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Abstract
We introduce a universal framework for characterizing the statistical efficiency of a statistical
estimation problem with differential privacy guarantees. Our framework, which we call High-
dimensional Propose-Test-Release (HPTR), builds upon three crucial components: the exponential
mechanism from (McSherry and Talwar, 2007), robust statistics, and the Propose-Test-Release
mechanism from (Dwork and Lei, 2009). Connecting all these together is the concept of resilience,
which is central to robust statistical estimation. Resilience guides the design of the algorithm, the
sensitivity analysis, and the success probability analysis of the test step in Propose-Test-Release.
The key insight is that if we design an exponential mechanism that accesses the data only via one-
dimensional and robust statistics, then the resulting local sensitivity can be dramatically reduced.
Using resilience, we can provide tight local sensitivity bounds. These tight bounds readily translate
into near-optimal utility guarantees in several cases. We give a general recipe for applying HPTR
to a given instance of a statistical estimation problem and demonstrate it on canonical problems of
mean estimation, linear regression, covariance estimation, and principal component analysis. We
introduce a general utility analysis technique that proves that HPTR achieves near-optimal sample
complexity under several scenarios studied in the literature.
Keywords: Differential privacy, robust statistics.

1. Introduction

Estimating a parameter of a distribution from i.i.d. samples is a canonical problem in statistics. For
such problems, characterizing the computational and statistical cost of ensuring differential privacy
(DP) has gained significant interest with the rise of DP as the de facto measure of privacy. This
is spearheaded by exciting and foundational algorithmic advances, e.g., (Barber and Duchi, 2014;
Karwa and Vadhan, 2017; Kamath et al., 2019, 2020; Cai et al., 2019). However, the computational
efficiency of these algorithms often comes at the cost of requiring superfluous assumptions that
are not necessary for statistical efficiency, such as known bounds on the parameters or knowledge
of higher-order moments. Without such assumptions, the optimal sample complexity remains un-
known even for canonical statistical estimation problems under differential privacy. Further, each
algorithm needs to be customized to those assumptions or to the problem instances.

We take an alternative route of focusing only on the statistical cost of differential privacy without
concerning computational efficiency. Our goal is to introduce a general unifying framework that
(1) can be readily applied to each problem instance, (2) provides a tight characterization of the
statistical complexity involved, and (3) requires minimal assumptions. Achieving this goal critically
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relies on three key ingredients: the exponential mechanism introduced by McSherry and Talwar
(2007), robust statistics, and the Propose-Test-Release mechanism introduced by Dwork and Lei
(2009). We first explain these three components of our approach, and then demonstrate the utility
of our proposed framework, called High-dimensional Propose-Test-Release (HPTR), in canonical
problems of mean and covariance estimation, linear regression, and principal component analysis.

Exponential mechanism and sensitivity. Differential privacy (DP), introduced in the seminal pa-
per of Dwork et al. (2006), is an agreed upon measure of privacy that provides plausible denia-
bility to the individual entries. Given a dataset S of size n and its empirical distribution p̂S =
(1/n)

∑
xi∈S δxi where δxi is Dirac delta function at xi, its neighborhood is defined as NS = {S′ :

|S′| = |S|, dTV(p̂S , p̂S′) ≤ 1/n}, which is a set of datasets at Hamming distance1 at most one
from S, and dTV(·) is the total variation. Plausible deniability is achieved by introducing the right
amount of randomness. A randomized estimator θ̂(S) is said to be (ε, δ)-differentially private for
some target ε ≥ 0 and δ ∈ [0, 1] if P(θ̂(S) ∈ A) ≤ eεP(θ̂(S′) ∈ A)+ δ for all neighboring datasets
S, S′ and all measurable subset A ⊆ Rp.

The sensitivity plays a crucial role in designing DP estimators. Consider an example of mean es-
timation, where the error is measured in the Mahalanobis distance defined as Dp(µ̂) = ∥Σ−1/2

p (µ̂−
µp)∥, where µp and Σp are the mean and covariance of the sample-generating distribution p. This
is a preferred error metric since it has unit variance in all directions and is invariant to a linear
transformation of the samples. The first result in differentially private mean estimation under this
Mahalanobis distance is provided in (Brown et al., 2021), which we discuss more in Section 1.1. A
corresponding empirical loss is Dp̂S (µ̂) = ∥Σ−1/2

p̂S
(µ̂ − µp̂S )∥. The exponential mechanism from

(McSherry and Talwar, 2007) produces an (ε, 0)-DP estimate µ̂ by sampling from a distribution
that approximately and stochastically minimizes this empirical loss: µ̂ ∼ (1/Z(S))e−

ε
2∆

Dp̂S
(µ̂) ,

where Z(S) =
∫
exp{−(ε/2∆)Dp̂S (µ̂)dµ̂. The sensitivity of the score function Dp̂S (µ̂) is defined

as ∆ := maxµ̂,S,S′∈NS
|Dp̂S (µ̂) − Dp̂S′ (µ̂)|, which is the influence of one data point on the loss.

From this definition, the (ε, 0)-DP guarantee follows immediately (e.g., Lemma 3).
Using the exponential mechanism is crucial in HPTR for two reasons: adaptivity and flexibility.

First, it naturally adapts to the geometry of the problem, which is encoded in the loss. For example,
a more traditional Gaussian mechanism (Dwork and Roth, 2014) needs to estimate Σp privately in
order to add a Gaussian noise tailored to that estimated Σp, which increases sample complexity sig-
nificantly. On the other hand, the exponential mechanism seamlessly adapts to Σp without explicitly
and privately estimating it. Further, the exponential mechanism allows us significant flexibility to
design different loss functions, some of which can dramatically reduce the sensitivity. Discovering
such a loss function is the main focus of this paper.

One major challenge is that the sensitivity is unbounded when the support of the distribution
is unbounded. A common solution is to privately estimate a bounded domain that the samples lie
in and use it to bound the sensitivity (e.g., (Karwa and Vadhan, 2017; Kamath et al., 2019)). We
propose a fundamentally different approach using robust statistics.

Robust statistics and resilience. The concept of resilience defined in Steinhardt et al. (2018)
(also known as stability in the literature, e.g., Diakonikolas and Kane (2019)) plays a critical role
in robust statistics. For the mean, for example, a dataset S is said to be (α, ρ)-resilient for some
α ∈ [0, 1] and ρ > 0 if for all v ∈ Rd with ∥v∥ = 1 and all subset T ⊆ S of size at least

1. There are two notions of a neighborhood in DP, which are equally popular. We use the one based on exchanging an
entry, but all the analyses can seamlessly be applied to the one that allows for insertion and deletion of an entry.
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|T | ≥ αn, we have
∣∣ ⟨v, µp̂T ⟩ − ⟨v, µp̂S ⟩

∣∣ ≤ ρ/α. A more precise statement is in Definition 8.
This measures how resilient the empirical mean is to subsampling or deletion of a fraction of the
samples. This resilience is a central concept in robust statistical estimation when a fraction of the
dataset is arbitrarily corrupted by an adversary (Steinhardt et al., 2018; Zhu et al., 2019). We show
and exploit the fact that resilience is fundamentally related to the sensitivity of robust statistics.

For each direction v ∈ Rd with ∥v∥ = 1, we construct a robust mean of a one-dimensional
projected dataset, also known as trimmed mean, Sv = {⟨v, xi⟩ ∈ R}xi∈S , as follows. For some
α ∈ [0, 1/2), remove αn data points corresponding to the largest entries in Sv and also remove the
αn smallest entries. The mean of the remaining (1 − 2α)n points is the robust one-dimensional
mean, which we denote by ⟨v, µ(robust)p̂v

⟩ ∈ R. From the resilience above, we know that the mean of
the removed top part is upper bounded by ⟨v, µp̂S ⟩ + ρ/α. The mean of the removed bottom part
is lower bounded by ⟨v, µp̂S ⟩ − ρ/α. Hence, the effective support of this robust one-dimensional
mean estimator is upper and lower bounded by the same. This can be readily translated into a bound
in sensitivity of the estimate, ⟨v, µ(robust)p̂v

⟩ (e.g., Lemma 16). A similar sensitivity bound holds

for the robust one-dimensional variance estimator, v⊤Σ(robust)
p̂v

v, defined similarly. We propose an
approach that critically relies on this observation that one-dimensional robust statistics have low
sensitivity on resilient datasets, i.e., datasets satisfying the resilience property with small ρ.

This suggests that if we can design a score function that only depends on one-dimensional robust
statistics of the data, it might inherit the low sensitivity of those robust statistics. To this end, we first
transform the target error metric into an equivalent expression that only depends on one-dimensional
(population) mean, ⟨v, µp⟩, and variance, v⊤Σpv, i.e.,

∥Σ−1/2
p (µ̂− µp)∥ = max

v∈Rd,∥v∥=1

⟨v, µ̂⟩ − ⟨v, µp⟩√
v⊤Σp v

,

which follows from Lemma 7. Next, we replace the population statistics with robust empirical ones

to define a new empirical loss, Dp̂S (µ̂) = maxv∈Rd,∥v∥=1(⟨v, µ̂⟩ − ⟨v, µ(robust)p̂v
⟩)/
√
v⊤Σ

(robust)
p̂v

v.
Precise definitions of these robust statistics can be found in Eq. (4). For resilient datasets, such a
score function has a dramatically smaller sensitivity compared to those that rely on high-dimensional
robust statistics. For mean estimation under a sub-Gaussian distribution, the sensitivity of the pro-
posed loss is Õ(1/n), whereas a high-dimensional robust statistic has Ω(

√
d/n) sensitivity.

Such an improved sensitivity immediately leads to a better utility guarantee of the exponential
mechanism. We explicitly prescribe such loss functions for the canonical problems of mean esti-
mation, linear regression, covariance estimation, and principal component analysis. This leads to
near-optimal utility in most cases and improves upon the state-of-the-art in others, as we demon-
strate in Section 1.1. Further, this approach can potentially be more generally applied to a much
broader class of problems. One remaining challenge is that the tight sensitivity bound we provide
holds only for a resilient dataset. To reject bad datasets, we adopt the Propose-Test-Release (PTR)
framework pioneered in the seminal work of Dwork and Lei (2009).

Propose-Test-Release and local sensitivity. The tight sensitivity bound we provide on the pro-
posed exponential mechanism is local in the sense that it only holds for resilient datasets. However,
differential privacy must be guaranteed for any input, whether it is resilient (with desired level of α
and ρ) or not. We adopt Propose-Test-Release introduced in (Dwork and Lei, 2009) to handle such
locality of sensitivity. In the first step, one proposes an upper bound on the sensitivity of the loss
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DS(θ̂), determined by the resilience of the dataset, which in turn is determined solely by the distri-
bution family of interest and the target error rate. In the second step, one tests if the combination
of the given dataset S, sensitivity bound ∆, and the exponential mechanism with loss DS(θ̂) satisfy
the DP conditions. A part of the privacy budget is used to test this in a differential private manner,
such that the subsequent exponential mechanism can depend on the result of this test, i.e., we only
proceed to the third step if S passes the test. Otherwise, the process stops and outputs a predefined
symbol, ⊥. In the third step, one releases the DP estimate via the exponential mechanism. This
ensures DP for any input S. We are adopting the Propose-Test-Release mechanism pioneered in
(Dwork and Lei, 2009), which we explain in detail in Section A. The resulting framework, which
we call High-dimensional Propose-Test-Release (HPTR) is provided in Section 1.2.

Contributions. We introduce a novel (computationally inefficient) algorithm for differentially
private statistical estimation, with the goal of characterizing the achievable sample complexity
for various problems with minimal assumptions. The proposed framework, which we call High-
dimensional Propose-Test-Release (HPTR), makes a fundamental connection between differential
privacy and robust statistics, thus achieving a sample complexity that significantly improves upon
other state-of-the-art approaches. HPTR is a generic framework that can be seamlessly applied to
various statistical estimation problems, as we demonstrate for mean estimation, linear regression,
covariance estimation, and principal component analysis. Further, our analysis technique, which
requires minimal assumptions, also seamlessly generalizes to all problem instances of interest.

HPTR uses three crucial components: the exponential mechanism, robust statistics, and the
Propose-Test-Release mechanism. Building upon the inherent adaptivity and flexibility of the expo-
nential mechanism, we propose using a novel loss function (also called a score function in a typical
design of exponential mechanisms) that accesses the data only via one-dimensional robust statistics.
The use of 1-D robust statistics is critical, because it dramatically reduces the sensitivity. We prove
this sensitivity bound using the fundamental concept of resilience, which is central in robust statis-
tics. This novel robust exponential mechanism is incorporated within the PTR framework to ensure
that differential privacy is guaranteed on all input datasets, including those that are not necessarily
compliant with the statistical assumptions. One byproduct of using robust statistics is that robust-
ness comes for free. HPTR is inherently robust to adversarial corruption of the data and achieves
the optimal robust error rate under standard data corruption models.

We present informal versions of our main theoretical results in Section 1.1. We present HPTR
algorithm in detail in Section 1.2. We provide a sketch of the proof and the main technical contribu-
tions in Section 1.3. Notations and background on DP are provided in Appendix A. Detailed expla-
nations of the setting, main results, and the proofs for each instance of the problems are presented
in Appendices B–E for mean estimation, linear regression, covariance estimation, and principal
component analysis, respectively.

1.1. Main results and related work

For each canonical problem of interest in statistical estimation, HPTR can readily be applied to, in
most cases, significantly improve upon known achievable sample complexity. Most of the lower
bounds we reference are copied in Appendix H for completeness.

DP mean estimation. We apply our proposed HPTR framework to the standard DP mean estimation
problem, where i.i.d. samples S = {xi ∈ Rd}ni=1 are drawn from a distribution Pµ,Σ with an
unknown mean µ (which corresponds to θ in the general notation) and an unknown covariance

4



DIFFERENTIAL PRIVACY AND ROBUST STATISTICS IN HIGH DIMENSIONS

Σ ≻ 0, and we want to produce a DP estimate µ̂ of the mean. The resulting error is measured
in Mahalanobis distance, DPµ,Σ

(µ̂) = ∥Σ−1/2(µ̂ − µ)∥, which is scale-invariant and naturally
captured the uncertainty in all directions. It has only recently been shown that optimal (inefficient)
algorithm exists for private mean estimation with Mahalanobis distance by Brown et al. (2021), but
the algorithm only applies to Gaussian data. This problem is especially challenging since we aim
for a tight guarantee that adapts to the unknown Σ as measured in the Mahalanobis distance without
sufficient samples to directly estimate Σ, as we explain below. Despite being a canonical problem
in DP statistics, the optimal sample complexity is not known even for standard distributions: sub-
Gaussian and heavy-tailed distributions. We characterize the optimal sample complexity of the two
problems by providing the guarantee of HPTR and the matching sample complexity lower bounds.
A precise definition of sub-Gaussian distributions is provided in Eq. (20).

Theorem 1 (DP sub-Gaussian mean estimation algorithm, Corollary B.2 informal) Consider
a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a sub-Gaussian distribution with mean
µ and covariance Σ. There exists an (ε, δ)-differentially private algorithm µ̂(S) that given n =
Õξ,ζ(d/ξ

2 + d/(εξ)), achieves Mahalanobis error ∥Σ−1/2(µ̂(S)− µ)∥ ≤ ξ with probability 1− ζ,
where Õξ,ζ hides the logarithmic dependency on ξ, ζ and we assume δ = e−O(d).

HPTR is the first algorithm for sub-Gaussian mean estimation with unknown covariance that
matches the best known sample complexity lower bound of n = Ω̃(d/ξ2 + d/(ξε)) from (Karwa
and Vadhan, 2017; Kamath et al., 2019) up to logarithmic factors in error ξ and failure probability
ζ. Existing algorithms are suboptimal as they require either a larger sample size or strictly Gaussian
assumptions. Advances in DP mean estimation started with computationally efficient approaches
of (Karwa and Vadhan, 2017; Kamath et al., 2019; Barber and Duchi, 2014). We discuss the results
as follows, and omit the polynomial factors in log(1/δ). When the covariance Σ is known, Maha-
lanobis error ξ can be achieved with n = Õ(d/ξ2 + d/(ξε)) samples. Under a relaxed assumption
that Id×d ⪯ Σ ⪯ κId×d with a known κ, n = Õ(d/ξ2 + d/(ξε) + d1.5/ε) samples are required
using a specific preconditioning approach tailored for the assumption and the knowledge of κ. For
general unknown Σ, O(d2/ξ2 + d2/(ξε)) samples are required using an explicit DP estimation of
the covariance. Empirically, further gains can be achieved with CoinPress (Biswas et al., 2020).

Computationally inefficient approaches followed with a goal of identifying the fundamental op-
timal sample complexity with minimal assumptions (Bun et al., 2019; Aden-Ali et al., 2020). For the
unknown covariance setting, the best known result under Mahalanobis error is achieved by Brown
et al. (2021). This builds upon the differentially private Tukey median exponential mechanism in-
troduced in (Liu et al., 2021) initially analyzed and proposed for identity covariance and a known
bound on the mean. It is immediate that the Tukey depth used in the exponential mechanism is
invariant under a linear transform, and hence small Tukey depth implies closeness in Mahalanobis
distance. However, it is challenging to define an appropriate support of the exponential mechanism
that adapts to the geometry of the covariance, which is critical in removing the unnecessary assump-
tion on the knowledge of the bound on the mean. Brown et al. (2021) make significant advance by
providing an adaptive support known as a safe set (which our algorithm builds upon as shown in
Section 1.2) and providing the analysis techniques that shows that n = Õ(d/ξ2 + d/(ξε)) is suffi-
cient even when the covariance is unknown. However, Tukey depth heavily relies on the assumption
that the distribution is strictly Gaussian. For sub-Gaussian distributions, Brown et al. (2021) pro-
pose a different approach achieving sample complexity of n = Õ(d/ξ2 + d/(ξε2)) samples with a
sub-optimal (1/ε2) dependence.
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Beyond the sub-Gaussian setting, it is natural to consider the DP mean estimation for distribu-
tions with heavier tails. We apply HPTR framework to the more general mean estimation problems
for hypercontractive distributions. A distribution Pµ,Σ with mean µ and covariance Σ is (κ, k)-
hypercontractive if for all v ∈ Rd, Ex∼PX

[|⟨v, (x − µ)⟩|k] ≤ κk(v⊤Σv)k/2. The assumption of
hypercontractivity is similar to the bounded k-th moment assumptions, except requiring an addi-
tional lower bound on the covariance. This additional assumption is necessary for our setting to
make sure the Mahalanobis error guarantee is achievable. We state our main result for hypercon-
tractive mean estimation as follows. For simplicity of the statement, we assume k, κ are constants.

Theorem 2 (DP hypercontractive mean estimation, Corollary B.3 informal) Consider a dataset
S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a (κ, k)-hypercontractive distribution with mean µ
and covariance Σ. There exists an (ε, δ)-differentially private algorithm µ̂(S) that given n =

Õd

(
d
ξ2

+ d
εξ1+1/(k−1)

)
, achieves Mahalanobis error ∥Σ−1/2(µ̂(S) − µ)∥ ≤ ξ with probability at

least 0.99, where Õd hides a logarithmic factor on d, and we assumes δ = e−O(d).

We prove an n = Ω(d/εξ1+1/(k−1)) sample complexity lower bound for hypercontractive DP
mean estimation in Proposition B.5 to show the optimality of our upper bound result. Notice that
the first term Õd(d/ξ

2) in the upper bound cannot be improved up to logarithmic factors even if we
do not require privacy, thus HPTR is the first algorithm that achieves optimal sample complexity for
hypercontractive mean estimation under Mahalanobis distance up to logarithmic factors in d. When
the covariance is known, an existing DP mean estimator of Kamath et al. (2020) achieves a stronger
(ε, 0)-DP with a similar sample size of n = Õ(d/ξ2 + d/(εξ1+1/(k−1))), and no prior result is
known for the unknown covariance case. When k = 2 and covaraince is known, Hopkins et al.
(2021) achieve significantly improved guarantees with pure differential privacy using an innovative
exponential mechanism with sum-of-squares proofs.

DP linear regression. We next apply HPTR framework to DP linear regression. Given i.i.d. sam-
ples S = {(xi, yi)}i∈[n] from a distribution Pβ,Σ,γ2 of a linear model: yi = x⊤i β + ηi, where
the input xi ∈ Rd has zero mean and covariance Σ and the noise ηi ∈ R has variance γ2 satis-
fying E[xiηi] = 0, the goal of DP linear regression is to output a DP estimate β̂ of the unknown
model parameter β, without knowledge about the covariance Σ. The resulting error is measured
in DPβ,Σ,γ2

(β̂) = (1/γ)∥Σ1/2(β̂ − β)∥ which is equivalent to the standard root excess risk of the

estimated predictor β̂. Similar to Mahalanobis distance for mean estimation, this is challenging
since we aim for a tight guarantee that adapts to the unknown Σ without having enough samples to
directly estimate Σ.

Theorem 3 (DP sub-Gaussian linear regression, Corollary C.2 informal) Consider a dataset
S = {(xi, yi)}ni=1 generated from a linear model yi = x⊤i β + ηi for some β ∈ Rd, where
{xi}i∈[n] are i.i.d. sampled from zero-mean d-dimensional sub-Gaussian distribution with unknown
covariance Σ, and {ηi}i∈[n] are i.i.d. sampled from zero mean one-dimensional sub-Gaussian with
variance γ2. We further assume the data xi and the noise ηi are independent. There exists a
(ε, δ)-differentially private algorithm β̂(S) that given n = Õξ,ζ(d/ξ

2 + d/(εξ)), achieves error
(1/γ)∥Σ1/2(β̂(S)− β)∥ ≤ ξ with probability 1− ζ, where Õξ,ζ hides the logarithmic dependency
on ξ, ζ and we assume δ = e−O(d).

HPTR significantly improves upon the best known algorithm for DP linear regression from (Cai
et al., 2019), which requires Σ to be close to the identity matrix or, equivalently, requires that
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we know Σ. Dwork and Lei (2009) propose to use PTR and B-robust regression algorithm from
(Hampel et al., 1986) for differentially private linear regression under i.i.d. data assumptions (also
exponential time), but only asymptotic consistency is proven as n → ∞. Under an alternative
setting where the data is deterministically given without any probabilistic assumptions, significant
advances in DP linear regression has been made (Vu and Slavkovic, 2009; Kifer et al., 2012; Mir,
2013; Dimitrakakis et al., 2014; Bassily et al., 2014; Wang et al., 2015; Foulds et al., 2016; Minami
et al., 2016; Wang, 2018; Sheffet, 2019). The state-of-the-art guarantee is achieved in (Wang, 2018;
Sheffet, 2019) which under our setting translates into a sample complexity of n = O(d1.5/(ξε)).
The extra d1/2 factor is due to the fact that no statistical assumption is made, and cannot be im-
proved under the deterministic setting (not necessarily i.i.d.) that those algorithms are designed for.
Similar to mean estimation, we also consider the DP linear regression for distributions with heavier
tails, and apply HPTR framework to the linear regression problem under (k, κ)-hypercontractive
distributions (see Definition 18). HPTR can handle both independent and dependent noise, and we
state the independent noise case here the dependent noise case in Section C.3.3. For simplicity of
the statement, we assume k, κ are constants.

Theorem 4 (DP hypercontractive linear regression for independent noise, Corollary C.3 infor-
mal) Consider a dataset S = {(xi, yi)}ni=1 generated from a linear model yi = x⊤i β + ηi for some
β ∈ Rd, where {xi}i∈[n] are i.i.d. sampled from zero-mean d-dimensional (κ, k)-hypercontractive
distribution with unknown covariance Σ and ηi are i.i.d. sampled from zero mean one-dimensional
(κ, k)-hypercontractive distribution with variance γ2. We further assume the data xi and the noise
{ηi}i∈[n] are independent. There exists an (ε, δ)-differentially private algorithm β̂(S) that given
n = Õd(d/ξ

2 + d/(εξ1+1/(k−1))), achieves error (1/γ)∥Σ1/2(β̂(S) − β)∥ ≤ ξ with probability
0.99, where Õd hides a logarithmic factor on d, and we assume δ = e−O(d).

To the best of our knowledge, HPTR is the first algorithm for linear regression that guarantees
(ε, δ)-DP under hypercontractive distributions with independent noise. When applied to the setting
where noise ηi is dependent on the input vector xi, HPTR is the first algorithm for linear regression
that guarantees (ε, δ)-DP. We refer the readers to Section C.3.3 for a more detailed description of
our result.

DP covariance estimation. We present HPTR applied to covariance estimation from i.i.d. samples
under a Gaussian distribution N (0,Σ). The reason for this choice is that the Mahalanobis error
∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F of the Kronecker product xi ⊗ xi is proportional to the natural error
metric of total variation for Gaussian distributions. The strength of HPTR framework is that it can
be seamlessly applied to general distributions, for example sub-Gaussian or heavytailed, but the
resulting Mahalanobis error becomes harder to interpret as it involves fourth moment tensors.

Theorem 5 (DP Gaussian covariance estimation, Corollary D.3 informal) Consider a dataset
S = {xi}ni=1 of n i.i.d. samples from N (0,Σ). There exists a (ε, δ)-differentially private estimator
Σ̂ that given n = Õξ,ζ(d

2/ξ2 + d2/(ξε)) , achieves error ∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F ≤ ξ with
probability 1− ζ, where Õξ,ζ hides the logarithmic dependency on ξ, ζ and we assume δ = e−O(d).

This Mahalanobis distance guarantee (for the Kronecker product, {xi⊗xi}, of the samples) implies
that the estimated Gaussian distribution is close to the underlying one in total variation distance (see
for example (Kamath et al., 2019, Lemma 2.9)): dTV(N (0, Σ̂),N (0,Σ)) = O(∥Σ−1/2Σ̂Σ−1/2 −
Id×d∥F ) = O(ξ). The sample complexity is near-optimal, matching a lower bound of n =
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Ω(d2/ξ2 + min{d2, log(1/δ)}/(εξ)) up to a logarithmic factor when δ = e−Θ(d). The first term
follows from the classical estimation of the covariance without DP. The second term follows from
extending the lower bound in (Kamath et al., 2019) constructed for pure differential privacy with
δ = 0 and matches the second term in our upper bound when δ = e−Θ(d2). We note that a similar
upper bound is achieved by the state-of-the-art (computationally inefficient) algorithm in (Aden-
Ali et al., 2020), which improves over HPTR in the lower order terms not explicitly shown in
this informal version of our theorem. Computationally efficient approaches of (Karwa and Vad-
han, 2017; Kamath et al., 2019) require additional assumption that Id×d ⪯ Σ ⪯ κId×d with a
known κ. Kamath et al. (2021) introduced a novel preconditioning approach that is polynomial
time and removes the upper and lower bounds on Σ completely, but requires sample complexity of
n = Õ(d2/ξ2 + d2polylog(1/δ)/(ξε) + d5/2polylog(1/δ)/ε). This gap was closed by Ashtiani
and Liaw (2021) recently, who introduced a polynomial time algorithm achieving a similar optimal
guarantee as HPTR.

DP principal component analysis. We next apply HPTR to the PCA problem.

Theorem 6 (DP sub-Gaussian principle component analysis, Corollary E.1) Consider a dataset
S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a zero-mean sub-Gaussian distribution with unknown
covariance Σ. There exists an (ε, δ)-differentially private estimator û that given n = Õξ,ζ(d/ξ

2 +
d/(εξ)) , achieves error 1−û⊤Σû/∥Σ∥ ≤ ξ with probability 1−ζ, where Õξ,ζ hides the logarithmic
dependency on ξ, ζ and we assume δ = e−O(d).

HPTR is the first estimator for sub-Gaussian distributions to nearly match the information-theoretic
lower bound of n = Ω(d/ξ2 + min{d, log(1/δ)}/(εξ)) as we showed in Proposition E.2. The
first term Ω(d/ξ2) is unavoidable even without DP (Proposition E.3). The second term in the lower
bound follows from Proposition E.2, which matches the second term in the upper bound when δ =
e−Θ(d). Existing DP PCA approaches from (Blum et al., 2005; Chaudhuri et al., 2013; Kapralov and
Talwar, 2013; Dwork et al., 2014; Hardt and Roth, 2012, 2013) are designed for arbitrary samples
not necessarily drawn i.i.d. and hence require a larger samples size of n = Õ(d/ξ2 + d1.5/(ξε)).
This is also unavoidable for more general deterministic data, as it matches an information theoretic
lower bound (Dwork et al., 2014) under weaker assumptions on the data than i.i.d. Gaussian (under
the rescaling of each sample to have norm O(

√
d)).

Theorem 7 (DP hypercontractive principle component analysis, Corollary E.5) Consider a
dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a zero-mean (κ, k)-hypercontractive distri-
bution with unknown covariance Σ. There exists an (ε, δ)-differentially private estimator û that
given n = Õξ,d

(
d

ξ(2k−2)/(k−2) +
d

εξ1+2/(k−2)

)
, achieves error 1− û⊤Σû

∥Σ∥ ≤ ξ with probability 0.99,

where Õξ,d hides the logarithmic dependency on ξ, d and we assume δ = e−O(d).

HPTR is the first estimator for hypercontractive distributions to guarantee differential privacy for
PCA with sample complexity scaling as O(d). As a complement of our algorithm, we proved a n =
Ω(d/ξ2 +min{d, log(1/δ)}/(ξ1+2/(k−2)ε)) information-theoretic lower bound in Proposition E.6.
The first term Ω(d/ξ2) in the lower bound is needed even without DP, and there is a gap of factor
O(ξ−2/(k−2)) compared to the first term in our upper bound. The second term in the lower bound
matches the last term in the upper bound when δ = e−Θ(d).
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1.2. Algorithm

The proposed High-dimensional Propose-Test-Release (HPTR) is not computationally efficient, as
the TEST step requires enumerating over a certain neighborhood of the input dataset and the RE-
LEASE step requires enumerating over all directions in high dimension. The strengths of HPTR
is that (i) the same framework can be seamlessly applied to many problems as we demonstrate in
Sections B–E; (ii) a unifying recipe can be applied for all those instances to give tight utility guar-
antees as we explicitly prescribe in Section 1.2.1; and (iii) the algorithm is simple and the analysis
is clear such that it is transparent how the distribution family of interest translates into the utility
guarantee (via resilience). As a byproduct of the simplicity of the algorithm and clarity of the analy-
sis, we achieve the state-of-the-art sample complexity for all those problem instances with minimal
assumptions, oftentimes nearly matching the information theoretic lower bounds. As a byproduct
of the use of robust statistics, we guarantee robustness against adversarial corruption for free (e.g.,
Theorems 10, 12, 14). We describe the framework for general statistical estimation problem where
data is drawn i.i.d. from a distribution represented by two unknown parameters θ ∈ Rp and ϕ and is
coming from a known family of distributions. An example of a problem instance of this type would
be mean estimation from heavy-tailed distributions that are (κ, k)-hypercontractive with unknown
mean µ (which in the general notation is θ) and unknown covariance Σ (which corresponds to ϕ).

The main component is an exponential mechanism in RELEASE step below that uses a loss
function DS(θ̂) and a support Bτ,S , defined as Bτ,S = {θ̂ ∈ Rp : DS(θ̂) ≤ τ}. Bounding the
support of the exponential mechanism is important since the sensitivity also depends on θ̂ in many
problems of interest. We build upon the algorithm and proof technique of (Brown et al., 2021) that
first bounded the support of an exponential mechanism with the level set of the score function. We
make several innovations in the analysis, as our setting is more challenging because we have local
sensitivity (Definition 4) as opposed to a fixed sensitivity of one in the Tukey depth approach of
(Brown et al., 2021). We discuss this in detail in the example of mean estimation in Section B.2.2.
The specific choices of the threshold τ only depend on the tail of the distribution family of interest
and not the parameters θ or ϕ or the data. In particular, we use the resilience property of the
distribution family to prescribe the choice of τ for each problem instance that gives us the tight
utility guarantees. As explained in Section 1, we use one-dimensional robust statistics to design
the loss functions, which we elaborate for each problem instances in Sections B–E, where we also
explain how to choose the sensitivity based on the resilience of the distribution family only.

After we PROPOSE the choice of the sensitivity ∆ and threshold τ for the problem instance in
hand, we TEST to make sure that the given dataset S is consistent with the assumptions made when
selecting DS(θ̂), ∆, and τ . This is done by testing the safety of the exponential mechanism, by
privately checking the margin to safety, i.e., how many data points need to be changed from S for
the exponential mechanism to violate differential privacy conditions. If the margin is large enough,
HPTR proceeds to RELEASE. Otherwise, it halts and outputs ⊥. A set of such unsafe datasets is
defined in (Brown et al., 2021) as

UNSAFE(ε,δ,τ) =
{
S′ ⊆ Rd×n | ∃S′′ ∼ S′ and ∃E ⊆ Rp such that

Pr(ε,∆,τ,S′′)(θ̂ ∈ E) > eεPr(ε,∆,τ,S′)(θ̂ ∈ E) + δ or Pr(ε,∆,τ,S′)(θ̂ ∈ E) > eεPr(ε,∆,τ,S′′)(θ̂ ∈ E) + δ
}
,

(1)

9
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where r(ε,∆,τ,S) denotes the pdf of the exponential mechanism in Eq. (2). Given a loss (or a distance)
function, DS(θ̂), which is a surrogate for the target measure of error, Dϕ(θ̂, θ), High-dimensional
Propose-Test-Release (HPTR) proceeds as follows:

1. Propose: Propose a target bound ∆ on local sensitivity and a target threshold τ for safety.

2. Test:

2.1. Compute the safety margin mτ = minS′ dH(S, S′) such that S′ ∈ UNSAFE(ε/2,δ/2,τ).

2.2. If m̂τ = mτ + Lap(2/ε) < (2/ε) log(2/δ), then output ⊥, and otherwise continue.

3. Release: Output θ̂ sampled from a distribution with a pdf:

r(ε,∆,τ,S)(θ̂) =

{
1
Z exp

{
− ε

4∆DS(θ̂)
}

if θ̂ ∈ Bτ,S ,

0 otherwise ,
(2)

where Z =
∫
Bτ,S

exp{−(εDS(θ̂))/(4∆)}dθ̂.

It is straightforward to show that (ε, δ)-differential privacy is satisfied for all input S.

Theorem 8 For any dataset S ⊂ X n, distance function DS : Rp → R on that dataset, and
parameters ε, δ,∆ and τ , HPTR is (ε, δ)-differentially private.

Proof The DP margin m̂τ is (ε/2, 0)-differentially private, because the sensitivity of the margin
is one, and we are adding a Laplace noise with parameter 2/ε. The TEST step (together with the
exponential mechanism) is (0, δ/2)-differentially private since there is a probability δ/2 event that
a unsafe dataset S with a small margin mτ is classified as a safe dataset and passes the test. On the
complimentary event, namely, that the dataset that passed the TEST is indeed safe, the RELEASE

step is (ε/2, δ/2)-differentially private since we use UNSAFE(ε/2,δ/2,τ) in the TEST step.

1.2.1. UTILITY ANALYSIS OF HPTR FOR STATISTICAL ESTIMATION

We prescribe the following three-step recipe as a guideline for applying HPTR to each specific
statistical estimation problem and obtaining a utility guarantee. Consider a problem of estimating
an unknown θ from samples from a generative model Pθ,ϕ, where the error is measured inDϕ(θ̂, θ).

• Step 1: Design a surrogateDS(θ̂) for the target error metricDϕ(θ̂, θ) using only one-dimensional
robust statistics on S.

• Step 2: Assuming resilience of the dataset, propose an appropriate sensitivity bound ∆ and
threshold τ and analyze the utility of HPTR.

• Step 3: For each specific family of generative models Pθ,ϕ with a known tail bound, charac-
terize the resulting resilience and substitute it in the utility analysis from the previous step,
which gives the final guarantee.

10
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We demonstrate how to apply this recipe and carry out the utility analysis for mean estimation
(Section B), linear regression (Section C), covariance estimation (Section D), and PCA (Section E).
We explain and justify the use of one-dimensional robust statistics in Step 1 and the assumption on
the resilience of the dataset in Step 2 in the next section using the mean estimation problem as a
canonical example. It is critical to constructDS(θ̂) using only one-dimensional and robust statistics;
this ensures that DS(θ̂) has a small sensitivity as demonstrated in Section B.1. We prove error
bounds only assuming resilience of the dataset; this relies on a fundamental connection between
sensitivity and resilience as explained in Section B.2.

1.3. Technical contributions and proof sketch

We use the canonical example of mean estimation to explain our proof sketch. For i.i.d. samples
from a sub-Gaussian distribution Pµ,Σ with mean µ and covariance Σ, we show in Theorem 9 that
HPTR achieves a near optimal sample complexity of n = Õ(d/α2 + d/(αε)) to get Mahalanobis
error ∥Σ−1/2(µ̂− µ)∥ = Õ(α) for some target accuracy α ∈ [0, 1].

Our proof strategy is to first show that the robust one-dimensional statistics have small sensitivity
if the dataset is resilient. Consequently, the loss functionDS(µ̂) has a small local sensitivity, i.e. the
sensitivity is small if restricted to µ̂ close to µ and if the dataset is resilient. To ensure DP, we run
RELEASE only when those two locality conditions are satisfied; we first PROPOSE the sensitivity
∆ and a threshold τ , and then we TEST that DP guarantees are met on the given dataset with those
choices. We prove that resilient datasets pass this safety test with a high probability and achieve the
desired accuracy. We give a sketch of the main steps below.

One-dimensional robust statistics have small sensitivity on resilient datasets. A set S = {xi ∈
Rd}i∈[n] of i.i.d. samples from a sub-Gaussian distribution has the following resilience property
w.p. 1− ζ if n = Ω̃(d/α2), where Ω̃ hides polylogarithmic factors α and the failure probability ζ:∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi − µ⟩
∣∣∣ ≤ 2σv

√
log(1/α) , and

∣∣∣ 1

|T |
∑
xi∈T

(
⟨v, xi − µ⟩2 − σ2v

)∣∣∣ ≤ 2σ2v log(1/α) ,

for any subset T ⊂ S of size at least αn and for any unit norm v ∈ Rd where σ2v = v⊤Σv
(Lemma 17). This means that the α-tail of the distribution (when projected down to one dimension)
cannot be too far from the true one in mean and variance. For mean estimation, we use the loss
function ofDS(µ̂) = maxv∈Rd,∥v∥=1⟨v, µ̂−µ(Mv,α)⟩/

√
v⊤Σ(Mv,α)v, where µ(T ) and Σ(T ) are

mean and covariance of a dataset T and Mv,α ⊂ S is defined as follows. For each direction v, we
partition S into three sets Tv,α,Mv,α, and Bv,α. Tv,α ⊂ S is the subset of datapoints corresponding
to the largest αn datapoints in {⟨v, xi⟩}xi∈S , the projected data points in the direction v. Bv,α ⊂ S
corresponds to the smallest αn values, and Mv,α ⊂ S is the remaining (1− 2α)n data points. We
show that the robust projected mean, ⟨v, µ(Mv,α)⟩ has sensitivity O(σv

√
log(1/α)/n). Under the

resilience above, the top α-tail, Tv,α, has the empirical mean that is no more thanO(σv
√
log(1/α) )

away from the true projected mean ⟨v, µ⟩, and the same is true for Bv,α. It follows that there exists
at least one data point in Tv,α and one data point in Bv,α that are no more than O(σv

√
log(1/α))

away from µv. The range of the middle subset Mv,α, therefore, is bounded by O(σv
√
log(1/α)),

and the sensitivity of the robust mean ⟨v, µ(Mv,α)⟩ is guaranteed to be O(σv
√
log(1/α)/n). We

can similarly show that v⊤Σ(Mv,α)v has sensitivity O(σ2v log(1/α)/n).
Under the above sensitivity bounds for the one dimensional statistics, it follows (for example,

in Eq. (19)) that the sensitivity of the loss function DS(µ̂) is bounded by O(
√
log(1/α)/n) as

11
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long as DS(µ̂) ≤ τ := Cα
√
log(1/α) and the dataset is resilient. It is worth noting here that

since the sensitivity is only small when DS(µ̂) ≤ τ , our exponential mechanism only samples from
the set Bτ,S , which contains only the hypotheses with small scores. We handle this locality with
TEST step that checks that the DP conditions are satisfied for the given dataset and the choice of
∆ := C ′√log(1/α)/n and τ := Cα

√
log(1/α). It is critical for ensuring DP that these choices

only depend on the resilience (which is the property of the distribution family of interest, which in
this case is sub-Gaussian) and the target accuracy, and not on the dataset S.

Sample complexity analysis. Assuming the sensitivity is bounded by ∆ = C ′√log(1/α)/n, as
the safety test ensures, we analyze the utility of the exponential mechanism. For a target accuracy
of ∥Σ−1/2(µ̂ − µ)∥ = O(α

√
log(1/α)), we consider two sets, Bout = {µ̂ : ∥Σ−1/2(µ̂ − µ)∥ ≤

c0α
√

log(1/α)} and Bin = {µ̂ : ∥Σ−1/2(µ̂ − µ)∥ ≤ c1α
√
log(1/α)}, for some c0 > c1. The

exponential mechanism achieves accuracy c0α
√

log(1/α) with probability 1− ζ if

P(µ̂ /∈ Bout) ≤
P(µ̂ /∈ Bout)

P(µ̂ ∈ Bin)
≲

Vol(Bτ,S)

Vol(Bin)

e−
ε

4∆
c0α

√
log(1/α)

e−
ε

4∆
c1α

√
log(1/α)

≤ eO(d)e−
ε

4∆
(c0−c1)α

√
log(1/α) ≤ ζ ,

where the second inequality requires DS(µ̂) ≃ ∥Σ−1/2(µ̂ − µ)∥, which we show in Lemma 12.
Since ∆ = O(

√
log(1/α)/n), it is sufficient to have a large enough c0 and n = Õ((d+log(1/ζ))/(αε))

with a large enough constant. Together with the sample size required to ensure resilience, this gives
the desired sample complexity of n = Õ(d/α2 + (d + log(1/ζ))/(αε)) where Õ hides polyloga-
rithmic factors in 1/α and 1/δ.

Safety test. We are left to show that for a resilient dataset, the failure probability of the safety
test, P(mτ + Lap(2/ε) < (2/ε) log(2/δ)), is less than ζ. This requires the safety margin to be
large enough, i.e. mτ ≥ k∗ = (2/ε) log(4/(δζ)). Recall that the safety margin is defined as the
Hamming distance to the closest dataset to S where the (ε/2, δ/2)-DP condition of the exponential
mechanism is violated. We therefore need to show that the DP condition is satisfied for not only S
but any dataset S′ at Hamming distance at most k∗ from S. We treat S′ as a corrupted version of a
resilient S by a fraction k∗/n-corruption. Since we are using robust statistics that are designed to be
robust against data corruption, we can show that the corrupted resilient set still has a low sensitivity
for DS′(µ̂). Building upon the proof techniques introduced in (Brown et al., 2021) for a safety test
for a Tukey median based exponential mechanism, we use the fact that S′ is a corrupted version of
a resilient dataset S to show that the safety test passes with high probability.

2. Conclusion

We provided a universal framework for characterizing the statistical efficiency of statistical esti-
mation problems with differential privacy guarantees. Our framework, High-dimensional Propose-
Test-Release (HPTR), is computationally inefficient and builds upon three key components: the ex-
ponential mechanism, robust statistics, and the Propose-Test-Release mechanism. Our key insight
is that designing an exponential mechanism that accesses the data via only one-dimensional robust
statistics can dramatically reduce the resulting local sensitivity. Using resilience, a central concept
in robust statistics, we can provide tight local sensitivity bounds. These tight bounds readily trans-
late into near-optimal utility guarantees in several statistical estimation problems of interest: mean
estimation, linear regression, covariance estimation, and principal component analysis. Although
our framework is written as a conceptual algorithm without a specific implementation, it is possible
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to implement it with exponential computational complexity following the guidelines of Brown et al.
(2021), where a similar exponential mechanism with PTR was proposed and an implementation was
explicitly provided.

To protect against membership inference attacks, significant progress has been made in training
DP models that are practical, e.g., Abadi et al. (2016); Yu et al. (2021); Anil et al. (2021). To
protect against data poisoning attacks, a recent work utilizes robust statistics with great success,
e.g., Hayase et al. (2021). In practice, however, we need to protect against both types of attacks
to facilitate learning and analysis from shared data. Currently, there is an algorithmic deficiency
in this space. Efficient algorithms achieving both DP and robustness against adversarial corruption
are known only for mean estimation (Liu et al., 2021). We make a valuable contribution to the
design of such algorithms for a broad class of problems, including covariance estimation, principal
component analysis, and linear regression.

Further, these computationally efficient algorithms typically require more samples. For sub-
Gaussian mean estimation with known covariance Σ, an efficient approach of Liu et al. (2021)
requires Õ(d/α2 + d3/2/(εα)) samples under α-corruption and (ε, δ)-DP to achieve an error of
∥Σ−1/2(µ̂ − µ)∥ = Õ(α). HPTR requires only O(d/α2 + d/(εα)) samples. A significant open
question is whether this d1/2 gap is fundamental and cannot be improved.

Most of the lower bounds in this paper are only tight when δ = e−Θ(d). Proving tight lower
bounds for approximate DP with δ > 0 is a challenging task. Some recent techniques from Kamath
et al. (2022) prove a tight lower bound for a wider regime of δ ≤ ε for mean estimation, which
could be applied to a broader class of the statistical estimation problems.
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Guillaume Lecué and Matthieu Lerasle. Robust machine learning by median-of-means: theory and
practice. The Annals of Statistics, 48(2):906–931, 2020.

Jing Lei. Differentially private m-estimators. Advances in Neural Information Processing Systems,
24:361–369, 2011.

Jerry Li and Guanghao Ye. Robust gaussian covariance estimation in nearly-matrix multiplication
time. Advances in Neural Information Processing Systems, 33, 2020.

Xiyang Liu, Weihao Kong, Sham Kakade, and Sewoong Oh. Robust and differentially private mean
estimation. arXiv preprint arXiv:2102.09159, 2021.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963, 2017.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 94–103. IEEE, 2007.

Kentaro Minami, HItomi Arai, Issei Sato, and Hiroshi Nakagawa. Differential privacy without
sensitivity. In Advances in Neural Information Processing Systems, pages 956–964, 2016.

Darakhshan J Mir. Differential privacy: an exploration of the privacy-utility landscape. Rutgers
The State University of New Jersey-New Brunswick, 2013.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 75–84, 2007.

Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X Yu, Sashank J Reddi, and Sanjiv Ku-
mar. Adaclip: Adaptive clipping for private sgd. arXiv preprint arXiv:1908.07643, 2019.

Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar. Robust esti-
mation via robust gradient estimation. arXiv preprint arXiv:1802.06485, 2018.

Peter J Rousseeuw. Multivariate estimation with high breakdown point. Mathematical statistics and
applications, 8(37):283–297, 1985.

Or Sheffet. Old techniques in differentially private linear regression. In Algorithmic Learning
Theory, pages 789–827. PMLR, 2019.

Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates. In Proceed-
ings of the forty-third annual ACM symposium on Theory of computing, pages 813–822, 2011.

Werner A Stahel. Robuste schätzungen: infinitesimale optimalität und schätzungen von kovarianz-
matrizen. PhD thesis, ETH Zurich, 1981.

Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for learning in the
presence of arbitrary outliers. In 9th Innovations in Theoretical Computer Science Conference
(ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

18



DIFFERENTIAL PRIVACY AND ROBUST STATISTICS IN HIGH DIMENSIONS

Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, and Uri Stemmer. Friendlycore: Prac-
tical differentially private aggregation. arXiv preprint arXiv:2110.10132, 2021.

Jonathan Ullman and Adam Sealfon. Efficiently estimating erdos-renyi graphs with node differential
privacy. Advances in Neural Information Processing Systems, 32, 2019.

Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of Cryptog-
raphy, pages 347–450. Springer, 2017.

Duy Vu and Aleksandra Slavkovic. Differential privacy for clinical trial data: Preliminary evalua-
tions. In 2009 IEEE International Conference on Data Mining Workshops, pages 138–143. IEEE,
2009.

Yu-Xiang Wang. Revisiting differentially private linear regression: optimal and adaptive prediction
& estimation in unbounded domain. arXiv preprint arXiv:1803.02596, 2018.

Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for free: Posterior sampling and
stochastic gradient monte carlo. In International Conference on Machine Learning, pages 2493–
2502. PMLR, 2015.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021.

Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Generalized resilience and robust statistics. arXiv
preprint arXiv:1909.08755, 2019.

19



LIU KONG OH

Appendix A. Notations, preliminary on differential privacy, and background on
Propose-Test-Release

Notations. Let [n] = {1, 2, . . . , n}. For x ∈ Rd, we use ∥x∥ = (
∑

i∈[d](xi)
2)1/2 to denote

the Euclidean norm. For X ∈ Rd1×d2 , we use ∥X∥ = max∥v∥2=1 ∥Xv∥2 to denote the spectral
norm. The d × d identity matrix is Id×d. The Kronecker product is denoted by x ⊗ y for x ∈ Rd1

and y ∈ Rd2 , such that (x ⊗ y)(i−1)d+j = xiyj for i ∈ [d1] and j ∈ [d2]. Whenever it is clear
from context, we use S to denote both a set of data points and also the set of indices of those
data points. We use S ∼ S′ to denote that two datasets S, S′ of size n are neighbors, such that
dTV(p̂S , p̂S′) ≤ 1/n where dTV(·) is the total variation and p̂S is the empirical distribution of the
data points in S.We use µ(S) and Σ(S) to denote mean and covariance of the data points in a dataset
S, respectively. We use µp and Σp to denote mean and covariance of the distribution p.

Differential privacy. We give the backgrounds on differential privacy and the Propose-Test-Release
mechanism. We say two datasets S and S′ of the same size are neighboring if the Hamming distance
between them is at most one. There is another equally popular definition where injecting or deleting
one data point to S is considered as a neighboring dataset. All our analysis generalizes to that
definition also, but notations get slightly heavier.

Definition 1 ((Dwork et al., 2006)) We say a randomized algorithm M : X n → Y is (ε, δ)-
differentially private if for all neighboring databases S ∼ S′ ∈ X n, and all Y ⊆ Y , we have
P(M(S) ∈ Y ) ≤ eεP(M(S′) ∈ Y ) + δ.

HPTR relies on the exponential mechanism for its adaptivity and flexibility.

Definition 2 (Exponential mechanism (McSherry and Talwar, 2007)) The exponential mecha-
nism Mexp : X n → Θ takes database S ∈ X n, candidate space Θ, score function DS(θ̂) and
sensitivity ∆ as input, and select output with probability proportional to exp{−εDS(θ̂)/2∆}.

The exponential mechanism is (ε, 0)-DP if the sensitivity of DS(θ̂) is bounded by ∆.

Lemma 3 ((McSherry and Talwar, 2007)) If maxθ̂∈ΘmaxS∼S′ |DS(θ̂)−DS′(θ̂)| ≤ ∆, then the
exponential mechanism is (ε, 0)-DP.

Starting from the seminal paper (Dwork and Lei, 2009), there are increasing efforts to apply
differential privacy to statistical problems, where the dataset consists of i.i.d. samples from a distri-
bution. There are two main challenges. First, the support is typically not bounded, and hence, the
sensitivity is unbounded. Dwork and Lei (2009) proposed to resolve this by using robust statistics,
such as median, to estimate the mean. The second challenge is that while median is quite insensitive
on i.i.d. data, this low sensitivity is only local and holds only for i.i.d. data from a certain class of
distributions. This led to the original definition of local sensitivity in the following.

Definition 4 (Local Sensitivity) We define local sensitivity of dataset S ∈ X n and function f :
X n → R as ∆f (S) := maxS′∼S |f(S)− f(S′)|.

Dwork and Lei (2009) introduced the Propose-Test-Release mechanism to resolve both issues.
First, a certain robust statistic f(S), such as median, mode, Inter-Quantile Range (IQR), or B-robust
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regression model (Hampel et al., 1986) is chosen as a query. It can be used to approximate a target
statistic of interest, such as mean, range, or linear regression model, or the robust statistic itself
could be the target. Then, the PTR mechanism proceeds in three steps. In the propose step, a local
sensitivity ∆ is proposed such that ∆f (S) ≤ ∆ for all S that belongs to a certain family. In the
test step, a safety margin m, which is how many data points have to be changed to violate the local
sensitivity, is computed and a private version of the safety margin, m̂, is compared with a threshold.
If the safety margin is large enough, then the algorithm outputs f(S) via a Laplace mechanism with
parameter 2∆/ε. Otherwise, the algorithm halts and outputs ⊥.

Definition 5 (Propose-Test-Release (PTR) (Dwork and Lei, 2009; Vadhan, 2017)) For a query
function f : X n → R, the PTR mechanism MPTR : X n → R proceeds as follows:

1. Propose: Propose a target bound ∆ ≥ 0 on local sensitivity.

2. Test:

2.1. Compute m = minS′ dH(S, S′) such that local sensitivity of S′ satisfies ∆f (S
′) ≥ ∆.

2.2. If m̂ = m+ Lap(2/ε) < (2/ε) log(1/δ) then output ⊥, and otherwise continue.

3. Release: Output f(S) + Lap(2∆/ε).

It immediately follows that PTR is (ε, δ)-differentially private for any input dataset.

Lemma 6 ((Dwork and Lei, 2009; Vadhan, 2017)) MPTR is (ε, δ)-DP

Given a robust statistic of interest, the art is in identifying the family of datasets with small local
sensitivity and showing that the sensitivity is small enough to provide good utility. For example, for
privately releasing the mode, for the family of distributions whose occurrences of the mode is at least
(4/ε) log(1/δ) larger than the occurrences of the second most frequent value, the local sensitivity
is zero and PTR outputs the true mode with probability at least 1 − δ (Vadhan, 2017). Such a
specialized PTR mechanism for zero local sensitivity is also called the stability based method.

In general, a naive method of computing m in the TEST step requires enumerating over all
possible databases S ∈ X n. For typical one-dimensional data/statistics, for example median esti-
mation, this step can be computed efficiently. This led to a fruitful line of research in DP statistics
on one-dimensional data. (Dwork and Lei, 2009; Brunel and Avella-Medina, 2020) propose PTR
mechanisms for the range and the median of of a 1-D smooth distribution and (Avella-Medina
and Brunel, 2019; Avella-Medina, 2020; Brunel and Avella-Medina, 2020) propose PTR mecha-
nisms that can estimating median and mean of a 1-D sub-Gaussian distribution. The stability-based
method introduced in (Vadhan, 2017) can be used to release private histograms, among other things,
which can be subsequently used as a black box to solve several important problems including range
estimation of a 1-D sub-Gaussian distribution (Karwa and Vadhan, 2017; Kamath et al., 2019; Liu
et al., 2021) or a 1-D heavy-tailed distribution (Kamath et al., 2020; Liu et al., 2021), and general
counting queries. PTR and stability-based mechanisms are powerful tools when estimating robust
statistics of a distribution from i.i.d. samples.

Even if computational complexity is not concerned, however, directly applying PTR to high
dimensional distributions can increase the statistical cost significantly, which has limited the appli-
cation of PTR. One exception is the recent work of (Brown et al., 2021). For the mean estimation
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problem with Mahalanobis error metric of ∥Σ−1/2(µ̂ − µ)∥, the private Tukey median mechanism
introduced in (Liu et al., 2021) is studied. One major limitation of the utility analysis is that pri-
vate Tukey median requires the support to be bounded. In (Liu et al., 2021), this is circumvented
by assuming the covariance Σ is known, in which case one can find a support with, for example,
the private histogram of (Vadhan, 2017). Instead, Brown et al. (2021) proposed using private Tukey
median inside the PTR mechanism and designed an advanced safety test for high-dimensional prob-
lems. This naturally bounds the support that adapts to the geometry of the problem without explicitly
and privately estimating Σ. One notable byproduct of this approach is that the resulting exponen-
tial mechanism is no longer pure DP, but rather (ε, δ)-DP. This is because the resulting exponential
mechanism has a support that depends on the dataset S, and hence two exponential mechanisms
on two neighboring datasets have different supports. The limitations of the private Tukey median
are that (i) it requires symmetric distributions, like Gaussian distributions, and do not generalize
to even sub-Gaussian distributions, and (ii) it only works for mean estimation. To handle the first
limitation, Brown et al. (2021) propose another PTR mechanism using Gaussian noise, which works
for more general sub-Gaussian distributions but achieves sub-optimal sample complexity.

HPTR builds upon this advanced PTR with the high-dimensional safety test from (Brown et al.,
2021). However, there are major challenges in applying this safety test to HPTR, which we over-
come with the resilience property of the dataset and the robustness of the loss function. For private
Tukey median, the sensitivity is always one for any µ̂ and any S, and the only purpose of the safety
test is to ensure that the support is not too different between two neighboring datasets. For HPTR,
the sensitivity is local in two ways: it requires S to be resilient and the estimate µ̂ to be sufficiently
close to µ. To ensure a large enough margin when running the safety test, HPTR requires this local
sensitivity to hold not just for the given S but for all S′ within some Hamming distance from S.
We use the fact that this larger neighborhood is included in an even larger set of databases that are
adversarial corruption of the α-fraction of the original resilient dataset S with a certain choice of
α. The robustness of our loss function implies that the bounded sensitivity is preserved under such
corruption of a resilient dataset. This is critical in proving that a resilient dataset passes the safety
test with high probability.

We take a first-principles approach to design a universal framework for DP statistical estima-
tion that blends exponential mechanism, robust statistics, and PTR. The exponential mechanism in
HPTR adapts to the geometry of the problem without explicitly estimating any other parameters and
also gives us the flexibility to apply to a wide range of problems. The choice of the loss functions
that only depend on one-dimensional statistics is critical in achieving the low sensitivity, which
directly translates into near optimal utility guarantees for several canonical problems. Ensuring dif-
ferential privacy is achieved by building upon the advanced PTR framework of (Brown et al., 2021),
with a few critical differences. Notably, the safety analysis uses the resilience of robust statistics in
a fundamental way.

On the other hand, there is a different way of handling local sensitivity, which is known as
smooth sensitivity. Introduced in (Nissim et al., 2007), smooth sensitivity is a smoothed version of
local sensitivity on the neighborhood of the dataset, defined as

∆smooth
f (S) = max

S′∈Xn
{∆f (S

′)e−εdH(S,S′)}

Note that, in general, computing smooth sensitivity is also computationally inefficient with excep-
tions of (Avella-Medina, 2021; Ullman and Sealfon, 2019). Using smooth sensitivity, (Lei, 2011;
Smith, 2011; Chaudhuri and Hsu, 2012; Avella-Medina, 2021) leverage robust M-estimators for
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differentially private estimation and inference. The intuition is based on the fact that the influence
function of the M-estimators can be used to bound the smooth sensitivity. The applications include:
linear regression, location estimation, generalized linear models, private testing. However, these
approaches require restrictive assumptions on the dataset that need to be checked (for example via
PTR) and fine-grained analyses on the statistical complexity is challenging; there is no sample com-
plexity analysis comparable to ours. One exception is (Bun and Steinke, 2019), which proposes a
smooth sensitivity based approach and gives an upper bound on the sub-Gaussian mean estimation
error for a finite n, but only for one-dimensional data.

Starting with (Nissim et al., 2007; Dwork and Lei, 2009), robust statistics has been used pre-
viously in private estimation, but mostly in one-dimensional problems. (McMahan et al., 2017;
Pichapati et al., 2019; Amin et al., 2019; Andrew et al., 2021) propose practical differentially private
estimators for one-dimensional median, mean, and interquartile range estimations, but without the
analysis on the utility. Some recent works by (Asi and Duchi, 2020; Huang et al., 2021; Dong and
Yi, 2021) further studied these problems with more fine-grained analysis that provides instance opti-
mality. (Avella-Medina and Brunel, 2019; Avella-Medina, 2020; Brunel and Avella-Medina, 2020)
developed private algorithms for estimating the mean and median of unbounded 1-dimensional sub-
Gaussian and heavy tail distributions. In a different direction, Tsfadia et al. (2021) privately finds
subset of data points that includes all points, except possibly few outliers, and is certified to have
diameter same as the effective diameter of the dataset. This can be used as a pre-processing to solve,
for example, mean estimation and clustering robustly and privately.

More recently, (Hopkins et al., 2021; Kothari et al., 2021) investigate the use of convex relax-
ations for robust estimation to design polynomial time algorithms with privacy guarantees. In a
breakthrough result at the intersection of robust estimation and private estimation, Hopkins et al.
(2021) introduces an exponential mechanism based on sum-of-squares proofs that can be imple-
mented in polynomial time. For mean estimation with covariance bounded distributions, this achieves
a significantly improved result with optimal sample complexity, optimal robustness, pure DP, and a
sub-Gaussian error rate. Kothari et al. (2021) introduces convex relaxations for robust estimation to
satisfy strong worst-case stability and prove guarantees on estimating higher-order moments beyond
covariance matrices.

Appendix B. Mean estimation

In a standard mean estimation, we are given i.i.d. samples S = {xi ∈ Rd}ni=1 drawn from a
distribution Pµ,Σ with an unknown mean µ (which corresponds to θ in the general notation) and
an unknown covariance Σ ≻ 0 (which corresponds to ϕ in the general notation), and we want to
produce a DP estimate µ̂ of the mean. The resulting error is best measured in Mahalanobis distance,
DΣ(µ̂, µ) = ∥Σ−1/2(µ̂ − µ)∥, because this is a scale-invariant distance; every direction has unit
variance after whitening by Σ.

This problem is especially challenging since we aim for a tight guarantee that adapts to the un-
known Σ as measured in the Mahalanobis distance without enough samples to directly estimate Σ
(see Section 1.1 for a survey). Despite being a canonical problem in DP statistics, the optimal sample
complexity is not known even for standard sub-Gaussian and heavy-tailed distributions. We char-
acterize the optimal sample complexity by showing that HPTR matches the known lower bounds in
Section B.3. This follows directly from the general three-step strategy outlined in Section 1.2.1.
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B.1. Step 1: Designing the surrogate DS(µ̂) for the Mahalanobis distance

We want to privately release µ̂with small Mahalanobis distance ∥Σ−1/2(µ̂−µ)∥. In the exponential
mechanism in RELEASE step, we propose using the surrogate distance,

DS(µ̂) = max
v:∥v∥≤1

⟨v, µ̂⟩ − µv(Mv,α)

σv(Mv,α)
, (3)

where the robust one-dimensional mean µv(Mv,α) and variance σ2v(Mv,α) are defined as follows.
We partition S = {xi}ni=1 into three sets, Bv,α, Mv,α, and Tv,α, by considering a set of projected
data points Sv = {⟨v, xi⟩}xi∈S and letting Bv,α be the data points corresponding to the subset of
bottom (2/5.5)αn data points with the smallest values in Sv, Tv,α be the subset of the top (2/5.5)αn
data points with the largest values, and Mv,α be the subset of remaining (1−(4/5.5)α)n data points.
For a fixed direction v, define

µv(Mv,α) =
1

|Mv,α|
∑

xi∈Mv,α

⟨v, xi⟩ , and σ2v(Mv,α) =
1

|Mv,α|
∑

xi∈Mv,α

(⟨v, xi⟩ − µv(Mv,α))
2 , (4)

which are robust estimates of the population projected mean µv = ⟨v, µ⟩ and the population pro-
jected variance σ2v = v⊤Σv.

General guiding principles for designing DS(µ̂). We propose the following three design prin-
ciples that apply more generally to all problem instances of interest. The first guideline is that it
should recover the target error metric DΣ(µ̂, µ) = ∥Σ−1/2(µ̂ − µ)∥ when we substitute the popu-
lation statistics, e.g., µv and σv for mean estimation, for their robust counterparts: µv(Mv,α) and
σv(Mv,α). This ensures that minimizing DS(µ̂) is approximately equivalent to minimizing the tar-
get metric DΣ(µ̂, µ) = ∥Σ−1/2(µ̂ − µ)∥ (Lemma 12). For mean estimation, this equivalence is
shown in the following lemma.

Lemma 7 For any µ ∈ Rd and 0 ≺ Σ ∈ Rd×d, let µv = ⟨v, µ⟩ and σ2v = v⊤Σv. Then, we have

∥Σ−1/2(µ̂− µ)∥ = max
v:∥v∥≤1

⟨v, µ̂⟩ − µv
σv

.

Proof Let µ̂ − µ =
∑d

ℓ=1 aℓuℓ with aℓ = ⟨uℓ, µ̂ − µ⟩, ∥a∥ = ∥µ̂ − µ∥ and uℓ’s are the singular
vectors of Σ. Similarly, let v =

∑d
ℓ=1 bℓuℓ with ∥b∥ = 1. Then, we have

∥Σ−1/2(µ̂− µ)∥2 =
∑

(a2ℓ/σℓ) and
⟨v, (µ̂− µ)⟩

σv
=

⟨a, b⟩√∑
b2ℓσℓ

.

From Cauchy-Schwarz, we have ⟨a, b⟩2 ≤ (
∑
b2ℓσℓ)(

∑
a2ℓσ

−1
ℓ ), which proves that

∥Σ−1/2(µ̂− µ)∥ ≥ max
v:∥v∥=1

(1/σv)⟨v, (µ̂− µ)⟩ .

To show equality, we find v that makes Cauchy-Schwarz inequality tight. Let v =
∑d

ℓ=1 bℓuℓ

with a choice of bℓ = (1/Z)aℓσ
−1
ℓ and Z =

√∑
ℓ a

2
ℓσ

−2
ℓ . This implies ∥b∥ = 1 and

⟨a, b⟩ =
1

Z

d∑
ℓ=1

(1/σℓ)a
2
ℓ , and

√∑
b2ℓσℓ =

1

Z

√√√√ d∑
ℓ=1

(1/σuℓ
)a2ℓ ,
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which implies that there exists a v such that ∥Σ−1/2(µ̂− µ)∥ = (1/σv)⟨v, µ̂− µ⟩ and ∥Σ−1/2(µ̂−
µ)∥ ≤ maxv:∥v∥=1(1/σv)⟨v, µ̂− µ⟩.

The second guideline is that DS(µ̂) should depend only on the one-dimensional statistics of the
data. This is critical since the sensitivity of high-dimensional statistics increases with the ambient
dimension d. For example, consider using the robust mean estimate µ̂robust(S) ∈ Rd from (Dong
et al., 2019) and using the Euclidean distanceDS(µ̂) = ∥µ̂− µ̂robust(S)∥ in the exponential mecha-
nism, where we are assuming Σ = I for simplicity. It can be shown that, even for Gaussian distribu-
tions, this requires n = Ω̃(d3/2/(εα) + d/α2) samples to achieve an accuracy of ∥µ̂− µ∥ = Õ(α).
This is significantly sub-optimal compared to what HPTR achieves in Corollary B.2, which lever-
ages the fact that sensitivity of one-dimensional statistics is dimension-independent.

The last guideline is to use robust statistics. Robust statistics have small sensitivity on resilient
datasets, which is critical in achieving the near-optimal guarantees. We elaborate on it in Sec-
tion B.2.2.

B.2. Step 2: Utility analysis under resilience

For utility, we prefer smaller ∆ and τ to ensure that the exponential mechanism samples µ̂ closer
to the minimum of DS(µ̂) ≈ ∥Σ−1/2(µ̂ − µ)∥. However, aggressive choices can violate the DP
condition and hence fail the safety test. Near-optimal utility can be achieved by selecting ∆ and τ
based on the resilience of the dataset, defined as follows.

Definition 8 (Resilience for mean estimation (Steinhardt et al., 2018; Zhu et al., 2019)) For
some α ∈ (0, 1), ρ1 ∈ R+, and ρ2 ∈ R+, we say a set of n data points Sgood is (α, ρ1, ρ2)-resilient
with respect to (µ,Σ) if for any T ⊂ Sgood of size |T | ≥ (1 − α)n, the following holds for all
v ∈ Rd with ∥v∥ = 1: ∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩ − µv

∣∣∣ ≤ ρ1 σv , and (5)

∣∣∣ 1

|T |
∑
xi∈T

(
⟨v, xi⟩ − µv

)2 − σ2v

∣∣∣ ≤ ρ2 σ
2
v , (6)

where µv = ⟨v, µ⟩ and σ2v = v⊤Σv.

Originally, resilience is introduced in the context of robust statistics. Resilience measures how
sensitive the sample statistics are to removing an α-fraction of the data points. A dataset from a
distribution with a lighter tail has smaller resilience (ρ1, ρ2). For example, sub-Gaussian distribu-
tions have ρ1 = O(α

√
log(1/α)) and ρ2 = O(α log(1/α)) (Lemma 17), which are smaller than

the resilience of heavy-tailed distributions with bounded k-th moment, i.e., ρ1 = O(α1−1/k) and
ρ2 = O(α1−2/k) (Lemma 19). Resilience plays a crucial role in robust statistics, where the re-
silience of a dataset determines the minimax sample complexity of estimating population statistics
from adversarially corrupted samples (Steinhardt et al., 2018; Zhu et al., 2019).

In the context of differential privacy, our design of HPTR is guided by our analysis showing that
the sensitivity of one-dimensional robust statistics is fundamentally governed by resilience. Lever-
aging this three-way connection between the use of robust statistics in the algorithm, the resilience
of the data, and the sensitivity of the distance DS(µ̂) is crucial in achieving near-optimal utility.
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Concretely, we consider α as a free parameter that we can choose depending on the target
accuracy. For example, let ∥Σ−1/2(µ̂ − µ)∥ = 32ρ1 be our target accuracy. Note that we did
not optimize the constants in our analysis, and they can be further tightened. In the case of sub-
Gaussian distributions, we have ρ1 = C ′α

√
log(1/α) w.h.p. when the sample size is large enough.

This determines the value of α that achieves the target accuracy and also the choice of ∆ and τ , as
follows.

The robust statistics of a resilient dataset (i.e., one with small resilience) cannot change too
much when a small fraction of the dataset is changed. This is made precise in Lemma 16, which
shows, for example, that the robust mean µv(Mv,α) can change only byO(ρ1/(αn)) when one data
point is arbitrarily changed. This implies the sensitivity of DS(µ̂) is also small: ∆ = O(ρ1/(αn)).
Choosing τ = 42ρ1 to be larger by a constant factor from the target accuracy, we show that a sample
size of n = O(d/(εα)) is sufficient to achieve the desired utility.

Theorem 9 (Utility guarantee for mean estimation) There exist positive constants c and C such
that for any (α, ρ1, ρ2)-resilient set S with respect to some (µ ∈ Rd,Σ ≻ 0) satisfying α ∈ (0, c),
ρ1 < c, ρ2 < c, and ρ21 ≤ cα, HPTR with the choices of the distance function in Eq. (3), ∆ =
110ρ1/(αn), and τ = 42ρ1 achieves ∥Σ−1/2(µ̂− µ)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
.

This theorem shows how a resilient dataset (which is a deterministic condition) implies small
error for HPTR. We make formal connections to standard assumptions on the sample generating
distributions and their respective resiliences in Section B.3, where we also discuss the optimality
of this utility guarantee. For example, sub-Gaussian distributions have ρ1 = O(α

√
log(1/α))

when n ≥ C ′d/(α log(1/α))2 for any α smaller than a universal constant. This implies that HPTR
achieves a target accuracy of ∥Σ−1/2(µ̂ − µ)∥ ≤ α̃ with sample size Õ( d

α̃2 + d
α̃ε), where Õ hides

logarithmic factors in 1/α, δ, and ζ. We explain the intuition behind our analysis and provide a
complete proof in Sections B.2.2–B.2.6. One by-product of using robust statistics is that we get
robustness for free, as we next show.

B.2.1. ROBUSTNESS OF HPTR

One by-product of using robust statistics is that HPTR is also robust to adversarial corruption.
We therefore provide a more general guarantee that simultaneously achieves DP and robustness.
Suppose we are given a dataset S that is a corrupted version of a resilient dataset Sgood.

Assumption 1 (αcorrupt-corruption) Given a set Sgood = {x̃i ∈ Rd}ni=1 of n data points, an
adversary inspects all data points, selects αcorruptn of the data points, and replaces them with
arbitrary dataset Sbad of size αcorruptn. The resulting corrupted dataset is called S = {xi ∈
Rd}ni=1.

This adaptive adversary is strong since the corruption can adapt to the entire dataset (for exam-
ple, it covers the Huber contamination model (Huber, 1964) and the non-adaptive adversarial model
(Lecué and Lerasle, 2020)). This threat model is now standard in robust statistics literature (Stein-
hardt et al., 2018). If the original Sgood is resilient, we show that the same guarantee as Theorem 9
holds under corruption up to an αcorrupt fraction of Sgood for sufficiently small αcorrupt ≤ (1/5.5)α.
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The factor 1/5.5 is due to the fact that the algorithm treats some of the good data points as outliers
(which is at most 4αcorrupt due to the top and bottom tails cut in the definition of Mv,(2/5.5)α), and
we need to handle neighboring datasets up to (0.5/5.5)αn Hamming distance. Hence, we need to
ensure resilience for α that is at least 5.5 times larger than the corruption αcorrupt.

Definition 9 (Corrupt good set) We say a dataset S is (αcorrupt, α, ρ1, ρ2)-corrupt good with re-
spect to (µ,Σ) if it is an αcorrupt-corruption of an (α, ρ1, ρ2)-resilient dataset Sgood.

We get the following theorem showing that HPTR can tolerate up to (1/5.5)α fraction of the
data being arbitrarily corrupted.

Theorem 10 (Robustness) There exist positive constants c andC such that for any ((2/11)α, α, ρ1, ρ2)-
corrupt good set S with respect to (µ ∈ Rd,Σ ≻ 0) satisfying α < c, ρ1 < c, ρ2 < c, and
ρ21 ≤ cα, HPTR with the distance function in Eq. (3), ∆ = 110ρ1/(αn), and τ = 42ρ1 achieves
∥Σ−1/2(µ̂− µ)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
.

In Sections B.2.2–B.2.6, we prove this more general result. When there is no adversarial corruption,
Theorem 9 immediately follows as a special case by selecting α as a free parameter depending on
the target accuracy. The constants in all the theorems can be improved if we track them more
carefully, and we did not attempt to optimize them in this paper.

B.2.2. PROOF STRATEGY FOR THEOREM 10

We show in Section B.2.5 that the robust one-dimensional statistics, µv(Mv,α) and σ2v(Mv,α),
have small sensitivity if the dataset is resilient. Consequently, DS(µ̂) has a small local sensitivity,
i.e., the sensitivity is small if restricted to µ̂ close to µ and if the dataset is resilient. To ensure
DP, we run RELEASE only when those two locality conditions are satisfied; we first PROPOSE the
sensitivity ∆ and a threshold τ , and then we TEST that DP guarantees are met on the given dataset
with those choices. Resilient datasets (i) pass this safety test with a high probability and (ii) achieve
the desired accuracy, both of which rely on our general analysis of HPTR with a general distance
function (Theorem 15). We give sketches of the main steps below.

One-dimensional robust statistics have small sensitivity on resilient datasets. Consider the ro-
bust projected mean µv(Mv,α) for some small enough α > 0. If S is (α, ρ1, ρ2)-resilient, then the
following technical lemma shows that the top and bottom (2/5.5)α-tails cannot deviate too much
from the mean.

Lemma 10 (Lemma 10 from (Steinhardt et al., 2018)) For a (α, ρ1, ρ2)-resilient dataset S with
respect to (µ,Σ) and any 0 ≤ α̃ ≤ α, the following holds for any subset T ⊂ S of size at least α̃n
and for any unit norm v ∈ Rd: ∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi − µ⟩
∣∣∣ ≤ 2− α̃

α̃
ρ1 σv , and (7)

∣∣∣ 1

|T |
∑
xi∈T

(
⟨v, xi − µ⟩2 − σ2v

)∣∣∣ ≤ 2− α̃

α̃
ρ2 σ

2
v . (8)
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Under the definitions in Eq. (3), the top (2/5.5)α-tail denoted by Tv,α and bottom (2/5.5)α-tail
denoted by Bv,α have the empirical means that are no more than O(σvρ1/α) away from the true
projected mean µv, respectively. It follows that there exists at least one data point in Tv,α and one
data point in Bv,α that are no more than O(σvρ1/α) away from µv. This implies that the range of
the middle subset Mv,α is provably bounded by O(σvρ1/α), and the sensitivity of the robust mean
µv(Mv,α) is guaranteed to beO(σvρ1/(αn)). We can similarly show that σ2v(Mv,α) has sensitivity
O(σ2vρ

2
1/(α

2n)), as shown in Eq. (18). Note that these sensitivity bounds are local in the sense that
they require the data to be (α, ρ1, ρ2)-resilient.

Small local sensitivity ofDS(µ̂). Under the above sensitivity bounds for µv(Mv,α) and σ2v(Mv,α),
it follows after some calculations as shown in Eq. (19) that the sensitivity for a resilient dataset S is
bounded by

|DS(µ̂)−DS′(µ̂) | ≤ C ′ ρ1
αn

(
1 +

ρ1∥Σ−1/2(µ̂− µ)∥
α

)
, (9)

for some constant C ′ and all neighboring datasets S′, assuming ρ2 is sufficiently small. Note that
this sensitivity bound is local for two reasons; for this sensitivity to be small (i.e. O(ρ1/(αn))), we
require S to be resilient and µ̂ to be close to µ. Thus, the meaning of local here is two fold, while
traditionally local sensitivity in the privacy literature only concerns the sensitivity of a particular
dataset S. We handle these two localities with the TEST step, among other things, checks that the
DP conditions are satisfied for the given dataset and the choice of ∆ and τ , which bounds the support
of the exponential mechanism to be within Bτ,S = {µ̂ : DS(µ̂) ≤ τ} with a choice of τ = O(ρ1).
Consequently, we require ρ21/α ≪ 1 for the second term in Eq. (9) to be dominated by the first.
Fortunately, this is indeed true for all scenarios of interests to us. For sub-Gaussian distributions,
ρ21 = α2 log(1/α) ≪ α. For k-th moment bounded distributions with k > 3, ρ21 = α2−2/k ≪ α.
For covariance bounded distributions, we do not hope to get a Mahalanobis distance guarantee.
Instead, we aim for a Euclidean distance guarantee whose sensitivity does not depend on µ̂, and we
do not require ρ21/α≪ 1 (Section B.3.3).

Sample complexity analysis. Assuming the sensitivity of DS(µ̂) is bounded by ∆ = O(ρ1/(αn)),
which we ensure with the safety test, we analyze the utility of the exponential mechanism. For a
target accuracy of ∥Σ−1/2(µ̂−µ)∥ = O(ρ1), we consider two sets Bout = {µ̂ : ∥Σ−1/2(µ̂−µ)∥ ≤
c0ρ1} and Bin = {µ̂ : ∥Σ−1/2(µ̂ − µ)∥ ≤ c1ρ1} for some c0 > c1. The exponential mechanism
achieves accuracy c0ρ1 with probability 1− ζ if

P(µ̂ /∈ Bout) ≤ P(µ̂ /∈ Bout)

P(µ̂ ∈ Bin)
≲

Vol(Bτ,S)

Vol(Bin)

e−
ε

4∆
c0ρ1

e−
ε

4∆
c1ρ1

≤ eO(d)e−
ε

4∆
(c0−c1)ρ1 ≤ ζ ,

where the second inequality requires DS(µ̂) ≃ ∥Σ−1/2(µ̂ − µ)∥, which we show in Lemma 12.
Since the volume ratio is Vol(Bτ,S)/Vol(Bout) = eO(d), τ = O(ρ1), and ∆ = O(ρ1/(αn)), it is
sufficient to have a large enough c0 and n = O((d+log(1/ζ))/(αε)) with a large enough constant.

Safety test. We are left to show that for a resilient dataset, the failure probability of the safety
test, P(mτ + Lap(2/ε) < (2/ε) log(2/δ)), is less than ζ. This requires the safety margin to be
large enough, i.e., mτ ≥ k∗ = (2/ε) log(4/(δζ)). Recall that the safety margin is defined as the
Hamming distance to the closest dataset to S where the (ε/2, δ/2)-DP condition of the exponential
mechanism is violated. We therefore need to show that the DP condition is satisfied not only for S
but for any dataset S′ at Hamming distance at most k∗ from S.
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Consider two exponential mechanisms, r(ε,∆,τ,S′) and r(ε,∆,τ,S′′), on neighboring datasets S′

and S′′. Since Bτ,S′ ̸= Bτ,S′′ , we separately analyze the intersection Bτ,S′ ∩ Bτ,S′′ and the dif-
ferences Bτ,S′ \ Bτ,S′′ and Bτ,S′′ \ Bτ,S′ . In the intersection, we show that the two probability
distributions are within a multiplicative factor eε/2 of each other:

Pr(ε,∆,τ,S′)(µ̂ ∈ A) ≤ eε/2Pr(ε,∆,τ,S′′)(µ̂ ∈ A)

for all A ⊆ Bτ,S′ ∩Bτ,S′′ , S′ within Hamming distance k∗ from a resilient dataset S, and S′′ ∼ S′.
The main challenge is that S′ is no longer a resilient dataset but a k∗-neighbor of a resilient dataset.
Since such S′ is (k∗/n, α, ρ1, ρ2)-corrupt good (Definition 9), we show that corrupt good sets also
inherit the bounded local sensitivity of a resilient dataset seamlessly, as shown in Lemma 16.

In the set difference, we show that the total probability mass, Pr(ε,∆,τ,S)
(µ̂ ∈ Bτ,S \ Bτ,S′) and

Pr(ε,∆,τ,S′)(µ̂ ∈ Bτ,S′ \ Bτ,S), are bounded by δ, respectively, as long as the overlap of the two
supports are large enough. This requires τ ≫ ∆k∗, as we show in Appendix F.1, which is satisfied
for n ≥ (log(1/(δζ))/(αε)).

Outline. The analyses for the accuracy and the safety test build upon a universal analysis of HPTR
in Theorem 15, which holds more generally for any distance function Dϕ(θ̂) in the estimation
problems of interest. For mean estimation, we show in Sections B.2.3-B.2.5 that the sufficient
conditions of Theorem 15 are met for the choices of constants and parameters: ρ = ρ1, c0 = 31.8,
c1 = 10.2, k∗ = (2/ε) log(4/(δζ)), τ = 42ρ1, and ∆ = 110ρ1/(αn). We can set c2 to be a large
constant and will only change the constant factor in the sample complexity, which we do not track.
A proof of Theorem 10 is provided in Section B.2.6, from which Theorem 9 follows immediately.
All the lemmas assume ((1/5.5)α, α, ρ1, ρ2)-corrupt good set S, α ≤ 0.015, ρ1 ≤ 0.013, and
ρ2 ≤ 0.0005. We omit this assumption in stating the lemmas for brevity.

B.2.3. RESILIENCE IMPLIES ROBUSTNESS

For the assumption (d) in Theorem 15, we show that DS(µ̂) is a good approximation of the true
distance ∥Σ−1/2(µ̂ − µ)∥ in Lemma 12. We first show that the one-dimensional mean and the
variance of the filtered out Mv,α are robust.

Lemma 11 For any unit norm v ∈ Rd, |⟨v, µ − µ(Mv,α)⟩| ≤ 6ρ1 σv and 0.9σv ≤ σv(Mv,α) ≤
1.1σv.

Proof For the mean bound,

|⟨v, µ− µ(Mv,α)⟩|

≤ |Mv,α ∩ Sbad|
|Mv,α|

|⟨v, µ(Sbad ∩Mv,α)− µ⟩|+
|Mv,α ∩ Sgood|

|Mv,α|
|⟨v, µ(Sgood ∩Mv,α)− µ⟩|

≤ (1/5.5)α

1− (4/5.5)α

2ρ1σv
(1/5.5)α

+
1− (1/5.5)α

1− (4/5.5)α
ρ1σv

≤ (2ρ1 + ρ1)σv/(1− (4/5.5)α) . (10)

The second inequality follows from the following. First, |⟨v, µ(Sgood ∩ Mv,α) − µ⟩| ≤ σvρ1 by
the definition of resilience and that fact that |Sgood ∩ Mv,α| ≥ (1 − (5/5.5)α)n. Next, since
|⟨v, µ(Sbad∩Mv,α)−µ⟩| is less than |⟨v, µ(Sgood∩Tv,α)−µ⟩| or |⟨v, µ(Sgood∩Bv,α)−µ⟩|, both
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of which are at most 2ρ1σv/(1/5.5)α, from applying Lemma 10 with a set size at least (1/5.5)αn,
we have

|⟨v, µ(Sbad ∩Mv,α)− µ⟩| ≤ 2

(1/5.5)α
ρ1σv .

The mean bound follows from (10) and α ≤ 0.1. For the variance upper bound,

σv(Mv,α)
2 =

1

(1− (4/5.5)α)n

∑
xi∈Mv,α

⟨v, xi − µ(Mv,α)⟩2 ≤ 1

(1− (4/5.5)α)n

∑
xi∈Mv,α

⟨v, xi − µ⟩2 ,

where the first inequality follows from the fact that subtracting the empirical mean µ(Mv,α) min-
imizes the second moment. We can decompose the empirical deviation and show an upper bound
first: ∑

xi∈Mv,α
(⟨v, xi − µ⟩2 − σ2v)

(1− (4/5.5)α)n

=

∑
xi∈Mv,α∩Sbad

(⟨v, xi − µ⟩2 − σ2v)

(1− (4/5.5)α)n
+

∑
xi∈Mv,α∩Sgood

(⟨v, xi − µ⟩2 − σ2v)

(1− (4/5.5)α)n

≤ (1/5.5)α(2ρ2/(1/5.5)α)σ
2
v + (1− (4/5.5)α)ρ2σ

2
v

1− (4/5.5)α
≤ 6ρ2σ

2
v , (11)

where in the second inequality we used resilience on Mv,α ∩ Sgood of size at least 1 − (5/5.5)α.
For xi ∈ Sbad ∩Mv,α, we use the fact that

∣∣ ⟨v, xi − µ⟩2 − σ2v
∣∣ ≤ max

{∑
j∈Sgood∩Tv,α(⟨v, xj − µ⟩2 − σ2v)

|Sgood ∩ Tv,α|
,

∑
j∈Sgood∩Bv,α

(⟨v, xj − µ⟩2 − σ2v)

|Sgood ∩ Bv,α|

}
≤ 2ρ2σ

2
v

(1/5.5)α
,

where we used Eq. (8) in Lemma 10 for sets with size at least (1/5.5)αn. For the variance deviation
lower bound,∑

xi∈Mv,α
(⟨v, xi − µ(Mv,α)⟩2 − σ2v)

(1− (4/5.5)α)n
=

∑
xi∈Mv,α

(
⟨v, xi − µ⟩2 − σ2v − ⟨v, µ− µ(Mv,α)⟩2

)
(1− (4/5.5)α)n

≥
∑

xi∈Mv,α∩Sbad
(⟨v, xi − µ⟩2 − σ2v)

(1− (4/5.5)α)n
+

∑
xi∈Mv,α∩Sgood

(⟨v, xi − µ⟩2 − σ2v)

(1− (4/5.5)α)n
− 36ρ21σ

2
v ,

≥ − 2ρ2σ
2
v

1− (4/5.5)α
− 1− (4/5.5)α

1− (4/5.5)α
ρ2σ

2
v − 36ρ21σ

2
v ≥ −(3.2ρ2 + 36ρ21)σ

2
v , (12)

where we used α ≤ 0.1, the first term only uses the fact that |Sbad| ≤ (1/5.5)αn, the second term
uses resilience, and the last term uses the mean bound we proved earlier. In (11) and (12), assuming
ρ1 ≤ 0.04, and ρ2 ≤ 0.035, we have

√
1 + 6ρ2 ≤ 1.1 and

√
1− 3.2ρ2 − 36ρ21 ≥ 0.9.

We show that resilience implies our estimate of the distance is robust.

Lemma 12 If µ̂ ∈ Bτ,S and τ = 42ρ1, then
∣∣ ∥Σ−1/2(µ̂−µ)∥−DS(µ̂)

∣∣ ≤ 6ρ1+0.1τ ≤ 10.2ρ1.
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Proof From Lemma 11, we know that for all µ̂ ∈ Bt,S ,

DS(µ̂) = max
∥v∥=1

⟨v, µ̂− µ(Mv,α)⟩
σv(Mv,α)

≥ max
∥v∥=1

⟨v, µ̂− µ⟩ − 6ρ1σv
1.1σv

. (13)

and

DS(µ̂) = max
∥v∥=1

⟨v, µ̂− µ(Mv,α)⟩
σv(Mv,α)

≤ max
∥v∥=1

⟨v, µ̂− µ⟩+ 6ρ1σv
0.9σv

. (14)

Applying Lemma 7, we get 0.9DS(µ̂) − 6ρ1 ≤ ∥Σ−1/2(µ̂ − µ)∥ ≤ 1.1DS(µ̂) + 6ρ1. Since
DS(µ̂) ≤ τ , we get the desired bound.

B.2.4. BOUNDED VOLUME

We show that the assumption (a) in Theorem 15 is satisfied for robust estimate DS(µ̂).

Lemma 13 For ρ = ρ1, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn), and c2 ≥ log(67/12)+log((c0+
2c1)/c1), we have (7/8)τ − (k∗ + 1)∆ > 0,

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤ ec2d , and

Vol({µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ (c0 + 2c1)ρ})
Vol({µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ c1ρ})

≤ ec2d .

Proof The second part of assumption (a) follows from the fact that

Vol({µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ r}) = cd|Σ|rd ,

where |Σ| =
∏d

j=1 σj(Σ) is the determinant of Σ and σj(Σ) is the j-th singular value for some
constant cd that depends only on the dimension and selecting c2 ≥ log((c0 + 2c1)/c1).

The first part is tricky since we do not yet have a handle on the set Bt,S for t > τ . In particular,
we do not know how DS(µ̂) relates to ∥Σ−1/2(µ̂ − µ)∥ for such a µ̂ outside of Bτ,S . To this end,
we use the following corollary.

Corollary B.1 (Corollary of Lemma 12) If µ̂ ∈ B2τ,S and τ = 42ρ1, then
∣∣ ∥Σ−1/2(µ̂ − µ)∥ −

DS(µ̂)
∣∣ ≤ 14.2ρ1.

We will show that (7/8)τ − (k∗ + 1)∆ > 0. Since this implies that τ + (k∗ + 1)∆ ≤ 2τ , we
can use the above corollary to show that

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤

Vol
(
{µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ τ + (k∗ + 1)∆ + c1ρ+ 14.2ρ1}

)
Vol
(
{µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ (7/8)τ − (k∗ + 1)∆− c1ρ− 14.2ρ1}

)
=

( τ + (k∗ + 1)∆ + c1ρ+ 14.2ρ1
(7/8)τ − (k∗ + 1)∆− c1ρ− 14.2ρ1

)d
≤ (67/12)d ≤ ec2d ,

for the choices of ρ = ρ1, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn), and c2 ≥ log(67/12),
where we used the fact that for n ≥ C log(1/(δζ))/(αε) with a large enough constant C, we have
(k∗ + 1)∆ ≤ 0.3ρ1. It follows that the condition (7/8)τ − (k∗ + 1)∆ > 0 is also satisfied.
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B.2.5. RESILIENCE IMPLIES BOUNDED LOCAL SENSITIVITY

We show that resilience implies the assumption (b) in Theorem 15 (Lemma 16). However, since
local sensitivity needs to be established first for not just the given set S but also Hamming distance
k∗ + 1 neighborhood of S, we need robustness results for this broader regime. Assuming (k∗ +
1)/n ≤ α/11, we can extend robustness results analogously, as follows. We consider a set S′ with
k data points arbitrarily changed from S. This implies that S′ is a ((1/5.5)α + (k/n), α, ρ1, ρ2)-
corrupt good set with respect to (µ,Σ). We first prove the analogous bounds to Lemma 11 for this
S′.

Lemma 14 For an ((1/5.5)α + α̃, α, ρ1, ρ2)-corrupt good set S′ with respect to (µ,Σ), α̃ ≤
(1/11)α, and any unit norm v ∈ Rd, |⟨v, µ − µ(Mv,α)⟩| ≤ 14ρ1 σv and 0.9σv ≤ σv(Mv,α) ≤
1.1σv.

Proof Analogous to (10), we have

|⟨v, µ− µ(Mv,α)⟩| ≤ (1/5.5)α+ α̃

1− (4/5.5)α

2ρ1σv
(1/5.5)α− α̃

+
1− (1/5.5)α− α̃

1− (4/5.5)α
ρ1σv

≤ 14ρ1σv ,

where we used the fact that (5/5.5)α+ α̃ ≤ α. Analogous to (11), we have∑
xi∈Mv,α

(⟨v, xi − µ(Mv,α)⟩2 − σ2v)

(1− (4/5.5)α)n
≤

((1/5.5)α+ α̃)( 2ρ2
(1/5.5)α−α̃)σ

2
v + (1− (1/5.5)α− α̃)ρ2σ

2
v

1− (4/5.5)α

≤ 14ρ2σ
2
v .

Analogous to (12), we have∑
xi∈Mv,α

(⟨v, xi − µ(Mv,α)⟩2 − σ2v)

(1− (4/5.5)α)n
≥ − ((1/5.5)α+ α̃)2ρ2σ

2
v

(1− (4/5.5)α)((1/5.5)α− α̃)
− ρ2σ

2
v − 142ρ21σ

2
v

≥ −(7.3ρ2 + 196ρ21)σ
2
v .

For α ≤ 0.045, ρ1 ≤ 0.013, and ρ2 ≤ 0.0005, we have the desired bounds.

Lemma 15 For an ((1/5.5)α + α̃, α, ρ1, ρ2)-corrupt good set S′ with respect to (µ,Σ) and α̃ ≤
(1/11)α, if µ̂ ∈ Bt,S′ for some t > 0 then we have ∥Σ−1/2(µ̂−µ)∥ ≤ 14ρ1+1.1t and

∣∣D(µ̂, S′)−
∥Σ−1/2(µ̂− µ)∥

∣∣ ≤ 14ρ1 + 0.1t.

Proof Analogously to the proof of Lemma 12, we have

1.1D(µ̂, S′) ≥ −14ρ1 + ∥Σ−1/2(µ̂− µ)∥ , and

0.9D(µ̂, S′) ≤ 14ρ1 + ∥Σ−1/2(µ̂− µ)∥ .

This gives the desired bound.

The sensitivity of DS(µ̂) is local in two ways. First, we get the desired sensitivity bound for
a dataset S that behaves nicely, which is captured by the notion of a ((1/5.5)α, α, ρ1, ρ2)-corrupt
good set S. Second, the sensitivity bound requires the estimate parameter µ̂ to be close to µ in
∥Σ−1/2(µ̂ − µ)∥. Both locality in dataset and locality in estimate are ensured by the safety test
(Test step in HPTR). To show that corrupt good datasets pass the safety test, the following lemma
establishes that those datasets have small local sensitivity.
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Lemma 16 For ∆ = 110ρ1/(αn), τ = 42ρ1, and an ((1/5.5α), α, ρ1, ρ2)-corrupt good S, if

n = Ω
( log(1/(δζ))

αε

)
, (15)

then the local sensitivity in assumption (b) is satisfied.

Remark. Note that to keep ∆ = O(ρ1/(αn)) that we want (and is critical in getting the final
utility guarantee), we need the extra corruption to be k∗/n = O(α). This implies n = Ω(k∗/α) =
Ω(log(1/(δζ))/(εα)). Further, k∗ = Ω(log(1/(δζ))/ε) cannot be improved since it is critical
in achieving a small failure probability in the Testing step. Hence, the sample complexity of
Ω(log(1/(δζ))/(εα)) cannot be improved under the current proof strategy.
Proof Since S is ((1/5.5)α, α, ρ1, ρ2)-corrupt good and dH(S, S′) ≤ k∗, it follows that S′ is
((1/5.5)α + α̃, α, ρ1, ρ2)-corrupt good with α̃ = (k∗/n). We further assume that α̃ ≤ (1/11)α,
which follows from k∗ = (2/ε) log(4/(δζ)) and n = Ω(log(1/δζ)/(εα)) with a large enough
constant. We show that this resilience implies that S′ is dense around the boundary of Mv,α, which
in turn implies low sensitivity.

Recall that Tv,α ⊂ S is the set of data points corresponding to the largest (2/5.5)αn data points
in the projected set S′

(v) = {⟨v, xi⟩}xi∈S′ , and Bv,α ⊂ S is the bottom set. Let Sgood denote the
original uncorrupted resilient dataset. Applying Lemma 10 to Sgood ∩ Tv,α (and Sgood ∩ Bv,α) of
size at least (1/11)α (since the corruption fraction is at most (1/5.5)α+ α̃ ≤ (1.5/5.5)α),∣∣ ⟨v, µ(Sgood ∩ Tv,α)− µ⟩

∣∣ ≤ 2ρ1σv
(1/11)α

, and
∣∣ ⟨v, µ(Sgood ∩ Bv,α)− µ⟩

∣∣ ≤ 2ρ1σv
(1/11)α

.

This implies that there is at least one good data point that is closer to the center than the means of
the upper tail and the bottom tail:

min
xi∈Sgood∩Tv,α

∣∣ ⟨v, xi − µ⟩
∣∣ ≤ 2ρ1σv

(1/11)α
, and min

xi∈Sgood∩Bv,α

∣∣ ⟨v, xi − µ⟩
∣∣ ≤ 2ρ1σv

(1/11)α
.

It follows that the distance between two closest points in Tv,α and Bv,α is bounded by

min
xi∈Sgood∩Tv,α

⟨v, xi⟩ − max
xi∈Sgood∩Bv,α

⟨v, xi⟩ ≤ (44/α)ρ1σv , (16)

when µ ∈ Mv,α. When µ ∈ Tv,α or µ ∈ Bv,α, it is straightforward that the above inequality holds.
This implies low sensitivity as follows.

Recall that Mv,α(S
′) denotes the middle part after filtering out the top and bottom (2/5.5)α

quantiles from {⟨v, xi⟩}xi∈S′ . For a neighboring dataset S′′ and the corresponding S′′
(v), con-

sider a scenario where one point xi in Mv,α(S
′) is replaced by another point x̃i. If ⟨v, x̃i⟩ ∈

[ maxxi∈Sgood∩Bv,α⟨v, xi⟩ , minxi∈Sgood∩Tv,α⟨v, xi⟩ ], then Eq. (16) implies that |⟨v, xi − x̃i⟩| ≤
(44/α)ρ1σv. Otherwise, Mv,α(S

′′) will have xi replaced by either argminj∈Sgood∩Tv,α⟨v, xj⟩ or
argmaxj∈Sgood∩Bv,α⟨v, xj⟩. In either case, Eq. (16) implies that |⟨v, xi − x̃i⟩| ≤ (44/α)ρ1σv. The
other case of when the replaced sample xi ∈ S is not in Mv,α follows similarly.

From this, we get the following bounds on the sensitivity of the robust mean and robust vari-
ance. Note that using robust statistics is critical in getting such small sensitivity bounds. Let
µ′ = µ(Mv,α(S

′)) and µ′′ = µ(Mv,α(S
′′)), where we write the dataset S′ in Mv,α(S

′) explicitly,∣∣ ⟨v, µ′ − µ′′⟩
∣∣ ≤ 44ρ1σv

α(1− (4/5.5)α)n
. (17)
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For the variance bound, let σ′2v = σ2v(Mv,α(S
′)) = (1/|Mv,α(S

′)|)
∑

x′
i∈Mv,α(S′)⟨v, x′i −

µ′⟩2 and σ′′2v = σ2v(Mv,α(S
′′)). Since (1 − (4/5.5)α)nσ′2v =

∑
x′
i∈Mv,α(S′)⟨v, x′i − µ′⟩2 =∑

x′
i∈Mv,α(S′)(⟨v, x′i−µ′′⟩2−⟨v, µ′′−µ′⟩2), we have (1−(4/5.5)α)n(σ′2v −σ′′2v ) =

∑
x′
i∈Mv,α(S′)⟨v, x′i−

µ′′⟩2−
∑

x′′
i ∈Mv,α(S′′)⟨v, x′′i −µ′′⟩2−(1−(4/5.5)α)n⟨v, µ′′−µ′⟩2. We bound each term separately.

Note that Mv,α(S
′) and Mv,α(S

′′) only differ in at most one data point. We denote those by x′ and
x′′, respectively. Then,∣∣∣ ∑

x′
i∈Mv,α(S′)

⟨v, x′i − µ′′⟩2 −
∑

x′′
i ∈Mv,α(S′′)

⟨v, x′′i − µ′′⟩2
∣∣∣ = ∣∣ ⟨v, x′ − µ′′⟩2 − ⟨v, x′′ − µ′′⟩2

∣∣
=
∣∣ ⟨v, x′ + x′′ − 2µ′′⟩⟨v, x′ − x′′⟩

∣∣
=
∣∣ ⟨v, x′ − µ′⟩+ ⟨v, µ′ − µ′′⟩+ ⟨v, x′′ − µ′′⟩

∣∣ ∣∣⟨v, x′ − x′′⟩
∣∣

≤ 3
(44ρ1σv

α

)2
,

and

(1− (4/5.5)α)n⟨v, µ′ − µ′′⟩2 ≤ (1− (4/5.5)α)n
(44ρ1σv)

2

(α(1− (4/5.5)α)n)2
.

This implies that

|σ′2v − σ′′2v | ≤ (44ρ1(α/2)σv)
2

(1− (4/5.5)α)nα2

(
3 +

1

(1− (4/5.5)α)n

)
≤ 4(44ρ1σv)

2

(1− (4/5.5)α)nα2
. (18)

Together, we get the following bound on the sensitivity of D(µ̂, S′). Since maxv av −maxv bv ≤
maxv |av − bv|, we have∣∣DS′(µ̂)−DS′′(µ̂)

∣∣ ≤ max
v:∥v∥=1

∣∣∣⟨v, µ̂− µ′⟩
σ′v

− ⟨v, µ̂− µ′′⟩
σ′′v

∣∣∣
≤ max

v:∥v∥=1

|⟨v, µ′ − µ′′⟩|
σ′v

+
|⟨v, µ̂− µ′′⟩|

σv

∣∣∣σv
σ′v

− σv
σ′′v

∣∣∣
≤ 44ρ1

0.9α(1− (4/5.5)α)n
+ ∥Σ−1/2(µ̂− µ′′)∥max

v

σv
σ′vσ

′′
v (σ

′
v + σ′′v )

|σ′2v − σ′′2v |

≤ 44ρ1
0.9α(1− (4/5.5)α)n

+
5312ρ21

α2(1− (4/5.5)α)n
∥Σ−1/2(µ̂− µ′′)∥ ,

where we used triangle inequality in the second inequality and the third inequality follows from
σ′v ≥ 0.9σv (Lemma 14), Eqs. (17), and Lemma 7, and the last inequality follows from σ′′v ≥ 0.9σv
and (18).

From Lemma 15, µ̂ ∈ Bτ+(k∗+3)∆,S implies ∥Σ−1/2(µ̂ − µ)∥ ≤ 14ρ1 + 1.1(τ + (k∗ + 3)∆).
From Lemma 14, ∥Σ−1/2(µ−µ′′)∥ ≤ 14ρ1. We apply triangle inequality and show that ∥Σ−1/2(µ̂−
µ′′)∥ ≤ cα/ρ1 for the choices of ∆, k∗, τ and n, with an arbitrarily small constant c:

∥Σ−1/2(µ̂− µ′′)∥ ≤ 28ρ1 + 1.1(τ + (k∗ + 3)∆)

≤ Cρ1 + C
ρ1 log(1/(δζ))

εαn
≤ 2Cρ1 ,
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for some constant C > 0, where ∆ = 110ρ1/(αn), τ = 42ρ1, k∗ = (2/ε) log(4/(δζ)), and
n ≥ C ′ log(1/(δζ))/(ε α). Under the assumption that ρ21 ≤ cα and α ≤ c for some small enough
c, this implies

|DS′(µ̂)−DS′′(µ̂)| ≤ 44ρ1
0.9(1− (4/5.5)α)αn

(
1 +

121ρ1
α

2Cρ1

)
≤ (44/0.9)ρ1

αn

1 + 44c

1− (4/5.5)c
≤ ∆ =

110ρ1
αn

. (19)

B.2.6. PROOF OF THEOREM 10

We show that the sufficient conditions of Theorem 15 are met for the following choices of constants
and parameters: p = d, ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, and ∆ = 110ρ1/(αn). We can
set c2 to be a large constant and will only change the constant factor in the sample complexity.

The assumptions (a), (b), and (d) follow from Lemmas 13, 16, and 12, respectively. Assump-
tion (c) follows from

∆ =
110ρ1
αn

≤ 1.2ρ1ε

32(c2d+ (ε/2) + log(16/(δζ)))
=

(c0 − 3c1)ρε

32(c2d+ (ε/2) + log(16/(δζ)))
,

for a large enough n ≥ C ′(d + log(1/(δζ)))/(αε). This finishes the proof of Theorem 10, from
which Theorem 9 immediately follows.

B.3. Step 3: Near-optimal guarantees

We provide utility guarantees for popular families of distributions in private or robust mean estima-
tion literature: sub-Gaussian (Barber and Duchi, 2014; Lai et al., 2016; Steinhardt et al., 2018; Zhu
et al., 2019; Karwa and Vadhan, 2017; Kamath et al., 2019; Cai et al., 2019; Bun et al., 2019; Biswas
et al., 2020; Aden-Ali et al., 2020; Brown et al., 2021; Diakonikolas et al., 2019a; Diakonikolas
et al., 2017; Dong et al., 2019; Hopkins, 2020; Diakonikolas et al., 2018; Huang et al., 2021), k-th
moment bounded (Barber and Duchi, 2014; Lai et al., 2016; Steinhardt et al., 2018; Zhu et al., 2019;
Kamath et al., 2020), and covariance bounded (Barber and Duchi, 2014; Lai et al., 2016; Steinhardt
et al., 2018; Zhu et al., 2019; Kamath et al., 2020; Dong et al., 2019; Hopkins et al., 2020; Depersin
and Lecué, 2019, 2021). We apply known resilience bounds for each family of distributions and
substitute them in Theorems 9 and 10. In all cases, the resulting sample complexity is near-optimal,
which follows from matching information-theoretic lower bounds.

Since we aim for Mahalanobis distance error bounds, the corresponding mean resilience we
need in Definition 8 scales linearly in the projected standard deviation. For sub-Gaussian distri-
butions, this requires the projected variance v⊤Σv to be lower bounded by how fast the tail is
decreasing, as captured by the sub-Gaussian proxy Ω(v⊤Γv) in Eq. (20) (Section B.3.1). For k-
th moment bounded distributions with k > 3, this requires the projected variance to be lower
bounded by Ω(E[|⟨v, x−µ⟩|k]2/k), a condition known as hypercontractivity (Section B.3.2). When
we do not have such lower bounds on the covariance, HPTR can only hope to achieve Euclidean
distance error bounds. Under our design principle, this translates into the choice of DS(µ̂) =
max∥v∥≤1⟨v, µ̂⟩ − µv(Mv,α). We give an example of this scenario with covariance bounded distri-
butions (Section B.3.3).
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B.3.1. SUB-GAUSSIAN DISTRIBUTIONS

We say a distribution P is sub-Gaussian with proxy Γ if for all ∥v∥ = 1 and t ∈ R,

Ex∼P

[
exp(t ⟨v, x⟩)

]
≤ exp

( t2 v⊤Γv
2

)
. (20)

Under this standard sub-Gaussianity, we are only guaranteed mean resilience of Eq. (5), for ex-
ample, with R.H.S scaling as ρ1

√
v⊤Γv instead of ρ1

√
v⊤Σv. This implies that the Mahalanobis

distance of any robust estimate can be made arbitrarily large by shrinking the covariance in one di-
rection such that v⊤Σv ≪ v⊤Γv. To avoid such degeneracy, we add an additional assumption that
Σ ⪰ cΓ, which is also common in robust statistics literature, e.g., (Jambulapati et al., 2020). With
this definition, it is known that sub-Gaussian samples are (α,O(α

√
log(1/α)), O(α log(1/α)))-

resilient.

Lemma 17 (Resilience of sub-Gaussian samples (Zhu et al., 2019) and (Jambulapati et al.,
2020, Corollary 4)) For any fixed α ∈ (0, 1/2), consider a dataset S = {xi ∈ Rd}ni=1 of n
i.i.d. samples from a sub-Gaussian distribution with mean µ, covariance Σ, and a sub-Gaussian
proxy 0 ≺ Γ ⪯ c1Σ for a constant c1. There exist constants c2 and c3 > 0 such that if n ≥
c2((d + log(1/ζ))/(α log(1/α))2), then S is (α, c3α

√
log(1/α), c3α log(1/α))-resilient with re-

spect to (µ,Σ) with probability 1− ζ.

This lemma and Theorem 9 imply the following utility guarantee. Further, from Theorem 10,
the guarantee also holds under α-corruption of the i.i.d. samples from a sub-Gaussian distribution.

Corollary B.2 Under the hypothesis of Lemma 17, there exists a constant c > 0 such that for any
α ∈ (0, c), a dataset of size

n = O
( d+ log(1/ζ)

(α log(1/α))2
+
d+ log(1/(δζ))

αε

)
,

sensitivity of ∆ = O((1/n)
√

log(1/α)), and threshold of τ = O(α
√
log(1/α)), with large enough

constants are sufficient for HPTR(S) with the distance function in Eq. (3) to achieve

∥Σ−1/2(µ̂− µ)∥ = O(α
√

log(1/α)) (21)

with probability 1 − ζ. Further, the same guarantee holds even if α-fraction of the samples is
arbitrarily corrupted, as shown in Assumption 1.

This sample complexity is near-optimal up to logarithmic factors in 1/α and 1/ζ for δ =
e−O(d). Even for DP mean estimation without corrupted samples, HPTR is the first algorithm
for sub-Gaussian distributions with unknown covariance that nearly matches the lower bound of
n = Ω̃(d/α2 + d/(αε)+ log(1/δ)/ε) from (Karwa and Vadhan, 2017; Kamath et al., 2019), where
Ω̃ hides polylogarithmic terms in 1/ζ, 1/α, d, 1/ε and log(1/δ). The third term has a gap of 1/α
factor to our upper bound, but this term is dominated by other terms under the assumption that
δ = e−O(d). For completeness, we state the lower bound in Appendix H. Existing algorithms are
suboptimal since they require either n = Õ((d/α2) + (d(log(1/δ)3)/(αε2))) samples with (1/ε2)
dependence to achieve the error rate of Eq. (21) (Brown et al., 2021) or extra conditions, such as
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strictly Gaussian distributions (Brown et al., 2021; Bun et al., 2019) or known covariance matrices
(Kamath et al., 2019; Aden-Ali et al., 2020; Barber and Duchi, 2014).

The error bound is near-optimal in its dependence in α under α-corruption. HPTR is the first
estimator that is both (ε, δ)-DP and also achieves the robust error rate of ∥Σ−1/2(µ̂ − µ)∥ =
O(α

√
log(1/α)), nearly matching the known information-theoretic lower bound of ∥Σ−1/2(µ̂ −

µ)∥ = Ω(α) (Chen et al., 2018). This lower bound holds for any estimator that is not necessarily
private and regardless of how many samples are available. In comparison, the existing robust and
DP estimator from (Liu et al., 2021), which runs in polynomial time, requires the knowledge of the
covariance matrix Σ and a larger sample complexity of n = Ω̃((d/α2) + (d3/2 log(1/δ))/(αε)). If
privacy is not required (i.e., ε = ∞), a robust mean estimator from (Zhu et al., 2019) achieves the
same error bound and sample complexity as ours.

B.3.2. HYPERCONTRACTIVE DISTRIBUTIONS

For an integer k ≥ 3, a distribution Pµ,Σ is k-th moment bounded with a mean µ and covariance
Σ if for all ∥v∥ = 1, we have Ex∼PX

[|⟨v, (x − µ)⟩|k] ≤ κk for some κ > 0. However, similar
to the sub-Gaussian case, Mahalanobis distance guarantees require an additional lower bound on
the covariance. To this end, we assume hypercontractivity, which is common in robust statistics
literature, e.g., (Klivans et al., 2018).

Definition 18 A distribution Pµ,Σ is (κ, k)-hypercontractive if for all v ∈ Rd, Ex∼PX
[|⟨v, (x −

µ)⟩|k] ≤ κk(v⊤Σv)k/2.

Although samples from such heavy-tailed distributions are known to be not resilient, it is known
that they areO(α)-close in total variation distance to an (α,O(α1−1/k), O(α1−2/k))-resilient dataset.
This means that the resulting dataset is ((1/11)α, α,O(α1−1/k), O(α1−2/k))-corrupt good, for ex-
ample. Note that hypercontractivity is invariant under affine transformations, and κ does not depend
on the condition number of the covariance.

Lemma 19 (Resilience of k-th moment bounded samples (Zhu et al., 2019, Lemma G.10)) For
any fixed α ∈ (0, 1/2), consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a (κ, k)-
hypercontractive distribution with mean µ and covariance Σ ≻ 0 for some k ≥ 3. For any c3 > 0,
there exist constants c1 and c2 > 0 that depend only on c3 such that if

n ≥ c1

( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ2
+
κ2d log d

α2/k

)
,

then S is (c3α, α, c2kκα1−1/kζ−1/k, c2k
2κ2α1−2/kζ−2/k)-corrupt good with respect to (µ,Σ) with

probability 1− ζ.

This lemma and Theorem 9 imply the following utility guarantee. Further, from Theorem 10, the
guarantee also holds under (1/5.5−c3)α-corruption of the i.i.d. samples from a (κ, k)-hypercontractive
distribution. Choosing appropriate constants, we get the following result.

Corollary B.3 Under the hypothesis of Lemma 19, there exists a constant cκ,k,ζ that depends only
on k, κ, and ζ such that for any α ∈ (0, cκ,k,ζ), a dataset of size

n = O
(d+ log(1/(δζ))

εα
+

d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ2
+
κ2d log d

α2/k

)
,

37



LIU KONG OH

sensitivity of ∆ = O(1/(nα1/k)), and threshold of τ = O(α1−1/k) with large enough constants
are sufficient for HPTR(S) with the distance function in Eq. (3) to achieve ∥Σ−1/2(µ̂ − µ)∥ =
O(kκζ−1/kα1−1/k) with probability 1− ζ. Further, the same guarantee holds even if α-fraction of
the samples is arbitrarily corrupted, as shown in Assumption 1.

This sample complexity is near-optimal in its dependence in d, 1/ε, and 1/α when δ = e−Θ(d).
Suppose ζ, k, and κ are Θ(1). Even for DP mean estimation without robustness, HPTR is the first
algorithm that achieves ∥Σ−1/2(µ̂−µ)∥ = O(α1−1/k) with n = Õ( d

α2(1−1/k) +
d+log(1/δ)

εα ) samples,
which nearly matches the known lower bounds. The first term O(d/α2(1−1/k)) cannot be improved
even if we do not require privacy. The second term O((d + log(1/δ))/εα) nearly matches the
lower bound of n = Ω(min{d, log((1− e−ε)/δ)}/(εα)) for DP mean estimation that we show in
Proposition B.5. If 0 < ε ≤ 1 and δ = e−Θ(d) (as assumed in (Barber and Duchi, 2014)), the upper
and lower bounds match. An existing DP mean estimator (without robustness) of (Kamath et al.,
2020) achieves a stronger (ε, 0)-DP and similar accuracy but in Euclidean distance with a similar
sample size of n = Õ( d

α2(1−1/k) +
d
εα). However, it requires a known or identity covariance matrix

and a known bound on the unknown mean of the form µ ∈ [−R,R]d. Such a bounded search space
is critical in achieving a stronger pure privacy guarantee with δ = 0.

The error bound is optimal in its dependence inα underα-corruption. The error bound ∥Σ−1/2(µ̂−
µ)∥ = O(α1−1/k) matches the following information-theoretic lower bound in Proposition B.4;
no algorithm can distinguish two distributions whose means are at least O(α1−1/k) apart from
α-fraction of samples corrupted, even with infinite samples. HPTR is the first algorithm that guar-
antees both differential privacy and robustness (i.e., the error depends only on α and not in d) for
k-th moment bounded distributions. If privacy is not required (i.e., ε = ∞), a robust mean estimator
from (Zhu et al., 2019) achieves a similar error bound and sample complexity as ours.

Proposition B.4 (Lower bound for robust mean estimation)
For any α ∈ (0, 1/2), there exist two distributions D1 and D2 satisfying the hypotheses of

Lemma 19 such that dTV(D1,D2) = α, and

∥Σ−1/2(µ1 − µ2)∥ = Ω(α1−1/k) .

Proof We construct two scalar distributions D1 and D2 with dTV(D1,D2) = α as follows:

D1(x) =

{
(1− α)/2, if x ∈ {−1, 1}
α if x = −α1/k

, and D2(x) =

{
(1− α)/2, if x ∈ {−1, 1}
α if x = α1/k

The variance is Ω(1) for both distributions, and |Ex∼D1 [x] − Ex∼D2 [x]| = 2α1−1/k. Then, it
suffices to show that D1 and D2 are both (O(1), k)-hypercontractive. In fact, we know Ex∼D1 [x] =
−α1−1/k, Ex∼D1 [x

2] = Ex∼D2 [x
2] = 1−α+α1−2/k, and ED1 [|x|k] = 2−α. Since α ∈ (0, 1/2),

there exists a constant c such that Ex∼D1 [|x− µ1|k] ≤ c, which concludes the proof.

Proposition B.5 (Lower bound for DP mean estimation) Let Pµ,Σ,k be the set of (1, k)-hypercontractive
distributions with mean µ ∈ Rd and covariance Σ ∈ Rd×d. Let Mε,δ be a class of (ε, δ)-DP esti-
mators using n i.i.d. samples from P ∈ Pµ,Σ,k. Then, for ε ∈ (0, 10), there exists a constant c such

38



DIFFERENTIAL PRIVACY AND ROBUST STATISTICS IN HIGH DIMENSIONS

that

inf
µ̂∈Mε,δ

sup
µ∈Rd,Σ≻0,P∈Pµ,Σ,k

ES∼Pn [∥Σ−1/2(µ̂(S)− µ)∥2] ≥ cmin

{(
d ∧ log((1− e−ε)/δ)

nε

)2−2/k

, 1

}
.

Proof We extend the proof of (Barber and Duchi, 2014, Proposition 4) to hypercontractive dis-
tributions. Before we prove the lower bound, we first establish the private version of the stan-
dard statistical estimation problem. Specifically, let P denote a family of distributions of interest
and θ : P → Θ denote the population parameter. The goal is to estimate θ from i.i.d. sam-
ples x1, x2, . . . , xn ∼ P . Let θ̂ be an (ε, δ)-differentially private estimator. Furthermore, let
ρ : Θ × Θ → R+ be a (semi)metric on parameter space Θ and ℓ : R+ → R+ be a non-decreasing
loss function with ℓ(0) = 0.

To measure the performance of our (ε, δ)-DP estimator θ̂, we define the minimax risk as follows:

inf
θ̂

sup
P∈P

Ex1,x2,...,xn∼P

[
ℓ
(
ρ
(
θ̂ (x1, . . . , xn) , θ(P )

))]
. (22)

To prove the lower bound of the minimax risk, we construct a well-separated family of distribu-
tions and convert the estimation problem into a testing problem. Specifically, let V be an index set
of finite cardinality. Define PV = {Pv, v ∈ V} ⊂ P to be an indexed family of distributions. If for
all v ̸= v′ ∈ V we have ρ(Pv, Pv′) ≥ 2t, we say PV is 2t-packing of Θ.

The proof of (Barber and Duchi, 2014, Proposition 4) is based on following lemma.

Lemma 20 ((Barber and Duchi, 2014, Theorem 3)) Fix p ∈ [0, 1] and let PV be a 2t-packing of
Θ such that Pv = (1− p)Q0 + pQv. Let θ̂ be a (ε, δ) differentially private estimator. Then,

1

|V|
∑
ν∈V

Pv

(
ρ
(
θ̂, θ(Pv)

)
≥ t
)
≥

(|V| − 1) ·
(
1
2e

−ε⌈np⌉ − δ 1−e−ε[np⌉

1−e−ε

)
1 + (|V| − 1) · e−ε⌈np⌉ . (23)

In our problem, we set P to be P = Pµ,Σ,k. It suffices to construct such an index set V and
indexed family of distributions PV . We construct a packing set similar to that defined in the proof
of (Barber and Duchi, 2014, Proposition 4). By (Acharya et al., 2021, Lemma 6), there exists a
finite set V ⊂ Rd with cardinality |V| = 2Ω(d), ∥v∥ = 1 for all v ∈ V , and ∥v − v′∥ ≥ 1/2 for
all v ̸= v′ ∈ V . Define Q0 as Q0 = N (0, Id×d) and Qv as a point mass on x = α−1/kcv, where
v ∈ V . We construct Pv as Pv = αQv + (1− α)Q0.

We first verify that PV ⊂ P . It is easy to see µ(Pv) = Ex∼Pv [x] = α1−1/kv and Σ(Pv) =
Ex∼Pv [(x − µ(Pv))(x − µ(Pv))

⊤] = (1 − α)Id×d + α(1 − α)α−2/kvv⊤. This implies 1
2Id×d ⪯

Σ(Pv) ⪯ Id×d. Since E
[
(X − E[X])k

]
≤ E

[
Xk
]

for any X ≥ 0, it suffices to show that
Ex∼Pv [| ⟨u, x⟩ |k] ≤ Ck for some constant C > 0 and any ∥u∥ = 1. In fact, letting ck denote
the k-th moment of standard Gaussian, we have

Ex∼Pv [| ⟨u, x⟩ |k] = (1− α)ck + α
∣∣∣〈u, α−1/kv

〉∣∣∣k = O(1) .

It is also easy to see that dTV(Pv, Pv′) = α. Let ρ(θ1, θ2) = ∥θ1 − θ2∥. We also have

t = min
v ̸=v′∈V

α1−1/k∥v − v′∥ ≥ 1

2
α1−1/k .
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Next, we apply the reduction of estimation to testing with this packing V . For (ε, δ)-DP estima-
tor µ̂, using Lemma 20, we have

sup
P∈P

ES∼Pn [∥Σ(P )−1/2(µ̂(S)− µ(P ))∥2] ≥ 1

|V|
∑
v∈V

ES∼Pn
v
[∥Σ(Pv)

−1/2(µ̂(S)− µ(Pv))∥2]

= t2
1

|V|
∑
v∈V

Pv

(
∥Σ(Pv)

−1/2(µ̂(S)− θ(Pv))∥ ≥ t
)

≍ t2
1

|V|
∑
v∈V

Pv (∥µ̂(S)− θ(Pv)∥ ≥ t)

≳ t2
ed/2 ·

(
1
2e

−ε⌈nα⌉ − δ
1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where the last inequality follows from the fact that d ≥ 2.
The rest of the proof follows from (Barber and Duchi, 2014, Proposition 4). We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
so that

sup
P∈P

ES∼Pn [∥Σ(P )−1/2(µ̂(S)− µ(P ))∥2] ≳ α2−2/k .

This means, for ε ∈ (0, 1),

inf
µ̂∈Mε,δ

sup
P∈P

ES∼Pn [∥Σ(P )−1/2(µ̂(S)− µ(P ))∥2] ≳ min

{(
d ∧ log((1− e−ε)/δ)

nε

)2−2/k

, 1

}
,

which completes the proof.

B.3.3. COVARIANCE BOUNDED DISTRIBUTIONS

A distribution Pµ,Σ is covariance bounded with mean µ and covariance Σ if ∥Σ∥ ≤ 1. Contrary
to the previous cases, the sample variance is not resilient since {⟨v, xi − µ⟩2} do not concentrate.
To get around this issue, we use the Euclidean distance: Dϕ(µ̂, µ) = ∥µ̂ − µ∥. This leads to the
surrogate Euclidean distance of

DS(µ̂) = max
∥v∥≤1

⟨v, µ̂⟩ − µv(Mv,α) . (24)

Since this does not depend on the robust variance σ2v(Mv,α), we only require the following first
order resilience.

Lemma 21 (Resilience of covariance bounded samples (Zhu et al., 2019, Lemma G.3)) For any
fixed α ∈ (0, 1/2), consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a covariance
bounded distribution with mean µ and covariance Σ ≻ 0. If n = Ω(d log(d/ζ)/(α)), then with
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probability 1− 3ζ, for any subset T ⊂ S of size |T | ≥ (1−α)n, there exists a constant C > 0 such
that the following holds for all α ∈ (0, 1/2) and for all v ∈ Rd with ∥v∥ = 1:∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩ − µv

∣∣∣ ≤ Cα1/2 ,

where µv = ⟨v, µ⟩.

This lemma and Theorem 10, adapted for the new DS(µ̂) = max∥v∥≤1⟨v, µ̂⟩ − µv(Mv,α),
imply the following utility guarantee.

Corollary B.6 Under the hypothesis of Lemma 21, there exists a constant cζ that only depends on
ζ such that for α ∈ (0, cζ), a dataset of size

n = O
(d+ log(1/(δζ))

εα
+
d log(d/ζ)

α

)
,

sensitivity of ∆ = O(1/(n
√
α)), and threshold of τ = O(

√
α) with large enough constants are

sufficient for HPTR(S) with the distance function in Eq. (24) to achieve ∥µ̂ − µ∥ = O(α1/2)
with probability 1 − 3ζ. Further, the same guarantee holds even if a α-fraction of the samples is
arbitrarily corrupted, as shown in Assumption 1.

This sample complexity is near-optimal in its dependence on d, 1/ε, and 1/α for δ = e−O(d).
It matches the information-theoretic lower bound of n = Ω(d/εα) from (Kamath et al., 2020).
For completeness, we write the lower bound in Appendix H. This problem is easier than the sub-
Gaussian or k-th moment bounded settings, since the error is measured in Euclidean distance and
hence one does not need to adapt to the unknown covariance. Therefore, there exist other algorithms
achieving near-optimality and even runs in polynomial time (Kamath et al., 2020).

The error rate is near-optimal under α-corruption, matching the information-theoretic lower
bound of ∥µ̂−µ∥ = Ω(α1/2) (Dong et al., 2019). Note that there exists an DP and robust algorithm
from (Liu et al., 2021) that achieves near-optimality in both error rate and sample complexity but
requires an additional assumption that the spectral norm of the covariance is known and the unknown
mean is in a bounded set, [−R,R]d, with a known R.

Remark. Corollary B.6 is suboptimal since (1) the error metric is Euclidean ∥µ̂ − µ∥ instead of
Mahalanobis ∥Σ−1/2(µ̂ − µ)∥, and (2) sample complexity scales as 1/ζ instead of log(1/ζ). It
remains an open problem if these gaps can be closed. For the former, one could use the Stahel-
Donoho outlyingness (Stahel, 1981; Donoho, 1982),

DS(µ̂) = sup
v∈Rd,∥v∥=1

|⟨v, µ̂⟩ −Med(⟨v, S⟩)|
Med(|⟨v, S⟩ −Med(⟨v, S⟩)|)

,

in the exponential mechanism, which replaces second moment based normalization by a first mo-
ment based one that is resilient. Here, Med(⟨v, S⟩) is the median of {⟨v, xi⟩}xi∈S . Further, replac-
ing the median by the median of means can improve the dependence on ζ. Such directions have
been fruitful for robust but non-private mean estimation (Depersin and Lecué, 2021).
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Appendix C. Linear regression

In a standard linear regression, we have i.i.d. samples S = {(xi ∈ Rd, yi ∈ R)}ni=1 from a distribu-
tion Pβ,Σ,γ2 of a linear model:

yi = x⊤i β + ηi ,

where the input xi ∈ Rd has zero mean and covariance Σ and the noise ηi ∈ R has variance
γ2. We further assume E[xiηi] = 0, which is equivalent to assuming that the true parameter β =
Σ−1E[yixi]. In DP linear regression, we want to output a DP estimate β̂ of the unknown model
parameter β (which corresponds to θ = µ in the general notation), assuming that both covariance
Σ ≻ 0 and noise variance γ2 (corresponding to ϕ = (Σ, γ) in the general notation) are unknown.
The resulting error is measured in DΣ,γ(β̂, β) = (1/γ)∥Σ1/2(β̂ − β)∥, which is equivalent to
the (re-scaled) root excess prediction risk of the estimated predictor β̂. Similar to Mahalanobis
distance for mean estimation, this is challenging since we aim for a tight guarantee that adapts to
the unknown Σ without having enough samples to directly estimate Σ. We follow the three-step
strategy of Section 1.2.1 and provide utility guarantees.

C.1. Step 1: Designing the surrogate DS(β̂) for the error metric (1/γ)∥Σ1/2(β̂ − β)∥

In the RELEASE step of HPTR, we propose the following surrogate error metric for the exponential
mechanism:

DS(β̂) = max
v:∥v∥≤1

1
|Nv,β̂,α|

∑
xi∈Nv,β̂,α

⟨v, xi(yi − x⊤i β̂)⟩

σv(Mv,α)γ̂
, (25)

where γ̂2 is defined as

γ̂2 = min
β̄

1

|Bβ̄,α|
∑

i∈Bβ̄,α

(yi − x⊤i β̄)
2 . (26)

We define Nv,β̂,α, Mv,α and Bβ̄,α as follows. For a fixed v, Mv,α is defined in Section B.1
as a subset of S with size (1 − (4/5.5)α)n that remains after removing (4/5.5)αn data points
corresponding to the top (2/5.5)αn and the bottom (2/5.5)αn of samples when projected down to
Sv = {⟨v, xi⟩}i∈[n]. We denote a robust estimate of the variance in direction v as σv(Mv,α)

2 =

(1/|Mv,α|)
∑

xi∈Mv,α
⟨v, xi⟩2 since xi’s are zero mean. Similarly, for a fixed β̂ and v, we consider

a set of projected data points Sv,β̂ = {⟨v, xi(yi−x⊤i β̂)⟩}i∈[n] and partition S into three disjoint sets,
Bv,β̂,α, Nv,β̂,α, and Tv,β̂,α, where Bv,β̂,α is the subset of S corresponding to the bottom (2/5.5)αn

data points with the smallest values in Sv,β̂ , Tv,β̂,α corresponds to the top (2/5.5)αn data points, and
Nv,β̂,α corresponds to the remaining (1−(4/5.5)α)nmiddle data points. We use Tv,β̂,α,Nv,β̂,α, and
Bv,β̂,α to denote both the set of paired examples {(xi, yi)} and the set of indices of those examples,
and it should be clear from the context which one we mean.

For a fixed β̄, Bβ̄,α is defined as a subset of S with size (1 − (3.5/5.5)α)n that remains after
removing the largest (2/5.5)αn data points in set Sβ̄ = {(yi − x⊤i β̄)

2}i∈[n].
This choice is justified by Lemma 22, which shows that if we replace the robust one-dimensional

statistics by the true ones, we recover the target error metric. Hence, the exponential mechanism
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with distance DS(β̂) is approximately and stochastically minimizing ∥Σ1/2(β̂ − β)∥. For a more
elaborate justification of using DS(β̂), we refer to a similar choice for mean estimation in Sec-
tion B.1.

Lemma 22 For any β ∈ Rd, 0 ≺ Σ ∈ Rd×d, and γ > 0, let σ2v = v⊤Σv. If E[ηixi] = 0,
yi = x⊤i β + ηi and (xi, yi) ∼ Pβ,Σ,γ2 , then we have

∥Σ1/2(β̂ − β)∥ = max
v:∥v∥≤1

EPβ,Σ,γ2
[⟨v, xi(yi − x⊤i β̂)⟩]

σv
, and

γ2 = min
β̄∈Rd

E[(yi − x⊤i β̄)
2] .

Proof We have

max
v:∥v∥≤1

EPβ,Σ,γ2
[⟨v, xi(yi − x⊤i β̂)⟩]

σv
= max

v:∥v∥≤1

EPβ,Σ,γ2
[⟨v, xi(x⊤i (β − β̂) + ηi)⟩]

σv

= max
v:∥v∥≤1

⟨v,Σ(β − β̂)⟩
σv

= ∥Σ1/2(β − β̂)∥ ,

where the second equality uses the fact that ηi has zero mean and xi has covariance Σ. The last
equality follows from Lemma 52. For the noise, we have E[(yi−x⊤i β̄)2] = E[(x⊤i β+ηi−x⊤i β̄)2] =
E[η2i ] +E[(β − β̄)xix

⊤
i (β − β̄)], which follows from E[ηixi] = 0. This is minimized when β̄ = β,

and the minimum is γ2.

C.2. Step 2: Utility analysis under resilience

The following resilience is a fundamental property of the dataset that determines the sensitivity of
DS(β̂). We refer to Section B.2 for a detailed explanation of how resilience relates to sensitivity.

Definition 23 (Resilience for linear regression) For some α ∈ (0, 1), ρ1 ∈ R+, ρ2 ∈ R+,
and ρ3 ∈ R+, we say a set of n labelled data points Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 is
(α, ρ1, ρ2, ρ3, ρ4)-resilient with respect to (β,Σ, γ) for some β ∈ Rd, positive definite Σ ∈ Rd×d,
and γ > 0 if for any T ⊂ Sgood of size |T | ≥ (1 − α)n, the following holds for all v ∈ Rd with
∥v∥ = 1: ∣∣∣ 1

|T |
∑

(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i β)
∣∣∣ ≤ ρ1 σv γ , (27)

∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩2 − σ2v

∣∣∣ ≤ ρ2 σ
2
v , (28)

∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩
∣∣∣ ≤ ρ3 σv , and (29)

∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − x⊤i β)
2 − γ2

∣∣∣ ≤ ρ4 γ
2 , (30)

where σ2v = v⊤Σv.
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For example, n i.i.d. samples from sub-Gaussian xi’s and sub-Gaussian ηi’s (independent of
xi’s) is

(
α,O(α log(1/α)), O(α log(1/α)), O(α

√
log(1/α)), O(α log(1/α))

)
-resilient. A resilient

dataset implies a sensitivity of ∆ = O(ρ1/(αn)) = O(log(1/α)/n), where α is a free parameter
determined by the target accuracy (1/γ)∥Σ1/2(β̂ − β)∥ = O(α log(1/α)). We show that a sample
size of O((d+ log(1/δ))/(εα)) is sufficient to achieve the target accuracy for any resilient dataset.
In Section C.3, we apply this theorem to resilient datasets from several sampling distributions of
interest and characterize the trade-offs.

Theorem 11 (Utility guarantee for linear regression) There exist positive constants c and C such
that for any (α, ρ1, ρ2, ρ3, ρ4)-resilient set S with respect to (β,Σ ≻ 0, γ > 0) satisfying α ∈
(0, c),ρ1 < c, ρ2 < c, ρ23 ≤ cα and ρ4 < c, HPTR with the distance function in Eq. (25),
∆ = 110ρ1/(αn), and τ = 42ρ1 achieves (1/γ)∥Σ1/2(β̂ − β)∥ ≤ 32ρ1 with probability 1− ζ if

n ≥ C
d+ log(1/(δζ))

εα
. (31)

C.2.1. ROBUSTNESS OF HPTR

One by-product of using robust statistics inDS(β̂) is that robustness for HPTR comes for free under
a standard data corruption model.

Assumption 2 (αcorrupt-corruption) Given a set Sgood = {(x̃i ∈ Rd, ỹi ∈ R)}ni=1 of n data
points, an adversary inspects all data points, selects αcorruptn of the data points, and replaces them
with arbitrary dataset Sbad of size αcorruptn. The resulting corrupted dataset is called S = {(xi ∈
Rd, yi ∈ R)}ni=1.

The same guarantee as Theorem 11 holds under corruption up to a corruption of αcorrupt <
(1/5.5)α fraction of a (α, ρ1, ρ2, ρ3, ρ4)-resilient dataset Sgood. The factor (1/5.5) is due to the
fact that the algorithm can remove (4/5.5)α fraction of the good points and a slack of (0.5/5.5)α
fraction is needed to resilience of neighboring datasets.

Definition 24 (Corrupt good set) We say a dataset S is (αcorrupt, α, ρ1, ρ2, ρ3, ρ4)-corrupt good
with respect to (β,Σ, γ) if it is an αcorrupt-corruption of an (α, ρ1, ρ2, ρ3, ρ4)-resilient dataset
Sgood.

Theorem 12 (Robustness) There exist positive constants c andC such that for any ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-
corrupt good set S with respect to (β,Σ ≻ 0, γ > 0) satisfying α < c, ρ1 < c, ρ2 < c, ρ23 ≤ cα and
ρ4 < c, HPTR with the distance function in Eq. (25), ∆ = 110ρ1/(αn), and τ = 42ρ1 achieves
(1/γ)∥Σ1/2(β̂ − β)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
. (32)

We provide a proof in Sections C.2.2-C.2.6. When there is no adversarial corruption, Theorem 11
immediately follows by selecting α as a free parameter.
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C.2.2. PROOF STRATEGY FOR THEOREM 12

The overall proof strategy follows that of Section B.2.2 for mean estimation. We highlight the
differences here.

Lemma 25 (Lemma 10 from (Steinhardt et al., 2018)) For a (α, ρ1, ρ2, ρ3, ρ4)-resilient set S
with respect to (β,Σ, γ) and any 0 ≤ α̃ ≤ α, the following holds for any subset T ⊂ S of size at
least α̃n and for any unit vector v ∈ Rd:∣∣∣ 1

|T |
∑

(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i β)
∣∣∣ ≤ 2− α̃

α̃
ρ1 σv γ , (33)

∣∣∣∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩2 − σ2v

∣∣∣∣∣∣ ≤ 2− α̃

α̃
ρ2σ

2
v , (34)

∣∣∣∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩

∣∣∣∣∣∣ ≤ 2− α̃

α̃
ρ3σv , and (35)

∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − x⊤i β)
2 − γ2

∣∣∣ ≤ 2− α̃

α̃
ρ4 γ

2 . (36)

This technical lemma is critical in showing that the sensitivity of one-dimensional statistics is
bounded by the resilience of the dataset, such that the sensitivity of DS(β̂) for a resilient S is
bounded by

|DS(β̂)−DS′(β̂)| ≤ C ′
(
1 +

ρ23
α

)ρ1 + (1/γ)∥Σ1/2(β̂ − β)∥
αn

for some constant C ′ and for any neighboring dataset S′. The desired sensitivity bound is local in
two ways: it requires S to be resilient and (1/γ)∥Σ1/2(β̂ − β)∥ = O(ρ1). Under the assumption
that ρ23/α = O(1) with a small enough constant, this achieves the desired bound ∆ = O(ρ1/(αn))
with β̂ ∈ Bτ,S and τ = O(ρ1). The standard utility analysis of exponential mechanisms shows that
the error of (1/γ)∥Σ1/2(β̂−β)∥ = O(ρ1) can be achieved when eO(d)−c ε

∆
ρ1 ≤ ζ, which happens if

n = Ω((d+log(1/ζ))/(εα)) with a large enough constant. The TEST step checks the two localities
by ensuring that DP conditions are met for the given dataset.

Outline. Analogous to the mean estimation proof, the analyses of utility and the safety test build
upon the universal analysis of HPTR in Theorem 15. For linear regression, we show in Sec-
tions C.2.3-C.2.5 that the assumptions of Theorem 15 are met for a resilient dataset and the choices
of constants and parameters: ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn),
τ = 42ρ1, k∗ = (2/ε) log(4/(δζ)), and a large enough constant c2. We assume that α < c and
ρ1 < c for a small enough constant c. A proof of Theorem 12 is shown in Section C.2.6, and
Theorem 11 immediately follows by selecting α as a free parameter.

The above resilience properties also imply the following useful resilience on the Sβ̄ = {(yi −
β̄⊤xi)

2}i=[n] for any vector β̄.

Lemma 26 (Resilience of residual square) Let Sgood = {(xi ∈ Rd, yi ∈ R)}i=[n] be (α, ρ1, ρ2, ρ3, ρ4)-
resilient with respect to (β,Σ, γ). Let ρ∗ = max{ρ1, ρ2, ρ4}. Then, we have
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1. for any T ∈ Sgood of size |T | ≥ (1− α)n and any vector β̄ ∈ Rd,∣∣∣∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − β̄⊤xi)
2 − (γ + ∥Σ1/2(β − β̄)∥)2

∣∣∣∣∣∣ ≤ ρ∗(γ + ∥Σ1/2(β − β̄)∥)2 , (37)

2. and for any 0 ≤ α̃ ≤ α and T ∈ Sgood of size |T | ≥ α̃n, we have∣∣∣∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − β̄⊤xi)
2 − (γ + ∥Σ1/2(β − β̄)∥)2

∣∣∣∣∣∣ ≤ 2− α̃

α̃
ρ∗(γ + ∥Σ1/2(β − β̄)∥)2 . (38)

Proof The proof follows directly from resilience properties of Eq. (27), (28) and (30).

C.2.3. RESILIENCE IMPLIES ROBUSTNESS

To show that the assumption (d) in Theorem 15 is satisfied, we use the robustness of one-dimensional
variance σv(Mv,α) (Lemma 27) and show that DS(β̂) is a good approximation of (1/γ)∥Σ1/2(β̂−
β)∥ (Lemma 29).

Lemma 27 For an ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ, γ) and
any unit norm vector v ∈ Rd, we have 0.9σv ≤ σv(Mv,α) ≤ 1.1σv.

Proof This follows from Lemma 11.

Lemma 28 For a ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ, γ) and any
unit norm vector v ∈ Rd, we have 0.99γ ≤ γ̂ ≤ 1.01γ.

Proof Analogous to the proof of Lemma 25, for any fixed β̄, we have∣∣∣∣∣∣ 1

|Bβ̄,α|
∑

i∈Bβ̄,α

(yi − x⊤i β̄)
2 − (γ + ∥Σ1/2(β − β̄)∥)2

∣∣∣∣∣∣
≤

|
∑

Bβ̄,α∩Sgood
(yi − x⊤i β̄)

2 − (γ + ∥Σ1/2(β − β̄)∥)2|
(1− (2/5.5)α)n

+
|
∑

Bβ̄,α∩Sbad
(yi − x⊤i β̄)

2 − (γ + ∥Σ1/2(β − β̄)∥)2|
(1− (2/5.5)α)n

(a)

≤ (1− (2/5.5)α)nρ∗(γ + ∥Σ1/2(β − β̄)∥)2

(1− (2/5.5)α)n
+

(2/11)αn · 2ρ∗(γ + ∥Σ1/2(β − β̄)∥)2/((2/11)α)
(1− (2/5.5)α)n

(b)

≤ 4ρ∗(γ + ∥Σ1/2(β − β̄)∥)2 , (39)

where (a) follows from Lemma 26, and (b) follows from our assumption that α ≤ c for some small
enough constant c.
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Let F (β̄) = 1
|Bβ̄,α|

∑
i∈Bβ̄,α

(yi − x⊤i β̄)
2. We know that γ̂2 = minβ̄ F (β̄) ≤ F (β), which,

together with Eq. (39), implies

γ̂2 ≤ (1 + 4ρ∗)γ2 ≤ 1.0201γ2 ,

when ρ∗ ≤ c for some c small enough.
Also, we have

γ̂2 ≥ (1− 4ρ∗)(γ + ∥Σ1/2(β − β̄)∥)2 ≥ (1− 4ρ∗)γ2 ≥ 0.9801γ2.

when ρ∗ ≤ c for some c small enough.

Lemma 29 For a ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ, γ), if β̂ ∈
Bτ,S and τ = 42ρ1, then

∣∣ ∥Σ1/2(β̂ − β)∥/γ −DS(β̂)
∣∣ ≤ 0.15τ + 1.1ρ1 ≤ 10.2ρ1.

Proof
By Lemma 22, Lemma 53 and resilience Eq. (27) and Eq. (28), we have

∣∣∣∣∣∣ max
v:∥v∥≤1

1
|Nv,β̂,α|

∑
i∈Nv,β̂,α

⟨v, xi(yi − x⊤i β̂)⟩

σv
−
∥∥∥Σ1/2(β − β̂)

∥∥∥
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣ max
v:∥v∥≤1

1
|Nv,β̂,α|

∑
i∈Nv,β̂,α

(
v⊤xix

⊤
i (β − β̂) + v⊤xiηi

)
σv

− max
v:∥v∥≤1

v⊤Σ(β − β̂)

σv

∣∣∣∣∣∣∣
≤ max

v:∥v∥≤1

∣∣∣∣∣∣∣
v⊤
(

1
|Nv,β̂,α|

∑
i∈Nv,β̂,α

xix
⊤
i − Σ

)
(β − β̂)

σv
+
v⊤ 1

|Nv,β̂,α|
∑

i∈Nv,β̂,α
xiηi

σv

∣∣∣∣∣∣∣
≤

∥∥∥∥∥∥Σ−1/2

 1

|Nv,β̂,α|
∑

i∈Nv,β̂,α

xix
⊤
i − Σ

 (β − β̂)

∥∥∥∥∥∥+
∥∥∥∥∥∥Σ−1/2 1

|Nv,β̂,α|
∑

i∈Nv,β̂,α

xiηi

∥∥∥∥∥∥
≤ ρ2∥Σ1/2(β − β̂)∥+ ρ1γ .

Together with Lemma 27, this implies

0.9DS(β̂)γ̂ − ρ1γ

1 + ρ2
≤

∥∥∥Σ1/2(β − β̂)
∥∥∥ ≤ 1.1DS(β̂)γ̂ + ρ1γ

1− ρ2
.

Assuming ρ2 ≤ 0.013, we have 0.86DS(β̂) − 1.1ρ1 ≤
∥∥∥Σ1/2(β − β̂)

∥∥∥ /γ ≤ 1.15DS(β̂) +

1.1ρ1. Since DS(β̂) ≤ τ , we get the desired bound.
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C.2.4. BOUNDED VOLUME

We show that the assumption (a) in Theorem 15 is satisfied for robust estimate DS(β̂).

Lemma 30 For ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn), and c2 ≥
log(67/12) + log((c0 + 2c1)/c1), we have (7/8)τ − (k∗ + 1)∆ > 0,

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤ ec2d , and

Vol({β̂ : ∥Σ1/2(β̂ − β)∥/γ ≤ (c0 + 2c1)ρ})
Vol({β̂ : ∥Σ1/2(β̂ − β)∥/γ ≤ c1ρ})

≤ ec2d .

Proof
The proof is similar to the proof of Lemma 13. The second part of assumption (a) follows from

the fact that

Vol({β̂ : ∥Σ1/2(β̂ − β)∥ ≤ r}) = cd|Σ|rd ,

for some constant cd that depends only on the dimension and selecting c2 ≥ log((c0 + 2c1)/c1).
The first part follows from our choices of c0, c1, τ , ∆ and the following corollary.

Corollary C.1 (Corollary of Lemma 29) If β̂ ∈ B2τ,S and τ = 42ρ1, then
∣∣ ∥Σ1/2(β̂ − β)∥/γ −

DS(β̂)
∣∣ ≤ 14.2ρ1.

C.2.5. RESILIENCE IMPLIES BOUNDED LOCAL SENSITIVITY

We show that resilience implies the assumption (b) in Theorem 15 (Lemma 34). Assuming (k∗ +
1)/n ≤ α/2, we show a set S′ with at most k∗ data points arbitrarily changed from S has bounded
local sensitivity. This implies that S′ is a ((1/5.5)α + (k∗/n), α, ρ1, ρ2, ρ3, ρ4)-corrupt good set
with respect to (β,Σ, γ).

Lemma 31 For an ((1/5.5)α + α̃, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S′ with respect to (β,Σ, γ),
α̃ ≤ (1/11)α, and any unit norm v ∈ Rd, we have 0.9σv ≤ σv(Mv,α) ≤ 1.1σv.

Proof This follows from Lemma 14.

Lemma 32 For a ((1/5.5)α + α̃, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S′ with respect to (β,Σ, γ),
and any unit norm vector v ∈ Rd, we have 0.99γ ≤ γ̂ ≤ 1.01γ.

Proof This proof follows from the proof of Lemma 28.

Lemma 33 For a ((1/5.5)α + α̃, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S′ with respect to (β,Σ, γ)
and α̃ ≤ (1/11)α, if β̂ ∈ Bt,S′ then we have ∥Σ1/2(β̂ − β)∥/γ ≤ 1.1ρ1 + 1.15t and

∣∣DS′(β̂) −
∥Σ1/2(β̂ − β)∥/γ

∣∣ ≤ 1.1ρ1 + 0.15t.
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Proof This proof follows from the proof of Lemma 29.

Lemma 34 For ∆ = 110ρ1/(αn), τ = 42ρ1, and an ((1/5.5)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good S,
if

n = Ω
( log(1/(δζ))

αε

)
with a large enough constant, then the local sensitivity in assumption (b) is satisfied.

Proof We follow the proof strategy of Lemma 16 in Section B.2.5. Consider a dataset S′ that is at
Hamming distance at most (1/11)αn from S and corresponding partition (T ′

v,β̂,α,N
′
v,β̂,α,B

′
v,β̂,α)

of S′ for a specific direction v. By the resilience property of the tails in Eq. (33) and Eq. (34),
Lemma 52, and Lemma 53, we have for any v ∈ Rd with unit norm ∥v∥ = 1 and any β̂ ∈ Rd,

v⊤ 1
|T ′

v,β̂,α
∩Sgood|

∑
i∈T ′

v,β̂,α
∩Sgood

((
xix

⊤
i − Σ

)
(β − β̂) + xiηi

)
σv

≤

∥∥∥∥∥∥∥Σ−1/2

 1

|T ′
v,β̂,α

∩ Sgood|
∑

i∈T ′
v,β̂,α

∩Sgood

(
xix

⊤
i − Σ

)
(β − β̂)


∥∥∥∥∥∥∥+ (40)

∥∥∥∥∥∥∥Σ−1/2

 1

|T ′
v,β̂,α

∩ Sgood|
∑

i∈T ′
v,β̂,α

∩Sgood

xiηi


∥∥∥∥∥∥∥

≤ 2ρ2
(1/11)α

∥Σ1/2(β − β̂)∥+ 2ρ1
(1/11)α

γ , (41)

where Sgood is the original uncorrupted resilient dataset. Similarly, we have

v⊤ 1
|B′

v,β̂,α
∩Sgood|

∑
i∈B′

v,β̂,α
∩Sgood

((
xix

⊤
i − Σ

)
(β − β̂) + xiηi

)
σv

≤ 2ρ2
(1/11)α

∥Σ1/2(β − β̂)∥+ 2ρ1
(1/11)α

γ .

This implies

min
i∈T ′

v,β̂,α
∩Sgood

v⊤
(
xix

⊤
i (β − β̂) + xiηi

)
σv

− max
i∈B′

v,β̂,α
∩Sgood

ṽ⊤
(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤ 44ρ1
α

γ +
44ρ2
α

∥Σ1/2(β − β̂)∥ . (42)

Analogous to Lemma 16, for a neighboring databases S′ and S′′, the corresponding middle sets
N ′

v,β̂,α and N ′′
v,β̂,α differ by at most one entry. Denote those entries by x′i and η′i = y′i − ⟨β, x′i⟩

in N ′
v,β̂,α and x′′j and η′′j in N ′′

v,β̂,α
. Then, from Eq. (42), we have∣∣∣v⊤ ((x′ix′⊤i − x′′jx

′′⊤
j

)
(β − β̂) + x′iη

′
i − x′′j η

′′
j

)∣∣∣ ≤ (44ρ1
α

γ +
44ρ2
α

∥Σ1/2(β − β̂)∥
)
σv ,
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which implies that∣∣∣∣∣∣∣v⊤
1

(1− (4/5.5)α)n

∑
i∈N ′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
− v⊤

1

(1− (4/5.5)α)n

∑
i∈N ′′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)∣∣∣∣∣∣∣
≤ σv

(1− (4/5.5)α)n

(
44ρ1
α

γ +
44ρ2
α

∥Σ1/2(β − β̂)∥
)
. (43)

By the resilience properties in Eq. (27) and Eq. (28), and Lemma 53, Lemma 22, and the fact that
N ′′

v,β̂,α
∩ Sgood is at least of size (1− α)n, we have for the data points in N ′′

v,β̂,α
∩ Sgood,

v⊤ 1
|N ′′

v,β̂,α
∩Sgood|

∑
i∈N ′′

v,β̂,α
∩Sgood

(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤ (1 + ρ2)∥Σ1/2(β̂ − β)∥+ ρ1γ .

By Eq. (41), for any x′′i ∈ N ′′
v,β̂,α

∩ Sbad (where Sbad = S′′ \ Sgood), we have

v⊤
(
x′′i x

′′⊤
i (β − β̂) + x′′i η

′′
i

)
σv

≤
v⊤ 1

|T ′′
v,β̂,α

∩Sgood|
∑

i∈T ′′
v,β̂,α

∩Sgood

(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤
(22ρ2

α
+ 1
)
∥Σ1/2(β̂ − β)∥+ 22ρ1

α
γ .

Since |Sbad| ≤ (1.5/5.5)αn and α < c for some small enough constant c, we have

v⊤ 1
(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σv

=
v⊤ 1

(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α
∩Sbad

(
xix

⊤
i (β − β̂) + xiηi

)
σv

+

v⊤ 1
(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α
∩Sgood

(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤ (6ρ2 + (1.5/5.5)α)∥Σ1/2(β̂ − β)∥+ 6ρ1γ

1− (4/5.5)α
+
(
(1 + ρ2)∥Σ1/2(β̂ − β)∥+ ρ1γ

)
≤ 7ρ1γ + (1 + α+ 7ρ2)∥Σ1/2(β̂ − β)∥ . (44)

Analogous to Eq. (18), by using the resilience properties in Eqs. (28) and (29), we have

|σ′2v − σ′′2v | =
1

(1− (4/5.5)α)n

∣∣∣∣∣∣∣
∑

xi∈N ′
v,β̂,α

⟨v, xi⟩2 −
∑

xi∈N ′′
v,β̂,α

⟨v, xi⟩2

∣∣∣∣∣∣∣
≤ 64 · 112 · ρ23σ2v

α2(1− (4/5.5)α)n
. (45)
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By Eqs. (44), (43), and (45), we have∣∣∣DS′(β̂)−DS′′(β̂)
∣∣∣

≤ max
v:∥v∥=1

∣∣∣∣∣∣∣
v⊤ 1

|N ′
v,β̂,α

|
∑

i∈N ′
v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σ′vγ̂

′ −
v⊤ 1

|N ′′
v,β̂,α

|
∑

i∈N ′′
v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σ′′v γ̂

′′

∣∣∣∣∣∣∣
≤ max

v:∥v∥=1

∣∣∣∣∣∣∣∣
v⊤
(

1
(1−(4/5.5)α)n

∑
i∈N ′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
− 1

(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

))
σ′vγ̂

′

∣∣∣∣∣∣∣∣
+ max

v:∥v∥=1

v⊤ 1
|N ′′

v,β̂,α
|
∑

xi∈N ′′
v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σv

∣∣∣∣ σvσ′vγ̂
′ −

σv
σ′′v γ̂

′′

∣∣∣∣
≤ 44ρ1
0.9 · 0.99(1− (4/5.5)α)nα

+
44ρ2

0.9 · 0.99(1− (4/5.5)α)nα

∥Σ1/2(β − β̂)∥
γ

+
64 · 112 · ρ23 · 0.02γ

0.93α2(1− (4/5.5)α)n · 0.992γ2
(
7ρ1γ + (1 + α+ 7ρ2)∥Σ1/2(β̂ − β)∥

)
≤
(
0.12

αn
+

0.016

αn

)
∥Σ1/2(β̂ − β)∥

γ
+

(
9ρ1
αn

+
0.07ρ1
αn

)
≤0.2

αn

∥Σ1/2(β̂ − β)∥
γ

+
50ρ1
αn

where the last three inequalities follow from our assumptions that α ≤ c and ρ2 ≤ c, ρ23 ≤ cα,
ρ4 ≤ c with a small enough constant c and Lemma 32. From Lemma 33, we know that if β̂ ∈
Bτ+(k∗+3)∆,S , we have ∥Σ1/2(β̂−β)∥/γ ≤ 1.1ρ1+1.15(τ+(k∗+3)∆). We show that ∥Σ1/2(β̂−
β)∥ ≤ 50ρ1γ for the choices of ∆, k∗, τ and n:

1.1ρ1 + 1.15(τ + (k∗ + 3)∆) ≤ 49ρ1 +
50ρ1 log(1/(δζ))

εαn
≤ 50ρ1 ,

where ∆ = 110ρ1/(αn), τ = 42ρ1, k∗ = (2/ε) log(4/(δζ)), ε ≤ log(4/δζ) and n ≥ C ′ log(1/(δζ))/(ε α)
for some large enough universal constant C ′ > 0. This implies that

|DS′(β̂)−DS′′(β̂)| ≤ 110ρ1
αn

= ∆ .

C.2.6. PROOF OF THEOREM 12

We show that the sufficient conditions of Theorem 15 are met for the following choices of constants
and parameters: p = d, ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, and ∆ = 110ρ1/(αn). We
set c2 to be a large constant and change only the constant factor in the sample complexity. The
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assumptions (a), (b), and (d) follow from Lemmas 30, 34, and 29, respectively. The assumption (c)
follows from

∆ =
110ρ1
αn

≤ 1.2ρ1ε

32(c2d+ (ε/2) + log(16/(δζ)))
=

(c0 − 3c1)ρε

32(c2p+ (ε/2) + log(16/(δζ)))

for a large enough n ≥ C ′(d + log(1/(δζ)))/(αε). This finishes the proof of Theorem 12, from
which Theorem 11 follows immediately.

C.3. Step 3: Achievability guarantees

We provide utility guarantees for popular families of distributions studied in the private or robust
linear regression literature: sub-Gaussian (Diakonikolas et al., 2019b; Gao, 2020; Zhu et al., 2019;
Cai et al., 2019; Wang, 2018) and hypercontractive (Zhu et al., 2019; Klivans et al., 2018; Cher-
apanamjeri et al., 2020; Jambulapati et al., 2021; Bakshi and Prasad, 2021; Prasad et al., 2018).
Similar to mean estimation, the resilience we need scales with the variance. For sub-Gaussian dis-
tributions, this requires a lower bound on the variance of the form σ ⪯ cΓ for the sub-Gaussian
proxy Γ. For the k-th moment bounded distributions, we require hypercontractivity.

C.3.1. SUB-GAUSSIAN DISTRIBUTIONS

The most common scenario in linear regression is when both input xi and noise ηi are sub-Gaussian
(as defined in Eq. (20)) and independent of each other. The next lemma shows that the resulting
dataset is (O(α log(1/α)), O(α log(1/α)), O(α

√
log(1/α)), O(α log(1/α)))-resilient, which fol-

lows from the covariance resilience of sub-Gaussian distributions.

Lemma 35 (Resilience for sub-Gaussian samples) Let D1 be a distribution of xi ∈ Rd, which is
zero mean sub-Gaussian with covariance Σ and sub-Gaussian proxy 0 ≺ Γ ⪯ cΣ for some constant
c. Let D2 be a distribution of ηi ∈ R, which is a zero mean one-dimensional sub-Gaussian with vari-
ance γ2 and sub-Gaussian proxy γ20 ≤ cγ2 for some constant c. A multiset of i.i.d. labeled samples
S = {(xi, yi)}ni=1 is generated from a linear model with noise ηi independent of xi: yi = x⊤i β +
ηi , where the input xi and the independent noise ηi are i.i.d. samples from D1 and D2. There exist
constants c1 and c2 > 0 such that, for any α ∈ (0, 1/2), if n ≥ c1((d+ log(1/ζ))/(α log(1/α))2),
then, with probability 1 − ζ, S is (α, c2α log(1/α), c2α log(1/α), c2α

√
log(1/α), c2α log(1/α))-

resilient with respect to (β,Σ, γ).

Proof This follows from (Jambulapati et al., 2020, Corollary 4). Let x̃i :=
[
Σ−1/2xi
ηi/γ

]
∈ Rd+1.

By definition, we know that x̃i can be seen as samples from a zero mean sub-Gaussian distribution
with covariance I(d+1)×(d+1). By (Jambulapati et al., 2020, Corollary 4) and a union bound, we
know that if n = Ω(d + log(1/ζ))/(α log(1/α))2, then there exists a constant C1 such that with
probability 1 − ζ, for any T ⊂ S and |T | ≥ (1 − α)n and any unit vector u ∈ Rd+1, v ∈ Rd, we
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have ∣∣∣∣∣∣u⊤
 1

|T |
∑
xi∈T

x̃ix̃
⊤
i − I(d+1)×(d+1)

u

∣∣∣∣∣∣ ≤ C1α log(1/α) , (46)

∣∣∣∣∣∣v⊤
 1

|T |
∑
xi∈T

Σ−1/2xix
⊤
i Σ

−1/2 − Id×d

 v

∣∣∣∣∣∣ ≤ C1α log(1/α) , and (47)

∣∣∣∣∣∣ 1

|T |
∑
ηi∈T

η2i
γ2

− 1

∣∣∣∣∣∣ ≤ C1α log(1/α) . (48)

Let u :=

[
u1
u2

]
, where u1 ∈ Rd and u2 ∈ R and ∥u1∥2+u22 = 1. Then, Eq. (46) is equivalent

to ∣∣∣∣∣u⊤1
(

1

|T |
∑
i∈T

Σ−1/2xix
⊤
i Σ

−1/2 − Id×d

)
u1 +

2u2
γ
u⊤1

1

|T |
∑
i∈T

Σ−1/2xiηi +
u22
γ2

1

|T |
∑
i∈T

(η2i − γ2)

∣∣∣∣∣
≤ C1α log(1/α) . (49)

By Eq. (47) and (48), we know∣∣∣∣∣u⊤1 ( 1

|T |
∑
i∈T

Σ−1/2xix
⊤
i Σ

−1/2 − Id×d)u1

∣∣∣∣∣ ≤ C1α log(1/α)∥u1∥2∣∣∣∣∣u22γ2 1

|T |
∑
i∈T

(η2i − γ2)

∣∣∣∣∣ ≤ C1α log(1/α)u22 .

This means that

−C1α log(1/α)(1 + ∥u1∥2 + u22) ≤
2u2
γ
u⊤1

1

|T |
∑
i∈T

Σ−1/2xiηi ≤ C1α log(1/α)(1 + ∥u1∥2 + u22) . (50)

For any unit vector w ∈ Rd, let u1 = 0.5w. Thus, we have u22 = 0.75. Eq. (50) implies∣∣∣∣∣1γw⊤ 1

|T |
∑
i∈T

Σ−1/2xiηi

∣∣∣∣∣ ≤ C2α log(1/α) (51)

for some constant C2. This proves the first resilience property in Eq. (27). The second, third and
fourth resilience properties in Eqs. (28), (29) and (30) follow from (Dong et al., 2019, Lemma 4.1),
(Jambulapati et al., 2020, Corollary 4) and a union bound.

The preceding resilience lemma and Theorem 12 imply the following optimal utility guarantee.
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Corollary C.2 Under the hypothesis of Lemma 35, there exists a constant c > 0 such that for any
α ∈ (0, c), a sample size of

n = O
( d+ log(1/ζ)

(α log(1/α))2
+
d+ log(1/(δζ))

αε

)
,

a sensitivity of ∆ = O(log(1/α)/n), and a threshold of τ = O(α log(1/α)) with large enough
constants are sufficient for HPTR(S) with the distance function in Eq. (25) to achieve

1

γ
∥Σ1/2(β̂ − β)∥ = O(α log(1/α)) (52)

with probability 1 − ζ. Further, the same guarantee holds even if α-fraction of the samples is
arbitrarily corrupted, as in Assumption 2.

The best known algorithm for DP linear regression from (Cai et al., 2019) requires Σ to be close
to the identity matrix, which is equivalent to assuming that we know Σ. The error bound is nearly
optimal under α-corruption, i.e., HPTR is the first robust estimator that is both differentially private
and also achieves the near-optimal error rate of (1/γ)∥Σ1/2(β̂ − β)∥ = O(α log(1/α)), matching
the known information-theoretic lower bound of (1/γ)∥Σ1/2(β̂ − β)∥ = Ω(α) (Gao, 2020) up to
a log factor. This lower bound holds for any robust estimator that is not necessarily private and
regardless of how many samples are available. If privacy is not required (i.e., ε = ∞), a similar
guarantee can be achieved by, for example, (Diakonikolas et al., 2019b).

C.3.2. HYPERCONTRACTIVE DISTRIBUTIONS WITH INDEPENDENT NOISE

We assume that xi and ηi are independent and (κ, k)-hypercontractive and (κ̃, k)-hypercontractive,
respectively, as in Definition 18. For the necessity of hypercontractive conditions for robust lin-
ear regression, we refer to (Zhu et al., 2019, Section F.5). The next lemma shows that the resulting
dataset has a subset of size at least (1−α)n that is (O(α), O(α1−1/k), O(α1−2/k), O(α1−1/k), O(α1−2/k))-
resilient.

Lemma 36 (Resilience for hypercontractive samples) For some integer k ≥ 4 and positive scalar
parameters κ and κ̃, let D1 be a (κ, k)-hypercontractive distribution on xi ∈ Rd with zero mean and
covariance Σ ≻ 0. Let D2 be a (κ̃, k)-hypercontractive distribution on ηi ∈ R with zero mean and
variance γ2. A multiset of labeled samples S = {(xi, yi)}ni=1 is generated from the linear model
yi = x⊤i β + ηi, where the input xi and the independent noise ηi are i.i.d. samples from D1 and
D2. For any α ∈ (0, 1/2) and any constant c3 > 0, there exist constants c1 and c2 > 0 that depend
only on c3 such that if

n ≥ c1

( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2
+
κ2(1 + κ̃2)d log d

α2/k

)
, (53)

then S is (c3α, α, c2kκκ̃α1−1/kζ−1/k, c2k
2κ2α1−2/kζ−2/k, c2kκα

1−1/kζ−1/k, c2k
2κ̃2α1−2/kζ−2/k)-

corrupt good with respect to (β,Σ, γ) with probability 1− ζ.

Proof Since xi and ηi are independent, we know

E
[∣∣∣〈v, γ−1Σ−1/2xη

〉∣∣∣k] = E
[∣∣∣〈v,Σ−1/2x

〉∣∣∣k]E [|γ−1η|k
]
≤ κkκ̃k .
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This implies that γ−1Σ−1/2xη is a k-th moment bounded distribution with covariance Id×d. By
Lemma 19, under the sample complexity of (53), with probability 1 − 8ζ, there exists a subset
Sgood ⊂ S such that |Sgood| ≥ (1 − α)n, and there exists a constant C such that for any subset
T ⊂ Sgood and |T | ≥ (1− 10α)|Sgood|, we have∥∥∥∥∥ 1

|T |
∑
i∈T

1

γ
Σ−1/2xiηi

∥∥∥∥∥ ≤ Ckκκ̃γα1−1/kζ−1/k . (54)

This proves the first resilience property in Eq. (27). The second resilience property in Eq. (28), the
third in Eq. (29) and the fourth in Eq. (30) follow directly from Lemma 19.

The preceding resilience lemma and Theorem 12 imply the following utility guarantee. HPTR
is naturally robust against (1/5.5 − c3)α-corruption of the data. Choosing appropriate constants,
we get the following result.

Corollary C.3 Under the hypothesis of Lemma 36, there exists a constant c > 0 such that for any
α ≤ c and k2κ2α1−2/k ≤ c, it is sufficient to have a dataset of size

n = O
( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2
+
κ2(1 + κ̃2)d log d

α2/k
+
d+ log(1/δ)

αε

)
, (55)

a sensitivity of ∆ = O(1/(nα1/k)), and a threshold of τ = O(α1−1/k) with large enough con-
stants for HPTR(S) with the distance function in Eq. (25) to achieve (1/γ)∥Σ1/2(β̂ − β)∥ =
O(kκκ̃α1−1/kζ−1/k) with probability 1 − ζ. Further, the same guarantee holds even if α-fraction
of the samples is arbitrarily corrupted, as in Assumption 2.

The error bound is optimal under α-corruption; namely, the error bound (1/γ)∥Σ1/2(β̂−β)∥ =
O(α1−1/k) matches the lower bound (1/γ)∥Σ1/2(β̂ − β)∥ = Ω(α1−1/k) by Bakshi and Prasad
(2021), where the noise ηi is (1, k)-hypercontractive and independent of xi, which is also (1, k)-
hypercontractive. For completeness, we provide the lower bound in Appendix H. HPTR is the first
algorithm that guarantees both differential privacy and an optimal robust error bound of O(α1−1/k)
for hypercontractive distributions. If only robust error bound under α-corruption is at issue, (Zhu
et al., 2019) also achieves the same optimal error bound but does not provide differential privacy.
Further, in this robust but not private case with ε = ∞, our sample complexity improves by a factor
of α2/k upon the state-of-the-art sample complexity of (Zhu et al., 2019, Theorem 3.3), which shows
that n = O(d/α2) is sufficient to achieve (1/γ)∥Σ1/2(β̂ − β)∥ = O(α1−1/k).

Suppose k, κ, κ̃, and ζ are Θ(1). HPTR achieves (1/γ)∥Σ1/2(β̂ − β)∥ = O(α1−1/k) with
n = Õ(d/(α2−2/k) + (d + log(1/δ))/(αε)) samples, where Õ hides logarithmic factors in d. To
the best of our knowledge, HPTR is the first algorithm for linear regression that guarantees (ε, δ)-DP
under hypercontractive distributions with independent noise.

C.3.3. HYPERCONTRACTIVE DISTRIBUTIONS WITH DEPENDENT NOISE

We assume xi and ηi may be dependent and marginally (κ, k)-hypercontractive and (κ̃, k)-hypercontractive,
respectively, as defined in Definition 18. In this case, the first resilience ρ1 that determines the error
rate increases from O(α1−1/k) to O(α1−2/k) as a result of the potential correlation between input
and noise. The next lemma shows that the the resulting dataset has a subset of size at least (1−α)n
that is (O(α), O(α1−2/k), O(α1−2/k), O(α1−1/k), O(α1−2/k))-resilient.
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Lemma 37 (Resilience for hypercontractive samples with dependent noise) For some integer
k ≥ 4 and positive scalar parameters κ and κ̃, let D1 be a (κ, k)-hypercontractive distribution on
xi ∈ Rd with zero mean and covariance Σ ≻ 0. Let D2 be a (κ̃, k)-hypercontractive distribution on
ηi ∈ R with variance γ2. A multiset of labeled samples S = {(xi, yi)}ni=1 is generated from a linear
model as follows: yi = x⊤i β + ηi, where {(xi, ηi)}i∈[n] are i.i.d. samples from some distribution D
whose marginal distribution for xi is D1, the marginal distribution for ηi is D2, and E[xiηi] = 0.
For any α ∈ (0, 1/2) and c3 > 0, there exist constants c1 and c2 > 0 that depend only on c3 such
that if

n ≥ c1

( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−4/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2κ̃2
+
κ2(κ̃2 + 1)d log d

α4/k

)
, (56)

then S is (c3α, α, c2kκκ̃α1−2/kζ−2/k, c2k
2κ2α1−2/kζ−2/k, c2kκα

1−1/kζ−1/k, c2k
2κ̃2α1−2/kζ−2/k)-

corrupt good with respect to (β,Σ, γ) with probability 1− ζ.

Proof Since ηi and xi are dependent, we can bound only the k/2-th moment of γ−1Σ−1/2xη. By
the Holder inequality, we have

E
[∣∣∣〈v,Σ−1/2γ−1xη

〉∣∣∣k/2] ≤√E
[∣∣〈v,Σ−1/2x

〉∣∣k]E [|γ−1η|k] ≤ κk/2κ̃k/2 .

The rest of the proof follows similarly to the proof of Lemma 36.

The preceding resilience lemma and Theorem 12 imply the following optimal utility guarantee,
which achieves an error rate of O(α1−2/k).

Corollary C.4 Under the hypothesis of Lemma 37, there exists a constant c > 0 such that for any
α ≤ c and k2κ2α1−2/k ≤ c, it is sufficient to have a dataset of size

n = O
(d+ log(1/δ)

αε
+

d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−4/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2κ̃2
+
κ2(κ̃2 + 1)d log d

α4/k

)
,

a sensitivity ∆ = O(1/(nα2/k)), and a threshold τ = O(α1−2/k), with large enough constants for
HPTR(S) with the distance function in Eq. (25) to achieve (1/γ)∥Σ1/2(β̂−β)∥ = O(kκκ̃α1−2/kζ−2/k)
with probability 1 − ζ. Further, the same guarantee holds even if an α-fraction of the samples is
arbitrarily corrupted, as in Assumption 2.

This error rate is optimal in its dependence on α under α-corruption. When ηi and xi are
dependent, (Bakshi and Prasad, 2021) gives a lower bound of error rate (1/γ)∥Σ1/2(β̂ − β)∥ =
Ω(κ̃α1−2/k) that holds regardless of how many samples we have and without the privacy constraints.
For completeness, we provide the lower bound in Appendix H. If only a robust error bound under
α-corruption is at issue, (Zhu et al., 2019) also achieves the same optimal error bound but does not
provide differential privacy. Further, in this robust but not private case with ε = ∞, our sample
complexity improves by a factor of α2/k upon the state-of-the-art sample complexity of (Zhu et al.,
2019, Theorem 3.3), which shows that n = O(d/α2) is sufficient to achieve (1/γ)∥Σ1/2(β̂−β)∥ =
O(α1−2/k).
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Remark. Suppose ζ, κ, κ̃, and k are Θ(1). The sample complexity of HPTR is n = Õ((d +
log(1/δ))/α2(1−1/k) + d/(αε)). The first term in the upper bound might be loose, since we ensure
stronger resilience than we need. From Theorem 11, we know that we require ρ1 ≤ c and ρ23 ≤ cα,
and from the optimal error rate, we want ρ1 ≤ cα1−2/k. The resilience we ensure in Lemma 37
is (α, ρ1 = α1−2/k, ρ2 = α1−2/k, ρ3 = α1−1/k), which guarantees an unnecessarily small ρ2
and ρ3. A similar slack was also in the mean estimation, which did not affect the final sample
complexity. In this case, i.e., with linear regression and hypercontractive distributions, it enlarges
sample complexity. Tighter analysis of the resilience, which guarantees a larger ρ2 and ρ3, can
improve the first term in the sample complexity in its dependence on α.

For the second term, we provide a nearly matching lower bound of n = Ω(min{d, log(1/δ)}/αε)
to achieve (1/γ)∥Σ1/2(β̂ − β)∥2 ≤ O(α2−4/k) in Proposition C.5, proving that it is tight when
δ = exp(−Θ(d)). To the best of our knowledge, HPTR is the first algorithm for linear regression
that guarantees (ε, δ)-DP under hypercontractive distributions with dependent noise.

Proposition C.5 (Lower bound of hypercontractive linear regression with dependent noise)
For any k ≥ 4, let Pκ,k,Σ,γ2 be a distribution over (xi, ηi) ∈ Rd×R, where xi is (κ, k)-hypercontractive
with zero mean and covariance Σ, and ηi is (κ, k)-hypercontractive with zero mean and variance
γ2. We observe labelled examples a linear model yi = x⊤i β + ηi with E[xiηi] = 0 such that
β = Σ−1E[yixi] . Let Mε,δ denote a class of (ε, δ)-DP estimators that are measurable func-
tions over n i.i.d. samples S = {(xi, yi)}ni=1 from a distribution. There exist positive constants
c, γ, κ = O(1) such that, for ε ∈ (0, 10),

inf
β̂∈Mε,δ

sup
Σ≻0,P∈Pκ,k,Σ,γ2

1

γ
EPn [∥Σ1/2(β̂(S)− β)∥2] ≥ c min

{(
d ∧ log((1− e−ε)/δ)

nε

)2−4/k

, 1

}
.

Proof We adopt the same framework as used in the proof of Proposition B.5. We choose P to be
P = PΣ,k. It suffices to construct index set V and indexed family of distributions PV such that
dTV(Pv, Pv′) = α and ρ(βv, βv′) ≥ t, where βv is the least square solution of Pv. By (Acharya
et al., 2021, Lemma 6), there exists a finite set V ⊂ Rd with cardinality |V| = 2Ω(d), ∥v∥ = 1 for
all v ∈ V , and ∥v − v′∥ ≥ 1/2 for all v ̸= v′ ∈ V . Let fµ,Σ(x) be a density function of N (µ,Σ).
We construct a marginal distribution over Rd as follows

Dv
x(x) =


α/2, if x = −α−1/kv ,

α/2, if x = α−1/kv ,
(1− α)f0,Id×d

(x) otherwise ,
. (57)

It is straightforward to verify that EP v
x
[x] = 0, EP v

x
[xx⊤] = (1−α)Id×d+α

1−2/kvv⊤ and thus
1
2Id×d ⪯ EP v

x
[xx⊤] ⪯ 2Id×d for α ≤ 1/2. Furthermore, we have

Ex∼P v
x
[ | ⟨u, x⟩ |k ] ≤ ⟨u, v⟩k + (1− α)ckk = O(1) ,

where we use the fact that there exists a constant ck > 0 such that the k-th moment of Gaussian
distribution is bounded by ckk. Since 1

2Id×d ⪯ EP v
x
[xx⊤] ⪯ 2Id×d, we know that x is (O(1), k)-

hypercontractive. We construct conditional distribution Dv(y|x) as follows

y|x =


−α−1/k if x = −α−1/kv

α−1/k if x = α−1/kv
N (0, 1) otherwise

.

57



LIU KONG OH

Then, we have

βv = Ex∼P v
x
[xx⊤]−1Ex,y∼P v

x,y
[xy]

= Ex∼P v
x
[xx⊤]−1α1−2/kv .

This implies that t = minv ̸=v′∈V ∥βv − βv′∥ ≥ 1/2α1−2/k minv ̸=v′∈V ∥v − v′∥ = Ω(α1−2/k).
We are left to verify that η = y − ⟨βv, x⟩ is also hypercontractive:

E[|η|k] = α
∣∣α−1/k − v⊤Ex∼P v

x
[xx⊤]−1vα1−3/k

∣∣k + (1− α)Ex∼N (0,2Id×d)[|x|
k] = O(1) ,

where we use the fact that the k-th moment of standard Gaussian is bounded by some constants
Ck > 0 and k = O(1). It is straightforward to see that the total variation distance dTV(P

v
x,y, P

v′
x,y) =

α.
Next, we apply a reduction of estimation to testing with this packing V similar to that we used

in the proof of Proposition B.5. For (ε, δ)-DP estimator β̂, using Theorem 20, we have

sup
P∈P

EPn [∥Σ(P )1/2(β̂(S)− β(P ))∥2]

≥ 1

|V|
∑
v∈V

EPn
v
[∥Σ(Pv)

1/2(β̂(S)− β(Pv))∥2]

= t2
1

|V|
∑
v∈V

Pv

(
∥Σ(Pv)

1/2(β̂(S)− β(Pv))∥ ≥ t
)

≍ t2
1

|V|
∑
v∈V

Pv

(
∥β̂(S)− β(Pv)∥ ≥ t

)

≳ t2
ed/2 ·

(
1
2e

−ε⌈nα⌉ − δ
1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where β(P ) is the least squares solution of the distribution P , Σ(P ) is the covariance of x from P ,
and the last inequality follows from the fact that d ≥ 2. The rest of the proof follows from (Barber
and Duchi, 2014, Proposition 4). We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
and t = Ω(α1−2/k) for ε ∈ (0, 10) so that

sup
P∈P

EPn [∥Σ(P )(β̂(S)− β(P ))∥2] ≳ α2−4/k .

This means that for all k ≥ 4, there exist some κ, γ = O(1) such that

inf
β̂∈Mε,δ

sup
Σ≻0,P∈Pκ,k,Σ,γ2

EPn [∥Σ1/2(β̂(S)− β(P ))∥2] ≳ min

{(
d ∧ log(1− e−ε/δ)

nε

)2−4/k

, 1

}
,

which completes the proof by noting that γ = Θ(1).
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Appendix D. Covariance estimation

In a standard covariance estimation, we are given i.i.d. samples S = {xi ∈ Rd}i∈[n] drawn from a
distribution PΣ,Ψ with zero mean, an unknown covariance matrix 0 ≺ Σ ∈ Rd×d, and an unknown
positive semidefinite matrix Ψ := E[(xi ⊗ xi − Σ♭)(xi ⊗ xi − Σ♭)⊤] ∈ Rd2×d2 , where ⊗ denotes
the Kronecker product. We treat the fourth moment matrix Ψ as a linear operator on a subspace
Ssym ⊂ Rd2 , defined as Ssym := {M ♭ ∈ Rd2 : M is symmetric} following the definitions and
notations from (Diakonikolas et al., 2018).

Definition 38 For any matrix M ∈ Rd×d, let M ♭ ∈ Rd2 denote its canonical flattening into a
vector in Rd2 , and for any vector v ∈ Rd2 , let v♯ denote the unique matrix M ∈ Rd×d such that
M ♭ = v.

This definition of Ψ as an operator on Ssym is without loss of generality since here we apply
Ψ only to flattened symmetric matrices, which significantly lightens the notations, for example, for
Gaussian distributions. We consider all d2 × d2 matrices in this section to be linear operators on
Ssym, and we restrict our support of the exponential mechanism in RELEASE to be the set of positive
definite matrices {Σ̂ ∈ Rd×d : Σ̂ ≻ 0}.

Lemma 39 ((Diakonikolas et al., 2018, Theorem 4.12)) If PΣ,Ψ = N (0,Σ), then E[xi⊗xi] = Σ♭,
and, as a matrix in Rd2×d2 , we have Ψn(i−1)+j,n(k−1)+ℓ = Σi,kΣj,ℓ + Σi,ℓΣj,k for all (i, j, k, ℓ) ∈
[d]4; as an operator on Ssym, we can equivalently write it as Ψ = 2(Σ⊗ Σ).

Further, we can assume an invertible operator Ψ and define the Mahalanobis distance for xi⊗xi,
which is DΨ(Σ̂,Σ) = ∥Ψ−1/2(Σ̂♭ − Σ♭)∥. For Gaussian distributions, for example, we have
DΨ(Σ̂,Σ) = (1/

√
2)∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F , where ∥ · ∥F denotes the Frobenius norm of a

matrix. This is a natural choice of a distance because the total variation distance between two
Gaussian distributions is dTV(N (0,Σ),N (0,Σ′)) = O(∥Σ−1/2Σ̂Σ−1/2− Id×d∥F ) (see, for exam-
ple, (Kamath et al., 2019, Lemma 2.9)). We want a DP estimate of the covariance Σ with a small
Mahalanobis distance DΨ(Σ̂,Σ). If the sample-generating distribution is not zero-mean, we can
either apply a robust mean estimation with a subset of samples to estimate the mean or estimate the
covariance using zero mean samples of the form {xi − xi+⌈n/2⌉}i∈[n/2].

D.1. Step 1: Designing the surrogate DS(Σ̂) for the Mahalanobis distance

To sample only positive definite matrices, we restrict the domain of our score function to be DΣ :
{Σ̂ ∈ Rd×d : Σ̂ ≻ 0} → R+ and assume DΣ(Σ̂) = ∞ for non positive definite Σ̂:

DS(Σ̂) = max
V ∈Rd×d:V ⊤=V,∥V ∥F=1

⟨V, Σ̂⟩ − ΣV (MV,α)

ψV (MV,α)
, (58)

where we define the set MV,α similarly to the definition in Section B.1. We consider a projected
dataset {⟨V, xix⊤i ⟩}i∈S and partition S into three sets, BV,α, MV,α and TV,α, where BV,α corre-
sponds to the subset of (2/5.5)αn data points with smallest values in {⟨V, xix⊤i ⟩}i∈S , TV,α is the
subset of top (2/5.5)αn data points with the largest values, and MV,α is the subset of remaining
1 − (4/5.5)αn data points. For a fixed symmetric matrix V ∈ Rd×d with ∥V ∥F = 1, we define
ΣV (MV,α) =

1
|MV,α|

∑
xi∈MV,α

〈
V, xix

⊤
i

〉
andψV (MV,α)

2 = 1
|MV,α|

∑
xi∈MV,α

(〈
V, xix

⊤
i

〉
− ΣV (MV,α)

)2,
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which are robust estimates of the population projected covariance ΣV = ⟨V,Σ⟩ and projected fourth
moment ψ2

V = (V ♭)⊤ΨV ♭. Next, we show that this score function DS(Σ̂) recovers our target er-
ror metric DΨ(Σ̂,Σ) = ∥Ψ−1/2(Σ̂♭ − Σ♭)∥ when we substitute ΣV (MV,α) and ψV (MV,α) with
population statistics ΣV and ψV , respectively. This justifies the choice of DS(Σ̂), as discussed in
Section B.1.

Lemma 40 For any 0 ≺ Σ ∈ Rd×d, 0 ≺ Σ̂ and any invertible linear operator Ψ ∈ Rd2×d2 on
Ssym, we have

max
V ∈Rd×d:V ⊤=V,∥V ∥F=1

⟨V, Σ̂⟩ − ΣV

ψV
=
∥∥∥Ψ−1/2(Σ̂♭ − Σ♭)

∥∥∥ , (59)

where ΣV = ⟨V,Σ⟩ and ψ2
V = (V ♭)⊤ΨV ♭.

This follows immediately from Lemma 7.

D.2. Step 2: Utility analysis under resilience

The following resilience property of the dataset is critical in selecting ∆ and τ and analyzing utility.

Definition 41 (Resilience) For some α ∈ (0, 1), ρ1 ∈ R+, and ρ2 ∈ R+, we say a set of n data
points Sgood is (α, ρ1, ρ2)-resilient with respect to (Σ,Ψ) if for any T ⊂ Sgood of size |T | ≥
(1− α)n, the following holds for all symmetric matrices V ∈ Rd×d with ∥V ∥F = 1:∣∣∣ 1

|T |
∑
xi∈T

〈
V, xix

⊤
i

〉
− ⟨V,Σ⟩

∣∣∣ ≤ ρ1 ψV , and (60)∣∣∣∣∣∣ 1

|T |
∑
xi∈T

( 〈
V, xix

⊤
i

〉
− ⟨V,Σ⟩

)2 − ψ2
V

∣∣∣∣∣∣ ≤ ρ2 ψV . (61)

Note that covariance estimation for {xi} is equivalent to mean estimation for {xi ⊗ xi}. We can
immediately apply the mean estimation utility guarantee in Theorem 9 to show that ∥Ψ−1/2(Σ̂♭ −
Σ♭)∥ = O(ρ1) can be achieved with n = O(d2/εα) samples.

Corollary D.1 (Corollary of Theorem 9) There exist positive constants c and C > 0 such that for
any (α, ρ1, ρ2)-resilient dataset S with respect to (Σ,Ψ) satisfying α < c, ρ1 < c and ρ2 < c, and
ρ21 ≤ cα, HPTR with the distance function in Eq. (58), ∆ = 110ρ1/(αn), and τ = 42ρ1 achieves
∥Ψ−1/2(Σ̂♭ − Σ♭)∥ ≤ 32ρ1 with probability 1− ζ if

n ≥ C
d2 + log(1/(δζ))

εα
. (62)

Under Assumption 1 on αcorrupt-corruption and Definition 9 on corrupt good sets extended to {xi⊗
xi}ni=1, it follows from Theorem 10 that the same guarantee holds under an adversarial corruption.

Corollary D.2 (Corollary of Theorem 10) There exist positive constants c and C > 0 such that
for any ((1/11)α, α, ρ1, ρ2)-corrupt good set S with respect to (Σ,Ψ) satisfying α < c, ρ1 < c
and ρ2 < c, and ρ21 ≤ cα, HPTR with the distance function in Eq. (58), ∆ = 110ρ1/(αn), and
τ = 42ρ1 achieves ∥Ψ−1/2(Σ̂♭ − Σ♭)∥ ≤ 32ρ1 with probability 1− ζ if

n ≥ C
d2 + log(1/(δζ))

εα
. (63)
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D.3. Step 3: Near-optimal guarantees

Covariance estimation has been studied for Gaussian distributions under differential privacy (Karwa
and Vadhan, 2017; Kamath et al., 2019; Aden-Ali et al., 2020) and robust estimation under α-
corruption (Li and Ye, 2020; Diakonikolas et al., 2019a; Chen et al., 2018; Rousseeuw, 1985; Zhu
et al., 2019). Note that from Lemma 39, we know that Ψ = 2(Σ⊗Σ) and the Mahalanobis distance
simplifies to DΨ(Σ̂,Σ) = ∥Σ1/2Σ̂Σ−1/2 − Id×d∥F for Gaussian distributions.

D.3.1. GAUSSIAN DISTRIBUTIONS

For Gaussian distributions, the second moment resilience in Eq. (60) is satisfied with ρ1 = O(α log(1/α)),
and the 4th moment resilience in Eq. (61) is satisfied with ρ2 = O(α log2(1/α)).

Lemma 42 (Resilience for Gaussian) Consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples
from N (0,Σ). If n = Ω

(
(d2 + log(1/ζ))/(α2 log(1/α))

)
with a large enough constant, then there

exists a constant C > 0 such that S is (α,Cα log(1/α), Cα log2(1/α))-corrupt good with respect
to (Σ,Ψ = 2Σ⊗ Σ) with probability 1− ζ.

Proof Since x is Gaussian, by Lemma 39, we have Ψ = E[(x⊗x−Σ♭)(x⊗x−Σ♭)⊤] = 2Σ⊗Σ.
We can write ψ2

V = 2Tr(V ⊤ΣV Σ) = 2 ⟨V,ΣV Σ⟩.

Lemma 43 ((Li and Ye, 2020, Lemma B.1) and (Dong et al., 2019, Fact 4.2)) Let δ > 0 and
α ∈ (0, 0.5). A dataset S = {x1, x2, · · · , xn} consists of n i.i.d. samples from N (0, Id×d). If
n = Ω

(
(d2 + log(1/ζ))/(α2 log(1/α))

)
with a large enough constant, then there exists a universal

constant C1 > 0 and C2 > 0 such that with probability 1 − ζ, for any subset T ⊂ S and |T | ≥
(1− α)n, we have ∥∥∥ 1

|T |
∑
xi∈T

xi ⊗ xi − I♭d×d

∥∥∥ ≤ C1α log(1/α) , and∥∥∥∥∥∥ 1

|T |
∑
xi∈T

(
xi ⊗ xi − I♭d×d

)(
xi ⊗ xi − I♭d×d

)⊤ − 2Id×d ⊗ Id×d

∥∥∥∥∥∥ ≤ C2α log(1/α)2 .

By Lemma 43, we know with probability 1− ζ that for any subset T ⊂ S and |T | ≥ (1− α)n, we
have ∥∥∥ 1

|T |
∑
xi∈T

(Σ−1/2xi)⊗ (Σ−1/2xi)− I♭d×d

∥∥∥ ≤ C1α log(1/α) .

This is equivalent to∣∣∣(V ♭)⊤
1

|T |
∑
xi∈T

(Σ−1/2 ⊗ Σ−1/2)(xi ⊗ xi)− (V ♭)⊤I♭d×d

∣∣∣ ≤ C1α log(1/α) ,

for any ∥V ∥F = 1. This implies that∣∣∣(V ♭)⊤
1

|T |
∑
xi∈T

(xi ⊗ xi)− (V ♭)⊤(Σ⊗ Σ)1/2I♭d×d

∣∣∣ ≤ C1α log(1/α)
√

(V ♭)⊤(Σ⊗ Σ)V ♭ ,
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which is also equivalent to, for some constant C,∣∣∣∣∣∣
〈
V,

1

|T |
∑
xi∈T

xix
⊤
i

〉
− ⟨V,Σ⟩

∣∣∣∣∣∣ ≤ Cα log(1/α)
√
2 ⟨V,ΣV Σ⟩ ,

which proves the first resilience Eq. (60) in Definition 41.
Similarly, by Lemma 43, we have∥∥∥∥∥∥ 1

|T |
∑
xi∈T

(
Σ−1/2xi ⊗ Σ−1/2xi − I♭d×d

)(
Σ−1/2xi ⊗ Σ−1/2xi − I♭d×d

)⊤ − 2Id×d ⊗ Id×d

∥∥∥∥∥∥ ≤ C2α log(1/α)2 .

This is equivalent, for any ∥V ∥F = 1, to∣∣∣ 1

|T |
∑
xi∈T

〈
V ♭,Σ−1/2xi ⊗ Σ−1/2xi − I♭d×d

〉2
− 2
∣∣∣ ≤ C2α log(1/α)2 .

This implies∣∣∣ 1

|T |
∑
xi∈T

〈
V ♭, xi ⊗ xi − Σ♭

〉2
− 2(V ♭)⊤(Σ⊗ Σ)V ♭

∣∣∣ ≤ C2α log(1/α)2 ⟨V,ΣV Σ⟩ ,

which is also equivalent, for some constant C, to∣∣∣ 1

|T |
∑
xi∈T

( 〈
V, xix

⊤
i

〉
− ⟨V,Σ⟩

)2 − 2Tr(V ⊤ΣV Σ)
∣∣∣ ≤ 2Cα log(1/α)2 ⟨V,ΣV Σ⟩ ,

which proves the second resilience Eq. (61) in Definition 41.

The second and fourth moment resilience properties of Gaussian distributions in Lemma 42,
together with the utility analysis of HPTR in Corollary. D.2, imply the following utility guarantee.

Corollary D.3 Under the hypotheses of Lemma 42, there exists a constant c > 0 such that for any
α ∈ (0, c), a dataset of size

n = O
( d2 + log(1/ζ)

α2 log(1/α)
+
d2 + log(1/(δζ))

αε

)
,

a sensitivity of ∆ = O(log(1/α)/n), and a threshold τ = O(α log(1/α)) with large enough
constants are sufficient for HPTR(S) with a choice of distance function in Eq. (58) to achieve

∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F = O(α log(1/α)) , (64)

with probability 1 − ζ. Further, the same guarantee holds even if an α-fraction of the samples is
arbitrarily corrupted, as in Assumption 1.
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This Mahalanobis distance guarantee (for the Kronecker product, {xi ⊗ xi}, of the samples) im-
plies that the predicted Gaussian distribution is close to the sample generating one in total vari-
ation distance (see, for example, (Kamath et al., 2019, Lemma 2.9)) dTV(N (0, Σ̂),N (0,Σ)) =
O(∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F ) = O(α log(1/α)). This relation also implies that the error bound
is near-optimal under α-corruption, matching a lower bound up to a factor of O(log(1/α)). Even
if DP is not required and we are given infinite samples, an adversary can move an α fraction of
the probability mass to switch a Gaussian distribution into another one at Mahalanobis distance
∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id×d∥F = Ω(α). Hence, we cannot tell which of the two distributions the

(potentially infinite) samples came from.
The sample complexity is near-optimal, matching a lower bound up to a factor of O(log(1/α))

when δ = e−Θ(d2). For a constant ζ, HPTR requires n = O(d2/(α2 log(1/α)) + d2/(αε) +
log(1/δ)/(αε)). This nearly matches a lower bound (that holds even if there is no corruption) on n
to achieve the guarantee of Eq. (64) of n = Ω(d2/(α log(1/α))2+min{d2, log(1/δ)}/(εα log(1/α))+
log(1/δ)/ε). The first term follows from the classical estimation of the covariance without DP and
matches the first term in our upper bound up to a O(log(1/α)) factor. The second term follows
from extending the lower bound in (Kamath et al., 2019), constructed for pure differential privacy
with δ = 0, and matches the second term in our upper bound up to a O(log(1/α)) factor when δ =
e−Θ(d2). The last term, from (Karwa and Vadhan, 2017), has a gap ofO(1/α) factor compared to the
third term in our upper bound, but this term is typically not dominating when δ is large enough, i.e.,
δ = e−O(d2). We note that a slightly tighter upper bound is achieved by the state-of-the-art algorithm
in (Aden-Ali et al., 2020) that requires onlyO(d2/(α log(1/α))2+d2/(εα log(1/α))+log(1/δ)/ε).
The state-of-the-art polynomial time algorithm in Ashtiani and Liaw (2021) requires no assump-
tions on Σ and achieves a similar optimal guarantee as HPTR. This improves upon a previous
polynomial time algorithm of (Kamath et al., 2021) that also requires no assumptions on Σ but
has a larger sample complexity: n = Õ(d2/(α log(1/α))2 + d2polylog(1/δ)/(εα log(1/α)) +
d5/2polylog(1/δ)/ε).

If privacy is not an issue (i.e., ε = ∞), HPTR achieves the error in Eq. (64) with n =
O(d2/α2 log(1/α)) samples. There are polynomial time estimators that achieve the same guar-
antee (Li and Ye, 2020; Diakonikolas et al., 2019a). The gap of log(1/α) to the lower bound in the
error can be tightened using algorithms that are not computationally efficient, as shown in (Chen
et al., 2018; Rousseeuw, 1985).

Remark. When we have a sample size of only n = O(d/α2), our analysis provides no guarantees.
However, for robust covariance estimation under α-corruption, one can still guarantee a bound
on a weaker error metric in the spectral norm: ∥Σ−1/2Σ̂Σ−1/2 − Id×d∥ = O(α log(1/α)) (Zhu
et al., 2019, Theorem 3.4). There is no corresponding DP covariance estimator in that small sample
regime. A promising direction is to apply the HPTR framework, but it remains challenging to
design a score function for this spectral norm distance that depends only on one-dimensional robust
statistics.

Appendix E. Principal component analysis

In Principal Component Analysis (PCA), we are given i.i.d. samples S = {xi ∈ Rd}ni=1 drawn
from a zero mean distribution PΣ with an unknown covariance matrix Σ. We want to find a
top eigenvector of Σ, u ∈ argmax∥v∥=1 v

⊤Σv, privately. The performance of our estimate û
is measured by how much of the covariance is captured in the direction û relative to that of u,
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DΣ(û) = 1 − (û⊤Σû/u⊤Σu), where u is one of the top eigenvectors of Σ. When the mean is not
zero, this can be handled similarly to covariance estimation in Section D.

E.1. Step 1: Designing the surrogate score function DS(û)

It is straightforward to design a score function of DS : S(d−1) → R+, where S(d−1) is the unit
sphere in Rd

DS(û) = 1−
û⊤Σ(Mû,α)û

maxv∈Rd:∥v∥=1 v
⊤Σ(Mv,α)v

, (65)

where Mû,α ⊂ S is the subset of data points corresponding to the smallest (1− (2/3.5)α)n values
in the projected set Sû = {⟨û, xi⟩2}xi∈S and Σ(Mû,α) = (1/|Mû,α|)

∑
xi∈Mû,α

xix
⊤
i . Note that

when we replace Σ(Mû,α) with the population covariance matrix Σ, we recover the target error
metric of DΣ(û) = 1 − (û⊤Σû/max∥v∥=1 v

⊤Σv). For this choice of DS(û), the support of the
exponential mechanism is already compact, and we do not restrict it any further, say, to be in Bτ,S .
This simplifies the HPTR algorithm and also the analysis, as follows. We define

UNSAFEε =
{
S′ ⊂ Rd×n | ∃S′′ ∼ S′ and ∃E such that Pû∼r(ε,∆,S′′)(û ∈ E) > eεPû∼r(ε,∆,S′)(û ∈ E)

or Pû∼r(ε,∆,S′)(û ∈ E) > eεPû∼r(ε,∆,S′′)(û ∈ E)
}
.

Note that since the support is the same for all S, we can achieve a stronger pure DP with δ = 0
in the exponential mechanism. However, we still need δ > 0 in the TEST step. HPTR for PCA
proceeds as follows.

1. PROPOSE: Propose a target sensitivity bound ∆ = 80ρ2/(αn).

2. TEST:

2.1. Compute the safety margin m = minS′ dH(S, S′) such that S′ ∈ UNSAFEε/2.

2.2. If m̂ = m+ Lap(2/ε) < (2/ε) log(2/δ), then output ⊥; otherwise, continue.

3. RELEASE: Output û sampled from a distribution with a pdf:

r(ε,∆,S)(û) =
1

Z
exp

(
− ε

4∆
DS(û)

)
,

from S(d−1) = {û ∈ Rd : ∥û∥ = 1} where Z =
∫
S(d−1) exp{−(εDS(û))/(4∆)} dû.

The choice of ρ2 depends on the hypothesis on the tail of the sample-generating distribution,
and α depends on the target accuracy as guided by Theorem 13 (or the fraction of adversarial
corruption in the case of the outlier robust PCA setting in Theorem 14). The target privacy guarantee
determines (ε, δ).
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E.2. Step 2: Utility analysis under resilience

The following resilience properties are critical in selecting the sensitivity ∆ and in analyzing the
utility.

Definition 44 (Resilience for PCA) For some ρ1 ∈ R+, ρ2 ∈ R+, we say a set of n data points
Sgood = {xi ∈ Rd}ni=1 is (α, ρ1, ρ2)-resilient with respect to Σ for some positive semidefinite
Σ ∈ Rd×d if for any T ⊂ Sgood of size |T | ≥ (1 − α)n, the following holds for all v ∈ Rd with
∥v∥ = 1: ∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩
∣∣∣ ≤ ρ1 σv and (66)

∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩2 − σ2v

∣∣∣ ≤ ρ2 σ
2
v . (67)

where σ2v = v⊤Σv.

We refer to Section B.2 for the explanation of how resilience is fundamentally connected to sensitiv-
ity. For an example of a Gaussian distribution, the samples are (α,O(α

√
log(1/α)), O(α log(1/α)))-

resilient (with a large enough n). We show next how resilience implies an error bound for HPTR,
which is O(α log(1/α)) for Gaussian distributions.

Theorem 13 There exist positive constants c and C such that for any (α, ρ1, ρ2)-resilient set S
with respect to some Σ and satisfying α < ρ2 < c, HPTR Section E.1 for PCA with the choices
of the distance function in Eq. (65) and ∆ = 80ρ2/(αn) achieves 1 − (û⊤Σû/∥Σ∥) ≤ 20ρ2 with
probability 1− ζ if

n ≥ C

(
log(1/(δζ)) + d log(1/ρ2)

εα

)
. (68)

We discuss the implications of this result in Section E.3 for specific instances of the problem. Under
Assumption 1 on αcorrupt-corruption of the data and Definition 9 on the corrupt good sets, we show
that HPTR is also robust against corruption.

Theorem 14 There exist positive constants c and C such that for any ((2/7)α, α, ρ1, ρ2)-corrupt
good set S with respect to some Σ satisfying α < rho2 < c, HPTR in Section E.1 for PCA with the
choices of the distance function in Eq. (65) and ∆ = 80ρ2/(αn) achieves 1−(û⊤Σû/∥Σ∥) ≤ 20ρ2
with probability 1− ζ if

n ≥ C

(
log(1/(δζ)) + d log(1/ρ2)

εα

)
. (69)

We provide a proof of the robust and DP PCA in Section E.2.2, where Theorem 13 follows immedi-
ately by selecting α as a free parameter. As the HPTR Section E.1 for PCA is significantly simpler,
we do not apply the general analysis in Theorem 15; instead, we prove the preceding theorem di-
rectly. To this end, we first show a bound on sensitivity and next show that the safety test succeeds
with high probability in Section E.2.1.
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E.2.1. RESILIENCE IMPLIES BOUNDED LOCAL SENSITIVITY

Given the resilience properties of a corrupt good set S, we show that the sensitivity of DS(û) is
bounded by ∆.

Lemma 45 Suppose α ≤ c for some small enough constant c. For ∆ = 80ρ2/(αn) and a
((2/7)α, α, ρ1, ρ2)-corrupt good S, if

n = Ω
( log(1/(δζ))

αε

)
,

with a large enough constant, then for all S′ within a Hamming distance k∗ = (2/ε) log(4/(ζδ))
from S, we have

max
S′′∼S′

|DS′′(û)−DS′(û)| ≤ ∆ , (70)

for all unit vectors û and all neighboring datasets S′′.

Proof The proof is similar to the proof of Lemma 16. We first assume (k∗ + 1)/n ≤ α/7,
which requires n = Ω(log(1/δζ))/(αε) with a large enough constant. This implies that S′ is a
((3/7)α, α, ρ1, ρ2)-corrupt good set. The rest of this proof uses this assumption. Let Tû,α(S′) ⊂ S
be the subset of data points corresponding to the largest (2/3.5)αn values in the projected set S′

û =
{⟨û, xi⟩2}xi∈S′ . Recall that Sgood is the original resilient dataset before corruption by an adversary.
From Lemma 10 and the fact that |Sgood ∩ Tû,α(S′)| ≥ (1/7)αn, it follows that (1/|Sgood ∩
Tû,α(S′)|)

∑
xi∈Sgood∩Tû,α⟨û, xi⟩

2 ≤ (1 + (2ρ2)/((1/7)α))σ
2
û, where σû =

√
û⊤Σû. This implies

that

min
xi∈Sgood∩Tû,α

⟨û, xi⟩2 ≤
(
1 +

2ρ2
(1/7)α

)
σ2û . (71)

Let Mû,α(S
′) be the remaining subset of S′, with (1−(2/3.5)α)n smallest values in {(⟨û, xi⟩)2}i∈[n].

Mû,α(S
′) and Mû,α(S

′′) can differ by at most one data point. Let x′ and x′′ be the unique pair of
data points that are in Mû,α(S

′) and Mû,α(S
′′), respectively. If there is no such pair, then the two

filtered subsets are the same, and the following claims are trivially true.
If ⟨û, x′′⟩2 ≤ maxxi∈Mû,α(S′) ⟨û, xi⟩2 ≤ minxi∈Sgood∩Tû,α(S′) ⟨û, xi⟩2, we have | ⟨û, x′⟩2 −

⟨û, x′′⟩2 | ≤ (1 + 14ρ2/α)σ
2
û, where σ2û = û⊤Σû. If ⟨û, x′′⟩2 > maxxi∈Mû,α(S′) ⟨û, xi⟩2, then

x′′ is at most ⟨û, x′′⟩2 ≤ minxi∈Sgood∩Tû,α(S′)⟨û, xi⟩2, where equality holds if the smallest point in
the top subset enters Mû,α(S

′′). This also implies | ⟨û, x′⟩2 − ⟨û, x′′⟩2 | ≤ (1 + 14ρ2/α)σ
2
û. Let

σ′2v = v⊤Σ(Mv,α(S
′))v and σ′′2v = v⊤Σ(Mv,α(S

′′))v. Then, for any ∥v∥ = 1,

∣∣σ′2v − σ′′2v
∣∣ =

∣∣∣∣∣∣v⊤
 1

(1− (2/3.5)α)n

∑
xi∈Mv,2α(S′)

xix
⊤
i − 1

(1− (2/3.5)α)n

∑
xi∈Mv,2α(S′′)

xix
⊤
i

 v

∣∣∣∣∣∣
≤ 2

n
|⟨v, x′⟩2 − ⟨v, x′′⟩2| ≤ 2

n

(
1 +

14ρ2
α

)
v⊤Σv ,

for α ≤ c small enough. Then, for the local sensitivity, we have

|DS′(û)−DS′′(û)| ≤
∣∣∣ σ′2û − σ′′2û
max∥v∥=1 σ′2v

∣∣∣+ ∣∣∣ σ′′2û
max∥v∥=1 σ′2v

−
σ′′2û

max∥v∥=1 σ′′2v

∣∣∣
≤ 2

n

(
1 +

14ρ2
α

) û⊤Σû
0.9∥Σ∥

+
1.1û⊤Σû

0.92∥Σ∥2
2

n

(
1 +

14ρ2
α

)
∥Σ∥ ,
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where we used the resilience in Eq. (67) with a small enough ρ2 ≤ c such that 0.9v⊤Σv ≤ σ′2v ≤
1.1v⊤Σv and 0.9v⊤Σv ≤ σ′′2v ≤ 1.1v⊤Σv (which follow from Lemma 47). When ρ2 ≤ α, this is
bounded by |DS′ û)−DS′′(û)| ≤ 80ρ2/(αn) = ∆.

Since the support is the same for all exponential mechanisms regardless of the dataset, the
sensitivity bound immediately implies safety. The following lemma shows that we have a sufficient
safety margin to succeed with probability of at least 1 − ζ since k∗ = (2/ε) log(4/(δζ)) and the
threshold is (2/ε) log(2/δ).

Lemma 46 Under the hypothesis of Lemma 45, for any S′ at Hamming distance at most k∗ from
S, we have S′ ∈ SAFEε/2.

E.2.2. PROOF OF THEOREM 14

This proof is similar to the proof of a universal utility analysis in Theorem 15. First, we show that
we pass the safety test with high probability. By Lemma 46, we know m > k∗ = 2/ε log(4/(ζδ)).
Then, we have

P (output ⊥) = P (m+ Lap(2/ε) < (2/ε) log(2/δ)) ≤ ζ

2
.

Next, we assume the dataset passed the safety test and show that Pû∼r(ε,∆,S)
(û⊤Σû ≥ (1 −

4ρ2)∥Σ∥) ≥ 1− ζ/2.

Lemma 47 For an ((2/7)α, α, ρ1, ρ2)-corrupt good set S with respect to Σ, then |û⊤Σû−û⊤Σ(Mû,α)û| ≤
4ρ2û

⊤Σû.

Proof
We have

|û⊤Σû− û⊤Σ(Mû,α)û| =
|
∑

i∈Mû,α
(⟨û, xi⟩2 − σ2û)|

(1− (2/3.5)α)n

≤
|
∑

i∈Mû,α∩Sgood
(⟨û, xi⟩2 − σ2û)|

(1− (2/3.5)α)n
+

|
∑

i∈Mû,α∩Sgood
(⟨û, xi⟩2 − σ2û)|

(1− (2/3.5)α)n
(72)

For i ∈ Mû,α ∩ Sbad, by Lemma 10, we have

| ⟨û, xi⟩2 − σ2û| ≤ max

{∑
i∈Tû,α∩Sgood

(⟨û, xi⟩2 − σ2û)

|Tû,α ∩ Sgood|
, σ2û

}

≤
2ρ2σ

2
û

(1/3.5)α
, (73)

where in the last inequality, we applied our assumption that ρ2 ≥ α.
By the resilience property in Eq. (67) on Mû,α ∩ Sgood, we also have

|
∑

i∈Mû,α∩Sgood
(⟨û, xi⟩2 − σ2û)|

|Mû,α ∩ Sgood|
≤ ρ2σ

2
û . (74)
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Plugging Eq. (73) and (74) into (72), we have

|û⊤Σû− û⊤Σ(Mû,α)û| ≤
2ρ2σ

2
û + (1− (2/3.5)α)ρ2σ

2
û

1− (2/3.5)α
≤ 4ρ2σ

2
û ,

for α ≤ c small enough.

This implies that |DΣ(û)−DS(û)| ≤ 4ρ2 for an ((2/7)α, α, ρ1, ρ2)-corrupt good set S.
Let µ(·) denote the uniform measure on the unit sphere. By the fact that for any 0 < r < 2, a cap

of radius r on the (d − 1)-dimensional unit sphere S(d−1) has a measure of at least (1/2)(r/2)d−1

from, for example, (Kapralov and Talwar, 2013, Fact 3.1), we have for some constant c2 > 0 and
ρ2 ≤ 1/8,

µ({v ∈ Rd : v⊤Σv ≥ (1− 4ρ2)∥Σ∥, ∥v∥ = 1}) ≥
(
cos−1(1− 4ρ2)/2

)d−1 ≥ e−c2d log(1/ρ2) . (75)

By Lemma 47, the choice of ∆ = 80ρ2/(αn), we have

Pû∼r(ε,∆,S)

(
∥Σ∥ − û⊤Σû ≤ 4ρ2∥Σ∥

)
=

∫
{v∈Rd:v⊤Σv≥(1−4ρ2)∥Σ∥,∥v∥=1}

r(ε,∆,S)(û) dµ̂

≥ Vol({v ∈ Rd : v⊤Σv ≥ (1− 4ρ2)∥Σ∥, ∥v∥ = 1}) min
µ̂∈{v∈Rd:v⊤Σv≥(1−4ρ2)∥Σ∥,∥v∥=1}

r(ε,∆,S)(û)

≥ Vol(S(d−1))µ({v ∈ Rd : v⊤Σv ≥ (1− 4ρ2)∥Σ∥, ∥v∥ = 1}) min
û∈{v∈Rd:v⊤Σv≥(1−4ρ2)∥Σ∥,∥v∥=1}

r(ε,∆,S)(û)

≥ Vol(S(d−1)) e−c2d log(1/ρ2) 1

Z
exp

{
− ε

4∆
max

∥û∥=1,4ρ2≥1− û⊤Σû
∥Σ∥

1−
û⊤Σ(Mû,α)û

∥Σ∥

}
≥ Vol(S(d−1)) e−c2d log(1/ρ2) 1

Z
exp

{
− αεn

40

}
,

and similarly,

Pû∼r(ε,∆,S)

(
∥Σ∥ − û⊤Σû ≥ 20ρ2∥Σ∥

)
≤ Vol(S(d−1)) max

û∈{v∈Rd:v⊤Σv≤(1−20ρ2)∥Σ∥,∥v∥=1}
r(ε,∆,S)(û)

≤ Vol(S(d−1))
1

Z
e−εαn(20ρ2−4ρ2)∥Σ∥/(320ρ2∥Σ∥)

≤ Vol(S(d−1))
1

Z
exp

{
− αεn

20

}
This implies that

log

(
Pû∼r(ε,∆,S)

(
λ1 − û⊤Σû ≤ 4ρ2∥Σ∥

)
Pû∼r(ε,∆,S)

(λ1 − û⊤Σû ≥ 20ρ2∥Σ∥)

)
≥ εαn

40
− c2d log(1/ρ2) .

If we set n = Ω
(
log(1/ζ)+d log(1/ρ2)

εα

)
, we get

Pû∼r(ε,∆,S)

(
λ1 − û⊤Σû ≤ 4ρ2λ1

)
Pû∼r(ε,∆,S)

(λ1 − û⊤Σû ≥ 20ρ2λ1)
≥ 2

ζ
,

which completes the proof.
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E.3. Step 3: Achievability guarantees

We provide utility guarantees for a private PCA for sub-Gaussian and hypercontractive distributions.

E.3.1. SUB-GAUSSIAN DISTRIBUTIONS

Using the resilience of sub-Gaussian distributions with respect to (µ = 0,Σ) in Lemma 17, which
is the same as the resilience properties we need for the PCA in Definition 44, Theorem 14 implies
the following corollary.

Corollary E.1 Under the hypothesis of Lemma 17 with µ = 0 and any PSD matrix Σ ∈ Rd×d,
there exist universal constants c and C > 0 such that for any α ∈ (0, c), a dataset of size

n = O

(
d+ log(1/ζ)

(α log(1/α))2
+

log(1/(δζ)) + d log(1/(α log(1/α)))

εα

)
,

and sensitivity of ∆ = O(log(1/α)/n) with large enough constants are sufficient for HPTR(S) in
Section E.1 for a PCA with the choices of the distance function in Eq. (65) to achieve

1− û⊤Σû

∥Σ∥
≤ Cα log(1/α) , (76)

with probability 1 − ζ. Further, the same guarantee holds even if an α-fraction of the samples is
arbitrarily corrupted, as in Assumption 1.

The error bound is near-optimal under α-corruption, matching a lower bound up to a factor of
O(log(1/α)). HPTR is the first estimator that guarantees (ε, δ)-DP and also achieves the robust
error rate of 1 − û⊤Σû/∥Σ∥ = O(α log(1/α)), nearly matching the information-theoretic lower
bound of 1 − û⊤Σû/∥Σ∥ = Ω(α). This lower bound, which can be easily constructed using
N (0, I + αe1e

⊤
1 ) and N (0, I + αe2e

⊤
2 ), holds for any estimator that is not necessarily private and

regardless of how many samples are available. If privacy is not required, a near-optimal robust error
rate can be achieved by outlier-robust PCA approaches in (Kong et al., 2020; Jambulapati et al.,
2020).

The sample complexity is near-optimal, matching a lower bound up to a factor of O(log(1/α))
when δ = e−Θ(d). Even for a DP PCA without corrupted samples, HPTR is the first estima-
tor for sub-Gaussian distributions to nearly match the information-theoretic lower bound of n =
Ω(d/(α log(1/α))2 + min{d, log((1 − e−ε)/δ)}/(εα log(1/α))) to achieve the error in Eq. (76).
The first term is unavoidable since even without DP and robustness, when the data comes from a
Gaussian distribution, estimating the principal component up to errorα log(1/α) requires Ω(d/(α log(1/α))2)
samples (Proposition E.3). The second term in the lower bound follows from Proposition E.2, which
matches the second term in the upper bound up to a factor of O(log(1/α)) when δ = e−Θ(d) and
ε > 0. Existing DP PCA approaches from (Chaudhuri et al., 2013; Kapralov and Talwar, 2013;
Dwork et al., 2014) are designed for arbitrary samples not necessarily drawn i.i.d., and hence they
require a larger sample size of n = Õ(d/α2+d1.5

√
log(1/δ)/(αε)) i.i.d. samples from a Gaussian

distribution to achieve the guarantee in Eq. (76), where Õ hides polylogarithmic terms in 1/α and
1/ζ.
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Remark. Rank-k PCA under α-corruption from a Gaussian dataset is of great practical interest.
An outlier-robust PCA algorithm in (Kong et al., 2020, Appendix D) outputs an orthonormal matrix
Û ∈ Rd×k achieving

Tr(U⊤
k ΣUk)− Tr(Û⊤ΣÛ) = O

(
αTr(U⊤

k ΣUk) + νk1/2α log(1/α)
)
,

where Uk ∈ argmaxU⊤U=Ik×k
U⊤ΣU and ν2 = maxV ∈Rd×d,∥V ∥F=1,V=V ⊤,rank(V )≤k⟨V,ΣV Σ⟩.

It is a promising direction to design a DP rank-k PCA algorithm by applying the HPTR framework
that can achieve a similar error rate. It is not immediately clear how to design an appropriate score
function for general rank k, and a simple technique of peeling off rank-one components one-by-one
(using the rank-one PCA with HPTR) will not achieve the target error bound.

Proposition E.2 (Lower bound for private sub-Gaussian PCA) Let PΣ be the set of zero-mean
sub-Gaussian distributions with covariance Σ ∈ Rd×d. Let Mε,δ be a class of (ε, δ)-DP, d-
dimensional estimators of the top principal component of Σ using n i.i.d. samples from P ∈ PΣ.
Then, for ε ∈ (0, 10), there exists a universal constant c > 0 such that

inf
û∈Mε,δ

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û(S)⊤Σû(S)

∥Σ∥

]
≥ c ·min

{
d ∧ log((1− e−ε)/δ)

nε
, 1

}
.

Proof We adopt the same proof strategy as the proof of Proposition B.5 for mean estimation. By
(Acharya et al., 2021, Lemma 6), there exists a finite index set V ⊂ Rd with cardinality |V| = 2Ω(d),
∥v∥ = 1 for all v ∈ V and ∥v − v′∥ ≥ 1/2 for all v ̸= v′ ∈ V . Let Q0 = N (0, Id). For
each v ∈ V , let Qv be a uniform distribution on {±v}. We define Pv := (1 − α)Q0 + αQv.
Then Pv is sub-Gaussian with covariance Σv := Id×d + αvv⊤. It is straightforward to see that
0.5Id×d ⪯ Σv ⪯ Id×d and the top eigenvector of Σv is v.

Since ∥v − v′∥ ≥ 1/2, we have

DΣv′ (v) = 1− v⊤Σ′
vv

∥Σv′∥
= 1− (1− α+ α

〈
v, v′

〉2
) = α(1−

〈
v, v′

〉2
) ≥ α

8
.

The principal component estimation problem can be reduced to a testing problem with this
packing V . For the (ε, δ)-DP estimator û, using Lemma 20, let t = α

8 , we have

sup
P∈PΣ

ES∼Pn [DΣ(û)] ≥ 1

|V|
∑
v∈V

ES∼Pn
v
[DΣv(û)]

=
1

|V|
∑
v∈V

Pv (DΣv(û) ≥ t)

≳ t
ed/2 ·

(
1
2e

−ε⌈nα⌉ − δ
1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where the last inequality follows from the fact that d ≥ 2. The rest of the proof follows from (Barber
and Duchi, 2014, Proposition 4). We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
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so that

sup
P∈PΣ

ES∼Pn [DΣv(û)] ≳ α .

This implies, for t = α/12 and ε ∈ (0, 10), that

inf
û∈Mε,δ

sup
Σ≻0,P∈PΣ

ES∼Pn [DΣ(û)] ≳ min

{
d ∧ log((1− e−ε)/δ)

nε
, 1

}
,

which completes the proof.

It is well known that even for Gaussian distributions, learning the principal component up to
error α requires Ω(d/α2). We provide a lower bound proof here for completeness.

Proposition E.3 (Sample Complexity Lower bound for PCA) Let PΣ be the set of zero-mean
Gaussian distributions with covariance Σ ∈ Rd×d. Let Md be the class of estimators of the d-
dimensional top principal component of Σ using n i.i.d. samples from P ∈ PΣ. There exists a
universal constant c > 0 such that

inf
û∈Md

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û(S)⊤Σû(S)

∥Σ∥

]
≥ c ·min

{√
d

n
, 1

}
.

Proof
The following proposition helps to prove a minimax lower bound on estimating ∥Σ∥. We first

define some notations.

Definition 48 (Definition 3.1 in (Diakonikolas et al., 2017)) For a distribution A on the real line
with probability density function A(x) and a unit vector v ∈ Rd, consider the distribution over Rn

with probability density function Pv(x) = A(v⊤x) exp(−∥x− (v⊤x)v∥22/2) · (2π)−(d−1)/2.

Proposition E.4 (Proposition 7.1 in (Diakonikolas et al., 2017)) Let A be a distribution on R
such that A has a mean 0 and χ2(A,N(0, 1)) is finite. Then, there is no algorithm for any d, given
n < d/(8χ2(A,N(0, 1))) samples from a distribution D over Rd which is either N(0, I) or Pv for
some unit vector v ∈ Rd, that correctly distinguishes between the two cases with probability at least
2/3.

To apply Proposition E.4, let A be Gaussian distribution N (0, 1 + α). Through simple calculation,
it can be shown that χ2(N (0, 1),N (0, 1 + α)) = 1√

1−α2
− 1 ≤ α2 whenever α2 ≤ 1/2. Then,

for the first case in Proposition E.4, ∥Σ∥ = ∥I∥ = 1, the second case has ∥Σ∥ = 1 + α, and
Proposition E.4 implies that there exists absolute constant c such that

inf
λ̂

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− λ̂(S)

∥Σ∥

]
≥ c ·min

{√
d

n
, 1

}
.

Since we can turn a principal component estimator u(S) into an estimator of ∥Σ∥ through n ad-
ditional fresh samples to estimate u(S)⊤Σu(S) up to a minor multiplicative error O(1/

√
n). This

implies there exists a universal constant c > 0 such that

inf
û∈Md

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û(S)⊤Σû(S)

∥Σ∥

]
≥ c ·min

{√
d

n
, 1

}
.
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E.3.2. HYPERCONTRACTIVE DISTRIBUTIONS

In this section, we apply our results on hypercontractive distributions in Definition 18. Using the
resilience of hypercontractive distributions with respect to (µ = 0,Σ) in Lemma 19, which is
the same as the resilience properties we need for PCA in Definition 44, Theorem 14 implies the
following corollary.

Corollary E.5 Under the hypothesis of Lemma 19 with k ≥ 3, µ = 0 and any PSD matrix Σ ∈
Rd×d, there exist universal constants c and C > 0 such that for any α ∈ (0, c), a dataset of size

n = O

(
d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ2
+
κ2d log d

α2/k
+

log(1/(δζ)) + d log(1/α1−2/k)

εα

)
,

and sensitivity of ∆ = O(α1−2/k/n) with large enough constants are sufficient for HPTR(S) in
Section E.1 for PCA with the choices of the distance function in Eq. (65) to achieve

1− û⊤Σû

∥Σ∥
≤ Cα1−2/k , (77)

with probability 1 − ζ. Further, the same guarantee holds even if an α-fraction of the samples is
arbitrarily corrupted, as in Assumption 1.

The error bound is optimal under α-corruption up to a constant factor. HPTR is the first estima-
tor that guarantees (ε, δ)-DP and also achieves the robust error rate of 1−û⊤Σû/∥Σ∥ = O(α1−2/k),
matching the information-theoretic lower bound of 1−û⊤Σû/∥Σ∥ = Ω(α1−2/k). This lower bound
can be easily constructed using Eq. (57), where two hypercontractive distributions are at total vari-
ation distance O(α) and the top principal component of one distribution achieves an error lower
bounded by 1− û⊤Σû/∥Σ∥ = Ω(α1−2/k). Even if privacy is not required, there is no outlier-robust
PCA estimator matching this optimal error rate for a general k.

The sample complexity is n = Õ(d/α2(1−1/k) + (d+ log(1/δ))/(εα)) for a constant ζ, k, and
κ, where Õ hides logarithmic factors in 1/α and d. Even for DP PCA without corrupted samples,
HPTR is the first estimator for hypercontractive distributions to guarantee differential privacy. The
information-theoretic lower bound is n = Ω(d/α2(1−2/k) + min{d, log((1 − e−ε)/δ)}/(αε)) to
achieve the error in Eq. (77). The first term is unavoidable, even without DP and robustness, when
the data comes from a Gaussian distribution because estimating the principal component up to er-
ror α1−2/k requires Ω(d/α2(1−2/k)) samples (Proposition E.3). There is a gap of factor O(α−2/k)
compared to the first term in our upper bound. Since the sample complexity lower bound in Propo-
sition E.3 is constructed using Gaussian distributions, it might be possible to tighten it further using
hypercontractive distributions. The second term in the lower bound follows from Proposition E.6,
which matches the last term in the upper bound up to a factor of O(log(1/α)) when δ = e−Θ(d) and
ε > 0. To the best of our knowledge, HPTR is the first algorithm for PCA that guarantees (ε, δ)-DP
under hypercontractive distributions.

Proposition E.6 (Lower bound for hypercontractive private PCA) Let PΣ be the set of zero-
mean hypercontractive distributions with covariance Σ ∈ Rd×d. Let Mε,δ be a class of (ε, δ)-DP
estimators using n i.i.d. samples from P ∈ PΣ. Then, for ε ∈ (0, 10), there exists a constant c such
that

inf
û∈Mε,δ

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û⊤Σû

∥Σ∥

]
≥ cmin

{(
d ∧ log((1− e−ε)/δ)

nε

)1−2/k

, 1

}
. (78)
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Proof We use the same construction as used in the distribution of x in the proof of Proposition C.5.
By (Acharya et al., 2021, Lemma 6), there exists a finite index set V ⊂ Rd with cardinality |V| =
2Ω(d), ∥v∥ = 1 for all v ∈ V and ∥v − v′∥ ≥ 1/2 for all v ̸= v′ ∈ V . For each v ∈ V and
α ∈ (0, 1/2), we construct the density function of distribution Pv as defined in Eq. (57). Let Σv

denote the covariance matrix of Pv. The proof of Proposition C.5 shows that Σv = (1− α)Id×d +
α1−2/kvv⊤, dTV(Pv, P

′
v) = α and that Pv is (O(1), k)-hypercontractive.

Since ∥v − v′∥ ≥ 1/2, we know that ⟨v, v′⟩ ≤ 7/8, and we have

DΣv′ (v) = 1− v⊤Σ′
vv

∥Σv′∥
= 1− 1− α+ α1−2/k ⟨v, v′⟩2

1− α+ α1−2/k
≥ α1−2/k

8(1− α+ α1−2/k)
>
α1−2/k

12
,

for α < c small enough.
Next, we apply the reduction of estimation to testing with this packing V . For a (ε, δ)-DP

estimator û, using Lemma 20, let t = α1−2/k

12 . Then, we have

sup
P∈PΣ

ES∼Pn [DΣ(û)] ≥ 1

|V|
∑
v∈V

ES∼Pn
v
[DΣv(û)]

=
1

|V|
∑
v∈V

Pv (DΣv(û) ≥ t)

≳ t
ed/2 ·

(
1
2e

−ε⌈nα⌉ − δ
1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where the last inequality follows from the fact that d ≥ 2.
The rest of the proof follows from (Barber and Duchi, 2014, Proposition 4). We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
so that

sup
P∈P

ES∼Pn [DΣv(û)] ≳ α1−2/k .

This means, for t = (1/12)α1−2/k and ε ∈ (0, 10), that

inf
û∈Mε,δ

sup
P∈P

ES∼Pn [DΣ(û)] ≳ min

{(
d ∧ log((1− e−ε)/δ)

nε

)1−2/k

, 1

}
,

which completes the proof.

Appendix F. General case: utility analysis of HPTR

We prove the following theorem that provides a utility guarantee for HPTR output θ̂ measured in
Dϕ(θ̂, θ).
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Theorem 15 For a given dataset S, a target error function Dϕ : Rp × Rp → R+, probability
ζ ∈ (0, 1), and privacy (ε, δ), HPTR achieves Dϕ(θ̂, θ) = c0ρ for some ρ > 0 and any constant
c0 > 3c1 with probability 1− ζ if there exist constants c1, c2 > 0 and (∆ ∈ R+, ρ ∈ R+) such that
with the choice of k∗ = (2/ε) log(4/(δζ)), τ = (c0+ c1)ρ, the following assumptions are satisfied:

(a) (Bounded volume) (7/8)τ − (k∗ + 1)∆ > 0,

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤ ec2p , and

Vol({θ̂ : Dϕ(θ̂, θ) ≤ (c0 + 2c1)ρ})
Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ})

≤ ec2p ,

(b) (Local sensitivity) For all S′ within Hamming distance k∗ from S, maxS′′∼S′ ∥DS′′(µ̂) −
DS′(µ̂)∥ ≤ ∆ for all µ̂ ∈ Bτ+(k∗+3)∆,S ,

(c) (Bounded sensitivity) ∆ ≤ (c0−3c1)ρε
32(c2p+(ε/2)+log(16/δζ)) , and

(d) (Robustness) |Dϕ(θ̂, θ)−DS(θ̂)| ≤ c1ρ for all θ̂ ∈ Bτ,S .

The parameter ρ ∈ R+ represents the target error up to a constant factor and depends on the re-
silience of the underlying distribution Pθ,ϕ that the samples are drawn from. We explicitly prescribe
how to choose the parameter ρ for each problem instance in Sections B, C, D, and E. Following
the standard analysis techniques for exponential mechanisms, we show that the output concentrates
around an inner set {θ̂ : Dϕ(θ̂, θ) ≤ c0ρ}, by comparing its probability mass with an outer set
{θ̂ : Dϕ(θ̂, θ) ≥ c1ρ}. This uses the ratio of the volumes in the assumption (a) and the closeness
of the error metric and D(θ̂) in the assumption (d). When there is a strict gap between the two,
which happens if ερ/∆ ≫ p+ log(1/ζ) as in the assumption (c), this implies Dϕ(θ̂, θ) ≤ c0ρ with
probability 1− ζ. We provide a proof in Section F.2.

A major challenge in analyzing HPTR is in showing that the safety test threshold k∗ = (2/ε) log(4/(δζ))
is not only large enough to ensure that datasets with safety violation is screened with probability
1 − δ/2 but also small enough such that good datasets satisfying the assumptions (a), (b), and (c)
pass the test with probability 1− ζ/2. We establish this first in Section F.1.

F.1. Large safety margin

In this section, we show in Lemma 51 that under the assumptions of Theorem 15, we get a large
enough margin for safety such that we pass the safety test with high probability. We follow the
proof strategy introduced in (Brown et al., 2021) adapted to our more general framework. A major
challenge is the lack of a uniform bound on the sensitivity, which the analysis of (Brown et al.,
2021) relies on. We generalize the analysis by showing that while the data does not satisfy uniform
sensitivity bound, we can still exploit its local sensitivity bound in the assumption (b).

The following main technical lemma is a counter part of (Brown et al., 2021, Lemma 3.7),
where we have an extra challenge that the sensitivity bound is only local; there exists θ̂ far from
θ where the sensitivity bound fails. We rely on the assumption (b) to resolve it. Let wS(B) ≜∫
B exp{−(ε/4∆)DS(µ̂)}dµ̂ be the weight of a subset B ⊂ Rp. The following lemma will be used
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to show that the denominator of the exponential distribution in RELEASE step does not change too
fast between two neighboring datasets.

Lemma 49 Under the assumption (b) and δ ∈ (0, 1/2), for a dataset S′ at Hamming distance at
most k∗ from S, if wS′(Bτ−∆,S′) ≥ (1− δ)wS′(Bτ+∆,S′) then S′ ∈ SAFEε,4e2εδ,τ .

Proof We follow the proof strategy of (Brown et al., 2021, Lemma 3.7) but there are key differ-
ences due to the fact that we do not have a universal sensitivity bound, but only local bound. In
particular, we first establish that under the local sensitivity assumption, Bτ,S′′ ⊆ Bτ+∆,S′ for all
S′′ ∼ S′, which will be used heavily throughout the proof. Since DS′′(θ̂) ≤ DS′(θ̂) + ∆ for all
θ̂ ∈ Bτ+(k∗+3)∆,S , we have Bτ,S′′ ∩ Bτ+(k∗+3)∆,S ⊆ Bτ+∆,S′ . We are left to show that Bτ,S′′ \
Bτ+(k∗+3)∆,S = ∅, which follows from the fact that (Bτ,S′′ \Bτ+(k∗+1.5)∆,S)∩Bτ+(k∗+3)∆,S) = ∅
and DS′′(θ̂) is a Lipschitz continuous function. Similarly, it follows that Bτ−∆,S′ ⊆ Bτ,S′′ . In par-
ticular, this implies that Bτ,S′ ⊆ Bτ+(k∗+3)∆,S for any S′ with dH(S′, S) ≤ k∗.

We first show that for any E ⊂ Bτ,S′ one side of the (ε/2, 4eε/2δ)-DP condition is met:
Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E) ≤ eε/2Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E) + 4eε/2δ for all S′′ ∼ S′ where r(ε,∆,τ,S′) and

r(ε,∆,τ,S′′) are the distributions used in the exponential mechanism as defined in (2) respectively.
For B = Bτ,S′ ∩Bτ,S′′ , we have

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) = Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E ∩B) + Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E \B)

=
Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B) + Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E \B)

≤
Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E) + Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ̸∈ Bτ,S′′) .

The ratio is bounded due to the local sensitivity bound at S′ as

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B)

≤ eε/4
wS′′(Bτ,S′′)

wS′(Bτ,S′)

≤ eε/2
wS′(Bτ,S′′)

wS′(Bτ,S′)

≤ eε/2
wS′(Bτ+∆,S)

wS′(Bτ,S′)
≤ eε/2(1 + 2δ) ,

where the second inequality follows from the fact that wS′′(A) ≤ eε/6wS′(A) for any set A ⊂
Bτ,S′∪Bτ,S′′ ⊆ Bτ+(k∗+3)∆,S and the third inequality follows from the fact thatBτ,S′′ ⊆ Bτ+∆,S′ .
From the assumption on the weights, it follows thatwS′(Bτ+∆,S′)/wS′(Bτ,S′) ≤ wS′(Bτ+∆,S′)/wS′(Bτ−∆,S′) ≤
1/(1− δ) ≤ 1 + 2δ for δ < 1/2. Similarly,

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ̸∈ Bτ,S′′) ≤ Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ̸∈ Bτ−∆,S′)

≤ 1−
wS′(Bτ−∆,S′)

wS′(Bτ,S′)
≤ 1−

wS′(Bτ−∆,S′)

wS′(Bτ+∆,S′)
≤ δ .
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Putting these together, we get Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) ≤ eε/2Pθ̂∼r(ε,∆,τ,S′′)

(θ̂ ∈ E) + 4eε/2δ.

Next, we show the other side of the (ε/2, 4eε/2δ)-DP condition: Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) ≤

eε/2Pθ̂∼r(ε,∆,τ,S)
(θ̂ ∈ E) + 4e2εδ for all S′ ∼ S. We need to show an upper bound on the ra-

tio:

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S)
(θ̂ ∈ E ∩B)

≤ eε/4
wS(Bτ,S)

wS′(Bτ,S′)

≤ eε/2
wS(Bτ,S)

wS(Bτ,S′)

≤ eε/2
wS(Bτ,S)

wS(Bτ−∆,S)
≤ (1 + 2δ)eε/2 ,

For the probability outside Bτ,S′ ,

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ̸∈ Bτ,S′) ≤ Pθ̂∼r(ε,∆,τ,S′′)

(θ̂ ∈ Bτ+∆,S′ \Bτ,S′)

≤
wS′′(Bτ+∆,S′ \Bτ,S′)

wS′′(Bτ,S′′)

≤ eε/2
wS′(Bτ+∆,S′ \Bτ,S′)

wS′(Bτ,S′′)

≤ eε/2
wS′(Bτ+∆,S′)− wS′(Bτ,S′)

wS′(Bτ−∆,S′)

≤ eε/2(1 + 2δ − 1) = 2eε/2δ .

where the first inequality follows from Bτ,S′′ ⊆ Bτ+∆,S′ , the second inequality follows from
(Bτ+∆,S′ \ Bτ,S′) ∩ Bτ,S′′ ⊆ Bτ+∆,S′ \ Bτ,S′ , the third inequality follows from the fact that
Bτ,S′′ ⊆ Bτ+∆,S′ and the local sensitivity assumption, and the last inequality follows from the
weight assumption and Bτ−∆,S′ ⊆ Bτ,S′ .

The next lemma identifies the range of the threshold k∗ = O(τ/∆) that ensures safety.

Lemma 50 Under the assumption (b), if there exists a g > 0 such that τ −∆(k∗ + g+1) > 0 and

Vol(Bτ+∆(k∗+1),S)

Vol(Bτ−∆(k∗+g+1),S)
e

−εg
4 ≤ 1

8
e−ε/2δ , (79)

then S′ ∈ SAFE(ε/2,δ/2,τ) for all S′ within Hamming distance k∗ from S.

Proof Consider S′ at Hamming distance k away from S. From Lemma 49 it suffices to show that
wS′(Bτ−∆,S′)/wS′(Bτ+∆,S′) ≥ 1− δ′ for δ′ = (1/8)e−ε/2δ, which is equivalent to

wS′(Bτ+∆,S′ \Bτ−∆,S′)/wS′(Bτ+∆,S′) ≤ δ′ .
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The denominator is lower bounded by

wS′(Bτ+∆,S′) ≥ wS′(Bτ−∆(1+g),S′) ≥ Vol(Bτ−∆(1+g),S′)e−ε(τ−∆(1+g))/(4∆)

≥ Vol(Bτ−∆(1+g+k),S)e
−ε(τ−∆(1+g))/(4∆) ,

where the last inequality uses the local sensitivity (the assumption (b)). The numerator is upper
bounded by

wS′(Bτ+∆,S′ \Bτ−∆,S′) ≤ wS′(Bτ+(k+1)∆,S \Bτ−∆,S′) ≤ Vol(Bτ+(k+1)∆,S)e
−ε(τ−∆)/(4∆) ,

where the first inequality uses the local sensitivity. Together, it follows that

wS′(Bτ+∆,S′ \Bτ−∆,S′)

wS′(Bτ+∆,S′)
≤

Vol(Bτ+(k+1)∆,S)e
−ε(τ−∆)/(4∆)

Vol(Bτ−∆(1+g+k),S)e−ε(τ−∆(1+g))/(4∆)
≤ δ′ =

1

8
eε/2δ ,

as e−ε(τ−∆)/(4∆)/e−ε(τ−∆(1+g))/(4∆) = e−εg/4, which implies safety.

We next show that k∗ = O((1/ε) log(1/(δζ))) is sufficient to ensure a large enough safety
margin of mτ − k∗ = Ω((1/ε) log(1/ζ)).

Lemma 51 Under the assumptions (a), (b), and (c) of Theorem 15, for k∗ = (2/ε) log(4/(δζ)), if
dH(S′, S) ≤ (2/ε) log(4/(ζδ)) then S′ ∈ SAFE(ε/2,δ/2,τ).

Proof Applying Lemma 50 with k∗ = (2/ε) log(4/(δζ)) and g = (1/(8∆))τ , we require

Vol(Bτ+∆(k∗+1),S)

Vol(B(7/8)τ−∆(k∗+1),S)
e

−ετ
32∆ ≤ 1

8
e−ε/2δ .

From the assumption (a), it is sufficient to have

exp
{
c2p−

τε

32∆

}
≤ 1

8
e−ε/2δ .

For ∆ ≤ (τε)/(32(c2p+(ε/2)+log(8/δ))), which follows from the assumption (c), this is satisfied.

F.2. Proof of Theorem 15

We first show that we pass the safety test with high probability. Define the error eventE as the event
that we output ⊥ in the TEST step. From Lemma 51, we have mτ > (2/ε) log(4/(δζ)) under the
assumptions (a), (b), and (c). This implies that

P(E) = P
(
mτ + Lap(2/ε) < (2/ε) log(2/δ)

)
≤ ζ

2
.

We next show that resilience implies good utility (once safety test has passed). We want the ex-
ponential mechanism to output an accurate θ̂ near θ with high probability, i.e., Pθ̂∼r(ε,∆,τ,S)

(Dϕ(θ̂, θ) ≥
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c0ρ) ≤ ζ/2. We omit the subscript in the probability for brevity, and it is assumed that randomness
is in the sampling of the exponential mechanism. We want to bound by ζ/2 the failure probability:

P
(
Dϕ(θ̂, θ) ≥ c0ρ

)
≤

P
(
Dϕ(θ̂, θ) ≥ c0ρ

)
P
(
Dϕ(θ̂, θ) ≤ c1ρ1

)
≤

Vol(Bτ,S)

Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ})

maxθ̂:Dϕ(θ̂,θ)≥c0ρ
P(θ̂)

minθ̂:Dϕ(θ̂,θ)≤c1ρ1
P(θ̂)

,

as long as {θ̂ : Dϕ(θ̂, θ) ≤ c0ρ} ⊆ Bτ,S (otherwise we are under-estimating the volume), which
follows from the assumption (d); DS(θ̂) ≤ (Dϕ(θ̂, θ) + c1ρ) ≤ (c0 + c1)ρ = τ .

Similarly, since θ̂ ∈ Bτ,S implies Dϕ(θ̂, θ) ≤ τ + c1ρ = (c0 + 2c1)ρ, the volume ratio is
bounded by

Vol(Bτ,S)

Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ)
≤

Vol({θ̂ : Dϕ(θ̂, θ) ≤ (c0 + 2c1)ρ})
Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ})

≤ ec2p ,

under the assumption (a). The probability ratio can be bounded similarly. From the assumption (d),
we have

maxθ̂:Dϕ(θ̂,θ)≥c0ρ
P(θ̂)

minθ̂:Dϕ(θ̂,θ)≤c1ρ
P(θ̂)

≤ exp
{
− ε

4∆

(
(c0 − c1)− (2c1)

)
ρ
}

≤ exp
{
− ε(c0 − 3c1)ρ

4∆

}
.

When ec2p−(ε(c0−3c1)ρ/(4∆))) ≤ ζ/2, we have the desired bound. This is guaranteed with our
assumption (c).

Appendix G. Auxiliary lemmas

Lemma 52 For any symmetric Σ ≻ 0 and vector u ∈ Rd,

max
v:∥v∥=1

⟨v, u⟩
v⊤Σv

=
∥∥∥Σ−1/2u

∥∥∥ . (80)

Proof This follows analogously from the proof of Lemma 7.

Lemma 53 Let Σ, A ∈ Rd×d be a symmetric matrix. If −cId×d ⪯ Σ−1/2AΣ−1/2 − Id×d ⪯ cId×d

for some c > 0, then we have for any u ∈ Rd,

∥Σ−1/2(A− Σ)u∥ ≤ c∥Σ1/2u∥ . (81)

Proof Using the fact that −Id×d ⪯ M ⪯ Id×d implies −Id×d ⪯ M2 ⪯ Id×d, for any symmetric
matrix M , we know

−c2Id×d ⪯ Σ−1/2(A− Σ)Σ−1(A− Σ)Σ−1/2 ⪯ c2Id×d , (82)
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which implies that

−c2Σ ⪯ (A− Σ)Σ−1(A− Σ) ⪯ c2Σ . (83)

Thus, we know

∥Σ−1/2(A− Σ)u∥2 = u⊤(A− Σ)Σ−1(A− Σ)u ≤ c2u⊤Σu = c2∥Σ1/2u∥2 . (84)

Appendix H. Existing lower bounds

Theorem 54 (Lower bound on DP Gaussian mean estimation with known covariance (Ka-
math et al., 2019, Lemma 6.7)) Let µ̂ : Rn×d → [−Rσ,Rσ]d be an (ε, δ)-differentially private

estimator (with δ ≤
√
d/(48

√
2Rn

√
log(48

√
2Rn/

√
d))) such that for every Gaussian distribu-

tion P = N (µ, σ2Id×d) (for −Rσ ≤ µj ≤ Rσ where j ∈ [d]) and

ES∼Pn

[
∥µ̂(S)− µ∥2

]
≤ α2 ≤ dσ2R2

6
, (85)

then n ≥ dσ
24αε .

Theorem 55 (Lower bound on DP covariance bounded mean estimation (Kamath et al., 2020,
Theorem 6.1)) Suppose µ̂ is an (ε, 0)-DP estimator such that, for every product distribution P ∈ Rd

such that E[P ] = µ, supv:∥v∥=1 Ex∼P [⟨v, x− µ⟩2] ≤ 1 and

ES∼Pn

[
∥µ̂(S)− µ∥2

]
≤ α2 . (86)

Then n = Ω
(
d/(εα2)

)
Theorem 56 (Lower bound of the error rate for hypercontractive linear regression with inde-
pendent noise(Bakshi and Prasad, 2021, Theorem 6.1)) Consider linear model y = ⟨β, x⟩ + η,
where optimal hyperplane β is used to generate data, and the noise η is independent of the samples
x. Then there exists two distribution D1 and D2 over R2 × R such that the marginal distribution
over R2 has covariance Σ and is (κk, k)-hypercontractive yet ∥Σ1/2(β1−β2)∥ = Ω(

√
κkγα

1−1/k),
where β1 and β2 are the optimal hyperplanes forD1 andD2 respectively, γ < 1/α1/k and the noise
η is uniform over [−γ, γ].

Theorem 57 (Lower bound of the error rate for hypercontractive linear regression with de-
pendent noise(Bakshi and Prasad, 2021, Theorem 6.2)) There exists two distributions D1, D2

over R2×R such that the marginal distribution over R2 has covariance Σ and is κk, k-hypercontractive
yet ∥Σ1/2(β1 − β2)∥ = Ω(

√
κkγα

1−2/k), where β1 and β2 are least square solutions for D1 and
D2, respectively, γ < 1/α1/k and the noise is a function of the marginal distribution of R2,
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Theorem 58 (Lower bound of Gaussian DP covariance estimation (Kamath et al., 2019, Lemma 6.11))
Let Σ̂ : Rn×d → Θ be an (ε, 0)-DP estimator (where Θ is the space of all d × d PSD matriaces),
and for every N (0,Σ) over Rd such that 1/2Id×d ⪯ Σ ⪯ 3/2Id×d,

ES∼N (0,Σ)n

[
∥Σ̂(S)− Σ∥2F

]
≤ α2

64
, (87)

then n ≥ Ω(d2/(εα)).
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