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Abstract

One pedagogical technique that promotes conceptual
understanding in mathematics learners is self-
explanation integrated with worked examples (e.g.,
Rittle-Johnson et al,, 2017). In this work, we
implemented self-explanations with worked examples
(correct and erroneous) in a software-based Intelligent
Tutoring System (ITS) for learning algebra. We
developed an approach to eliciting self-explanations in
which the ITS guided students to select explanations that
were conceptually rich in nature. Students who used the
ITS with self-explanations scored higher on a posttest
that included items tapping both conceptual and
procedural knowledge than did students who used a
version of the ITS that included only traditional
problem-solving practice. This study replicates previous
findings that self-explanation and worked examples in
an ITS can foster algebra learning (Booth et al., 2013).
Further, this study extends prior work to show that
guiding students towards conceptual explanations is
beneficial.
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Introduction

How can instruction foster learners’ acquisition of deep
understanding in mathematics? And how can technology-
based learning environments, such as Intelligent Tutoring
Systems, support this learning? Deep understanding of
mathematics involves several distinct types of knowledge,
including knowledge of fundamental concepts, knowledge of

how to solve problems, and understanding of the connections
between them (Crooks & Alibali, 2014; Hiebert & LeFevre,
19806).

Intelligent Tutoring Systems (ITSs) are computer-based
programs that administer lessons and learning activities to
students. ITSs support learning across various domains (for a
meta-analysis, see Ma et al., 2015). Many studies have
provided evidence that practice in an ITS can support
procedural understanding of mathematics (Ma et al., 2015).
However, current ITSs are less successful at promoting gains
in conceptual understanding (e.g., Long & Aleven, 2017,
Pane et al., 2014; but see Aleven & Koedinger, 2002). In this
research, we extended and tested an ITS for equation solving
in algebra, with the broad goal of creating an ITS that would
foster gains in conceptual understanding.

One pedagogical technique that has been shown to support
gains in conceptual knowledge in a range of domains is self-
explanation.  Self-explanation  involves  generating
explanations of to-be-learned material for oneself, in an effort
to more deeply process that material (Chi et al., 1994). Many
studies have documented the value of self-explanation as
means to help students learn and retain new material (for a
review, see Rittle-Johnson et al., 2017). In a foundational
study, Chi (1994) prompted some students to provide self-
explanations as they read a brief text about the circulatory
system. Students who produced self-explanations retained
more information and generated more accurate inferences
based on the material than students who did not produce self-
explanations. Other studies have documented the value of
self-explanation in mathematics (Barbieri & Booth, 2020;
Barbieri et al., 2019; Hilbert et al., 2008; Rittle-Johnson,
2017), including in ITSs (Aleven & Koedinger, 2002).



In the context of mathematical problem solving, some
research has suggested that self-explanation can potentiate
other sorts of learning activities, enhancing their benefits for
conceptual knowledge. For example, instruction that involves
both strategy comparison and prompts to self-explain yields
greater benefits for learning than instruction that involves
comparison on its own (Sidney & Alibali, 2015). Similarly,
instruction that involves self-explanations of worked
examples or problems steps yields greater benefits for
learning than similar instruction without self-explanation
prompts (Aleven & Koedinger, 2002; Barbieri et al., 2019).

In general, self-explanation is thought to be effective
because it engages constructive processes, such as identifying
inconsistencies, filling in knowledge gaps, integrating
different knowledge elements, and monitoring understanding
(e.g., Roy & Chi, 2005). However, the quality of self-
explanations also matters. High-quality self-explanations—
ones that demonstrate inference generation or knowledge
integration—are associated with greater benefits for learning
than lower-quality self-explanations, such as simple
restatements or paraphrases (Wylie & Chi, 2014).

Given the established benefits of high-quality self-
explanation for building conceptual understanding, we
sought to integrate activities that would elicit high-quality
self-explanations into an Intelligent Tutoring System for
early algebra. Building on previous research with similar
aims (e.g., Booth et al., 2013), we extended an ITS so it
incorporates worked examples produced by hypothetical
students, and prompts learners to explain the bases of (correct
or erroneous) problem-solving steps taken by these
hypothetical students. Rather than have students “build” self-
explanations from pieces (as in Booth et al., 2013)—a process
that some students find challenging and laborious—we drew
on previous studies that showed that selecting possible
explanations from a menu is a practical, time-effective, and
straightforward way to elicit explanations from students
(Rittle-Johnson et al., 2017), especially within ITSs.

Although it is not known whether the cognitive processes
involved in selecting explanations are the same as those
involved in generating explanations, past research has
documented benefits of selecting explanations for student
learning (e.g., Rau et al., 2015; Rittle-Johnson et al., 2017).
In designing the self-explanation activities for the ITS, we
based the set of explanation choices that we offered on self-
explanations that were generated by middle-school students
in a one-on-one tutorial interaction in a pilot study (Bartel et
al., 2020). As might be expected, student-generated self-
explanations varied widely in their quality, and many student-
generated self-explanations did not incorporate relevant
concepts. In our ITS, we included choice options that aligned
with  students’ typical explanations—including non-
conceptual explanations—but when learners selected non-
conceptual explanations, the ITS prompted them to select a
second explanation that invoked key concepts.

In brief, in this work we test the effectiveness of an ITS
that incorporates an approach to self-explanation of worked

examples that involves (1) students selecting possible
explanations, and (2) students receiving encouragement to
consider conceptually rich explanations, if they initially
select explanations that are not conceptually rich. We
compare this tutor to a baseline tutor that does not include
self-explanation activities, and we evaluate participants’
gains in both procedural skill and conceptual understanding.
We hypothesized that students who studied worked examples
and who provided self-explanations in addition to solving
problem-solving items would perform better than students
who received only problem-solving items on measures of
procedural and conceptual knowledge, and that these students
would also show enhanced performance on problem-solving
items in the tutor (i.e., less time spent per step, fewer incorrect
steps, fewer hint requests).

Method

Participants

Participants were 175 middle-school students recruited via an
online database and via word of mouth. Six participants were
excluded due to technical issues (e.g., computer
malfunctions, n = 5, and incomplete session, n = 1). Two
additional participants were excluded for having tutor
interactions (e.g., length of time per steps) that were three
standard deviations above the mean. Thus, the final analytic
sample consisted of 167 students (M age = 12.81 years, SD
age = 0.76 years; 57 6th grade, 73 7th grade, 36 8th grade,
one declined to respond). Of the 167 participants in the final
sample, 128 were White, 23 were biracial, six were
Black/African American, six were Asian, one was Native
Hawaiian/Pacific Islander, and three declined to report race
and ethnicity. Ninety-nine of the students identified as male,
64 as female, three as non-binary, and one declined to report
their gender. Ninety-three students reported they were in
advanced math, 73 reported they were not in advanced math,
and one declined to report. Participants were compensated 15
USD in the form of a gift card, cash, or check after
completing the study.

Design and Procedure

Data were collected as part of a study assessing the
effectiveness of a range of interventions on students’
conceptual and procedural knowledge of algebra.
Participants completed the study in a virtual setting, and the
sessions were conducted by trained experimenters.
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Figure 1: Study procedure



(A) 1. Here is an example of a problem a student is 3. What step did the student do?

trying to solve.
24=3x
The student divided the left side by 3
Check

an
divided the right side by 3

4. WHY was this a correct step?

2. First, the student did this CORRECT step.
24/3=3x/3
8=x

equal
The step undoss an operation by doing the inverse oParLion 10 both sides.
¥

(B) Please solve for x
8x=2x+6

6z =6 v

[ J

Hint Finish Problem

Figure 2: Participants in the experimental condition received both (A) worked examples and (B) problem solving.
Participants in the baseline condition only received (B). Both were presented in the Intelligent Tutoring System.

Each session lasted for about one hour. Participants were
randomly assigned to one of five conditions. In four of these
conditions, participants completed both worked examples
with self-explanation prompts and practice problems within
the ITS; these conditions varied in whether participants also
saw visual representations (yes/no) or engaged in warm-up
activities (yes/no). Preliminary analyses showed that the
visual representation and warm-up manipulations had little
impact on student performance. Thus, for purposes of this
paper, we collapsed these conditions into a unified
experimental condition, in which all students used a version
of the ITS that included self-explanations of worked
examples (n = 134). We compared students in the unified
experimental condition against students in a baseline
condition who used an ITS that included problem-solving
activities but that did not include self-explanations or worked
examples (n = 33).

This study was preregistered on the Open Science
Framework. The preregistration includes many analyses that
fall outside the scope of the current report. Here, we focus
specifically on comparing students who used a version of the
ITS that included self-explanations of worked examples and
students who used a version of the ITS that did not include
these activities (Hypothesis 1 in the preregistration; see
Figure 1 for a schematic of the study procedure).

Measures of Learning: Pretest and Posttest Participants
completed an online pretest and isomorphic posttest that
assessed algebra knowledge. Specifically, these tests
assessed students’ procedural knowledge (3 items) and
conceptual knowledge (8 items) of basic algebra. Items
assessing procedural knowledge measured students’ abilities
to solve linear equations, whereas items assessing conceptual
knowledge measured students’ understanding of underlying
concepts in algebra, such as understanding inverse operations
and doing the same thing to both sides of the equation when
solving problems The posttest contained two additional
transfer items. Items were adapted from prior literature (Fyfe
et al., 2018; Nagashima et al., 2020; Rittle-Johnson et al.,
2011). Some items had multiple parts and were thus scored
accordingly. Participants were given 11 minutes to work on
the pretest, and 13 minutes to work on the posttest.

Measures of Performance in the Intelligent Tutoring
System Participants then solved problems in an Intelligent
Tutoring System (ITS). The ITS consisted of two sections:
worked examples (unified experimental condition only) and
problem solving (all conditions; see Figure 1). Before each
section, students watched a short instructional video. In both
the worked examples and problem-solving activities,
students received immediate feedback on their responses.
They also could request scaffolded hints from the tutor at any
time.

Participants in the unified experimental condition were
presented with correct and incorrect worked examples (with
a maximum of 8 problems). In each worked example,
students were asked to use a drop-down menu to provide
explanations about what operation a hypothetical student
performed at a specific step of the equation, as well as to
identify the conceptual basis of the step (see Figure 2A).
Students could select from two conceptually-focused
explanations (e.g., “the step keeps both sides of the equation
equal” in Figure 2), two procedurally-focused explanations
(e.g., “the step makes the equation simpler” in Figure 2), and
two incorrect explanations (e.g., “the step removes the x
variable” in Figure 2). Unique to this tutor was that students
had to choose a conceptual response in order to advance. If
students chose a response that was procedural or incorrect,
they were asked to choose another response (even if the
procedural explanation was, in fact, correct) via a prompt
(e.g., “That’s true but does not tell why the student did this
step.”)

Participants in both the unified experimental condition
and the baseline condition were then presented with linear
equations to solve (e.g., 3x + 8 = 11; max. 11 problems) in
increasing levels of difficulty. Participants typed their
response for each problem-solving step of the equation into
the ITS and received immediate feedback (Figure 2B). To
keep time consistent across conditions, participants in the
experimental condition had 10 minutes to complete the
worked example activities and 10 minutes to complete these
problem-solving items, while participants in the baseline
condition had 20 minutes to complete the problem-solving
1tem.
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Table 1: Procedural (max: 3) and conceptual (max: 15) pretest and posttest scores and transfer (max: 2) posttest scores, with
standard deviations in parentheses.

Procedural Conceptual Transfer
Condition Pretest Posttest Pretest Posttest Pretest Posttest
Baseline 2.12 (0.86) 2.33(0.74) 6.91 (3.17) 9.06 (3.65) 0.64 (0.74)
Experimental 2.17 (0.97) 2.51(0.74) 7.55(3.89) 9.74 (3.63) 0.75 (0.84)

Demographic Questions Parents were sent a demographic
questionnaire prior to the study session. Questions included
age, grade, gender, math level in school, and self-reported
socioeconomic status.

Results

Effects on Learning

In this section, we report the effect of the intervention on
three measures of learning: procedural knowledge,
conceptual knowledge, and transfer. Table 1 presents average
pretest and posttest scores on each measure.

Procedural knowledge We first examined the effect of the
intervention on procedural learning. Recall that we
hypothesized that students who received worked examples
and self-explanations in addition to problem-solving items
(i.e., the unified experimental condition) would perform
better than students who received only problem-solving items
(i.e., the baseline condition). To analyze the data, we
constructed a linear regression with procedural posttest score
as the dependent variable and procedural pretest score,
condition (coded: baseline = -.5; experimental = .5), grade
level (coded: 6th grade = -1; 7th grade = 0; 8th grade = 1),
and number of problem-solving items attempted in the ITS as
independent variables. We included grade level and number
of problem-solving items completed in the ITS as covariates
to account for algebra experience and for the number of
problem-solving items to which students were exposed. We
chose to control for number of problem-solving items
attempted to zero in on whether increases in performance
were a result of students’ self-explanations of the worked
examples or because they were able to solve more problems
and potentially learn more from the problem-solving
condition.

Students in the experimental condition scored higher on the
procedural posttest than students in the baseline condition, f
=0.28, F(1, 161) = 5.32, p = 0.022, indicating that students
who generated self-explanations benefited more than those
who simply solved a comparable number of problems.
However, it should be noted that the effect of condition was
non-significant if the covariate (number of problem-solving
items attempted) was not included in the model, § = 0.16, p

= (.148. Students with higher pretest scores scored higher on
the procedural posttest, F(1, 161) = 48.8, p < 0.001, as did
students who attempted more problems in the ITS, F(1, 161)
=7.26, p=0.008.

Conceptual Knowledge We next examined the effect of the
intervention on conceptual knowledge. We constructed a
linear regression with conceptual posttest score as the
dependent variable and conceptual pretest score, condition,
grade level, and number of problem-solving items attempted
in the ITS as independent variables. Again, grade level and
number of problem-solving items completed were included
as covariates to account for algebra experience and exposure
to problem-solving items in the ITS.

As hypothesized, students in the experimental condition
scored higher on the conceptual knowledge posttest than
students in the baseline condition, f = 1.23, F(1, 161) =7.18,
p = 0.008, indicating that students who generated self-
explanations gained more conceptual knowledge than those
who simply solved a comparable number of problems. Once
again, the effect of condition was non-significant if the
covariate (number of problem-solving items attempted) was
not included in the model, f = 0.35, p = 0.459. Students with
higher conceptual knowledge at the pretest scored higher on
the conceptual knowledge posttest, F(1, 161) = 90.62, p <
0.001, as did students who attempted more problems in the
ITS, F(1, 161) = 29.23, p < 0.001.

Procedural Transfer Because transfer items were not
included in the pretest, we could not test for pre to posttest
improvement. However, we tested the effect of condition on
transfer. We constructed a linear regression with transfer
score as the dependent variable and procedural pretest score,
condition, grade level, and number of problem-solving items
attempted in the ITS as independent variables. We also
included the procedural pretest score in the model because it
most closely resembled the transfer items. There was not a
significant effect of condition; however, the pattern of
findings aligned with those reported above (f = 0.27, F(1,
161) = 3.41, p = 0.067). There were significant main effects
of the procedural pretest, F(1, 161) = 12.41, p < 0.001, and
number of problem-solving items attempted in the ITS, F(1,
161)=12.64, p <0.001.
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Figure 3: Each performance measure organized by condition. Error bars reflect standard error.

Effects on Performance in the ITS

To investigate students’ performance in the ITS, we analyzed
log data collected by the ITS during problem-solving items.
Specifically, we explored the total number of problems
attempted, the average number of incorrect attempts at each
problem-solving step, the average number of hints requested
at each step, and the amount of time spent on each step. These
are standard measures investigated in the ITS literature (Long
& Aleven, 2013). To examine whether learners in the
baseline or experimental condition exhibited more efficient
learning, we conducted four separate linear regressions with
each of the performance measures in the ITS. In each model,
condition, pretest score (procedural and conceptual
separately), and grade level were included as independent
variables. Additionally, we included the number of problems
attempted in the ITS as an independent variable in three of
the models (the ones in which it was not the dependent
variable, because the number of problems solved was
strongly/moderately correlated with each of the other

dependent variables).

Number of Problems Attempted Students in the baseline
condition solved more problems (M = 8.97, SD = 2.67) than
students in the experimental condition (M = 6.83, SD = 3.29),
f=-2.42, F(1,161)=29.30, p <0.001, presumably because
students in the baseline condition received more time to
complete the problems than students in the experimental
condition. Moreover, procedural pretest scores, F(1, 161) =
39.50, p < 0.001, and conceptual pretest scores, F(1, 161) =
35.86, p < 0.001, were both positively associated with
number of problems attempted in the ITS.

Incorrect Attempts per Step Overall, students made about
one incorrect attempt per two steps (M per step = 0.58, SD
per step = 0.8). Controlling for pretest (procedural and
conceptual separately), grade, and problems attempted in the
ITS, students in the unified experimental condition

exhibited fewer incorrect attempts per step than students in
the baseline condition, f = -0.34, F(1, 160) = 8.75, p = 0.004
(see Figure 3). Students who attempted more problems also
made fewer incorrect attempts per step, f = -0.19, F(1, 160)
=103.31, p <0.001.

Number of Hints per Step Controlling for pretest
(procedural and conceptual), grade, and number of problems
attempted in the ITS, students in the unified experimental
condition requested fewer hints per step than those in the
baseline condition, f =-0.10, F(1, 160)=6.97, p =0.009 (see
Figure 3), and number of problems attempted in the ITS was
inversely related to the number of hints used, # = -0.10, F(1,
160) =52, p < 0.001.

Average time spent per step On average, students spent
13.35 seconds on each step (SD = 15.49). Controlling for
pretest (procedural and conceptual), grade, and number of
problems attempted in the ITS, students in the baseline
condition spent more time on each step, f = -5.83, F(1, 160)
= 7.84, p = 0.006; see Figure 3. Number of problems
attempted in the ITS was inversely related with the average
time spent per step, f = -5.83, F(1, 160) = 108.02, p < 0.001.

Discussion

In the current study, we investigated whether a new self-
explanation task integrated with worked examples, in which
students were guided towards conceptual explanations,
influenced performance and learning in middle-school
students learning algebra with an Intelligent Tutoring
System. Our findings indicate that, indeed, this form of
intervention helped students gain conceptual and procedural
knowledge of algebra over and above a problem-solving
control. Moreover, students who studied worked examples
and provided explanations solved problems faster, asked for
fewer hints, and made fewer mistakes within the ITS than
those in the baseline condition.



This study confirms earlier work that showed that worked
examples with self-explanation can enhance learning within
an ITS (e.g., Salden et al., 2010). Prior research suggests that
self-explanation helps learners integrate to-be-learned
information with prior knowledge, resulting in deeper
understanding of the content (Bisra et al.,, 2018; Rittle-
Johnson & Lochr, 2017).

This study also extends past work on self-explanations and
worked examples (e.g., Booth et al., 2013) through the design
of an ITS that guides students towards conceptually-focused
explanations, and by demonstrating that this new format for
selecting self-explanations is effective. Like previous efforts
(Burr et al., 2020; Rittle-Johnson & Loehr, 2017), this
intervention has menu-based explanations with correctness
feedback, but unlike some previous efforts, students are
asked for two-step explanations that ask for the operation and
the conceptual justification. A special feature of the second
explanation step is that, included among the menu options
(for the conceptual justification) are correct procedural
explanations. These explanations do not “count” as correct,
but they do give the system an opportunity to give feedback
stating that these explanations do not get at why the step is
justified, so they may help the student learn how conceptual
and procedural explanations differ. In this way, this version
of the ITS may also help students recognize that—in general—
they should think about, not only what to do, but why it is
correct.

Moreover, this intervention led to improvements on
posttest scores as well performance measures in this ITS.
These findings suggest that self-explanations and worked
examples affect both problem-solving accuracy and problem-
solving efficiency. In future work, researchers should explore
the relations between learning measures (e.g., pre- to posttest
gains) and ITS performance measures.

Our findings do not specify the nature of the cognitive
processes elicited by the self-explanation task or how these
processes may have yielded the observed benefits of self-
explanation. It is worth noting that our task involved selecting
potential explanations from a menu, rather than generating
explanations “from scratch”, and our system also did not
accept solely procedural explanations, but rather encouraged
students to consider why steps were correct. It is possible that
the mechanism of action for this type of self-explanation may
differ from that for self-explanations that are spontaneously
generated. To elucidate these mechanisms, future work that
involves collecting talk-aloud protocols as students perform
the self-explanation task would be valuable.

We acknowledge several limitations of this study. First, the
baseline and experimental conditions had dramatically
unequal numbers of students, due to the design of the larger
experiment. We recognize this may violate assumptions
about equal variance between samples, but we believe that
our findings hold value as they correspond with the findings
of previous research. Moreover, this experiment was
conducted remotely during the COVID-19 pandemic. Given
the unique context of the study, it may not be warranted to
generalize conclusions to more typical settings. Lastly, the

sample of students in this study was fairly homogeneous and
made up primarily of White students, and it included many
students who were above grade level in mathematics. Future
studies are needed to investigate the impact of this
intervention with students from a wider variety of
backgrounds.

Conclusion

In brief, this study replicates past findings that self-
explanations with worked examples can promote both
procedural and conceptual understanding, and it introduces a
new approach to eliciting such explanations within an ITS.
Like a human tutor, our new version of the ITS encourages
students to provide more conceptually rich explanations, if
they initially provide less rich ones. In so doing, this new ITS
supports students in focusing on the conceptual basis of their
problem-solving steps, supporting both performance and
learning.
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