be a bonus term for r̂. With probability
1− δ, it holds that

Gap(πoutput) ≤ 2 max
i∈[m]

ï
max
π′∈Π

Ea∼(π′i,π
∗
−i)
bi(a) + Ea∼π∗bi(a)

ò
.

where πoutput is the output of Algorithm 1.

Here, the expectation of bonus term over some policy reflects the degree of uncertainty of the reward
under that policy. Inside the operation maxπ∈Π[·], the first term is for unilaterally deviated policy from π
that maximizes this uncertainty and the second term is the uncertainty for π. The full proof is deferred
to Appendix A. This theorem tells us that if we want to bound the performance gap, we need to precisely
estimate rewards induced by unilaterally deviated actions from the NE, which caters to Assumption 1.

3 Offline Congestion Game with Facility-level Feedback

Recall that for Definition 1, if π is deterministic, the minimum value of C(π) is achieved when ρ uniformly
covers all actions achievable by unilaterally deviating from π (see Proposition 1). Since having π′i deviate from
π can at least cover Ai actions, the smallest value of C(π) scales with maxi∈[m]Ai, which is reasonable for
general-sum matrix games. However, this is not acceptable for congestion games since the size of action space
can be exponential (Ai ≤ 2F ). As a result, covering all possible unilateral deviations becomes intractable.

Compared to general-sum games, congestion games with facility-level feedback inform us about not only
the total reward, but also the individual rewards from all chosen facilities. This allows us to estimate the
reward distribution from each facility separately. Instead of covering all unilaterally deviating actions a, we
only need to make sure for any such action a and any facility f ∈ F , we cover some actions that share the
same configuration with a on f . This motivates the dataset coverage assumption on facilities rather than
actions. In particular, we quantify the facility coverage condition and present the new assumption as follows.
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Definition 3. For strategy π, facility f and integer n, the facility cumulative density is defined as

dπf (n) =
∑

a:nf (a)=n

π(a).

Furthermore, a facility f is said to be covered by ρ at n if dρf (n) > 0.

Assumption 2 (One-Unit Deviation). There exists an NE π∗ such that for any player i and policy πi ∈
∆(A), facility f is covered by ρ at n as long as it is covered by (πi, π

∗
−i).

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

𝑛

𝑓! 𝑓" 𝑓# 𝑓$ 𝑓%

Figure 1: Illustration of Assumption 2.
There are five facilities and five players
with full action space. The facility
configuration in π∗ is marked in red.
The transparent boxes cover the facility
configuration required in the assumption.

In plain text, this assumption requires us to cover all
possible facility configurations induced by unilaterally deviated
actions. As mentioned in Section 2.1, we can always choose π∗

to be deterministic. In the view of each facility, the unilateral
deviation is either a player who did not select it now selects, or
a player who selected it now does not select it. Thus for each
f ∈ F , it is sufficient to cover configurations with the number
of players selecting f differs from that number of NE by 1.
This is why we call it the one-unit deviation assumption. The
facility coverage condition is visualized in Figure 1. Meanwhile,
Definition 1 is adapted to this assumption as follows.

Definition 4. For any strategy, the facility unilateral
coefficient is defined as

Cfacility = max
i,π′,f,dρf (n)>0

d
π′i,π−i
f (n)

dρf (n)
.

The sample complexity bound depends on Cfacility (see
Theorem 3). The minimum value of Cfacility is at most 3, which
is acceptable (see Proposition 2). Furthermore, we show that
no assumption weaker than the one-unit deviation allows NE learning, as stated in the following theorem.

Theorem 2. Define a class X of congestion game M and exploration strategy ρ that consists of all M and ρ
pairs that Assumption 2 is satisfied except for at most one configuration for one facility. For any algorithm
ALG there exists (M,ρ) ∈ X such that the output of ALG is at most a 1/2-NE strategy no matter how
much data is collected.

Proof. Consider congestion game with a single facility f and five players. The action space for each player is
{∅, {f}}. We construct the following two congestion games with deterministic rewards. Since there is only
one facility, the reward players receive and whether an joint action is NE only depends on the configuration,
i.e. the number of players selecting f . Hence in the remaining part of the proof we will use configuration to
describe the action. For the first game, there are two NEs, which are “only one player selecting f” and “all
players selecting f”. For the second game, the NE is “four players selecting f”. The exploration policy is
set to be

ρ(a) =

ß
1/20 one, three or four players select f ,
0 otherwise.

For the first game, we cover the first NE and its unilateral deviation except for two players selecting f . For

Rf(1) = 1 Rf (2) = −1 Rf (3) = 1 Rf (4) = 1 Rf(5) = 1

Congestion Game 1
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Rf (1) = 1 Rf (2) = 1 Rf (3) = 1 Rf(4) = 1 Rf (5) = −1

Congestion Game 2

the second game, we cover the NE except for five players selecting f . Hence both game with ρ are in X and
are not distinguishable for ALG. Let the probability of the output policy selecting four players choosing f
be p. Then it is at least p-approximate NE for game 1 and (1−p)-approximate NE for game 2. In conclusion,
there exists (M,ρ) ∈ X such that the output of ALG is at most a 1/2-NE strategy no matter how much
data is collected.

In the facility-level feedback setting, the bonus term is similar to that from Cui et al. (2022). First, we
count the number of tuples in dataset D with n players choosing facility f asNf (n) =

∑
ak∈D 1

{
nf
(
ak
)

= n
}

.
Then, we define the estimated reward function and bonus term as

r̂fi (a) =
∑
f∈ai

∑
(ak,rk)∈D r

f,k
1
{
nf
(
ak
)

= nf (a)
}

Nf (n) ∨ 1
, bi(a) =

∑
f∈ai

…
ι

Nf (n) ∨ 1
.

Here ι = 2 log(4(m + 1)F/δ). The contribution for each term in bi mimics the bonus terms from the well-
known UCB algorithm. The following theorem provides a sample complexity bound for this algorithm.

Theorem 3. With probability 1− δ, if Assumption 2 is satisfied, it holds that

Gap(πoutput) ≤ 8
√
m+ 1CfacilityιF/

√
n.

The proof of this theorem involves bounding the expectation of b by exploiting the special structure of
congestion game. The actions can be classified by the configuration on one facility. This helps bound the
expectation over actions, which is essentially the sum over Ai actions, by the number of players. Detailed
proof is deferred to Section A in the appendix.

4 Offline Congestion Game with Agent-level Feedback

4.1 Impossibility Result

In the agent-level feedback setting, we no longer have access to rewards provided by individual facilities,
so estimating them separately is no longer feasible. From limited actions covered in the dataset, we may
not be able to precisely estimate rewards for all unilaterally deviated actions, and thus unable to learn an
approximate NE. This observation is formalized in the following theorem.

Theorem 4. Define a class X of congestion game M and exploration strategy ρ that consists of all M and
ρ pairs such that Assumption 2 is satisfied. For any algorithm ALG there exists (M,ρ) ∈ X such that the
output of ALG is at most a 1/8-approximate NE no matter how much data is collected.

Proof. Consider congestion game with two facilities f1, f2 and two players. Action space for both players
are unlimited, i.e. A1 = A2 = {∅, {f1}, {f2}, {f1, f2}}. We construct the following two congestion games
with deterministic rewards. The NE for game 3 is a1 = {f1, f2}, a2 = {f1} or a2 = {f1, f2}, a1 = {f1}. The
NE for game 4 is a1 = {f1}, a2 = {f2} or a2 = {f1}, a1 = {f2}. The facility coverage conditions for these
NEs are marked by bold symbols in the tables. The exploration policy ρ is set to be

Rf1(2) = 1/2 Rf2(2) = −1

Rf1(1) = 1 Rf2(1) = 1

Congestion Game 3

Rf1(2) = −1/4 Rf2(2) = −1/4

Rf1(1) = 1 Rf2(1) = 1

Congestion Game 4
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ρ(a1, a2) =


1/3 a1 = a2 = {f1, f2}
1/3 a1 = {f1, f2}, a2 = ∅ or a2 = {f1, f2}, a1 = ∅
0 otherwise

(4)

(𝑓! , 1)

(𝑓! , 2)

(𝑓" , 1)

(𝑓" , 2)

c

Figure 2: Facility coverage condition for ρ. Each pair (f, n) represents the configuration that n players select
facility f . Each box contains the facility coverage condition for one player. There are two classes of covered
actions as described in formula (4). The color of each box represents the class of actions it belongs to.

It can be easily verified that both f1 and f2 are covered at 1 and 2. However, all information we may
extract from the dataset is Rf1(1) + Rf2(1) = 2 and Rf1(2) + Rf2(2) = −1/2. It is impossible for the
algorithm to distinguish these two games. Suppose the output strategy of ALG selects action such that
two players select f1 with probability p. Then π is at least a (1 − p)/4-approximate NE for the first game
and at least a p/4-approximate NE for the second game. In conclusion, there exists (M,ρ) ∈ X such that
the output of the algorithm ALG is at most a 1/8-approximate NE strategy no matter how much data is
collected.

4.2 Solution via Linear Bandit

In the agent-level feedback setting, a congestion game can be viewed as m linear bandits. Let θ be a
d-dimensional vector where d = mF and rf (n) = θn+mf . Let Ai : A → {0, 1}d and

[Ai(a)]j = 1{j = n+mf, f ∈ ai, n = nf (a)}.

Here we assign each facility an index in 0, 1, · · · , F − 1. Then the mean reward for player i can be written
as ri(a) = 〈Ai(a), θ〉. In the view of bandit problem, i is the index of the bandit and the action taken is a,

which is identical for all m bandits. r̂i(a) =
¨
Ai(a), θ̂

∂
where θ̂ can be estimated through ridge regression

together with bonus term as follows.

θ̂ = V −1
∑

(ak,rk)∈D

∑
i∈[m]

Ai(a
k)rki , V = I +

∑
(ak,rk)∈D

∑
i∈[m]

Ai(a
k)Ai(a

k)>. (5)

bi(a) = ‖Ai(a)‖V −1

√
β, where

√
β = 2

√
d+

 
d log

Å
1 +

mnF

d

ã
+ ι. (6)

Jin et al. (2021b) studied offline linear Markov Decision Process (MDP) and proposed a sufficient coverage
assumption for learning optimal policy. A linear bandit is essentially a linear MDP with only one state and
horizon equals to 1. Here we adapt the assumption to bandit setting and generalize it to congestion game
in Assumption 3.

Assumption 3 (Weak Covariance Domination). There exists a constant Cagent > 0 and an NE π∗ such
that for all i ∈ [m] and policy πi, it holds that

V � I + nCagentEa∼(πi,π∗−i)

[
Ai(a)Ai(a)>

]
. (7)

To see why Assumption 3 implies learnability, notice that the right hand side of (7) is equal to the
expectation of the covariance matrix V if the data is collected by running policy (πj , π

∗
−j) for Cagentn

episodes. By using such a matrix, we can estimate the rewards of actions sampled from (πj , π
∗
−j) precisely

via linear regression. Here, Assumption 3 states that for all unilaterally deviated policy (πj , π
∗
−j), we can
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estimate the rewards it generate at least as well as collecting data from (πj , π
∗
−j) for Cagentn episodes, which

implies that we can learn an approximate NE (see Theorem 1). Under Assumption 3, we can obtain the
sample complexity bound as follows.

Theorem 5. If Assumption 3 is satisfied, with probability 1− δ, it holds that

Gap(πoutput) ≤ 4

 
mFβ

Cagentn
,

where
√
β is defined in (6) and πoutput is the output of Algorithm 1..

Remark 1. As an illustrative example, consider a congestion game and full action space, i.e. Ai = 2F for
all player i with pure strategy NE. The dataset uniformly covers all actions where only one player deviates
and only deviates on one facility. For example, if player 1 chooses {f1, f2}, the dataset should cover player 1
selecting {f1}, {f2}, {f1, f2, f3}, {f1, f2, f4}, · · · with other players unchanged. There are F such actions for
each player, so the dataset covers mF actions in total. The change in reward when a single player deviates
from π∗ is the sum of change in reward from each deviated facility. With sufficient data, we can precisely
estimate the change in reward from each deviated facility and estimate the reward from any unilaterally
deviated action afterward. With high probability, Cagent for this example is no smaller than 1/2mF 4 (see
Proposition 3 in the appendix). Hence with appropriate dataset coverage, our algorithm can achieve sample-
efficient approximate NE learning in agent-level feedback.

5 Offline Congestion Game with Game-Level Feedback

With less information revealed in game-level feedback, a stronger assumption is required to learn an approximate
NE, which is formally stated in Theorem 6.

Theorem 6. Define a class X of congestion game M and exploration strategy ρ that consists of all M and
ρ pairs such that Assumption 3 is satisfied. For any algorithm ALG there exists (M,ρ) ∈ X such that the
output of ALG is at least 1/4-approximate NE no matter how much data is collected.

Proof. Similar to the proof of Theorem 4, consider a congestion game with two facilities f1, f2 and two
players. Action space for both players are unlimited. We construct the following two congestion games with
deterministic rewards. The NE for game 5 is a1 = {f1}, a2 = {f1}. The NE for game 6 is a1 = {f1}, a2 = {f2}
or a2 = {f1}, a1 = {f2}. The exploration policy is set to be

Rf1(2) = 1/2 Rf2(2) = −1

Rf1(1) = 1 Rf2(1) = −1

Congestion Game 5

Rf1(2) = −1/2 Rf2(2) = −1

Rf1(1) = 1 Rf2(1) = 1

Congestion Game 6

ρ(a1, a2) =


1/5 a1 = a2 = {f2}
1/5 a1 = {f1}, a2 = ∅ or a2 = {f1}, a1 = ∅
1/5 a1 = {f1, f2}, a2 = {f1} or a2 = {f1, f2}, a1 = {f1}
0 otherwise

The reward information we can receive from the dataset in the agent-level feedback setting includes:
Rf2(2), Rf1(1), Rf1(2) +Rf2(1), Rf2(1). Hence we can compute the NE directly. In the game-level feedback
setting, all we can know about Rf1(2) and Rf2(1) is 2Rf1(2) +Rf2(1) = 0. Hence ALG cannot distinguish
these two games. Suppose the output of ALG selects action that 2 players select f1 with probability p,
then it is at least (1 − p)/2-approximate NE for game 5 and at least p/2-approximate NE for game 6. In
conclusion, ALG is at least 1/4-approximate NE strategy no matter how much data is collected.
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(𝑓! , 1)

(𝑓! , 2)

(𝑓" , 1)

(𝑓" , 2)

Figure 3: Facility coverage condition for ρ. Similar to Figure 2.

In the game-level feedback setting, a congestion game can be viewed as a linear bandit. Let A : A →
{0, 1}d and A(a) =

∑
i∈[m]Ai(a). The game-level reward can be written as r(a) = 〈A(a), θ〉. Thus, we can

similarly use ridge regression and build bonus terms as follows.

r̂i(a) =
¨
Ai(a), θ̂

∂
, θ̂ = V −1

∑
(ak,rk)∈D

A(ak)rk, V = I +
∑

(ak,r)∈D

A(ak)A(ak)>, (8)

bi(a) = max
i∈[m]

‖Ai(a)‖V −1

√
β, where

√
β = 2

√
d+
»
d log (1 + nm) + ι. (9)

The coverage assumption is adapted from Assumption 3 as follows.

Assumption 4 (Strong Covariance Domination). There exists a constant Cgame > 0 and an NE π∗ such
that for all i ∈ [m] and policy πi, it holds that

V � I + nCgameEa∼(πi,π∗−i)

[
Ai(a)Ai(a)>

]
. (10)

Note that although the statement of Assumption 4 is identical to that of Assumption 3, the definition
of V has changed, so they are actually different. The interpretation of this assumption is similar to that
of Assumption 3. It states that for all unilaterally deviated policy (πi, π

∗
−i), we can estimate the reward

at least as well as collecting data from (πi, π
∗
−i) for coutputn episodes with agent-level feedback. Under this

assumption, we get the sample complexity bound as follows.

Theorem 7. If Assumption 4 is satisfied, with probability 1− δ, it holds that

Gap(πoutput) ≤ 4

 
mFβ

Cgamen
,

where β is defined in equation (9) and πoutput is the output of Algorithm 1.

Remark 2. As an illustrative example, consider a congestion game with full action space and pure strategy
NE. Let the numbers of players selecting each facility be (n1, n2, · · · , nf ). The dataset uniformly contains
the following actions: action where the number of players selecting each facility are (0, n2, · · · , nf ), (n1 −
1, n2, · · · , nf ), (n1 + 1, n2, · · · , nf ) and similar actions for other facilities. Besides, we cover an NE action.
From this dataset, we can precisely estimate the reward from each single facility with one-unit deviation
configuration from NE and hence estimate the reward of unilaterally deviated actions. With high probability,
Cgame for this example is no smaller than 1/24F 3 (see Proposition 4 in the appendix). Hence with appropriate
dataset coverage, our algorithm can achieve sample-efficient approximate NE learning in game-level feedback.

6 Conclusion

In this paper, we studied NE learning for congestion games in the offline setting. We analyzed the problem
under various types of feedback. Hard instances were constructed to show separations between different types
of feedback. For each type of feedback, we identified dataset coverage assumptions to ensure NE learning.
With tailored reward estimators and bonus terms, we showed the surrogate minimization algorithm is able
to find an approximate NE efficiently.
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Stéphane Durand. Analysis of Best Response Dynamics in Potential Games. PhD thesis, Université Grenoble
Alpes, 2018.

Angelo Fanelli, Michele Flammini, and Luca Moscardelli. The speed of convergence in congestion games
under best-response dynamics. In International Colloquium on Automata, Languages, and Programming,
pp. 796–807. Springer, 2008.
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A Omitted Proof in Section 3

Lemma 1. With probability 1− δ, for any policy π, we have

Gap(π) ≤ max
i∈[m]

[
V
†,π−i
i − V πi

]
.

In addition, we have

Gap(πoutput) ≤ min
π

max
i∈[m]

[
V
†,π−i
i − V πi

]
.

Proof. By (3) and (2), with probability 1 − δ

V πi ≤ V πi ≤ V
π

i .

Hence

Gap(π) = max
π′

[
V
π′i,π−i
i − V πi

]
≤ max

π′
max
i∈[m]

[
V
π′i,π−i
i − V πi

]
.

Since both V
π′i,π−i
i and V πi are linear in each entry of π, the first maximizer on the RHS must correspond

to a deterministic policy. This proves the first statement. The second statement is by the fact that the
algorithm minimizes the RHS of the first statement.

Theorem 1. Let Π be the set of all deterministic policies, and let b be a bonus term for r̂. With probability
1− δ, it holds that

Gap(πoutput) ≤ 2 max
i∈[m]

ï
max
π′∈Π

Ea∼(π′i,π
∗
−i)
bi(a) + Ea∼π∗bi(a)

ò
.

where πoutput is the output of Algorithm 1.

Proof.

V πi − V
π
i = Ea∼π[ri(a)− r̂i(a) + bi(a)] ≤ 2Ea∼πbi(a)

V
π

i − V πi = Ea∼π[r̂i(a)− ri(a) + bi(a)] ≤ 2Ea∼πbi(a).

Let π̃ = arg maxπ′ maxi∈[m]

[
V
π′i,π−i
i − V πi

]
. By similar argument in Lemma 1 we know that we can always

choose π̃ ∈ Π.

Gap
(
πoutput

)
≤min

π
max
i∈[m]

[
V
†,π−i
i − V πi

]
= min

π
max
i∈[m]

[
V
π̃i,π−i
i − V πi

]
≤min

π
max
i∈[m]

î
V
π̃i,π−i
i − V πi + 2Ea∼(π̃i,π−i)bi(a) + 2Ea∼πbi(a)

ó
≤min

π

ß
max
i∈[m]

î
V
π̃i,π−i
i − V πi

ó
+ max
i∈[m]

[
2Ea∼(π̃i,π−i)bi(a) + 2Ea∼πbi(a)

]™
= min

π

ß
Gap(π) + max

i∈[m]

ï
2 max
π′∈Π

Ea∼(π′i,π−i)
bi(a) + 2Ea∼πbi(a)

ò™
≤Gap(π∗) + max

i∈[m]

ï
2 max
π′∈Π

Ea∼(π′i,π
∗
−i)
bi(a) + 2Ea∼π∗bi(a)

ò
=2 max

i∈[m]

ï
max
π′∈Π

Ea∼(π′i,π
∗
−i)
bi(a) + Ea∼π∗bi(a)

ò
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Lemma 2. With probability 1− δ, we have

|ri(a)− r̂i(a)| ≤ bi(a),
1

Nf (n)
≤ 4Hι

ndρf (n)

for all a ∈ A, i ∈ [m].

Proof.

ri(a)− r̂i(a) =
∑
f∈ai

[
r̂f
(
nf (a)

)
− rf

(
nf (a)

)]
.

By Hoeffding’s bound and union bound we have

∣∣∣r̂f (nf (a)
)
− rf

(
nf (a)

)∣∣∣ ≤  2

Nf (nf (a))
log

4(m+ 1)F

δ

for all f ∈ F , a ∈ A with probability 1 − δ/2. Combine the above inequalities we get the first statement
hold with probability 1− δ/2. By lemma A.1 of Xie et al. (2021b), replacing p by dρf

(
nf (a)

)
and the union

bound we get

1

Nf (n)
≤ 8 log(2(m+ 1)F/δ)

ndρf (n)
≤ 4ι

ndρf (n)

for all f ∈ G, a ∈ A with probability 1− δ/2. Finally, the proof is complete by using the union bound.

Theorem 3. With probability 1− δ, if Assumption 2 is satisfied, it holds that

Gap(πoutput) ≤ 8
√
m+ 1CfacilityιF/

√
n.

Proof. We have

Ea∼(π′i,π
∗
−i)
bi(a)

=
∑
f∈F

Ea∼(π′i,π
∗
−i)

…
ι

Nf (nf (a)) ∨ 1

≤Cfacility

∑
f∈F

m∑
n′=0

dρf (n)

√
4ι2

ndρf (n′)

=2Cfacilityι
∑
f∈F

m∑
n′=0

 
dρf (n′)

n

≤2Cfacilityι
∑
f∈F

Ã
m+ 1

n

m∑
n′=0

dρf (n′)

≤2
√
m+ 1CfacilityιF/

√
n

The first inequality is by Definition 4 and Lemma 2. The second inequality is by the fact that dρf (a) ≤ 1.
Combine this with Theorem 1 and Lemma 2 we get the conclusion.

A.1 Omitted Calculations in Section 3

Proposition 1. Suppose π is a deterministic strategy. For a fixed domain of ρ, the value of C(π) is the
smallest when ρ is uniform over all actions achievable from unilaterally deviating from π.
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Proof. Assume that ρ covers an action a which is not achievable from unilaterally deviating from pi, then
we construct a new ρ′ where ρ′(a) = 0 and the other entries scales up by factor 1/(1 − ρ(a)). ρ′ achieves
larger C(π) than ρ. Hence ρ only cover the actions achievable from unilaterally deviating from π.

Assume that the distribution is not uniform. Since the best response to a pure strategy can always taken
to be a pure strategy, the numerator of 1 can always achieve 1 no matter what a is. Let a∗ = arg mina ρ(a),
then there exists ã such that ρ(ã) > ρ(a∗). Construct ρ′ such that ρ′(a∗) = ρ′(ã) = (ρ(a∗) + ρ(ã))/2, then
C(π) would not increase. By contradiction we get the conclusion.

Proposition 2. The minimum value of Cfacility is no larger than 3.

Proof. Consider the case when ρ is a policy that induces uniform coverage on all facility configurations
achievable from π∗. Since at most three configurations are covered for each facility, the minimum value of
dρf (n) is 1/3. Thus the minimum value of C̃(π∗) is no larger than 3

B Omitted Proof in Section 4

Lemma 3. With probability 1− δ we have

|ri(a)− r̂i(a)| ≤ bi(a)

for all i ∈ [m],a ∈ A.

Proof. As a degenerate version of theorem 20.5 of Lattimore & Szepesvári (2020), we have with probability
1− δ it holds that ∥∥∥θ̂ − θ∥∥∥

V
≤ ‖θ‖2 +

»
log det(V ) + 2 log(1/δ).

Hence with probability 1− δ

|ri(a)− r̂i(a)| =
∣∣∣¨Ai(a), θ̂ − θ

∂∣∣∣
≤ ‖Ai(a)‖V −1

∥∥∥θ̂ − θ∥∥∥
V

≤ ‖Ai(a)‖V −1

(
‖θ‖2 +

»
log det(V ) + 2 log (1/δ)

)
for all i ∈ [m] and a ∈ A. By Lemma 4 of Cui et al. (2022) we have

det(V ) ≤
Å

1 +
mnF

d

ãd
since by (5) ‖Ai(a)‖22 ≤ F . Besides, ‖θ‖2 ≤ 2

√
d. The proof is complete by combining all these and taking

maxi∈[m].

Theorem 5. If Assumption 3 is satisfied, with probability 1− δ, it holds that

Gap(πoutput) ≤ 4

 
mFβ

Cagentn
,

where
√
β is defined in (6) and πoutput is the output of Algorithm 1..
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Proof. We have for all i ∈ [m]

Ea∼(πi,π∗−i)
bi(a)

=Ea∼(πi,π∗−i)

»
A>i (a)V −1Ai(a)

≤Ea∼(πi,π∗−i)

…
A>j (a)

Ä
I + CagentnEa′∼(πi,π∗−i)

[Ai(a′)Ai(a′)>]
ä−1

Ai(a)

=Ea∼(πi,π∗−i)

…
tr
[Ä
I + CagentnEa′∼(πi,π∗−i)

[Ai(a′)Ai(a′)>]
ä−1

Ai(a)A>i (a)
]

≤Ea∼(πi,π∗−i)

…
tr
[Ä
I + CagentnEa′∼(πi,π∗−i)

[Ai(a′)Ai(a′)>]
ä−1

Ai(a)A>i (a)
]

≤
…

tr
[Ä
I + CagentnEa′∼(πi,π∗−i)

[Ai(a′)Ai(a′)>]
ä−1

Ea∼(πi,π∗−i)
Ai(a)A>i (a)

]
=

1√
Cagentn

…
tr
[
I −
Ä
I + CagentnEa′∼(πi,π∗−i)

[Ai(a′)Ai(a′)>]
ä−1

]
≤
 

d

Cagentn
=

 
mF

Cagentn

Combine this with Theorem 1 we get the conclusion.

B.1 Omitted Calculations in Section 4

Lemma 4. If n ≥ 8 log((mF + 1)/δ)(mF + 1), with probability 1− δ, N(a) ≥ ρ(a)n/2 = n/2(mF + 1) for
all a with ρ(a) > 0.

Proof. N(a) follows binomial distribution with parameters n and ρ(a). By Chernoff bound, for all ε ∈ R+,

Pr {N(a) ≤ (1− ε)nρ(a)} ≤ exp

Å
−ε

2nρ(a)

2

ã
Hence if ρ ≥ −8 log δ/n, we have for all a covered in the example, we have

Pr {N(a) ≥ (1− ε)nρ(a)} ≥ 1− exp(−µ/8) ≥ 1− δ.

By construction ρ(a) = 1/(mF + 1) for covered action a. By the union bound we get the conclusion.

Proposition 3. If n ≥ 8 log((mF + 1)/δ)(mF + 1) and Cagent = 1/2mF 4, then with probability 1 − δ,
Assumption 3 holds for the example described in Remark 1.

Proof. It suffices to show that inequality 7 holds for all pure strategy π and i because the right hand side is
linear in any entry of πi. From now on, let us focus on some specific i and pure strategy (πi, π

∗
−i) choosing

ã deterministically.
Without loss of generality, suppose among all elements in ã, facility that deviates from NE are f1, f2, · · · , fs.

For convenience, let A0 = Ai(a
∗) where a∗ is the NE. For fj , to estimate its contribution to the reward

change, we need an action besides a∗, which we denote as afj . That is, afj deviates from a∗ only on fj and
let Aj = Ai(a

fj ). Without loss of generality, suppose the contribution corresponds to 〈Aj − A0, θ〉. Then
we can write

Ai(ã) = A0 +
∑
j∈[s]

(Aj −A0) =
∑
j∈[s]

Aj + (1− s)A0

18



By Lemma 4, it suffices to show

I +
n

2(mF + 1)

∑
j∈[s]

AjA
>
j +

n

2(mF + 1)
A0A

>
0 � I + CagentnAi(ã)Ai(ã)>.

In other words, for any x ∈ RmF , we have

n

2(mF + 1)

∑
j∈[s]

x>AjA
>
j x+

n

2(mF + 1)
x>A0A

>
0 x ≥ Cagentnx

>Ai(ã)Ai(ã)>x.

For convenience, let xi = x>Ai, this inequality can be rewritten as

n

2(mF + 1)

∑
j∈[s]

x2
j +

n

2(mF + 1)
x2

0 ≥ Cagentn

∑
j∈[s]

xj + (1− s)x0

2

.

By Jensen’s inequality it suffices to show

n

2(mF + 1)

∑
j∈[s]

x2
j +

n

2(mF + 1)
x2

0 ≥ Cagentn(s+ 1)

∑
j∈[s]

x2
j + (1− s)2x2

0

 .
Hence it suffices to show

n

2(mF + 1)
≥ Cagentn(F + 1)(F − 1)2

C Omitted Proof in Section 5

Lemma 5. With probability 1− δ we have

|ri(a)− r̂i(a)| ≤ bi(a)

for all i ∈ [m],a ∈ A.

Proof. Similar to Lemma 3, we have

|ri(a)− r̂i(a)| ≤ ‖Ai(a)‖V −1

(
‖θ‖2 +

»
log det(V ) + 2 log(1/δ)

)
.

The bound of det(V ) is now as follows. The basic idea is the same as that of lemma 4 by Cui et al. (2022)

det(V ) ≤
Å

tr(V )

d

ãd
=

Ç
tr(I) +

∑
(ak,r)∈D ‖A(ak)‖22

d

åd
≤
Å
d+ nm2F

d

ãd
= (1 + nm)mF

Besides, ‖θ‖2 ≤ 2
√
d. Combine all these we get the conclusion.

Theorem 7. If Assumption 4 is satisfied, with probability 1− δ, it holds that

Gap(πoutput) ≤ 4

 
mFβ

Cgamen
,

where β is defined in equation (9) and πoutput is the output of Algorithm 1.

Proof. The proof is identical to that of Theorem 5 except that Cgame is used instead of Cgame.
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C.1 Omitted Calculations in Section 5

Lemma 6. If n ≥ 8 log((3F + 1)/δ)(3F + 1), with probability 1− δ, N(a) ≥ ρ(a)n/2 = n/2(3F + 1) for all
a with ρ(a) > 0.

The proof is identical to Lemma 4 except that we have at most 3F +1 actions to cover instead of at most
mF + 1 actions.

Proposition 4. If n ≥ 8 log((3F+1)/δ)(3F+1) and Cgame = 1/24F 3, then with probability 1−δ, Assumption
4 holds for the exampled described in Remark 2.

Proof. The procedure is similar to that in the proof of Proposition 3. Let us focus on some specific pure
strategy π choosing ã deterministically and player i. To calculate the reward from one facility, we need
two actions. Suppose ãi covers f1, f2, · · · , fs with configuration n1, n2, · · · , ns. Let the action vector
corresponding to facility fj be Aj,1 and Aj,2. Without loss of generality, suppose the reward from the
indivial facility is 〈Aj,1 −Aj,2, θ〉/nj . Then we can write

Ai(ã) =
∑
j∈[s]

Aj,1 −Aj,2
nj

It suffices to show

n

2F (3F + 1)

∑
j∈[s]

(
Aj,1A

>
j,1 +Aj,2A

>
j,2

)
� CgamenAi(ã)Ai(ã)>.

Note that because {Aj,1, Aj,2} may have repeated elements and repeats at most F times, so we further
discount the number of samples on the left hand side by F . Following similar procedure in the proof of
Proposition 4 and nj ≥ 1, s ≤ F we get it suffices to show

n

2F (3F + 1)
≥ Cgamen2F

20


	1 Introduction
	1.1 Main Contributions
	1.2 Motivating Examples
	1.3 Related Work

	2 Preliminary
	2.1 Congestion Game
	2.2 Offline Matrix Game

	3 Offline Congestion Game with Facility-level Feedback
	4 Offline Congestion Game with Agent-level Feedback
	4.1 Impossibility Result
	4.2 Solution via Linear Bandit

	5 Offline Congestion Game with Game-Level Feedback
	6 Conclusion
	A Omitted Proof in Section 3
	A.1 Omitted Calculations in Section 3

	B Omitted Proof in Section 4
	B.1 Omitted Calculations in Section 4

	C Omitted Proof in Section 5
	C.1 Omitted Calculations in Section 5


