
Published as a conference paper at ICLR 2023

SPARSITY MAY CRY: LET US FAIL (CURRENT)
SPARSE NEURAL NETWORKS TOGETHER!

Shiwei Liu1∗, Tianlong Chen1∗, Zhenyu Zhang1, Xuxi Chen1, Tianjin Huang2,
Ajay Jaiswal1, Zhangyang Wang1

1University of Texas at Austin 2Eindhoven University of Technology
shiwei.liu@austin.utexas.edu; t.huang@tue.nl
{tianlong.chen,zhenyu.zhang,xxchen,ajayjaiswal,atlaswang}@utexas.edu

ABSTRACT

Sparse Neural Networks (SNNs) have received voluminous attention predominantly
due to growing computational and memory footprints of consistently exploding
parameter count in large-scale models. Similar to their dense counterparts, recent
SNNs generalize just as well and are equipped with numerous favorable benefits
(e.g., low complexity, high scalability, and robustness), sometimes even better than
the original dense networks. As research effort is focused on developing increas-
ingly sophisticated sparse algorithms, it is startling that a comprehensive benchmark
to evaluate the effectiveness of these algorithms has been highly overlooked. In
absence of a carefully crafted evaluation benchmark, most if not all, sparse al-
gorithms are evaluated against fairly simple and naive tasks (eg. CIFAR-10/100,
ImageNet, GLUE, etc.), which can potentially camouflage many advantages as
well unexpected predicaments of SNNs. In pursuit of a more general evaluation
and unveiling the true potential of sparse algorithms, we introduce “Sparsity May
Cry” Benchmark (SMC-Bench), a collection of carefully-curated 4 diverse tasks
with 10 datasets, that accounts for capturing a wide range of domain-specific
and sophisticated knowledge. Our systemic evaluation of the most representative
sparse algorithms reveals an important obscured observation: the state-of-the-art
magnitude- and/or gradient-based sparse algorithms seemingly fail to perform on
SMC-Bench when applied out-of-the-box, sometimes at significantly trivial sparsity
as low as 5%. The observations seek the immediate attention of the sparsity re-
search community to reconsider the highly proclaimed benefits of SNNs. We further
conduct a thorough investigation into the reasons for the failure of common SNNs.
Our analysis points out that such failure is intimately related to the “lazy regime” of
large model training, which hints us with stronger pruning recipes that alleviate the
failure on SMC-Bench (though still more or less suffering). By incorporating these
well-thought and diverse tasks, SMC-Bench is designed to favor and encourage the
development of more scalable and generalizable sparse algorithms. We open-source
SMC-Bench to assist researchers in building next-generation sparse algorithms that
scale and generalize: https://github.com/VITA-Group/SMC-Bench.

1 INTRODUCTION

Sparse Neural Networks (SNNs) are no stranger to the deep learning community (Liu & Wang, 2023),
but recently they have received stupendous attention in the era of transformers (eg. BERT, GPT,
ViT, CLIP, etc.), when the parameter count is frequently measured in billions rather than millions.
Due to the consistent efforts of sparsity researchers, SNNs have ushered enormous breakthroughs
and can generalize just as well as original dense networks, and it is feasible to procure them after
training (Frankle & Carbin, 2019; Sanh et al., 2020; Chen et al., 2020; Frankle et al., 2020), during
training (Zhu & Gupta, 2017; Gale et al., 2019; Liu et al., 2021b), and even before training (Mocanu
et al., 2018; Lee et al., 2019; Liu et al., 2022) their dense counterparts using pruning. Apart from
well-known efficiency benefits, surprisingly, SNNs also enjoy auxiliary benefits such as adversarial
robustness (Guo et al., 2018; Özdenizci & Legenstein, 2021; Chen et al., 2022), out-of-distribution

*These authors contributed equally to this work.

1

ar
X

iv
:2

30
3.

02
14

1v
1

 [c
s.L

G
]

3
M

ar
 2

02
3

https://github.com/VITA-Group/SMC-Bench

Published as a conference paper at ICLR 2023

generalization (Zhang et al., 2021; Diffenderfer et al., 2021), and uncertainty estimation (Liu et al.,
2021a), etc. Despite the multi-dimensional success of numerous sparse algorithms, startlingly, our
extensive survey across over 100 recent SNN papers within 2015-2022 unveils multiple daunting
issues regarding evaluation datasets and protocols blindly followed within the sparsity community,
that may significantly impede future progress if left unacknowledged.

Issues with current evaluation paradigm: Firstly, the vast majority of current work on SNNs is
narrowly evaluated, i.e., only targeting a single or a few tasks (usually on image classification and
sometimes on language understanding) on which SNNs have already proven their proficiency (Gale
et al., 2019; Frankle & Carbin, 2019). Surprisingly, 79 papers out of our carefully selected 100 papers
on SNNs, evaluate sparse models merely on a single task, where 72 out of them evaluate image
classification. Secondly, people are obsessed with evaluating SNNs on well-understood datasets,
including but not limited to MNIST (LeCun, 1998) (26 papers), CIFAR-10/100 (Krizhevsky et al.,
2009) (59 and 37 papers, respectively), ImageNet (Deng et al., 2009) (62 papers), and GLUE (Wang
et al., 2018) (9 papers), where deep neural networks have already exceeded the human-equivalent
performance (refer to Appendix D for more details). For instance, even though ImageNet has been
considered a rather challenging task over years, very high accuracy (>90%) has been reported many
times (Yu et al., 2022; Wortsman et al., 2022; Zhai et al., 2022). Such relatively restricted evaluations
with “nearly saturated performance” limit the scope of sparse neural networks and are potentially
ill-suited to identify new and unexpected capabilities of SNNs.

Addressing the aforementioned limitations of current SNN evaluation protocols is a pressing need for
the community. To this end, we assemble a large-scale, fairly arduous, and diverse benchmark for
sparse neural networks - “Sparsity May Cry” Benchmark (or briefly SMC-Bench). Specifically,
we consider a broad set of tasks including complex reasoning, multilingual translation, and protein
prediction, whose content spans multiple domains. Those tasks require a vast amount of commonsense
knowledge, solid mathematical and scientific backgrounds to solve even for humans. Note that none
of the datasets in SMC-Bench was created from scratch for the benchmark, we rely on pre-existing
datasets as they have been agreed by researchers as challenging, interesting, and of high practical
value. We rigorously measure the performance of state-of-the-art (SOTA) pruning and sparse training
approaches (in their most common, basic settings) on SMC-Bench, to understand the potential of
SNNs to scale and generalize. Our key observations and contributions can be unfolded as:

• We present “Sparsity May Cry” Benchmark, to re-define the evaluation protocols for
sparse neural networks and facilitate a comprehensive assessment of SOTA sparse algorithms.
The premise of SMC-bench is to develop a suite of large-scale, challenging, realistic, and
diverse tasks and datasets that can empower the rigorous advancements in the community.

• SMC-Bench unveils a critical and startling observation - all of the SOTA sparse algorithms
seem to fail on SMC-Bench “out-of-the-box”, sometimes at significantly trivial sparsity
e.g., 5%. Note that the failure does not appear specific to one sparsification approach but
unanimously across all approaches we evaluated. This observation alarmingly demands the
attention of the sparsity community to reconsider the highly proclaimed benefits of SNNs.

• We conduct extensive experiments across representative SNNs produced by various SOTA
pruning and sparse training approaches on SMC-Bench, and we summarize our findings: ¶
Model prunability is intimately related to task difficulty: models trained on difficult tasks
suffer more from pruning compared to easier tasks; · The success of before-training sparsi-
fication (sparse training or pruning at initialization) is hard to generalize in more complex
scenarios; ¸ Iterative magnitude pruning (IMP) does not necessarily generalize better than
one-shot pruning (OMP) or during-training pruning; ¹ Despite performance difference,
different magnitude-based pruning approaches lead to extremely similar layerwise sprasities.

• We further carry out a comprehensive investigation into the potential causes of SNN failures
on SMC-Bench. Our analysis suggests that the failure of the existing sparse algorithms
might be due to the “lazy regime” dynamics emerging in sufficiently overparameterized
models (Chizat et al., 2019; Malladi et al., 2022). Inspired by this finding, we hypothesize
and confirm that the second-order pruning approaches, i.e., oBERT (Kurtic et al., 2022), are
more reliable pruning approaches for SMC-Bench, which yield relatively more promising
performance on SMC-Bench in Appendix C.

2

Published as a conference paper at ICLR 2023

2 RELATED WORK

2.1 ADVANCES IN SPARSE NEURAL NETWORKS

Post-Training. SNNs refer to a neural network where a certain portion of its components (e.g.,
weights, neurons, filters, and attention heads) have exactly zero values. The initial purpose of SNNs
is retrospectively to accelerate model at inference time (a.k.a., post-training sparsification; Mozer &
Smolensky (1989); LeCun et al. (1990)). Thanks to the over-parameterization property of deep neural
networks, we can dramatically prune deep neural networks to smaller sizes with marginal loss of
performance. Post-training sparsification has been well studied and results in various mature criteria
that can be generally categorized into zero-order methods (magnitude-based; Han et al. (2015)),
first-order methods (gradient-based; Molchanov et al. (2016); Sanh et al. (2020); Jiang et al. (2021)),
and second-order methods (Hessian-based; LeCun et al. (1990); Hassibi & Stork (1992); Dong et al.
(2017)). Second-order sparsification usually achieves higher performance than the other two but is
also more expensive due to the full Hessian calculation. Fortunately, many approaches have been
proposed to efficiently approximate Hessian (Zeng & Urtasun, 2018; Wang et al., 2019; Singh &
Alistarh, 2020). The Lottery Ticket Hypothesis (LTH) adopts iterative magnitude pruning (IMP) on
fully trained networks and finds a subnetwork at initialization that can be re-trained in isolation to
match the original dense networks. Renda et al. (2020) further found that instead of re-training with
the initial weights, re-training with the final weights achieves better performance. With the rise of
large language models (LLMs), newer post-training pruning methods have emerged which aim to
improve the affordability of these models (Sanh et al., 2020; Chen et al., 2020; Zafrir et al., 2021;
Kurtic et al., 2022; Xu et al., 2021; Lagunas et al., 2021; Zhang et al., 2022; Frantar et al., 2021).

During-Training. During-training sparsification (Finnoff et al., 1993) is a cheaper option, compared
to sparsify a fully converged model. Approaches of during-training sparsification usually train a
dense network for some time and then gradually sparsify the network with some schedules and end
up with a sparse model with target sparsities. Zhu & Gupta (2017); Gale et al. (2019); Lin et al.
(2020); Liu et al. (2021b) are highlight approaches that gradually prune networks during training
and meanwhile allow the pruned weights to be reactivated in case of inaccurate pruning. Another
direction of during-training sparsification is adding sparsifying penalties such as (grouped) L0 and
L1 norm to the loss function, which will punish the unimportant weights to zero, leading to sparse
weights (Louizos et al., 2018; Luo & Wu, 2020; Savarese et al., 2020).

Prior-Training. Recently, foundation models (Brown et al., 2020; Chowdhery et al., 2022; Ramesh
et al., 2022) have demonstrated promising quantitative improvement and new qualitative capabilities
with increasing scale (Zhang et al., 2020b). Along with the scaling of model size and data size, the
training resources of these foundation models also get outrageous. To accelerate training, we need to
sparsify models before training. LTH unveils the possibility to find SNNs at initialization that can
match their dense counterparts, even though it uses post-training pruning to find them. At the same
time, sparse training (Mocanu et al., 2018; Mostafa & Wang, 2019; Dettmers & Zettlemoyer, 2019;
Evci et al., 2020; Liu et al., 2021c; Schwarz et al., 2021) was proposed that can train a randomly-
initialized sparse neural network from scratch while dynamically optimizing the sparse connectivity
with promising performance. Instead of randomly initializing sparse networks, one iteration (Lee
et al., 2019; Wang et al., 2020) or a few iterations (Tanaka et al., 2020; de Jorge et al., 2021) of
training can be utilized to guide the search for sparse networks before training.

2.2 BENCHMARKING IN SPARSE NEURAL NETWORKS

Gale et al. (2019) rigorously evaluated variational dropout (Molchanov et al., 2017), l0 regular-
izaion (Louizos et al., 2018), and GMP (Zhu & Gupta, 2017) on two large-scale tasks. They
demonstrated that the appealing performance advantages of variational dropout and l0 regularization
cannot generalize to large-scale tasks whereas simple magnitude pruning performs surprisingly
well. Liu et al. (2018) examined two pipelines: training from scratch and fine-tuning, concluding
that fine-tuning a pruned model only gives comparable or worse performance than training from
scratch. Blalock et al. (2020) provided a comprehensive literature review on SNNs and found that
pruning papers rarely make direct and controlled comparisons. Frankle et al. (2021) assessed the
efficacy of various pruning at initialization approaches and attribute their inferior performance to their
insensitivity to weight shuffling and re-initialization. Liu et al. (2022) re-evaluated the performance of
various random pruning before training and found that sparsely training a randomly pruned network
from scratch can surprisingly match the performance of its dense equivalent. These papers shed light
on the behavior of SNNs and discover important research problems for future work.

3

Published as a conference paper at ICLR 2023

3 SMC-BENCH

SMC-Bench is crafted for evaluating if all proclaimed benefits of SNNs can “scale and generalize”.
It consists of 4 diverse and difficult tasks, including commonsense reasoning, arithmetic reasoning,
multilingual translation, and protein prediction, with 10 datasets collected from prior work and open-
source GitHub repositories. To investigate if there is a strong correlation between model prunability
and task difficulty, we choose multiple datasets with different degrees of difficulty.

3.1 COMMONSENSE REASONING

Commonsense reasoning task asks commonsense questions about the world involving complex
semantics that often require rich common sense and background knowledge. We consider three
commonly used datasets for commonsense reasoning. (1) RACE (Lai et al., 2017) contains near
28,000 passages and 100,000 questions collected from the English exams for Chinese students
in middle (RACE-M) and high school (RACE-H). (2) WinoGrande (Sakaguchi et al., 2021) is a
modified version of the Winograd Schema Challenge (WSC) benchmark (Levesque et al., 2012) with
enhanced scale and hardness, containing 44k problems. (3) Commonsense QA (CSQA) (Talmor
et al., 2018) is a challenging dataset containing 12,247 multiple-choice questions where one source
concept and three target concepts are first extracted from ConceptNet (Speer et al., 2017) based on
which the Crowd-works are asked to author multiple-choice questions with two additional distractors.
In general, CSQA is harder than WinoGrande and RACE, with ceiling human performance of 89%,
94%, and 95%, respectively.

3.2 ARITHMETIC REASONING

Arithmetic reasoning poses a question of a math problem and the model is asked to generate a
mathematical equation that can be evaluated to get the answer. We consider the following three math
word problem datasets: (1) the widely used MAWPS benchmark (Koncel-Kedziorski et al., 2016)
composed of 2,373 problems; (2) the arithmetic subset of ASDiv (Miao et al., 2021) - ASDiv-A
with 1,218 math problems; (3) the more challenging SVAMP (Patel et al., 2021) dataset which is
created by applying complex types of variations to the samples from ASDiv-A. The task difficulty
monotonically increases from MAWPS to ASDiv-A, and to SVAMP.

3.3 PROTEIN THERMOSTABILITY PREDICTION

Maintaining a stable 3D structure is an essential pre-condition for protein to function correctly in
biological phenomena. Numerous efforts are devoted to modeling and predicting protein’s stability
against pH, salinity, and temperature. We consider the tasks of protein thermostability prediction on
two representative datasets: (1) HotProtein (Chen et al., 2023) is recently proposed as a large-scale,
standardized protein benchmark with organism-level temperature annotations, which contains 182K
protein sequences and 3K folded structure from 230 different species. Three dataset variants, HP-S,
HP-S2C5, and HP-S2C2, are adopted to examine sequence- and structure-based methods, respec-
tively. HP-S has {6, 390, 3, 4946, 30, 333, 79, 087, 31, 549} protein sequences from five categories
of {Cryophilic, Psychrophilic, Mesophilic, Thermophilic, Hyperthermophilic}; HP-S2C5 has both se-
quences and structures for {73, 387, 195, 196, 189} proteins from the same five classes ordered from
Cryophilic to Hyperthermophilic; HP-S2C2 has both sequences and structures for {1, 026, 939} pro-
teins from {“hot” (≥ 45◦C), “cold” (< 45◦C)} two classes. (2) Meltome Atlas (Jarzab et al., 2020)
is another challenging test bed for protein’s thermostability. It has {7, 902, 15, 833, 10, 518} protein
sequences from three of the five aforementioned classes, from Mesophilic to Hyperthermophilic. All
samples are annotated with their melting temperature.

3.4 MULTILINGUAL TRANSLATION

Multilingual translation processes multiple languages using a single language model and requires the
model to have the ability to perform translation across languages. We follow Liu et al. (2020); Tang
et al. (2020) and choose 10 English-centric language pairs (Fr, Cs, De, Gu, Ja, My, Ro, Ru, Vi, Zh↔
En) from an open source parallel corpus - OPUS (OPU, 2020). We follow Arivazhagan et al. (2019)
and use pivot data through English to create 3 Many-to-Many multilingual translation fine-tuning
settings including 2-to-2 (Fr, Cs), 5-to-5 (Fr, Cs, De, Gi, Ja), and 10-to-10.

4

Published as a conference paper at ICLR 2023

4 EVALUATION ON SMC-BENCH

Models. Despite we are aware that performing few-shot prompting on large-scale pre-training
language models with billions of parameters is able to solve these tasks (Wei et al., 2022; Srivastava
et al., 2022), we choose to focus on fine-tuning or training with pre-trained mid-scale models with
millions of parameters, to improve the accessibility of our Benchmark. Specifically, we choose to fine-
tune the popular RoBERTa (Liu et al., 2019) for commonsense reasoning; to fine-tune mBART (Liu
et al., 2020) for multilingual translation; to train GTS (Xie & Sun, 2019) and Graph2Tree (Zhang et al.,
2020a) with RoBERTa’s pre-trained embedding for arithmetic reasoning; to fine-tune Transformer-
based (Vaswani et al., 2017) for protein property prediction. See Appendix A for full details.

Sparse Neural Networks. We select the most representative magnitude- and/or gradient-based
approaches where the prune operation is performed before, during, or after training. Formally, given a
dense network θl ∈ Rdl with a dimension of dl in each layer l ∈ {1, . . . , L}, pruning generates binary
masks ml ∈ {0, 1}dl yielding sparse neural networks with sparse weights θl �ml. The sparsity
level is the fraction of the weights that are zero-valued, calculated as s = 1−

∑
l ml∑
l dl

. Following a
mainstream convention in many sparse training papers (Frankle & Carbin, 2019; Gale et al., 2019;
Evci et al., 2020; Lee et al., 2019; Liu et al., 2021c), we sparsify most layers in the model including
embedding layers and classifier heads, and we do not apply advanced techniques such as Iterative
Learning Rate Rewinding (Renda et al., 2020) and Knowledge Distillation (Hinton et al., 2015) in
our main evaluations, even if we observe that they help to alleviate accuracy drops as in Appendix C.

• Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019) is a strong post-training pruning baseline
that iteratively adopts magnitude pruning after training to produce binary masks and re-train together
with weights from step t. We set t = 0 in this paper, since rewinding to early training does not
notably improve the performance of Transformer models (e.g., BERT) for downstream tasks (Chen
et al., 2020). The pruning rate of each IMP is set as 20%.

• Magnitude After Training is a strong baseline for prune after training, which has demonstrated
strong results in various regimes. After training or fine-tuning models on the specific task, we prune
the model with one-shot magnitude pruning and re-train it with the full learning rate schedule from
the beginning, dubbed “OMP (After)” in our experiments.

• Random After Training (Mittal et al., 2019) is the most naive baseline for post-training pruning. It
uniformly samples a random score sl ∈ Uniform(0, 1) for each weight and prunes the weights with
the lowest scores. After pruning, we also re-train with the entire training schedule.

• Gradual Magnitude Pruning (GMP) (Zhu & Gupta, 2017; Gale et al., 2019) gradually sparsifies
networks during training according to a pre-defined sparsification schedule with sorting-based weight
thresholding. The starting and the ending iteration of the gradual sparsification process are set as 10%
and 80% of the entire training iterations. The frequency of sparsification steps is tuned among 500,
1000, and 4000, depending on the specific tasks. While we are aware of the advanced gradual pruning
methods - movement pruning (Sanh et al., 2020), it usually exceeds GMP only at high sparsities (e.g.,
>90%), which is interesting but not within the scope of this paper.

•Magnitude Before Training (Frankle et al., 2021) simply removes weights with the lowest magnitude
at initialization. Since we inherit weights from pre-trained models, the initial weights actually refer to
the weights that are learned on the pre-trained tasks. We abbreviate this approach to “OMP (Before)”
as we use one-shot magnitude pruning.

• Random Before Training (Liu et al., 2022) is the most naive baseline for prior-training pruning. We
randomly sample scores for each weight and removes the weights with the lowest scores. Different
from Random After Training, the pruning operation is performed before fine-tuning.

• SNIP (Lee et al., 2019) is a prior-training pruning technique that globally removes weights with the
lowest connection sensitivity score |g � w|. SNIP is a strong baseline that consistently performs well
among various prior-training approaches (Frankle et al., 2021).

• Rigging the Lottery (RigL) (Evci et al., 2020) is a leading sparse training method that updates
the topology of sparse neural networks during training via a prune-and-grow scheme. To evaluate
its effectiveness on downstream fine-tuning, we combine RigL with the other three prior-training
methods. The update interval of RigL is set the same as the ones used for updating sparsity in GMP,
following Liu et al. (2021b).

5

Published as a conference paper at ICLR 2023

0.2 0.3
6
0.4

880.5
9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

20

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

RoBERTa on CommonsenseQA

0.2 0.3
6
0.4

880.5
9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

50

55

60

65

70

75

RoBERTa on WinoGrande

0.2 0.3
6
0.4

880.5
9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

20

30

40

50

60

70

80

90
RoBERTa on RACE (Middle)

0.2 0.3
6
0.4

880.5
9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

20

30

40

50

60

70

80

RoBERTa on RACE (High)

Dense model
SNIP (Before)

LTH (After)
SNIP+RIGL (Before)

OMP (After)
Random (Before)

Random (After)
Random+RIGL (Before)

GMP (During)
OMP (Before)

OMP+RIGL (Before)

Figure 1: Commonsense reasoning performance of various sparse RoBERTa.

4.1 COMMONSENSE REASONING

Implementation Details. We follow the training settings of sequence modeling toolkit Fairseq (Ott
et al., 2019) and fine-tune the pre-trained RoBERTa on our datasets with a standard cross-entropy loss.
Specifically for each question, we also construct five inputs, one for each of the five candidate answer
choices. Each input is constructed by concatenating the question and candidate answer together. We
then encode each input and pass the resulting “[CLS]” representations through a classifier to predict
the correct answer. All models are trained with the Adam (Kingma & Ba, 2014) optimizer with a
learning rate of 1× 10−5 using an A100 GPU. For CSQA, we train the model for 3000 steps with
a linear warmup of 150 steps and a batch size of 16. The dropout rate is set as 0.1. This gives us a
test accuracy of 77.3% with dense RoBERTa. For RACE, we train each model for 3 epochs with
a batch size of 16. This gives us 86.6% and 82.0% dense accuracy on RACE (H) and RACE (M),
matching the ones reported in Fairseq (86.5% and 81.3%). Models on WinoGrande are trained for
23, 750 steps with 2, 735 warmup steps and 32 batch size, reaching a 76.3% accuracy.

Results and Analyses. The results of various sparse neural networks are demonstrated in Figure 1.
We summarize our main observations below:

1 All sparse algorithms seemingly fail to find matching SNNs, even at trivial sparsities such as
36%. While several methods maintain the dense performance at 20% sparsity, their performance
starts to drop significantly after that, and will undergo a catastrophic failure as the sparsity continues
increasing. It is difficult even for the top-performing LTH to maintain the matching performance after
the 2rd IMP iteration. This is in stark contrast with the behavior of SNNs on the image classification
task, where LTH can gracefully preserve the matching performance even at very extreme sparsities
(>95% on CIFAR-10/100 (Yin et al., 2022) and >80% on ImageNet (Renda et al., 2020)).

2 The quality of SNNs on harder tasks suffers more from sparsity. Models trained on the hardest task,
CSQA, undergo a larger accuracy loss at the same sparsity than the other two datasets. For instance,
all the SNNs on CSQA suffer from a catastrophic accuracy drop (up to 74%) and become no better
than the random prediction at 59% sparsity. Meanwhile, when trained on WinoGrande and RACE at
59% sparsity, two sparse algorithms (LTH and GMP) can maintain relatively good performance with
a smaller performance loss (i.e., 3% ∼ 10%).

3 Post-training pruning consistently outperforms prior-training pruning. LTH achieves the best
performance across datasets, GMP performs well, and OMP (After) follows behind. However, prior-
training pruning achieves worse performance. OMP (Before) performs closely behind OMP (After),
whereas SNIP performs no better than the naive random pruning. After digging deeper into the case
of SNIP, we find SNIP aggressively prunes the embedding layers to more than 99% sparsity even with
a mild overall sparsity of 20%. Surprisingly, the leading dynamic sparsity approach RigL does not
bring significant gains to these prior-training approaches, and sometimes even hurts the performance.

4.2 ARITHMETIC REASONING

Implementation Details. We follow SVAMP (Patel et al., 2021) and choose the two top-performing
tree-based models for arithmetic reasoning: GTS (Xie & Sun, 2019) and Graph2Tree (Zhang et al.,
2020a). Graph2Tree in general performs slightly better than GTS. GTS adopts LSTM to encode input
sequences and a tree-based Decoder to generate questions. Graph2Tree uses a graph transformer to
learn the latent quantity representations from data, and a tree structure decoder to generate a solution
expression tree. We follow exactly the training settings of Patel et al. (2021). The embedding weights
are inherited from THE pre-trained RoBERTa. All models are trained with Adam for 50 epochs.

6

Published as a conference paper at ICLR 2023

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93
70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5

Ac
cu

ra
cy

 [%
]

GTS on MAWPS

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93
30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

GTS on ASDiv-A

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93
20

25

30

35

40

Ac
cu

ra
cy

 [%
]

GTS on SVAMP

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5

Ac
cu

ra
cy

 [%
]

Graph2Tree on MAWPS

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

Graph2Tree on ASDiv-A

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0

Ac
cu

ra
cy

 [%
]

Graph2Tree on SVAMP

Dense model
SNIP (Before)

LTH (After)
SNIP+RIGL (Before)

OMP (After)
Random (Before)

Random (After) Random+RIGL (Before) GMP (During)

Figure 2: Arithmetic reasoning performance of various sparse GTS and Graph2Tree.

On MAWPS and ASDiv-A, models are trained with the training data and then evaluated on 5-fold
cross-validation based on pre-assigned splits. For SVAMP, we train the models on a combination of
MAWPS and ASDiv-A and test them on SVAMP, following Patel et al. (2021).

Results and Analyses. The performance on arithmetic reasoning is reported in Figure 2. The
overall performance trend is very similar to the commonsense reasoning: SNNs can only match
the dense performance when the sparsity level is lower than 48.8% with the exception of Graph2Tree
on the relatively simple MAWPS dataset whose failing sparsity is 59%; SNNs are prone to sacrifice
more performance on harder datasets (i.e., ASDiv-A and SVAMP) than the easier MAWPS dataset;
prior-training methods perform no differently than random pruning. Moreover, we want to highlight
that LTH surprisingly reaches lower accuracy than OMP and GMP at high sparsity levels, indicating
that iterative magnitude pruning may not necessarily generalize better than on more complex tasks.
Moreover, Magnitude Before Training (OMG (Before)) consistently causes severe layer collapse in
the non-embedding layers, leading to zero accuracies. Since including the results of OMG (Before)
will significantly dilute the performance difference of different sparsification methods, we choose
to report it in Appendix B.

4.3 PROTEIN THERMAL STABILITY PREDICTION

4.3.1 SEQUENCE-BASED MODELS

Implementation Details. We examine two classic sequence-based approaches in protein property
prediction, i.e., TAPE (Rao et al., 2019) and ESM-1B (Rives et al., 2021). For TAPE, we fine-tune it
from the official pre-training (Rao et al., 2019) for 4 epochs with an initial learning rate of 1× 10−4

and a linear decay scheduler together with 100 warm-up steps. As for ESM-1B (Rives et al., 2021),
starting from the official pre-trained checkpoint, we fine-tune the backbone with a learning rate of
1× 10−6 and the linear classification head on top of the backbone with a learning rate of 2× 10−2.
The learning rate schedulers used for both backbone and linear head are OneCycle (Smith & Topin,
2019) decay schedulers. The training batch size is 2 for Meltome Atlas and 3 for HotProtein (HP-S).
Classification accuracy on test sets is collected to measure the model performance.

Results and Analyses. In this section, we examine diverse sparse neural networks of sequence-
based models (i.e., transformers) on protein thermostability prediction benchmarks. ESM-1B (Rives
et al., 2021), a SOTA approach in protein property modeling, is evaluated on both HotProtein (HP-S)
and Meltome Atlas datasets. TAPE (Rao et al., 2019) is a classic transformer-based model adopted
on HotProtein (HP-S). Extensive results of both static and dynamic sparsifications are collected in
Figure 3. We observe that: ¶ For ESM-1B, all extracted sparse neural networks incur significant
performance degradation whenever the sparsity level is larger than 20%. Note that here we only
sparsify the fully connected layers in multi-head self-attentions & feed-forward networks of each

7

Published as a conference paper at ICLR 2023

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66

Sparsity

50

52

54

56

58

60

Ac
cu

ra
cy

 [%
]

ESM-1F1 on HP-S2C5

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66

Sparsity

45

50

55

60

65

70

Ac
cu

ra
cy

 [%
]

ESM-1B on HP-S

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66

Sparsity

30

35

40

45

50

55

60

65
Tape on HP-S

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66

Sparsity

38

40

42

44

46

48

50

ESM-1B on Atlas

Dense model
SNIP (Before)

LTH (After)
SNIP+RIGL (Before)

OMP (After)
Random (After)

Random+RIGL (Before)
GMP (During)

OMP (Before) OMP+RIGL (Before)

Figure 3: Protein prediction performance of various sparse models.

transformer layer, and leave all other modules unpruned. Even under this loose condition, ESM-
1B still fails after pruning on both HP-S and Meltome Atlas, which indicates the low parameter
redundancy in ESM-1B for modeling protein thermal stability. · In general, static and dynamic
pruning algorithms achieve similar performance with ESM-1B. SNIP (Before) and SNIP + RIGL
(Before) deliver relatively better accuracies, especially for the high sparsity (≥ 48.80%) subnetworks
on HP-S. ¸ As for the worse backbone TAPE compared with ESM-1B, magnitude-based prunings
like LTH (After), OMP (After), and GMP (During) show satisfactory results before 59% sparsity.

Table 1: OMP (after) pruning 5%
weights of ESM-1B on different
modules with HP-S2C2.

Pruned Modules Accuracy (↑)
None (Dense) 94.68

Q, K, V, O, FFN 92.19
Q, K, V 92.55
Q, K 93.62
Q, V 93.62
K, V 92.55

Furthermore, we conduct a more fine-grained pruning schedule to
investigate the tolerance of ESM-1B against sparsification. In de-
tail, we prune 5% weights with OMP (after) on different modules
in ESM-1B and present the obtained accuracies in Table 1. Q, K,
V, O, and FFN represent the fully connected layer in the query, key,
value, & output of the self-attention module and feed-forward net-
works, respectively. The results show that whatever modules we
select, 5% sparsity damages the ESM-1B performance of protein
thermostability prediction on HP-S2C2.

4.3.2 STRUCTURE-BASED MODELS

Implementation Details. We further consider a representative structure-based algorithm for ther-
mostability prediction, i.e., ESM-IF1 (Hsu et al., 2022). Specifically, for ESM-IF1, we train the
backbone and its linear head with learning rates of 1× 10−4 and 2× 10−2, respectively. A batch size
of 4 is used for both models on HotProtein (HP-S2C5). Classification testing accuracy is reported to
reflect the model performance.

Results and Analyses. In this section, we study structure-based models and their sparse variants
on HotProtein (HP-S2C5). ESM-IF1 (Hsu et al., 2022), a recent SOTA approach, is chosen for
benchmarking. It takes the 3D structure of proteins as input and predicts its thermal stable temperature.
As shown in Figure 3, ESM-IF1 produces inferior sparse neural networks with all pruning mechanisms
of both static and dynamic, where OMP (after) and GMP (During) present relatively better accuracies.

4.4 MULTILINGUAL TRANSLATION

Implementation Details. We choose the official multilingual model mBART1 (Liu et al., 2020),
which was originally pre-trained on 25 languages using masked language modeling (MLM), following
the fine-tuning setting of Tang et al. (2020). We first choose 10 languages from the language pools
used for MLM pre-training; create three sub-groups containing 2, 5, 10 languages; and fine-tune
mBART on each sub-group, referring to 2-to-2, 5-to-5, and 10-to-10 multilingual translation fine-
tuning, respectively. During inference, we report the averaged BLEU (Tang et al., 2020; Liu et al.,
2020) scores of bi-directional translation across 10 languages to measure the translation performance.
Hence, the task difficulty monotonically decreases from 2-to-2 to 5-to-5, and to 10-to-10 fine-tuning
as more languages are involved during training. The default fine-tuning configurations in Tang et al.
(2020) are adopted for 40K iterations with an Adam optimizer and a learning rate of 1× 10−6.

Results and Analyses. Intuitively, fewer languages involved during fine-tuning leads to a more
difficult translation for all languages. As demonstrated in Figure 4, several consistent conclusions can
be drawn: ¶ Besides OMP (After) and LTH (After), all other produced sparse subnetworks perform

1https://github.com/facebookresearch/fairseq

8

https://github.com/facebookresearch/fairseq

Published as a conference paper at ICLR 2023

worse than the dense baseline when the sparsity is larger than 20%. The BLEU scores of OMP (After)
and LTH (After) also decline and fail to match at ≥ 20%, ≥ 48.8%, ≥ 59% sparsity levels for 2-to-2,
5-to-5, and 10-to-10 fine-tuning, respectively. · Magnitude-based sparsifications like OMP, LTH,
and GMP are comparably robust across all three translation settings, while other pruning methods
have negligible advantages compared to random pruning. ¸ While the overall tendency of SNNs is
quite consistent across different tasks, the prunability of mBART increases as more languages are
involved during fine-tuning. It seems that multilingual translation has already been a challenging task
for pruning, and involving more languages in inference causes extra obstacles. This is why in the
hardest scenario of fine-tuning on 2-to-2 and evaluating with 10 languages, all sparse subnetworks
suffer from substantial performance degradation.

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

0

2

4

6

BL
EU

Trained on 2-to-2

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93
0

2

4

6

8

10

12

BL
EU

Trained on 5-to-5

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93
0

5

10

15

BL
EU

Trained on 10-to-10

Dense model
LTH (After)

SNIP (Before)
SNIP+RIGL (Before)

OMP (After)
Random (Before)

Random (After)
Random+RIGL (Before)

GMP (During)
OMP (Before)

OMP+RIGL (Before)

Figure 4: Multilingual performance of various sparse mBART. All models are tested on 10-to-10
multilingual translation and the averaged BLEU are reported.

4.5 WHY SNNS FAIL ON SMC-BENCH

We conduct a thorough investigation into the reasons why most SNNs struggle to perform on SMC-
Bench. Our analysis identifies two possible causes for the failure: (1) the “lazy regime” in LLMs,
and (2) the specific model components that are pruned. Based on these findings, we discover a set
of stronger pruning recipes that alleviates (though still more or less suffering from) the failure on
SMC-Bench, by breaking down the performance of the state-of-the-art BERT-pruning framework -
oBERT (Kurtic et al., 2022) on SMC-Bench (note that most models evaluated in this paper are also
BERT-based). Due to the limited space, we present our full investigation in Appendix C, and briefly
present our sanity check of layer collapse below.

Does layer collapse occur unexpectedly on SMC-Bench? Layer collapse is the most common
cause that blocks the information flow (signal propagation) of sparse neural networks, leading to a
catastrophic performance drop (Tanaka et al., 2020). We plot the layerwise sparsity ratios of various
sparse models in Appendix C.1. We do not observe severe layer collapse across methods except
for SNIP which specifically removes nearly entire embedding layers. However, we do observe an
unexpected phenomenon: layerwise sparsities of different magnitude-based pruning approaches
(i.e., IMP, OMP, and GMP) are extremely similar, all overlapped on one line, despite the significant
performance gap among them (up to 42.3%); small differences only start to appear until reaching very
deep layers (e.g., classification heads) (see Appendix C.1 for more details). This abnormal behavior is
highly correlated with the “lazy regime” (Neyshabur et al., 2020; Malladi et al., 2022) where the model
stays in the same basin during fine-tuning with fairly small weight changes, and hence all magnitude-
based pruning approaches, before, during, and after fine-tuning, tend to collapse to the same solution.

5 CONCLUSION

Given the enormous breakthroughs and the fruitful results that sparse neural networks have achieved
in numerous fields, it is necessary to rethink the sufficiency of current evaluation protocols and
introduce more difficult and diverse benchmarks to explore the limitation of sparse neural networks.
In this paper, we assemble a large-scale, challenging, and more diverse benchmark, SMC-Bench.
Through our thorough evaluation across various leading sparsifications, we confirm that SMC-Bench
notably challenges the capability of most magnitude- or/and gradient-based sparse algorithms. We
further dig deeper into the behavior of SNNs, and observe several surprising phenomena that are
absent in the current evaluation. Our analysis points out that such failure is intimately related to the
“lazy regime”, which leads us to a suite of strong pruning recipes that alleviates (yet still more or less
suffering from) the failure on SMC-Bench. Our subsequent effort will focus on exploring stronger
sparse training algorithms that can scale and generalize on SMC-Bench, and meanwhile will consider
the training costs of different sparse algorithms for a more holistic picture of their efficiency benefits.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

We thank Dan Alistarh and Eldar Kurtic for the extremely helpful discussions about the implementa-
tion details of oBERT as well as our benchmark’s claims; and Zhangheng Li for helping run extra
experiments with oBERT. S. Liu and Z. Wang are in part supported by the NSF AI Institute for Foun-
dations of Machine Learning (IFML). Part of this work used the Dutch national e-infrastructure with
the support of the SURF Cooperative using grant no. NWO2021.060, EINF-2694 and EINF-2943/L1.

REFERENCES

Open source parallel corpus of opus. https://opus.nlpl.eu/opus-100.php, 2020.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin Cherry, et al. Massively multilingual neural machine
translation in the wild: Findings and challenges. arXiv preprint arXiv:1907.05019, 2019.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020.

Tianlong Chen, Zhenyu Zhang, Santosh Balachandra, Haoyu Ma, Zehao Wang, Zhangyang Wang,
et al. Sparsity winning twice: Better robust generalization from more efficient training. In
International Conference on Learning Representations, 2022.

Tianlong Chen, Chengyue Gong, Daniel Jesus Diaz, Xuxi Chen, Jordan Tyler Wells, qiang liu,
Zhangyang Wang, Andrew Ellington, Alex Dimakis, and Adam Klivans. Hotprotein: A novel
framework for protein thermostability prediction and editing. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=YDJRFWBMNby.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Pau de Jorge, Amartya Sanyal, Harkirat Behl, Philip Torr, Grégory Rogez, and Puneet K. Dokania.
Progressive skeletonization: Trimming more fat from a network at initialization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=9GsFOUyUPi.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

10

https://opus.nlpl.eu/opus-100.php
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=YDJRFWBMNby
https://openreview.net/forum?id=YDJRFWBMNby
https://openreview.net/forum?id=9GsFOUyUPi
https://openreview.net/forum?id=9GsFOUyUPi

Published as a conference paper at ICLR 2023

James Diffenderfer, Brian Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya Kailkhura. A
winning hand: Compressing deep networks can improve out-of-distribution robustness. Advances
in Neural Information Processing Systems, 34:664–676, 2021.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in Neural Information Processing Systems, 30, 2017.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

William Finnoff, Ferdinand Hergert, and Hans Georg Zimmermann. Improving model selection by
nonconvergent methods. Neural Networks, 6(6):771–783, 1993.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural network training.
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=Hkl1iRNFwS.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark? In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=Ig-VyQc-MLK.

Elias Frantar, Eldar Kurtic, and Dan Alistarh. M-fac: Efficient matrix-free approximations of
second-order information. Advances in Neural Information Processing Systems, 34:14873–14886,
2021.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. Sparse dnns with improved adversarial
robustness. Advances in neural information processing systems, 31, 2018.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations, 2015.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
Alexander Rives. Learning inverse folding from millions of predicted structures. bioRxiv, 2022.
doi: 10.1101/2022.04.10.487779. URL https://www.biorxiv.org/content/early/
2022/04/10/2022.04.10.487779.

Anna Jarzab, Nils Kurzawa, Thomas Hopf, Matthias Moerch, Jana Zecha, Niels Leijten, Yangyang
Bian, Eva Musiol, Melanie Maschberger, Gabriele Stoehr, et al. Meltome atlas—thermal proteome
stability across the tree of life. Nature methods, 17(5):495–503, 2020.

Hao Jiang, Ke Zhan, Jianwei Qu, Yongkang Wu, Zhaoye Fei, Xinyu Zhang, Lei Chen, Zhicheng Dou,
Xipeng Qiu, Zikai Guo, et al. Towards more effective and economic sparsely-activated model.
arXiv preprint arXiv:2110.07431, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=Hkl1iRNFwS
https://openreview.net/forum?id=Hkl1iRNFwS
https://openreview.net/forum?id=Ig-VyQc-MLK
https://www.biorxiv.org/content/early/2022/04/10/2022.04.10.487779
https://www.biorxiv.org/content/early/2022/04/10/2022.04.10.487779

Published as a conference paper at ICLR 2023

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. Mawps:
A math word problem repository. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
1152–1157, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for
large language models. arXiv preprint arXiv:2203.07259, 2022.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In International
Conference on Machine Learning, pp. 5544–5555. PMLR, 2020.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838, 2021.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of knowledge representation and reasoning,
2012.

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model
pruning with feedback. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SJem8lSFwB.

Shiwei Liu and Zhangyang Wang. Ten lessons we have learned in the new” sparseland”: A short
handbook for sparse neural network researchers. arXiv preprint arXiv:2302.02596, 2023.

Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Deep ensembling with no
overhead for either training or testing: The all-round blessings of dynamic sparsity. arXiv preprint
arXiv:2106.14568, 2021a.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting
pruning plasticity with neuroregeneration. Advances in Neural Information Processing Systems
(NeurIPs)., 2021b.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In Proceedings of
the 39th International Conference on Machine Learning, pp. 6989–7000. PMLR, 2021c.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang,
and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the most
naive baseline for sparse training. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=VBZJ_3tz-t.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

12

https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=VBZJ_3tz-t

Published as a conference paper at ICLR 2023

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike
Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation.
Transactions of the Association for Computational Linguistics, 8:726–742, 2020.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. International Conference on Learning Representations, 2018.

Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end trainable filter pruning method for efficient
deep model inference. Pattern Recognition, 107:107461, 2020.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based view
of language model fine-tuning. arXiv preprint arXiv:2210.05643, 2022.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. arXiv preprint arXiv:2106.15772, 2021.

Deepak Mittal, Shweta Bhardwaj, Mitesh M Khapra, and Balaraman Ravindran. Studying the
plasticity in deep convolutional neural networks using random pruning. Machine Vision and
Applications, 30(2):203–216, 2019.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1):2383, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, pp. 2498–2507. PMLR, 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. International Conference on Learning Represen-
tations, 2016.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

Michael C Mozer and Paul Smolensky. Using relevance to reduce network size automatically.
Connection Science, 1(1):3–16, 1989.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learning?
Advances in neural information processing systems, 33:512–523, 2020.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Ozan Özdenizci and Robert Legenstein. Training adversarially robust sparse networks via bayesian
connectivity sampling. In International Conference on Machine Learning, pp. 8314–8324. PMLR,
2021.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter Abbeel,
and Yun Song. Evaluating protein transfer learning with tape. Advances in neural information
processing systems, 32, 2019.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in
neural network pruning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1gSj0NKvB.

13

https://openreview.net/forum?id=S1gSj0NKvB

Published as a conference paper at ICLR 2023

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15), 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by
fine-tuning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 20378–20389. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification.
Advances in Neural Information Processing Systems, 33:11380–11390, 2020.

Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E Latham, and Yee Teh. Powerpropa-
gation: A sparsity inducing weight reparameterisation. Advances in neural information processing
systems, 34:28889–28903, 2021.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pp. 1100612. International Society for Optics and Photonics, 2019.

Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of
general knowledge. In Thirty-first AAAI conference on artificial intelligence, 2017.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Process-
ing Systems. arXiv:2006.05467, 2020.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, and
Angela Fan. Multilingual translation with extensible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. In International Conference on Machine Learning, pp.
6566–6575. PMLR, 2019.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgsACVKPH.

14

https://proceedings.neurips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://openreview.net/forum?id=SkgsACVKPH

Published as a conference paper at ICLR 2023

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

Zhipeng Xie and Shichao Sun. A goal-driven tree-structured neural model for math word problems.
In IJCAI, pp. 5299–5305, 2019.

Dongkuan Xu, Ian EH Yen, Jinxi Zhao, and Zhibin Xiao. Rethinking network pruning–under the
pre-train and fine-tune paradigm. arXiv preprint arXiv:2104.08682, 2021.

Lu Yin, Shiwei Liu, Fang Meng, Tianjin Huang, Vlado Menkovski, and Mykola Pechenizkiy. Lottery
pools: Winning more by interpolating tickets without increasing training or inference cost. arXiv
preprint arXiv:2208.10842, 2022.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
Coca: Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917,
2022.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune once for all:
Sparse pre-trained language models. arXiv preprint arXiv:2111.05754, 2021.

Wenyuan Zeng and Raquel Urtasun. Mlprune: Multi-layer pruning for automated neural network
compression. 2018.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022.

Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, and Aaron Courville. Can subnetwork
structure be the key to out-of-distribution generalization? In International Conference on Machine
Learning, pp. 12356–12367. PMLR, 2021.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan Wang, Jie Shao, and Ee-Peng Lim. Graph-
to-tree learning for solving math word problems. Association for Computational Linguistics,
2020a.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
importance. In International Conference on Machine Learning, pp. 26809–26823. PMLR, 2022.

Yian Zhang, Alex Warstadt, Haau-Sing Li, and Samuel R Bowman. When do you need billions of
words of pretraining data? arXiv preprint arXiv:2011.04946, 2020b.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

15

Published as a conference paper at ICLR 2023

A SUMMARY OF TASKS, MODELS, DATASETS, AND TRAINING

We summarize the combinations of models and configurations that we used to evaluate SNNs on
SMC-Bench.

Table 2: Summary of models and datasets that we used to evaluate on SMC-Bench.
Task Datasets Models Source

Commonsense Reasoning
CSQA RoBERTa Large Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)

WinoGrande RoBERTa Large Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)
RACE RoBERTa Large Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)

Arithmetic Reasoning

MAVPS GTS GitHub Repository (Patel et al., 2021)
Graph2Tree GitHub Repository (Patel et al., 2021)

ASDiv-A GTS GitHub Repository (Patel et al., 2021)
Graph2Tree GitHub Repository (Patel et al., 2021)

SVAMP GTS GitHub Repository (Patel et al., 2021)
Graph2Tree GitHub Repository (Patel et al., 2021)

Protein Thermostability Prediction

HotProtein (HP-S) TAPE GitHub Repository (Rao et al., 2019)
ESM-1B GitHub Repository (Rives et al., 2021)

HotProtein (HP-S2C5) ESM-IF1 GitHub Repository (Rives et al., 2021)

HotProtein (HP-S2C2) ESM-1B GitHub Repository (Rives et al., 2021)

Meltome Atlas ESM-1B GitHub Repository (Rives et al., 2021)

Multilingual Translation
2-to-2 mBART Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)
5-to-5 mBART Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)

10-to-10 mBART Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)

We strictly follow the training configurations reported in the original source to replicate the results
of each task. The hyperparameters and configurations used for each model in this paper are shared
below.

A.1 COMMONSENSE REASONING

Table 3: Hyperparameters and training configurations used for models on Commonsense Reasoning.
Models RoBERTa RoBERTa RoBERTa
Dataset CSQA WinoGrande RACE

Pre-trained Models RoBERTa RoBERTa RoBERTa

Hidden Size [1024] [1024] [1024]
FFN Inner Hidden Size [4096] [4096] [4096]
Number of Layers [24] [24] [24]
Learning Rate [1e-5] [1e-5] [1e-5]
Weight Decay [0.01] [0.01] [0.01]
Batch Size [16] [32] [16]
Dropout [0.1] [0.1] [0.1]
Attention Dropout [0.1] [0.1] [0.1]
Clip Norm [0.0] [0.0] [0.0]
Adam ε [1e-06] [1e-06] [1e-06]
Adam β1 [0.9] [0.9] [0.9]
Adam β1 [0.98] [0.98] [0.98]

Parameters 355M 355M 355M
Training Time 3000 steps 23750 steps 3 epochs
Wramup Time 150 steps 2375 steps 500 steps

16

Published as a conference paper at ICLR 2023

A.2 ARITHMETIC REASONING

Table 4: Hyperparameters and training configurations used for models on Arithmetic Reasoning.
Models GTS Graph2Tree
Dataset MAVPS, ASDiv-A, SVAMP MAVPS, ASDiv-A, SVAMP

Pre-trained Embedding RoBERTa RoBERTa

Embedding Size [768] [768]
Hidden Size [512] [384]
Number of Layers [2] [2]
Learning Rate [1e-3] [8e-4]
Weight Decay [1e-5] [1e-5]
Embedding LR [8e-6] [1e-5]
Batch Size [4 (MAVPS, ASDiv-A), 8

(SVAMP)]
[4 (MAVPS, ASDiv-A), 8

(SVAMP)]
Dropout [0.5] [0.5]
Adam ε [1e-08] [1e-08]
Adam β1 [0.9] [0.9]
Adam β1 [0.999] [0.999]

Parameters 140M 143M
Training Time 50 epochs 50 epochs

A.3 PROTEIN THERMOSTABILITY PREDICTION

Table 5: Hyperparameters and training configurations used for models on Protein Thermostability
Prediction.

Models TAPE ESM-1B ESM-IF1

Dataset HP-S HP-S2C2, Meltome
Atlas, HP-S

HP-S2C5

Hidden Size [768] [1280] [512]
Number of Layers [12] [33] [20]
Learning Rate [1e-4] [2e-2 (head), 1e-6

(backbone)]
[2e-2 (head), 1e-4

(backbone)]
Weight Decay [1e-2] [1e-2] [5e-2]
Batch Size [16] [3,2,3] [4]
Attention Dropout [0.1] [0.0] [0.1]
Dropout [0.1] [0.0] [0.1]
Adam ε [1e-08] [1e-08] [1e-08]
Adam β1 [0.9] [0.9] [0.9]
Adam β1 [0.999] [0.999] [0.999]

Parameters 92M 650M 124M
Training Time 4 epochs 4 epochs 8 epochs

A.4 MULTILINGUAL TRANSLATION

Table 6: Hyperparameters and training configurations used for models on Multilingual Translation.
Models mBART mBART mBART
Dataset 2-to-2 5-to-5 10-to-10

Pre-trained Models mBART mBART mBART

Hidden Size [1024] [1024] [1024]
Number of Layers [24] [24] [24]
Learning Rate [3e-5] [3e-5] [3e-5]
Weight Decay [0.0] [0.0] [0.0]
Batch Size [16] [32] [16]
Dropout [0.3] [0.3] [0.3]
Attention Dropout [0.1] [0.1] [0.1]
Clip Norm [0.0] [0.0] [0.0]
Adam ε [1e-06] [1e-06] [1e-06]
Adam β1 [0.9] [0.9] [0.9]
Adam β1 [0.98] [0.98] [0.98]

Parameters 680M 680M 680M
Training Time 40,000 steps 40,000 steps 40,000 steps
Wramup Time 2,500 steps 2,500 steps 2,500 steps

17

Published as a conference paper at ICLR 2023

B RESULTS OF ARITHMETIC REASONING WITH MAGNITUDE BEFORE
TRAINING

In this appendix, we report the performance of SNNs on arithmetic reasoning including Magnitude
before Training (OMP (Before)). We can clearly observe that the accuracy of magnitude pruning
before training dramatically falls from 80% to nearly 0% when sparsity is larger than 36%. After
checking the corresponding layerwise sparsity, we find that OMP (Before) completely removes all
the weights from non-embedding and non-encoder layers, leading to severe layer collapse.

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93
0

20

40

60

80

Ac
cu

ra
cy

 [%
]

GTS on MAWPS

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93
0

20

40

60

80

Ac
cu

ra
cy

 [%
]

GTS on ASDiv-A

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93
0

10

20

30

40

Ac
cu

ra
cy

 [%
]

GTS on SVAMP

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

Graph2Tree on MAWPS

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

Graph2Tree on ASDiv-A

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5
0.8

66
0.8

93

Sparsity

0

10

20

30

40

Ac
cu

ra
cy

 [%
]

Graph2Tree on SVAMP

Dense model
SNIP (Before)

LTH (After)
SNIP+RIGL (Before)

OMP (After)
Random (Before)

Random (After)
Random+RIGL (Before)

GMP (During)
OMP (Before)

OMP+RIGL (Before)

Figure 5: Arithmetic reasoning performance of various sparse GTS and Graph2Tree on MAWPS,
ASDiv-A, and SVAMP.

18

Published as a conference paper at ICLR 2023

C AN INVESTIGATION OF WHY SNNS FAIL ON SMC-BENCH

In this section, we conduct a full investigation, attempting to open the box for the potential causes of
SNN failures on SMC-Bench. Our analysis reveals two possible causes: (1) the “lazy regime” in fine-
tuning LLMs, and (2) the model components to prune. Due to the “lazy regime” phenomenon (Chizat
et al., 2019; Malladi et al., 2022), commonly used pruning techniques that rely on magnitude and
gradient can be very uninformative. Therefore, we turn to the latest strong second-order pruning
framework - oBERT (Kurtic et al., 2022), which utilizes inverse-Hessian approximations to guide
pruning decisions. We choose RoBERTa.large on CSQA to conduct this investigation. The roadmap
of our full investigation is presented below.

• Layerwise sparsity ratios of various magnitude-based pruning methods are strikingly
similar, suggesting that “lazy regime” may occur during fine-tuning. In this regime, the most
common pruning criteria such as magnitude and gradient can be rather unreliable.

• Second-order pruning approaches like oBERT provide more faithful signals than magni-
tudes and gradients for LLM pruning, and hence achieve significantly higher accuracy at
high sparsities.

C.1 LAYERWISE SPARSITY RATIOS ON SMC-BENCH

To check if severe layer collapse occurs on SMC-Bench, we plot the per-layer sparsity ratios
discovered by various sparsification approaches at three sparsity levels: 36%, 64%, and 83%. Layers
are ordered from input to output on the X-axis. We respectively report the layerwise sparsity of
commonsense reasoning with RoBERTa on CSQA and RACE in Figure 6 and 7, and arithmetic
reasoning with GTS on SVAMP in Figure 8. We summarize our main findings here.

¶ Layerwise sparsities of magnitude-based pruning approaches are extremely similar. IMP,
OMP, and GMP that rely on weight magnitude for pruning share an extremely similar set of layer-
wise sparsities. Especially, sparsity values of magnitude pruning on commonsense reasoning are
completely identical, all overlapped on blue lines, except for the tiny difference in classification
heads. This phenomenon indicates that weights of RoBERTa excluding classifiers remain rather
stable during commonsense reasoning fine-tuning so that all the magnitude pruning variants (both
before and after) discover the same sparsity pattern. The sparsity difference of arithmetic reasoning
is more distinguishable than commonsense reasoning. Still, sparsities in the encoder (pre-trained
RoBERTa) of IMP, GMP, and OMP (After) largely overlap. Until reaching the later layers, the
sparsity ratios of different approaches start to be distinct. · SNIP tends to prune all the weights in
embedding layers aggressively. Even at the mild 36% sparsity, SNIP prunes weights of embedding
layers to 99.7% sparsity, which may explain why SNIP struggles on SMC-Bench. ¸ OMP (Before)
suffers from layer collapse on arithmetic reasoning. We empirically find that OMP (Before) leads
to completely empty deep layers when sparsity is larger than 36%, indicating the limitation of only
considering pruning with the magnitude before fine-tuning or re-training.

The near-identical layerwise sparsity ratios across various magnitude-based methods remind us of the
“lazy training” regime (Chizat et al., 2019; Malladi et al., 2022) which was revealed to occur during
the fine-tuning of LLMs. Under this regime, weight changes during fine-tuning are negligible, hence
non-informative and more “noisy”. Consequently, various magnitude-based pruning approaches,
regardless of their timing, all tend to converge to the same solution.

19

Published as a conference paper at ICLR 2023

0.0

0.2

0.4

0.6

0.8

1.0
La

ye
rw

ise
 S

pa
rs

ity
RoBERTa on CSQA, Overall Sparity=36%

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

rw
ise

 S
pa

rs
ity

Roberta on CSQA, Overall Sparity=67%

em
be

d_
to

ke
ns

.w
ei

gh
t

em
be

d_
po

sit
io

ns
.w

ei
gh

t

L.
1.

in
_p

ro
j_w

ei
gh

t

L.
2.

in
_p

ro
j_w

ei
gh

t

L.
3.

in
_p

ro
j_w

ei
gh

t

L.
4.

in
_p

ro
j_w

ei
gh

t

L.
5.

in
_p

ro
j_w

ei
gh

t

L.
6.

in
_p

ro
j_w

ei
gh

t

L.
7.

in
_p

ro
j_w

ei
gh

t

L.
8.

in
_p

ro
j_w

ei
gh

t

L.
9.

in
_p

ro
j_w

ei
gh

t

L.
10

.in
_p

ro
j_w

ei
gh

t

L.
11

.in
_p

ro
j_w

ei
gh

t

L.
12

.in
_p

ro
j_w

ei
gh

t

L.
13

.in
_p

ro
j_w

ei
gh

t

L.
14

.in
_p

ro
j_w

ei
gh

t

L.
15

.in
_p

ro
j_w

ei
gh

t

L.
16

.in
_p

ro
j_w

ei
gh

t

L.
17

.in
_p

ro
j_w

ei
gh

t

L.
18

.in
_p

ro
j_w

ei
gh

t

L.
19

.in
_p

ro
j_w

ei
gh

t

L.
20

.in
_p

ro
j_w

ei
gh

t

L.
21

.in
_p

ro
j_w

ei
gh

t

L.
22

.in
_p

ro
j_w

ei
gh

t

cla
ss

ifi
ca

tio
n_

he
ad

s

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

rw
ise

 S
pa

rs
ity

RoBERTa on CSQA, Overall Sparity=83%

LTH (After) OMP (Before) GMP (During) SNIP (Before) Random (Before) OMP (After)

Figure 6: Layerwise sparsity of RoBERTa on CSQA at sparsity levels ∈ [36%, 67%, 83%].

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

rw
ise

 S
pa

rs
ity

RoBERTa on RACE, Overall Sparity=36%

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

rw
ise

 S
pa

rs
ity

Roberta on RACE, Overall Sparity=67%

em
be

d_
to

ke
ns

.w
ei

gh
t

em
be

d_
po

sit
io

ns
.w

ei
gh

t

L.
1.

in
_p

ro
j_w

ei
gh

t

L.
2.

in
_p

ro
j_w

ei
gh

t

L.
3.

in
_p

ro
j_w

ei
gh

t

L.
4.

in
_p

ro
j_w

ei
gh

t

L.
5.

in
_p

ro
j_w

ei
gh

t

L.
6.

in
_p

ro
j_w

ei
gh

t

L.
7.

in
_p

ro
j_w

ei
gh

t

L.
8.

in
_p

ro
j_w

ei
gh

t

L.
9.

in
_p

ro
j_w

ei
gh

t

L.
10

.in
_p

ro
j_w

ei
gh

t

L.
11

.in
_p

ro
j_w

ei
gh

t

L.
12

.in
_p

ro
j_w

ei
gh

t

L.
13

.in
_p

ro
j_w

ei
gh

t

L.
14

.in
_p

ro
j_w

ei
gh

t

L.
15

.in
_p

ro
j_w

ei
gh

t

L.
16

.in
_p

ro
j_w

ei
gh

t

L.
17

.in
_p

ro
j_w

ei
gh

t

L.
18

.in
_p

ro
j_w

ei
gh

t

L.
19

.in
_p

ro
j_w

ei
gh

t

L.
20

.in
_p

ro
j_w

ei
gh

t

L.
21

.in
_p

ro
j_w

ei
gh

t

L.
22

.in
_p

ro
j_w

ei
gh

t

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

rw
ise

 S
pa

rs
ity

RoBERTa on RACE, Overall Sparity=83%

LTH (After) OMP (Before) GMP (During) SNIP (Before) Random (Before) OMP (After)

Figure 7: Layerwise sparsity of RoBERTa on RACE at sparsity levels ∈ [36%, 67%, 83%].

20

Published as a conference paper at ICLR 2023

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

rw
ise

 S
pa

rs
ity

GTS on SVAMP, Overall Sparity=36%

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

rw
ise

 S
pa

rs
ity

GTS on SVAMP, Overall Sparity=67%

em
be

dd
in

gs
.w

or
d_

em
be

dd
in

gs
.w

ei
gh

t
em

be
dd

in
gs

.p
os

iti
on

_e
m

be
dd

in
gs

.w
ei

gh
t

em
be

dd
in

gs
.to

ke
n_

ty
pe

_e
m

be
dd

in
gs

.w
ei

gh
t

en
co

de
r.l

ay
er

.0
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.0
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.0

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.0

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.0

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.0

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.1
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.1
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.1

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.1

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.1

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.1

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.2
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.2
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.2

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.2

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.2

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.2

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.3
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.3
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.3

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.3

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.3

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.3

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.4
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.4
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.4

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.4

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.4

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.4

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.5
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.5
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.5

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.5

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.5

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.5

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.6
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.6
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.6

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.6

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.6

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.6

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.7
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.7
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.7

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.7

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.7

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.7

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.8
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.8
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.8

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.8

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.8

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.8

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.9
.a

tte
nt

io
n.

se
lf.

qu
er

y.w
ei

gh
t

en
co

de
r.l

ay
er

.9
.a

tte
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.9

.a
tte

nt
io

n.
se

lf.
va

lu
e.

we
ig

ht
en

co
de

r.l
ay

er
.9

.a
tte

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.9

.in
te

rm
ed

ia
te

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.9

.o
ut

pu
t.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.1
0.

at
te

nt
io

n.
se

lf.
qu

er
y.w

ei
gh

t
en

co
de

r.l
ay

er
.1

0.
at

te
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.1

0.
at

te
nt

io
n.

se
lf.

va
lu

e.
we

ig
ht

en
co

de
r.l

ay
er

.1
0.

at
te

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.1

0.
in

te
rm

ed
ia

te
.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.1
0.

ou
tp

ut
.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.1
1.

at
te

nt
io

n.
se

lf.
qu

er
y.w

ei
gh

t
en

co
de

r.l
ay

er
.1

1.
at

te
nt

io
n.

se
lf.

ke
y.w

ei
gh

t
en

co
de

r.l
ay

er
.1

1.
at

te
nt

io
n.

se
lf.

va
lu

e.
we

ig
ht

en
co

de
r.l

ay
er

.1
1.

at
te

nt
io

n.
ou

tp
ut

.d
en

se
.w

ei
gh

t
en

co
de

r.l
ay

er
.1

1.
in

te
rm

ed
ia

te
.d

en
se

.w
ei

gh
t

en
co

de
r.l

ay
er

.1
1.

ou
tp

ut
.d

en
se

.w
ei

gh
t

rn
n.

we
ig

ht
_ih

_l0
rn

n.
we

ig
ht

_h
h_

l0
rn

n.
we

ig
ht

_ih
_l0

_r
ev

er
se

rn
n.

we
ig

ht
_h

h_
l0

_r
ev

er
se

rn
n.

we
ig

ht
_ih

_l1
rn

n.
we

ig
ht

_h
h_

l1
rn

n.
we

ig
ht

_ih
_l1

_r
ev

er
se

rn
n.

we
ig

ht
_h

h_
l1

_r
ev

er
se

co
nc

at
_l.

we
ig

ht
co

nc
at

_r.
we

ig
ht

co
nc

at
_lg

.w
ei

gh
t

co
nc

at
_r

g.
we

ig
ht

op
s.w

ei
gh

t
at

tn
.a

ttn
.w

ei
gh

t
at

tn
.sc

or
e.

we
ig

ht
sc

or
e.

at
tn

.w
ei

gh
t

sc
or

e.
sc

or
e.

we
ig

ht
em

be
dd

in
gs

.w
ei

gh
t

ge
ne

ra
te

_l.
we

ig
ht

ge
ne

ra
te

_r.
we

ig
ht

ge
ne

ra
te

_lg
.w

ei
gh

t
ge

ne
ra

te
_r

g.
we

ig
ht

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

rw
ise

 S
pa

rs
ity

GTS on SVAMP, Overall Sparity=83%

LTH (After) OMP (Before) GMP (During) SNIP (Before) Random (Before) OMP (After)

Figure 8: Layerwise sparsity of GTS on SVAMP at sparsity levels ∈ [36%, 67%, 83%].

C.2 EVALUATION OF OBERT ON SMC-BENCH

Based on our conjecture that magtitudes/gradients become unreliable for pruning LLMs, we hy-
pothesize that the second-order pruning approaches with approximated Hessian matrix would be
more accurate options. To verify our conjecture, we turn to the latest stronger second-order pruning
framework, oBERT (Kurtic et al., 2022). Specifically, we follow Kurtic et al. (2022) and replace the
magnitude pruning criterion of the LTH framework with the second-order oBERT criterion; adopt
Learning Rate Rewinding (LRR) (Renda et al., 2020) and Knowledge Distillation (KD) (Hinton et al.,
2015) during each pruning iteration; and keep the embeddings and classification heads dense.

Figure 9 support our hypothesis and demonstrates that oBERT notably outperforms the zero-order and
first-order sparsification approaches, and substantially improves the accuracy to a competitive level.
More importantly, oBERT produces a completely different layerwise sparsity pattern from magnitude-
based pruning approaches, which is consistent with the patterns that are commonly observed in sparse
computer vision models: deeper layers tend to have higher sparsities than lower layers (Evci et al.,
2020; Kusupati et al., 2020; Tanaka et al., 2020; Liu et al., 2021b).

0.2 0.3
6

0.4
88 0.5

9
0.6

72
0.7

38
0.7

91
0.8

32
5

0.8
66

0.8
93

Sparsity

20

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

Roberta-Large on CSQA

Dense model GMP LTH Random (After) oBERT (not pruning emb and classifier)

Figure 9: A roadmap of accuracy recovering via a suite of stronger pruning recipes with RoBERTa-
Large on CSQA.

So far, our investigation has discovered that the pruning recipe used in (Kurtic et al., 2022) can
remarkably improve the LLM pruning performance on SMC-Bench. Nevertheless, such a well-tuned
pruning recipe is both time- and resource-intensive (9×more fine-tuning time, besides Hessian matrix

21

Published as a conference paper at ICLR 2023

L.
0.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
0.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

em
be

d_
po

sit
io

ns
.w

ei
gh

t

L.
0.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
0.

fc
1.

we
ig

ht

L.
0.

fc
2.

we
ig

ht

L.
1.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
1.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
1.

se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
1.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
1.

fc
1.

we
ig

ht

L.
1.

fc
2.

we
ig

ht

L.
2.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
2.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
2.

se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
2.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
2.

fc
1.

we
ig

ht

L.
2.

fc
2.

we
ig

ht

L.
3.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
3.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
3.

se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
3.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
3.

fc
1.

we
ig

ht

L.
3.

fc
2.

we
ig

ht

L.
4.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
4.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
4.

se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
4.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
4.

fc
1.

we
ig

ht

L.
4.

fc
2.

we
ig

ht

L.
5.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
5.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
5.

se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
5.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
5.

fc
1.

we
ig

ht

L.
5.

fc
2.

we
ig

ht

L.
6.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
6.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
6.

se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
6.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
6.

fc
1.

we
ig

ht

L.
6.

fc
2.

we
ig

ht

L.
7.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
7.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
7.

se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
7.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
7.

fc
1.

we
ig

ht

L.
7.

fc
2.

we
ig

ht

L.
8.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
8.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
8.

se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
8.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
8.

fc
1.

we
ig

ht

L.
8.

fc
2.

we
ig

ht

L.
9.

se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
9.

se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
9.

se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
9.

se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
9.

fc
1.

we
ig

ht

L.
9.

fc
2.

we
ig

ht

L.
10

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
10

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
10

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
10

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
10

.fc
1.

we
ig

ht

L.
10

.fc
2.

we
ig

ht

L.
11

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
11

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
11

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
11

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
11

.fc
1.

we
ig

ht

L.
11

.fc
2.

we
ig

ht

L.
12

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
12

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
12

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
12

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
12

.fc
1.

we
ig

ht

L.
12

.fc
2.

we
ig

ht

L.
13

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
13

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
13

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
13

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
13

.fc
1.

we
ig

ht

L.
13

.fc
2.

we
ig

ht

L.
14

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
14

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
14

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
14

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
14

.fc
1.

we
ig

ht

L.
14

.fc
2.

we
ig

ht

L.
15

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
15

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
15

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
15

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
15

.fc
1.

we
ig

ht

L.
15

.fc
2.

we
ig

ht

L.
16

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
16

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
16

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
16

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
16

.fc
1.

we
ig

ht

L.
16

.fc
2.

we
ig

ht

L.
17

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
17

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
17

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
17

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
17

.fc
1.

we
ig

ht

L.
17

.fc
2.

we
ig

ht

L.
18

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
18

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
18

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
18

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
18

.fc
1.

we
ig

ht

L.
18

.fc
2.

we
ig

ht

L.
19

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
19

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
19

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
19

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
19

.fc
1.

we
ig

ht

L.
19

.fc
2.

we
ig

ht

L.
20

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
20

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
20

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
20

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
20

.fc
1.

we
ig

ht

L.
20

.fc
2.

we
ig

ht

L.
21

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
21

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
21

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
21

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
21

.fc
1.

we
ig

ht

L.
21

.fc
2.

we
ig

ht

L.
22

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
22

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
22

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
22

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
22

.fc
1.

we
ig

ht

L.
22

.fc
2.

we
ig

ht

L.
23

.se
lf_

at
tn

.k
_p

ro
j.w

ei
gh

t

L.
23

.se
lf_

at
tn

.v
_p

ro
j.w

ei
gh

t

L.
23

.se
lf_

at
tn

.q
_p

ro
j.w

ei
gh

t

L.
23

.se
lf_

at
tn

.o
ut

_p
ro

j.w
ei

gh
t

L.
23

.fc
1.

we
ig

ht

L.
23

.fc
2.

we
ig

ht

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

rw
ise

 S
pa

rs
ity

RoBERTa on CSQA, Overall Sparity=36%

LTH (not pruning emb and classifier)
LTH + LRR (not pruning emb and classifier)

oBERT + LRR + KD (not pruning emb and classifier)
oBERT + LRR (not pruning emb and classifier)

Figure 10: Layerwise sparsity comparison among LTH, LRR, oBERT, and KD with RoBERTa-Large
on CSQA.

approximation); and even so, the strongest SNNs still fall short of their dense counterpart by around
10% accuracy at sparsities between 60%− 80%, in contrast to “normal” SNNs that easily match their
dense models on CIFAR, ImageNet, or GLUE. Therefore, the main claim of our paper still holds,
that is, SMC-Bench indeed provides a new benchmark that is way more challenging for SOTA sparse
algorithms, than existing testbeds.

22

Published as a conference paper at ICLR 2023

D SUMMARY OF EVALUATION TASKS AND DATASETS IN 100 PAPERS

Table 7: Summary of Evaluation Tasks and Datasets Used in 100 Recent SNN Papers.

TASK TOTAL #PAPER DATASETS #PAPER

IMAGE CLASSIFICATION 82

IMAGENET 62
CIFAR-10 59

CIFAR-100 37
MNIST 26

FASHION MNIST 10
SVHN 4

BIRDS-200 1
FLOWERS-102 1

EMNIST 1

NLP TASK 16

GLUE 9
SQUAD 4

WIKITEXT-103 3
WMT 5
IMDB 1
AAN 1
LO 1

OPENWEB TEXT 1
ONE BILLION WORD BENCHMARK 1

FACE RECOGNITION 3
LFW 3

YOUTUBE FACES 2
CASIA-WEBFACE 1

OBJECT DETECTION 3 COCO DATASET 2
PASCAL-VOL-2007 1

SPEECH RECOGNITION 2 GOOGLE-12 1
TIMIT 1

HIGH-RESOLUTION RECONSTRUCTION 2

SET5 2
SET14 2
B100 2

URBAN100 2
MANGA109 2

IMAGE GENERATION 2
CIFAR-10 2
IMAGENET 1

STL-10 1

HUMAN ACTIVITY RECOGNITION 1 HAR-2 1

MICROARRAY CLASSIFICATION 1

LEUKEMIA 1
CLL-SUB-111 1
SMK-CAN-18 1

GLI-85 1

HAND GESTURE RECONSTRUCTION 1 NVGESTURE 1

REGRESSION TASK 1 NYU DEPTH 1

3D OBJECT PART SEGMENTATION 1 SHAPENET 1

RL TASK 1

CARTPOLE 1
ACROBOT 1

MOUNTAINCAR 1
ATARI SUITE 1

VEDIO DEBLURRING 1
DVD 1

GOPRO 1
REAL BLURRY VIDEOS 1

VOCABULARY SPEECH RECOGNITION 1 VS 1
SWB 1

23

	1 Introduction
	2 Related Work
	2.1 Advances in Sparse Neural Networks
	2.2 Benchmarking in Sparse Neural Networks

	3 SMC-Bench
	3.1 Commonsense Reasoning
	3.2 Arithmetic Reasoning
	3.3 Protein Thermostability Prediction
	3.4 Multilingual Translation

	4 Evaluation on SMC-Bench
	4.1 Commonsense Reasoning
	4.2 Arithmetic Reasoning
	4.3 Protein Thermal Stability Prediction
	4.3.1 Sequence-Based Models
	4.3.2 Structure-Based Models

	4.4 Multilingual Translation
	4.5 Why SNNs Fail on SMC-Bench

	5 Conclusion
	A Summary of Tasks, Models, Datasets, and Training
	A.1 Commonsense Reasoning
	A.2 Arithmetic Reasoning
	A.3 Protein Thermostability Prediction
	A.4 Multilingual Translation

	B Results of Arithmetic Reasoning with Magnitude before Training
	C An Investigation of Why SNNs Fail on SMC-Bench
	C.1 Layerwise Sparsity Ratios on SMC-Bench
	C.2 Evaluation of oBERT on SMC-Bench

	D Summary of Evaluation Tasks and Datasets in 100 Papers

