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Abstract

This paper reveals a new appeal of the recently
emerged large-kernel Convolutional Neural Net-
works (ConvNets): as the teacher in Knowl-
edge Distillation (KD) for small-kernel Con-
vNets. While Transformers have led state-of-
the-art (SOTA) performance in various fields
with ever-larger models and labeled data, small-
kernel ConvNets are considered more suitable
for resource-limited applications due to the effi-
cient convolution operation and compact weight
sharing. KD is widely used to boost the perfor-
mance of small-kernel ConvNets. However, pre-
vious research shows that it is not quite effec-
tive to distill knowledge (e.g., global information)
from Transformers to small-kernel ConvNets, pre-
sumably due to their disparate architectures. We
hereby carry out a first-of-its-kind study unveiling
that modern large-kernel ConvNets, a compelling
competitor to Vision Transformers, are remark-
ably more effective teachers for small-kernel Con-
vNets, due to more similar architectures. Our
findings are backed up by extensive experiments
on both logit-level and feature-level KD “out of
the box”, with no dedicated architectural nor train-
ing recipe modifications. Notably, we obtain the
best-ever pure ConvNet under 30M parameters
with 83.1% top-1 accuracy on ImageNet, outper-
forming current SOTA methods including Con-
vNeXt V2 and Swin V2. We also find that benefi-
cial characteristics of large-kernel ConvNets, e.g.,
larger effective receptive fields, can be seamlessly
transferred to students through this large-to-small
kernel distillation. Code is available at: https:
//github.com/VITA-Group/SLakK.
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1. Introduction

Transformers (Vaswani et al., 2017) have shined in the past
two years, bringing a historical revolution in artificial in-
telligence, from the foundation models in natural language
processing (Brown et al., 2020; Ramesh et al., 2022; Du
et al., 2022; Li et al., 2023; Chen et al., 2023; Chowdh-
ery et al., 2022) to the Vision Transformers in computer
vision (Dosovitskiy et al., 2021; Liu et al., 2021), to biologi-
cal sciences (Jumper et al., 2021), etc. By leveraging larger
and larger models and labeled data, Transformers contin-
uously establish new state-of-the-art (SOTA) performance
bars in various fields. Despite their impressive performance,
Transformers arguably cause a prohibitive competition of gi-
gantic models in academia and industry, pushing the SOTA
model size beyond the reach of common hardware.

On the other hand, Convolutional Neural Networks (Con-
vNets) still hold their merits in computer vision scenar-
ios with limited computational resources, such as Edge
AT (Li et al., 2019) and artificial intelligence of things
(AIoT) (Zhang & Tao, 2020). Compared to advanced Vi-
sion Transformers, small-kernel ConvNets like ResNets (He
et al., 2016b) and MobileNets (Howard et al., 2017) are
generally less expensive to train and infer, despite typically
having lower performance. Therefore, improving the per-
formance of small-kernel ConvNets to the state-of-the-art
levels achieved by advanced Vision Transformers while
maintaining model size affordable has excellent value in
real-world environments. However, this is a non-trivial re-
search question since previous work (Yao et al., 2023) has
shown that distilling knowledge from Vision Transformers
to small-kernel ConvNets can be ineffective or even detri-
mental. In this study, we carry out a first-of-its-kind study
unveiling that modern large-kernel ConvNets, a compelling
competitor to Vision Transformers, are more effective, and
easy-to-adopt teachers for small-kernel ConvNets due to
their architectural similarities.

Knowledge Distillation (KD) (Hinton et al., 2015) with its
variants (Yuan et al., 2020; Zhou et al., 2021; Zhao et al.,
2022) has evolved as one of the leading approaches to en-
hancing the performance of deep neural networks. The
basic concept is to utilize larger teacher models to generate
pseudo-labels for smaller models, which are subsequently
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trained to mimic the teacher’s behavior, without increasing
the model size. While distilling knowledge from advanced
Vision Transformers to small-kernel ConvNets seems to be
a logical choice to boost the performance of the latter, doing
so has little efficacy likely due to the inherent architectural
discrepancy in between (Yao et al., 2023).

Recently emerged large-kernel ConvNets, e.g., Con-
vNeXt (Liu et al., 2022¢) and RepLKNet (Ding et al., 2022),
demonstrate that pure convolutional models can deliver the
same excellence as Vision Transformers when equipped
with similar advanced designs, whose performance can
be further stretched out by purely enlarging kernel size to
5151 in SLaK (Liu et al., 2022a). Yet, the effectiveness of
large kernel ConvNets in teaching compact models remains
to lack intuition and is unexplored.

Intuitively, large-kernel ConvNets have three advantages
(which can be satisfied simultaneously or partially) com-
pared to Vision Transformers, as teachers for small-kernel
ConvNets: (1) equally good accuracy; (2) similar or even
larger effective receptive field (ERF); (3) more impor-
tantly, convolutional operations instead of self-attention
modules. However, these modern ConvNets (e.g., Con-
vNexT and SLaK) also share many discrepancies with con-
ventional small-kernel ConvNets, including but not limited
to “patchify stem”, inverted bottleneck, BatchNorm instead
of LayerNorm, and replacing ReL.U with GELU (Liu et al.,
2022c). Hence it remains unclear whether large-kernel Con-
vNets can perform better than Vision Transformers or not
when distilled to small-kernel ConvNets.

In this paper, we conduct a systematic comparison be-
tween modern large-kernel ConvNets (such as ConvNeXt
and SLaK) and advanced Vision Transformers (such as
ViT (Dosovitskiy et al., 2021), Swin (Liu et al., 2021), and
CSWin (Dong et al., 2022)) as teacher models, when dis-
tilled into small-kernel ConvNet student. We discover that
large-kernel ConvNets are significantly more effective teach-
ers than Vision Transformers for small-kernel ConvNets,
for both feature-level and logit-level KD approaches. We
also find that our distilled models enjoy larger ERF and
better robustness than others, indicating that, besides ac-
curacy, other good properties of large kernels can also be
seamlessly transferred to small kernels through our large-to-
small kernel distillation paradigm. Our contribution can be
summarized as follows:

* We conduct a pioneering empirical study of large-to-
small kernel distillation. Through a thorough compari-
son of advanced Vision Transformers (including ViT,
Swin, and CSWin) and modern large-kernel ConvNets
(ConvNeXt and SLaK) when distilled to small-kernel
ConvNets, we discover two principles for ConvNet
distillation: @ large-kernel ConvNets function as more
effective teachers than Transformers for small-kernel

ConvNets; ® among large-kernel teachers, students
obtain greater benefits from larger kernels compared
with the smaller ones.

» Following the above principles without any dedicated
architectural and training designs, we favorably dis-
till the recently proposed 51x51 SLaK-T into 7x7
ConvNeXt-T, obtaining the best-ever 30M ConvNet
with 83.1% top-1 accuracy on ImageNet, outperform-
ing the current state-of-the-arts ConvNeXt V2 and
Swin V2. Interestingly, the distilled ConvNeXt-T even
outperforms the strong result of its teacher by 0.6%.

* More interestingly, we found that students distilled
from larger kernels are automatically embedded with
better robustness, as well as larger and denser ERF than
the ones distilled from small kernels or Transformers.
Given the recently emerging trend that correlates larger
ERF with better performance (Ding et al., 2022; Kim
et al., 2021; Liu et al., 2022a; Dai et al., 2022; Yang
et al., 2022a), this observation also explains the success
of large-to-small kernel distillation.

2. Related Work
2.1. Knowledge Distillation

Knowledge distillation (KD) is proposed by Hinton et al.
(2015), to transfer knowledge from one teacher model to
another student model, by forcing the latter to mimic the
prediction of the teacher. Since then, various variants of
knowledge distillation have been proposed (Fang et al.,
2022; 2021; Xue et al., 2021), which can be roughly cate-
gorized into two groups: 1) Distillation from logits (Cho &
Hariharan, 2019; Yang et al., 2019; Mirzadeh et al., 2020;
Yang et al., 2022b; Yao et al., 2023). Logit-level distillation
mainly try to minimize the KL-Divergence between
prediction logits of teachers and students. Recently, Zhao
et al. (2022) decouple the classical KD loss into two parts,
i.e., target class knowledge distillation and non-target class
knowledge distillation, achieving better results. Yang et al.
(2022b) revise the formulation of classical KD and found
that besides cross-entropy (CE) loss, it also contains an
extra loss which contains the knowledge of all classes
except the target class. By adding teachers’ target output
as an extra soft loss, they can outperform the previous
logit distillation approaches, like KD, DKD (Yang et al.,
2022c), etc. 2) Distillation from representation (Heo et al.,
2019a;b; Yang et al., 2021; Huang & Wang, 2017; Kim
et al., 2018; Park et al., 2019; Yim et al., 2017; Zagoruyko
& Komodakis, 2016; Wei et al., 2022). Romero et al.
(2014) distill the learned knowledge from the intermediate
feature directly. Park et al. (2019) extract relations from
the feature map and transfer the relation instead. Chen et al.
(2021) distill knowledge from multi-level features map.
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Recently, Yang et al. (2022d) proposes to let the student
model generate the teacher model’s feature instead of
mimicking (MGD), improving the effectiveness of feature
distillation. Yang et al. (2022e) further comprehensively
studies the effect of mimicking KD and Generation KD
on ViT distillation, resulting in a suite of principles for
feature-based ViT distillation.

Li et al. (2022) introduce spatial-channel token distillation
to mix up the information in both the spatial and channel
dimensions for Vision MLP. Multiple receptive tokens are
applied in dense prediction tasks to indicate the pixels of
interest in the feature map, with a distillation mask gener-
ated via pixel-wise attention (Huang et al., 2022b). Huang
et al. (2022a) revisit the fact the training with much stronger
teachers could significantly hurt student’s performance (Cho
& Hariharan, 2019) and address it by simply preserving the
relations between the prediction of teacher and student with
a correlation-based loss. Very recent work (Yao et al., 2023)
unveils that distilling knowledge (e.g., global information)
from Vision Transformers to ConvNets is ineffective likely
due to their architectural gaps. In this work, instead of
distilling knowledge from Transformers, we introduce large-
to-small kernel distillation, which can seamlessly transfer
preferable knowledge (e.g., accuracy, global information,
and robustness) to small-kernel ConvNets.

2.2. Large Kernel Convolutions

Large kernel convolutions date back to the 2010s, where
AlexNet (Krizhevsky et al., 2012) adopts 11x 11 kernels in
the first convolutional layer and Inception (Szegedy et al.,
2015; 2017) stacks a combination of 1x7 and 7x 1 kernels.
Global Convolutional Network (Peng et al., 2017) constructs
ConvNets with a pair of stacked large convolution, with
kernel size up to 25x1 4 1x25. Since the popularity of
VGG (Simonyan & Zisserman, 2014), people favor small
stacked 3x3 kernels to build ConvNets (He et al., 2016b;
Howard et al., 2017; Xie et al., 2017; Huang et al., 2017).
Although computationally efficient, it is not very efficient
for small kernels to achieve large effective receptive fields
(ERF), even with over 100 layers in the model.

Inspired by the local window (at least 7x7) self-attention
used in Swin Transformers (Liu et al., 2021), Liu et al.
(2022c) revisit the use of large kernel-sized convolutions
for ConvNets, finding that 7x7 depthwise convolutions con-
sistently outperform 3x3 in ConvNeXt. RepLKNet (Ding
et al., 2022) continues to scale kernel size to 31x31 using
Structural Reparameterization while achieving comparable
or superior results than Swin Transformer. SLaK (Liu et al.,
2022a) pushes along the direction of pure ConvNets with
extremely large kernels up to 51 x51, which has never been
discussed before. More recently, Chen et al. (2022); Xiao
et al. (2022) reveals the feasibility of large kernels for 3D

ConvNets and time series classification, respectively. Seg-
NeXt (Guo et al., 2022) ensembles a novel convolutional at-
tention network with multiple large kernels, showing strong
results on semantic segmentation. Our paper differs from
the previous work and focuses on an empirical pilot study of
knowledge distillation from large kernels to small kernels.

3. Experimental Setup

In this section, we describe the experimental setup and
benchmarks used. Our goal is to comprehensively compare
Vision Transformers and modern large-kernel ConvNets in
the context of knowledge distillation and to study which is
more suitable as teachers for small-kernel ConvNets. To
enable fair comparisons, we carefully investigate several
key components and summarize them below.

Evaluation Metrics. Given a teacher model (T) with high
accuracy on a task acc (teacher) and a student model (S)
with lower accuracy acc (student), we can improve the
accuracy of the latter to acc (distilled) by via knowledge
distillation. To enable comparisons among different teacher
models, we choose two metrics to report, Direct Gain and
Effective Gain. Direct Gain refers to the direct performance
difference with and without knowledge distillation, i.e.,

Direct Gain = acc (distilled) — acc (student) (1)

Ideally, we hope all the teachers have the same accuracy to
make a fair comparison solely for their distillation effective-
ness. However, different models inevitably have accuracy
discrepancies, impacting our comparisons. To mitigate this
undesirable effect, we scale the Direct Gain by teachers’
accuracy, resulting in Effective Gain:

acc (distilled) — acc (student)

Effective Gain =
acc (teacher)

@

In all our experiments, we report these two metrics.

Dataset, Teacher and Student Models. We conduct exper-
iments on the commonly used ImageNet-1K dataset (Rus-
sakovsky et al., 2015) containing 1k classes, 1,281,167 train-
ing images, and 50,000 validation images.

We have two main distillation pipelines: Pipeline I: Large-
kernel ConvNets to small-kernel ConvNets distillation;
Pipeline II: Transformers to small-kernel ConvNets distil-
lation. For both pipelines, we opt for two ConvNets as
our students: ResNet-50 with 3 x 3 kernels as the most
representative conventional ConvNet, and ConvNeXt-T!
with 7 x 7 kernels as the most representative modern Con-
vNet. ConvNeXt-T also serves suitable small-kernel Con-
vNet when it comes to teachers like SLaK-T (51 x 51 ker-
nels), ViT (global attention), Swin-T (at least 7 x 7 win-
dows), and CSWin-T (global cross-shaped windows). Our

"Follow (Liu et al., 2022a), we add a BatchNorm layer after
7 x 7 kernels since it gives us consistently better accuracy.
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teacher models are ConvNeXt-T and SLaK for Pipeline I;
VIT-S, Swin-T, and CSWin-T for Pipeline II. Overall, the
teachers in Pipeline I and Pipeline II are of similar sizes
and comparable accuracy, ensuring a fair comparison. The
pre-trained weights of SLaK-T, ConvNeXt-T, and CSWin-T
are downloaded from their official GitHub repositories. The
pre-trained weights of ViT-S and Swin-T are downloaded
from TIMM (Wightman, 2019).

Training Recipe. In our study, we use a set of training
recipes closely following DeiT (Touvron et al., 2021b), Swin
Transformers (Liu et al., 2021), and ConvNeXt (Liu et al.,
2022c). We use AdamW optimizer (Loshchilov & Hutter,
2019) and train models for 120 epochs (Section 4.1) and 300
epochs (Section 4.2) with a batch size of 4096, and a weight
decay of 0.05. The learning rate is 4e-3 with a 20-epoch
linear warmup followed by a cosine decaying schedule.

For data augmentation, we use the default RandAugment
(Cubuk et al., 2020) in Timm (Wightman, 2019) — “rand-
m9-mstd0.5-inc1”, Label Smoothing (Szegedy et al., 2016)
coefficient of 0.1, Mixup (Zhang et al., 2017) with o = 0.8,
Cutmix (Yun et al., 2019) with o = 1.0, Random Erasing
(Zhong et al., 2020) with p = 0.25, Stochastic Depth with
a drop rate of 0.1 for ConvNeXt-T and 0.0 for ResNet-50,
and Layer Scale (Touvron et al., 2021c¢) of the initial value
of 1e-6. We train all models with 4 NVIDIA A100 GPUs.

Distillation Methods. To draw solid conclusions, we adopt
both logit-level distillation and feature-level distillation in
this study. Without loss of generality, we opt for the widely-
used Knowledge Distillation (KD) (Hinton et al., 2015)
as our logit-level method. Additionally, the recently pro-
posed New Knowledge Distillation (NKD) (Yang et al.,
2022b) is also adopted given its strong results over KD
and DKD (Yang et al., 2022c). We adopt FD (Wei et al.,
2022) as our feature-level distillation due to its superior
performance. For clarity, we provide the following formal
definitions for each method. Let Z;, Z, be the logits of the
teacher model and the student model, respectively; K L(-),
Lcg(+), and ¢(+) is the Kullback-Leiler divergence loss, the
cross-entropy loss, and the softmax function, respectively.
We denote 7 as the temperature hyperparameter of KD, C'
as the classes, (X,y) as the inputs, and A as the coefficient.

e Knowledge Distillation (KD) (Hinton et al., 2015). It
consists of the KL divergence loss and the cross-entropy
loss. Concretely, the cross-entropy loss encourages the
student model to learn knowledge from the true label and
the KL divergence transfers the knowledge of the teacher to
the student. Formally, it is expressed as follows:

(I_A)ECE((ZS(ZS)v y)+)‘T2KL<¢(Zs/T)7¢<Zt/7—))
3)

Lxp=

o New Knowledge Distillation (NKD) (Yang et al., 2022b).
Inspired by the cross-entropy loss where the sum of the two

distributions are equal, NKD normalizes both the non-target
student and teacher output probability such that they meet
this constraint as well. Besides, NKD also proposes the soft
loss that regards the teacher’s target output as the soft target
directly. Therefore, NKD consists of the original loss, the
non-target distributed loss, and the target soft loss. Formally
it is expressed as follows:

Lngp =—log(¢(ZY)) — &(Z:)"log(p(Zs)")
c
— 2 Zfilog(gi) 4
i#y
where T = %, St = % refer to the nor-

malized non-target knowledge and the normalized student’s
non-target output probability respectively.

e Feature Distillation (FD) (Wei et al., 2022). Feature
distillation distills the learned knowledge from intermediate
feature maps. Following (Wei et al., 2022), we apply a
1x1 convolution layer on the top of the student model to
align the feature map dimensions of the student model to the
teacher model and normalize the output feature map of the
teacher model by a whitening operation, implemented by a
non-parametric layer normalization operator without scaling
and bias. In distillation, we adopt a smooth /; loss between
the student and teacher feature maps, which is formally
expressed as follows:

Lrp = Lce(d(Zs),y)+ )
gt

{ Zz 1 5(9(8") - norm(Tl))Q/@Hg(sl)—norm(Tl)Hl <B,
S5 119(SY) — norm(T") — 0.58|1, otherwise

where L denotes the total number of layers that are used for
feature distillation and S*, T" denotes the I-th feature map of
the student and the teacher, respectively. g is a 1 x 1 convolu-
tion layer and norm is a non-parametric layer normalization
for the whitening operation. [ is a hyperparameter and is
set to 2.0 by default following (Wei et al., 2022).

4. Experimental Results

We report our main results in this section, by evaluating the
effectiveness of large-kernel teachers in both logits-level and
feature-level KD on ImageNet (Russakovsky et al., 2015).

4.1. Large-Kernel ConvNet vs. Transformer as Teachers
4.1.1. LOGIT-LEVEL DISTILLATION

We evaluate the performance on logit-level distillation based
on two distillation methods: KD (Hinton et al., 2015)
and NKD (Yang et al., 2022b). The experiments are con-
ducted using five teachers across convolution-based and
transformer-based architectures: ViT-S (Dosovitskiy et al.,
2021), ConvNeXt-T (Liu et al., 2022c¢), Swin-T (Liu et al.,
2021), CSWin-T (Dong et al., 2022), SLaK-T (Liu et al.,
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Table 1. NKD (Yang et al., 2022b) results of ResNet-50 and ConvNeXt-T distilled from various teachers on ImageNet. All models

acc (distilled) —acc (student)

are distilled for 120 epochs. Effective Gain is defined as

acc (teacher)

, and Direct Gain is acc (distilled) — acc (student).

Teacher Arch. Type  Kernel-Size ‘ Student ‘ Teacher Top-1  Student Top-1  Distilled Top-1  Effective Gain  Direct Gain
ViT-S Transformer N/A | ResNet-50 | 79.8 76.13 77.14 1.20 1.01
Swin-T Transformer N/A ‘ ResNet-50 ‘ 81.3 76.13 71.67 1.89 1.54
CSWin-T Transformer N/A | ResNet-50 | 82.7 76.13 77.68 1.87 1.55
ResNet-50 ConvNet 3x3 | ResNet-50 | 80.4 76.13 77.82 2.1 1.69
ConvNeXt-T ~ ConvNet 7x7 | ResNet-50 | 82.1 76.13 78.04 2.30 1.91
SLaK-T ConvNet 51x51 | ResNet-50 | 82.5 76.13 78.57 2.90 2.44
Swin-T Transformer N/A ‘ ConvNeXt-T ‘ 81.3 81.00 81.10 0.12 0.10
CSWin-T Transformer N/A ‘ ConvNeXt-T ‘ 82.7 81.00 81.65 0.70 0.65
ResNet-50 ConvNet 3x3 ‘ ConvNeXt-T ‘ 80.4 81.00 81.15 0.19 0.15
ConvNeXt-T ~ ConvNet 7x7 | ConvNeXt-T | 82.1 81.00 81.77 0.93 0.77
SLaK-T ConvNet 51x51 | ConvNeXt-T | 82.5 81.00 82.17 1.42 1.17

Table 2. KD (Hinton et al., 2015) results of ResNet-50 and ConvNeXt-T distilled from various teachers on ImageNet. All models are

acc (distilled) —acc (student)

distilled for 120 epochs. Effective Gain is defined as

acc (teacher)

, and Direct Gain is acc (distilled) — acc (student).

Teacher Arch. Type  Kernel-Size |  Student | Teacher Top-1 ~ Student Top-1  Distilled Top-1  Effective Gain ~ Direct Gain
VIiT-S Transformer N/A ‘ ResNet-50 ‘ 79.8 76.13 76.96 1.04 0.83
Swin-T Transformer N/A ‘ ResNet-50 ‘ 81.3 76.13 76.87 0.91 0.74
CSWin-T Transformer N/A | ResNet-50 | 82.7 76.13 76.77 0.77 0.64
ConvNeXt-T ConvNet 7x7 | ResNet-50 | 82.1 76.13 76.93 0.97 0.80
SLaK-T ConvNet 51x51 | ResNet-50 | 82.5 76.13 77.05 1.12 0.92
Swin-T Transformer N/A ‘ ConvNeXt-T ‘ 81.3 81.00 80.93 -0.08 -0.07
CSWin-T Transformer N/A ‘ ConvNeXt-T ‘ 82.7 81.00 81.18 0.22 0.18
ConvNeXt-T ConvNet Tx17 ‘ ConvNeXt-T ‘ 82.1 81.00 81.64 0.77 0.64
SLaK-T ConvNet 51x51 | ConvNeXt-T | 82.5 81.00 81.86 1.04 0.86

2022a), and two student models: ConvNeXt-T (Liu et al.,
2022c¢) and ResNet-50 (He et al., 2016a). We exclude ViT-S
as a teacher for ConvNeXt-T since the performance of the
former is worse than the latter. We follow (Liu et al., 2022a)
and train all models for 120 epochs to simply show the per-
formance trend. Later on in Section 4.2, we will adopt the
full training recipe and train our models for 300 epochs, to
enable fair comparisons with state-of-the-art models. Con-
sequently, “Student Top-1” is also obtained by 120-epoch
training. We sweep over temperatures {1, 2, 5, 10,20} for
all approaches. We summarize our main observations below:

@ Large-kernel ConvNets serve as better teachers than
Transformers for small-kernel ConvNets. Table 1 and
Table 2 show the results of NKD and KD across various
teachers, respectively. Overall, we can obverse that large-
kernel teachers such as SLaK-T and ConvNeXt-T outper-
form all Transformer teachers by a good margin in terms
of both Effective Gain and Direct Gain metrics. While the
teacher accuracy of ConvNeXt falls short of the best Trans-
formers CSWin-T by 0.6%, its student models consistently

outperform the latter by up to 0.46% Direct Gain and 0.55%
Effective Gain. Moreover, Direct Gain of SLaK-T reaches
2.44% and 1.17% for ResNet-50 and ConvNeXt-T, respec-
tively, which is notably higher than the best results achieved
by Transformer teachers, i.e., 1.55% and 0.65%.

® Students benefit more from larger kernels. As teacher
models, SLaK-T increases the kernel size of ConvNeXt-T
from 7x7 to 5151 via sparsity and factorization, outper-
forming the latter by 0.4%. Among large-kernel teachers,
the student models distilled from SLaK-T consistently out-
perform those distilled from ConvNeXt-T under both Ef-
fective Gain and Direct Gain metrics. It indicates that the
benefits of larger kernels over small kernels can be effec-
tively distilled into student models and larger kernels teach
better than the small kernels. The benefits of large-kernel
ConvNets over Vision Transformers can also be generalized
to lightweight ConvNets (please refer to Appendix D).

® Large-kernel ConvNets help student train faster. It
takes 300 epochs for ConvNeXt-T to reach 82.1% accuracy
on ImageNet under supervised training (Liu et al., 2022c). It
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Table 3. Feature distillation results of ResNet-50 distilled from various teacher models on ImageNet dataset. The hyper-parameter L

acc (distilled) —acc (student)

is set to 1. Effective Gain is defined as

acc (teacher)

, and Direct Gain is acc (distilled) — acc (student).

Teacher Arch. Type \ Student Teacher Top-1  Student Top-1  Distilled Top-1  Effective Gain  Direct Gain
Feature Distillation
VIiT-S Transformer ‘ ResNet-50 79.8 76.13 76.81 0.85 0.68
Swin-T Transformer | ResNet-50 81.3 76.13 76.77 0.78 0.64
ConvNeXt-T ConvNet \ ResNet-50 82.1 76.13 76.73 0.61 0.70
SLaK-T ConvNet \ ResNet-50 82.5 76.13 76.85 0.87 0.72
Feature + Logits (NKD) Distillation
VIiT-S Transformer ‘ ResNet-50 79.8 76.13 76.84 0.89 0.71
Swin-T Transformer | ResNet-50 81.3 76.13 77.33 1.47 1.20
ConvNeXt-T ConvNet \ ResNet-50 82.1 76.13 77.85 2.09 1.72
SLaK-T ConvNet \ ResNet-50 82.5 76.13 77.99 2.25 1.86

is worth noting that our distilled ConvNeXt-T, when distilled
from the 5151 kernel SLaK-T, reaches the performance of
its 300-epoch supervised performance in only 120 epochs,
highlighting the benefits of large-to-small kernel distillation.

Table 4. Feature distillation with varying the number of layers
L. Results of ResNet-50 distilled from SLaK-T and Swin-T.
Direct Gain is defined as acc (distilled) — acc (student).

FD Distillation
Teacher:Swin-T Teacher:SLaK-T

| No Distillation |
L ‘ ResNet-50 ‘

Top-1 Top-1 Direct Gain Top-1 Direct Gain
1 76.77 0.64 76.85 0.72
2 76.13 76.76 0.63 76.79 0.66
3 ' 76.81 0.68 76.94 0.81
4 76.73 0.60 76.92 0.79

4.1.2. FEATURE-LEVEL DISTILLATION

Besides only matching the logits, many works aim to mini-
mize the distance of intermediate features between teachers
and students (Heo et al., 2019a;b; Yang et al., 2021; Huang &
Wang, 2017; Kim et al., 2018). To comprehensively under-
stand the effect of Transformers and large-kernel ConvNets
based teachers, we also conduct comparisons on feature-
level distillation. Specifically, we follow the feature-level
KD (Wei et al., 2022) that chooses the output of the last stage
by default to transfer knowledge. Moreover, it is common
to combine logit distillation with feature distillation to fur-
ther improve performance (Yang et al., 2022e; 2021). Here,
we combine FD (Wei et al., 2022) with NKD and evaluate
different teacher models with a student model ResNet-50.
Concretely, we combine feature-level and logit-level distil-
lation by minimizing the FD loss and NKD loss together. In
addition, we also conduct comparisons on multi-layer fea-
ture distillation. With L = ¢, it denotes that the outputs of
the last ¢ number of stages are used to construct the feature
distillation loss. For example, with L = 2, the outputs of

the last two stages are used for feature distillation. Results
are shown in Table 3 and Table 4.

In Table 3, we observe that large-kernel ConvNets again
consistently produce more performant student models than
transformer-based teachers for feature distillation. Inter-
estingly, while SLaK-T only surpasses Swin-T by 0.08%
Direct Gain in feature distillation, the corresponding number
increases to 0.66% when incorporated with logit distillation.
This result highlights the benefits of large-kernel ConvNets
in combining logits and features. In Table 4, we observe
that the student model distilled from SLaK-T outperforms
those distilled from Swin-T with varying L, indicating the
superiority of large-kernel teachers over transformer-based
teachers is also held when using FD with feature maps of
multiple layers, i.e. L > 1.

4.2. Scaling to Longer Training

Recent study (Beyer et al., 2022) have shown that knowl-
edge distillation requires an atypically larger number of
training epochs to reach the best performance, much more
than commonly used in supervised learning. Here, we also
extend the training time from 120 to 300 epochs and report
the performance of ResNet-50 distilled from both large-
kernel teachers and transformer-based teachers. The results
are shown in Table 5.

We observe that the performance of ResNet-50 receives a
2.05% performance boost when extending training epochs
from 120 epochs to 300 epochs, which is in line with the
observation in (Beyer et al., 2022). It is clear to see that the
performance trend of longer training schedules is closely
consistent with the short schedules. The best student model
is achieved by the SLaK-T teacher among all five teachers,
indicating that the benefits of large-kernel teachers over
transformers-based teachers also held with longer training.

Best-Ever 30M ConvNet. Based on the above observations,
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Table 5. NKD (Yang et al., 2022b) results of ResNet-50 distilled from various teacher models on ImageNet dataset. All models are

distilled for 300 epochs. Effective Gain is defined as 2cc{distilled) —ace (student) “on g Direct Gain is acc (distilled) — acc (student).

acc (teacher)

Teacher Arch. Type \ Student Teacher Top-1  Student Top-1  Distilled Top-1  Effective Gain  Direct Gain
ViT-S Transformer \ ResNet-50 79.8 78.76 78.88 0.15 0.12
Swin-T Transformer \ ResNet-50 81.3 78.76 79.44 1.45 1.18
ConvNeXt-T ConvNet | ResNet-50 82.1 78.76 80.09 1.6 1.33
SLaK-T ConvNet \ ResNet-50 82.5 78.76 80.24 1.8 1.48
Table 6. Top-1 accuracy of various SOTA models on ImageNet-1K.
Model ‘ Method #Training Epochs  Image Size ~ #Param. FLOPs  Top-1 Acc
ResNet-50 (He et al., 2016b) Supervised 90 224x224 26M 4.1G 76.5
ResNeXt-50-32x4d (Xie et al., 2017) Supervised 90 224x224 25M 4.3G 77.6
ResMLP-24 (Touvron et al., 2021a) Supervised 400 224x224 30M 6.0G 79.4
DeiT-S (Touvron et al., 2021b) Supervised 300 224x224 22M 4.6G 79.8
Swin-T (Liu et al., 2021) Supervised 300 224x224 28M 4.5G 81.3
TNT-S (Han et al., 2021) Supervised 300 224 x224 24M 5.2G 81.3
T2T-ViT:-14 (Yuan et al., 2021) Supervised 310 224x224 22M 6.1G 81.7
ConvNeXt VI-T (Liu et al., 2022¢) Supervised 300 224 x224 290M 4.5G 82.1
SLaK-T (Liu et al., 2022a) Supervised 300 224224 30M 5.0G 82.5
Swin V2-T (Liu et al., 2022b) Self-Supervised 300 256x256 28M 6.6G 82.8
ConvNeXt V2-T (Woo et al., 2023) Self-Supervised 900 224 x224 290M 4.5G 83.0
ResNet-50 (Beyer et al., 2022) Knowledge Distillation 9600 224x224 26M 4.1G 82.8
ConvNeXt L2S-T Knowledge Distillation 300 224x224 29M 4.5G 83.1
Swin-S (Liu et al., 2021) Supervised 300 224 x224 50M 8.7G 83.0
ConvNeXt V1-S (Liu et al., 2022¢) Supervised 300 224 x224 50M 8.7G 83.1
SLaK-S (Liu et al., 2022a) Supervised 300 224224 55M 9.8G 83.8
Swin V2-S (Liu et al., 2022b) Self-Supervised 300 256x256 50M 12.6G 84.1
ConvNeXt L2S-S Knowledge Distillation 300 224x224 50M 8.7G 84.2

we directly distill 51x51 SLaK-T into a 7x7 ConvNeXt-
T; SLaK-S into ConvNeXt-S, via NKD for 300 epochs,
dubbed ConvNeXt L2S-T/S. ConvNeXt L2S-T achieves
a new state-of-the-art top-1 accuracy of 83.1% for pure
ConvNets on ImageNet, outperforming its supervised coun-
terpart by 1.0% accuracy. It is also very encouraging to
observe that our distilled ConvNeXt-T, with no dedicated ar-
chitectural designs, is able to slightly outperform the current
state-of-the-art ConvNeXt V2-T (Woo et al., 2023), which
is trained by MAE-based self-supervised learning with an
improved architecture for 900 epochs in total. Our model
also achieves better accuracy than the best ResNet-50 model
in the literature (Beyer et al., 2022) which is trained with
knowledge distillation for 9600 epochs.

5. What Else are Transferrable from Larger
Kernels Teachers?

We then go beyond the accuracy and evaluate other impor-
tant properties of students distilled from different teachers,
by visualizing the effective receptive field (ERF) and testing
the robustness on several ImageNet-level benchmarks.

5.1. Transferring Effective Receptive Fields (ERF)

The concept of the effective receptive field (Araujo et al.,
2019; Luo et al., 2016) is an important concept in computer

vision. For the output unit of one neural network layer, ERF
is defined as the region containing any input pixel with a
non-negligible impact on that unit (Araujo et al., 2019). In-
tuitively, anywhere in an input image outside the receptive
field of a unit does not affect its output value. It is gener-
ally accepted that both large-kernel ConvNets and Vision
Transformers have larger ERF, which in turn helps them
outperform traditional small-kernel models. While we have
known that distillation brings significant performance im-
provement to the student model, it remains very interesting
to investigate whether desirable characteristics like large
ERF can be distilled into small-kernel ConvNets. To do this,
we visualize the ERFs of students that are distilled from
large-kernel ConvNets and Vision Transformers.

Following (Ding et al., 2021; Liu et al., 2022a), we sample
and resize 50 images from the validation set to 1024 x 1024,
and measure the contribution of each pixel on input im-
ages to the central point of the feature map generated in the
last layer. The contribution scores are further accumulated
and projected to a 1024 <1024 matrix. The visualization
is shown in Figure 1. We find that students distilled from
SLaK-T are automatically embedded with larger and denser
ERF than the ones from Swin-T and CSWin-T, albeit all
of these teacher models achieve sufficient large ERF with
global or large self-attention. This result also helps us better
understand the success of large kernels in ConvNet distil-
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Figure 1. Effective receptive field (ERF) of the ConvNeXt-T distilled from various teachers. Our student model is ConvNeXt-T with
7x7 kernels. The left figures refer to the supervised ConvNeXt-T without distillation, and the rest figures are from distilled ConvNeXt-T.
Overall, the students distilled from 51 x51 SLaK have larger and denser ERF than the students from Transformer teachers.

lation, that is, large kernels are more effective at distilling
large REF to small kernels, improving the inherent defi-
ciency of the latter.

5.2. Transferring Robustness

Recent studies on out-of-distribution robustness (Wang et al.,
2022; Bai et al., 2021) show that transformers and the
large-kernel ConvNets embrace more robustness than the
ConvNets with small-kernel. However, it is seldom ex-
plored whether such superiority in robustness can be trans-
ferred to small-kernel models through knowledge distil-
lation. To answer this question, we directly test the dif-
ferent student models on several robustness benchmarks
including ImageNet-R (Hendrycks et al., 2021a), ImageNet-
A (Hendrycks et al., 2021b), ImageNet-Sketch (Wang et al.,
2019), and ImageNet-C (Hendrycks & Dietterich, 2019)
datasets. Mean corruption error (mCE) is reported for
ImageNet-C and top-1 accuracy is reported for the rest.

The results are shown in Table 7. We can clearly see that
the students distilled from modern ConvNets exhibit very
promising robustness, consistently outperforming the stu-
dents that are learned from state-of-the-art Transformers.
Among large-kernel teachers, SLaK-T transfers better ro-
bustness to students than ConvNeXt, even though with lower
robustness as teachers. However, robust Transformers do not
necessarily transfer to small kernel students. For example,
ResNet-50 models distilled from Swin-T and ViT-S even
decrease their top-1 accuracy on ImageNet-SK/A datasets.
This delivers a strong signal that large kernels are stronger
teachers than advanced Vision Transformers and small ker-
nels in terms of in-distribution and out-of-distribution.

More comparison with state-of-the-art models can be re-
ferred to Appendix B, in which the distilled ConvNeXt
student model surpasses the performance of most baseline

models and attains a level of robustness comparable to the
large-kernel-based model such as SLaK-Tiny, as well as
high-capacity models like Swin-B (Liu et al., 2021) and
RVT-B (Mao et al., 2022).

6. Conclusions

We have explored distilling recently popular large-kernel
ConvNets into small-kernel ConvNets. This empirical study
is meaningful due to the fact that small-kernel ConvNets
remain valuable for practical application with limited
resources. Our paper comprehensively compares SOTA
large-kernel ConvNets (ConvNeXt and SLaK) with various
state-of-the-art Vision Transformers (such as ViT, Swin, and
CSWin) in several KD scenarios, including logit distillation,
feature distillation, transferring of ERF, and transferring
of robustness. Our results demonstrate that large-kernel
ConvNets are all-around stronger teachers than Vision
Transformers for transferring knowledge to small-kernel
ConvNets, and suggest that the merits of convolutions are
not easily fading away. We hope our empirical study will
further encourage the community to revisit ConvNets.

7. Acknowledgement

S. Liu and Z. Wang are in part supported by the NSF
Al Institute for Foundations of Machine Learning (IFML).
Part of this work used the Dutch national e-infrastructure
with the support of the SURF Cooperative using grant no.
NWO02021.060, EINF-2694 and EINF-2943/L1.

References

Araujo, A., Norris, W., and Sim, J. Computing receptive
fields of convolutional neural networks. Distill, 4(11):
e2l, 2019.



Are Large Kernels Better Teachers than Transformers for ConvNets?

Table 7. Robustness evaluation of distilled students.

Teachers Arch. Type |  Student | Clean Accuracy | C|/ SKt R? At
Robustness of Teacher Models
VIiT-S Transformer - 79.8 47.15 2692 39.88 12.13
Swin-T Transformer - 81.3 46.07 29.05 4120 21.17
CSWin-T Transformer - 82.7 39.47 3352 4499 31.58
ConvNeXt-T ConvNet - 82.1 4199 33.85 47.13 24.02
SLaK-T ConvNet - 82.5 41.17 3241 4533 29.89
Robustness of ResNet-50 Students
- - ResNet-50 76.13 5494 2694 3542 4.68
ViT-S Transformer ResNet-50 77.14 5321 2589 3891 372
Swin-T Transformer ResNet-50 77.67 5346 26.07 37.59 5.45
CSWin-T Transformer ResNet-50 77.68 5324 27.00 38.43 6.27
ConvNeXt-T ConvNet ResNet-50 78.04 5243 2774 39.02 5091
SLaK-T ConvNet ResNet-50 78.57 52.09 2854 40.16 7.12
Robustness of ConvNeXt-T Students
- - ConvNeXt-T 81.00 44,69 32.62 4572 20.04
Swin-T Transformer | ConvNeXt-T 81.10 4497 31.24 4335 17.89
CSWin-T Transformer | ConvNeXt-T 81.65 42.69 3334 45.19 21.19
ConvNeXt-T ConvNet ConvNeXt-T 81.77 43.17 33.82 4649 21.06
SLaK-T ConvNet ConvNeXt-T 82.17 42.02 3513 47.50 24.27

Bai, Y., Mei, J., Yuille, A. L., and Xie, C. Are transformers
more robust than cnns? Advances in Neural Information
Processing Systems, 34:26831-26843, 2021.

Beyer, L., Zhai, X., Royer, A., Markeeva, L., Anil, R., and
Kolesnikov, A. Knowledge distillation: A good teacher is
patient and consistent. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp- 10925-10934, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877-1901, 2020.

Chen, P., Liu, S., Zhao, H., and Jia, J. Distilling knowledge
via knowledge review. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp- 5008-5017, 2021.

Chen, T., Zhang, Z., Jaiswal, A., Liu, S., and Wang,
Z. Sparse moe as the new dropout: Scaling dense
and self-slimmable transformers. arXiv preprint
arXiv:2303.01610, 2023.

Chen, Y., Liu, J., Qi, X., Zhang, X., Sun, J., and Jia,
J.  Scaling up kernels in 3d cnns. arXiv preprint
arXiv:2206.10555, 2022.

Cho, J. H. and Hariharan, B. On the efficacy of knowledge
distillation. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 4794-4802,
2019.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
daugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 702-703, 2020.

Dai, J., Shi, M., Wang, W., Wu, S, Xing, L., Wang, W., Zhu,
X., Lu, L., Zhou, J., Wang, X., et al. Demystify trans-
formers & convolutions in modern image deep networks.
arXiv preprint arXiv:2211.05781, 2022.

Ding, X., Chen, H., Zhang, X., Han, J., and Ding,
G. Repmlpnet: Hierarchical vision mlp with re-
parameterized locality. arXiv preprint arXiv:2112.11081,
2021.

Ding, X., Zhang, X., Zhou, Y., Han, J., Ding, G., and Sun, J.
Scaling up your kernels to 31x31: Revisiting large kernel
design in cnns. arXiv preprint arXiv:2203.06717, 2022.

Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L.,
Chen, D., and Guo, B. Cswin transformer: A general
vision transformer backbone with cross-shaped windows.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 12124-12134,
2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,



Are Large Kernels Better Teachers than Transformers for ConvNets?

M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=YicbFdNTTy.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,
Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. Glam:
Efficient scaling of language models with mixture-of-
experts. In International Conference on Machine Learn-
ing, pp. 5547-5569. PMLR, 2022.

d’Ascoli, S., Touvron, H., Leavitt, M. L., Morcos, A. S.,
Biroli, G., and Sagun, L. Convit: Improving vision trans-
formers with soft convolutional inductive biases. In In-
ternational Conference on Machine Learning, pp. 2286—

2296. PMLR, 2021.

Fang, G., Bao, Y., Song, J., Wang, X., Xie, D., Shen, C.,
and Song, M. Mosaicking to distill: Knowledge dis-
tillation from out-of-domain data. Advances in Neural
Information Processing Systems, 34:11920-11932, 2021.

Fang, G., Mo, K., Wang, X., Song, J., Bei, S., Zhang, H.,
and Song, M. Up to 100x faster data-free knowledge
distillation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 6597-6604, 2022.

Guo, M.-H., Lu, C.-Z., Hou, Q., Liu, Z., Cheng, M.-M.,
and Hu, S.-M. Segnext: Rethinking convolutional atten-
tion design for semantic segmentation. arXiv preprint
arXiv:2209.08575, 2022.

Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., and Wang, Y.
Transformer in transformer. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,

pp. 770-778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016b. doi: 10.1109/CVPR.2016.90.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F.,
Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M.,
et al. The many faces of robustness: A critical analysis of
out-of-distribution generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 8340-8349, 2021a.

Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and
Song, D. Natural adversarial examples. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15262-15271, 2021b.

Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., and Choi,
J.'Y. A comprehensive overhaul of feature distillation. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1921-1930, 2019a.

Heo, B., Lee, M., Yun, S., and Choi, J. Y. Knowledge
transfer via distillation of activation boundaries formed by
hidden neurons. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 3779-3787,
2019b.

Hinton, G., Vinyals, O., Dean, J., et al. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700-4708, 2017.

Huang, T., You, S., Wang, F., Qian, C., and Xu, C. Knowl-
edge distillation from a stronger teacher. arXiv preprint
arXiv:2205.10536, 2022a.

Huang, T., Zhang, Y., You, S., Wang, F., Qian, C., Cao, J.,
and Xu, C. Masked distillation with receptive tokens.
arXiv preprint arXiv:2205.14589, 2022b.

Huang, Z. and Wang, N. Like what you like: Knowl-
edge distill via neuron selectivity transfer. arXiv preprint
arXiv:1707.01219, 2017.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zl’dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583-589,
2021.

Kim, B. J., Choi, H., Jang, H., Lee, D. G., Jeong, W., and
Kim, S. W. Dead pixel test using effective receptive field.
arXiv preprint arXiv:2108.13576, 2021.

Kim, J., Park, S., and Kwak, N. Paraphrasing complex net-
work: Network compression via factor transfer. Advances
in neural information processing systems, 31, 2018.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.


https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Are Large Kernels Better Teachers than Transformers for ConvNets?

Advances in neural information processing systems, 25,
2012.

Li, E., Zeng, L., Zhou, Z., and Chen, X. Edge ai: On-
demand accelerating deep neural network inference via
edge computing. IEEE Transactions on Wireless Commu-
nications, 19(1):447-457, 2019.

Li, T., Shetty, S., Kamath, A., Jaiswal, A., Jiang, X., Ding,
Y., and Kim, Y. Cancergpt: Few-shot drug pair synergy
prediction using large pre-trained language models. arXiv
preprint arXiv:2304.10946, 2023.

Li, Y., Chen, X., Dong, M., Tang, Y., Wang, Y., and Xu,
C. Spatial-channel token distillation for vision mlps.
In International Conference on Machine Learning, pp.
12685-12695. PMLR, 2022.

Liu, S., Chen, T., Chen, X., Chen, X., Xiao, Q., Wu, B.,
Pechenizkiy, M., Mocanu, D., and Wang, Z. More con-
vnets in the 2020s: Scaling up kernels beyond 51x51
using sparsity. arXiv preprint arXiv:2207.03620, 2022a.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,
pp- 10012-10022, 2021.

Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J.,
Cao, Y., Zhang, Z., Dong, L., Wei, F., and Guo, B. Swin
transformer v2: Scaling up capacity and resolution. In
International Conference on Computer Vision and Pattern
Recognition (CVPR), 2022b.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. arXiv preprint
arXiv:2201.03545, 2022c.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning

Representations, 2019. URL https://openreview.

net/forum?id=Bkg6RiCqY7.

Luo, W., Li, Y., Urtasun, R., and Zemel, R. Understanding
the effective receptive field in deep convolutional neural
networks. Advances in neural information processing
systems, 29, 2016.

Mao, X., Qi, G., Chen, Y., Li, X., Duan, R., Ye, S., He,
Y., and Xue, H. Towards robust vision transformer. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12042—-12051, 2022.

Mirzadeh, S. 1., Farajtabar, M., Li, A., Levine, N., Mat-
sukawa, A., and Ghasemzadeh, H. Improved knowledge
distillation via teacher assistant. In Proceedings of the

AAAI conference on artificial intelligence, volume 34, pp.
5191-5198, 2020.

Park, W., Kim, D., Lu, Y., and Cho, M. Relational knowl-
edge distillation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
3967-3976, 2019.

Peng, C., Zhang, X., Yu, G., Luo, G., and Sun, J. Large
kernel matters—improve semantic segmentation by global
convolutional network. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pp.
43534361, 2017.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta,
C., and Bengio, Y. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550, 2014.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115(3):
211-252, 2015.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1-9, 2015.

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818-2826, 2016.

Szegedy, C., loffe, S., Vanhoucke, V., and Alemi, A. A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In Thirty-first AAAI conference
on artificial intelligence, 2017.

Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-
Nouby, A., Grave, E., Izacard, G., Joulin, A., Synnaeve,
G., Verbeek, J., et al. Resmlp: Feedforward networks for
image classification with data-efficient training. arXiv
preprint arXiv:2105.03404, 2021a.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International Con-
ference on Machine Learning, pp. 10347-10357. PMLR,
2021b.


https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Are Large Kernels Better Teachers than Transformers for ConvNets?

Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., and
Jégou, H. Going deeper with image transformers. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 32-42, 2021c.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, H., Ge, S., Lipton, Z., and Xing, E. P. Learning
robust global representations by penalizing local predic-

tive power. Advances in Neural Information Processing
Systems, 32, 2019.

Wang, Z., Bai, Y., Zhou, Y., and Xie, C. Can cnns
be more robust than transformers?
arXiv:2206.03452, 2022.

arXiv preprint

Wei, Y., Hu, H., Xie, Z., Zhang, Z., Cao, Y., Bao, J., Chen,
D., and Guo, B. Contrastive learning rivals masked image
modeling in fine-tuning via feature distillation. arXiv
preprint arXiv:2205.14141, 2022.

Wightman, R.  GitHub repository: Pytorch image
models. https://github.com/rwightman/
pytorch—-image-models, 2019.

Wightman, R., Touvron, H., and Jégou, H. Resnet strikes
back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476, 2021.

Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon,
I. S., and Xie, S. Convnext v2: Co-designing and scal-
ing convnets with masked autoencoders. arXiv preprint
arXiv:2301.00808, 2023.

Xiao, Q., Wu, B., Zhang, Y., Liu, S., Pechenizkiy, M.,
Mocanu, E., and Mocanu, D. C. Dynamic sparse net-
work for time series classification: Learning what to
“see”. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=Zx005jfgSYw.

Xie, S., Girshick, R., Dollar, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1492-1500, 2017.

Xue, M., Song, J., Wang, X., Chen, Y., Wang, X., and
Song, M. Kdexplainer: A task-oriented attention model
for explaining knowledge distillation. arXiv preprint
arXiv:2105.04181, 2021.

Yang, C., Xie, L., Su, C., and Yuille, A. L. Snapshot distilla-
tion: Teacher-student optimization in one generation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2859-2868, 2019.

Yang, J., Martinez, B., Bulat, A., and Tzimiropoulos, G.
Knowledge distillation via softmax regression representa-
tion learning. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=ZzwDy_wiWv.

Yang, T., Zhang, H., Hu, W., Chen, C., and Wang, X. Fast-
parc: Position aware global kernel for convnets and vits.
arXiv preprint arXiv:2210.04020, 2022a.

Yang, Z., Li, Z., Gong, Y., Zhang, T., Lao, S., Yuan, C.,
and Li, Y. Rethinking knowledge distillation via cross-
entropy. arXiv preprint arXiv:2208.10139, 2022b.

Yang, Z., Li, Z., Jiang, X., Gong, Y., Yuan, Z., Zhao, D.,
and Yuan, C. Focal and global knowledge distillation for
detectors. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4643—
4652, 2022c.

Yang, Z., Li, Z., Shao, M., Shi, D., Yuan, Z., and Yuan,
C. Masked generative distillation. arXiv preprint
arXiv:2205.01529, 2022d.

Yang, Z., Li, Z., Zeng, A., Li, Z., Yuan, C., and Li, Y. Vitkd:
Practical guidelines for vit feature knowledge distillation.
arXiv preprint arXiv:2209.02432, 2022e.

Yao, X., ZHANG, Y., Chen, Z., Jia, J., and Yu, B. Distill
vision transformers to CNNs via low-rank representation
approximation, 2023. URL https://openreview.
net/forum?id=U411PAUi4z.

Yim, J., Joo, D., Bae, J., and Kim, J. A gift from knowledge
distillation: Fast optimization, network minimization and
transfer learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4133—
4141, 2017.

Yuan, L., Tay, F. E., Li, G., Wang, T., and Feng, J. Revisiting
knowledge distillation via label smoothing regularization.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 3903-3911,
2020.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-
H., Tay, F. E., Feng, J., and Yan, S. Tokens-to-token vit:
Training vision transformers from scratch on imagenet. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 558-567, 2021.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In Proceedings of the

IEEE/CVF international conference on computer vision,
pp. 6023-6032, 2019.


https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://openreview.net/forum?id=ZxOO5jfqSYw
https://openreview.net/forum?id=ZxOO5jfqSYw
https://openreview.net/forum?id=ZzwDy_wiWv
https://openreview.net/forum?id=ZzwDy_wiWv
https://openreview.net/forum?id=U4llPAUi4z
https://openreview.net/forum?id=U4llPAUi4z

Are Large Kernels Better Teachers than Transformers for ConvNets?

Zagoruyko, S. and Komodakis, N. Paying more attention
to attention: Improving the performance of convolutional
neural networks via attention transfer. arXiv preprint
arXiv:1612.03928, 2016.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412, 2017.

Zhang, J. and Tao, D. Empowering things with intelligence:
a survey of the progress, challenges, and opportunities in
artificial intelligence of things. IEEE Internet of Things
Journal, 8(10):7789-7817, 2020.

Zhao, B., Cui, Q., Song, R., Qiu, Y., and Liang, J.
Decoupled knowledge distillation.  arXiv preprint
arXiv:2203.08679, 2022.

Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. Ran-
dom erasing data augmentation. In Proceedings of the

AAAI conference on artificial intelligence, volume 34, pp.
13001-13008, 2020.

Zhou, H., Song, L., Chen, J., Zhou, Y., Wang, G., Yuan,
J., and Zhang, Q. Rethinking soft labels for knowledge
distillation: A bias—variance tradeoff perspective. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=gIHd-5X324.


https://openreview.net/forum?id=gIHd-5X324
https://openreview.net/forum?id=gIHd-5X324

Are Large Kernels Better Teachers than Transformers for ConvNets?

A. FLOPS and Params of Teacher Models and Student Models

We carefully chose the models so that they have roughly a similar model size and FLOPs, i.e., about 5.0G FLOPs and 30M
parameter count, as shown in Table 8.

Table 8. Params and FLOPS of Teacher models and Student models.

Teacher Params(M) FLOPS \ Student Params(M) FLOPS
ViT-S 22 4.6G | ResNet-50 23 4G
Swin-T 28 4.5G \ ResNet-50 23 4G
CSWin-T 23 4.3G \ ResNet-50 23 4G
ConvNeXt-T 29 4.5G \ ResNet-50 23 4G
SLaK-T 30 50G | ResNet-50 23 4G
Swin-T 28 4.5G | ConvNeXt-T 29 4.5G
CSWin-T 23 4.3G \ ConvNeXt-T 29 4.5G
ConvNeXt-T 29 4.5G ‘ ConvNeXt-T 29 4.5G
SLaK-T 30 5.0G \ ConvNeXt-T 29 4.5G

B. Robustness Evaluation of Distilled ConvNeXt and State-of-the-Art Baselines

We could see from Table 9 that the distilled ConvNeXt student model surpasses the performance of most baseline models and
attains a level of robustness comparable to the large-kernel-based model such as SLaK-Tiny, as well as high-capacity models
like Swin-B and RVT-B. This strongly suggests that distillation from large-kernel models not only enhances performance
but also serves as a robustness booster.

Table 9. Robustness Evaluation of ConvNeXt and Baselines. We do not make use of any specialized modules or additional fine-tuning
procedures.

Model Data/Size #Training Epoches FLOPs / Params Clean C () A(T) R(1) SK(1)
RVT-S* (Mao et al., 2022) 1K/2242 300 4.7/23.3 81.9 494 257 47.7 34.7
ConvNeXt-T (Liu et al., 2022¢c) 1K/2242 300 4.5/28.6 82.1 532 242 472 338
ConViT-S (d’Ascoli et al., 2021) 1K/2242 300 541/27.8 81.5 49.8 245 454 33.1
SLak-T (Liu et al., 2022a) 1K/2242 300 5.0/29 825 412 299 453 324
Swin-B (Liu et al., 2021) 1K/2242 300 15.4/87.8 834 544 358 46.6 324
RVT-B* (Mao et al., 2022) 1K/2242 300 17.7/91.8 82.6 46.8 28.5 48.7 36.0
ConVNeXt L2S-T 1K/2242 120 4.5/29 82.17 42.02 24.37 47.50 35.13
ConVNeXt L2S-T 1K/2242 300 4.5/29 83.10 40.30 28.46 49.05 36.64

C. Experiments of ResNet-50 Student with Strong Training Recipe from Timm

To evaluate if large-kernel ConvNets teachers are still better than other architectures under optimal settings, we adopt the
optimal training recipe of Timm and report the distilled ResNet-50 in the following table. This training recipe gives us
78.06% top-1 accuracy with ResNet-50 on ImageNet trained for 120 epochs, which matches the Timm A1 one reported in
Wightman et al. (2021). i.e., 78.1%.

Results are reported in Table 10. Again, we see that large-kernel teachers, i.e., ConvNeXt-T and SLaK-T, consistently
outperform transformer-based teachers in distilling the ResNet-50 under this optimal training recipe. We believe these
results support our claim that large-kernel ConvNets are better teachers than Vision Transformers for small-kernel ConvNets.
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Table 10. NKD Results of ResNet-50 Distilled from Various Teachers on ImageNet. All models are distilled for 120 epochs and are
trained with the strong training recipe from Timm.

Teacher Arch. Type \ Student \ Teacher Top-1  Student Top-1  Distilled Top-1  Effective Gain  Direct Gain
ViT-S Transformer ‘ ResNet-50 ‘ 79.8 78.06 78.50 0.5 0.44
Swin-T Transformer | ResNet-50 | 813 78.06 78.76 0.8 0.70
CSWin-T Transformer ‘ ResNet-50 ‘ 82.7 78.06 78.80 0.89 0.74
ConvNeXt-T ~ ConvNet | ResNet-50 | 82.1 78.06 78.95 1.08 0.89
SLaK-T ConvNet ‘ ResNet-50 ‘ 82.5 78.06 79.14 1.3 1.1

D. Experiments of MobileNet Student Model

we conducted experiments on MobileNet-V3 and reported the results in Table 11. The results demonstrate that large-kernel
models like ConvNeXt-T and SLaK-T consistently surpass all transformer-based teachers in terms of both Effective Gain
and Direct Gain when paired with the lightweight model MobileNet. Our results demonstrate that the benefits of large-kernel
ConvNets over Vision Transformers can be generalized to lightweight ConvNets.

Table 11. NKD results of MobileNet distilled from various teachers on ImageNet. All models are distilled for 120 epochs and are
trained with Timm’s training recipe.

Teacher Arch. Type ‘ Student ‘ Teacher Top-1  Student Top-1 Distilled Top-1  Effective Gain  Direct Gain
ViT-S Transformer ‘ MobileNetV3 ‘ 79.8 73.59 74.42 1.04 0.83
Swin-T Transformer ‘ MobileNetV3 ‘ 81.3 73.59 74.53 1.15 0.94
CSWin-T Transformer ‘ MobileNetV3 ‘ 82.7 73.59 74.51 1.11 0.92
ConvNeXt-T ~ ConvNet | MobileNetV3 | 82.1 73.59 74.67 131 1.08
SLaK-T ConvNet ‘ MobileNetV3 ‘ 82.5 73.59 75.01 1.72 1.42

E. Experiments on Pre-trained Model

We investigate the impact of knowledge distillation on the pre-trained step of a student model. We pre-train a student model
on ImageNet-1K and fine-tune it on CIFAR-10 and CIFAR-100. We apply knowledge distillation to the ImageNet-1K
pre-training step. Results are reported in Table 12 and Table 13.

The Table 12 and Table 13 reveal that pre-trained student models distilled from large-kernel teachers, such as SLaK-T
and ConvNeXt-T, achieve higher accuracies in downstream tasks like CIFAR-10/100 compared to those distilled from
transformer-based teachers. Notably, the ResNet-50 distilled (by NKD) from SLaK-T outperforms the CSwin-T’s counterpart
by a significant margin (1.5%) on CIFAR-100, highlighting its benefits. These results demonstrate the effectiveness of
knowledge distillation in the pre-training stage, and moreover, large-kernel teachers provide more benefits than Vision
Transformers.
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Table 12. The results of fine-tuning the NKD distilled ResNet-50 and ConvNeXt-T models on downstream tasks CIFAR-10/100. All
models are fine-tuned based on SGD optimizer with Ir=1e-3 for 50 epochs.

Teacher Arch. Type ‘ Student ‘ Distilled Top-1 on ImageNet-1K  CIFAR-10 CIFAR-100
Swin-T Transformer ‘ ResNet-50 ‘ 77.67 96.1 81.6
CSWin-T Transformer | ResNet-50 | 77.68 96.2 82.0
ConvNeXt-T ~ ConvNet | ResNet-50 | 78.04 96.6 82.1
SLaK-T ConvNet ‘ ResNet-50 ‘ 78.57 97.0 83.5
Swin-T Transformer | ConvNeXt-T | 81.10 97.4 86.9
CSWin-T Transformer | ConvNeXt-T | 81.65 97.7 86.9
ConvNeXt-T ConvNet ‘ ConvNeXt-T ‘ 81.77 97.9 87.2
SLaK-T ConvNet | ConvNeXt-T | 82.17 98.3 87.5

Table 13. The results of fine-tuning the KD distilled ResNet-50 and ConvNeXt-T models on downstream tasks CIFAR-10/100. All
models are fine-tuned based on SGD optimizer with lr=1e-3 for 50 epochs.

Teacher Arch. Type |  Student | Distilled Top-1 on ImageNet-1K ~ CIFAR-10  CIFAR-100
Swin-T Transformer | ResNet-50 | 76.87 95.88 81.37
CSWin-T Transformer | ResNet-50 | 76.77 95.93 81.78
ConvNeXt-T ~ ConvNet | ResNet-50 | 76.93 96.15 82.16
SLaK-T ConvNet | ResNet-50 | 77.05 96.34 82.53
Swin-T Transformer | ConvNeXt-T | 80.93 97.17 86.22
CSWin-T Transformer | ConvNeXt-T | 81.18 97.41 86.52
ConvNeXt-T ~ ConvNet | ConvNeXt-T | 81.63 97.69 86.96

SLaK-T ConvNet | ConvNeXt-T | 81.86 98.02 87.13




