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Abstract. Here we discuss a regularized version of the factorization method
for positive operators acting on a Hilbert Space. The factorization method is
a qualitative reconstruction method that has been used to solve many inverse
shape problems. In general, qualitative methods seek to reconstruct the shape
of an unknown object using little to no a priori information. The regular-
ized factorization method presented here seeks to avoid numerical instabilities
in the inversion algorithm. This allows one to recover unknown structures
in a computationally simple and analytically rigorous way. We will discuss
the theory and application of the regularized factorization method to exam-
ples coming from acoustic inverse scattering. Numerical examples will also be
presented using synthetic data to show the applicability of the method.

1. Introduction

In this paper, we will discuss a regularized version of the factorization method
as well as its applications scattering theory. We will briefly review the theoretical
framework that was developed in [14]. The factorization method (see for e.g. [6,
11, 12, 18, 19, 21, 23, 25]) is a method used to solve inverse shape problems and
fall under the category of qualitative methods. Qualitative methods are otherwise
referred to as non-iterative or direct methods. In many applications it is optimal
to use qualitative methods rather than applying non-linear optimization techniques
for two reasons: first is that optimization methods require a priori information (to
construct an initial guess) that may not be readily available such as the number
of regions to be recovered, second is that these methods can be computationally
expensive and highly ill-conditioned. All qualitative methods seek to recover the
shape of an unknown region from little a priori information by relating the support
of the region to the range of the ‘measured’ data operator. These methods where
first introduced in [9] and are frequently used in non-destructive testing where one
is given measurements on the surface (or exterior) of an object and one tries to
reconstruct interior structures. This has many applications in the area of medical
imaging and non-destructive testing in engineering.

The factorization method solves the inverse shape problem by appealing to Pi-
card’s criteria for compact operators. To this end, a range test is used to determine
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the support of the unknown region denoted D. In general, we have that

z ∈ D ⇐⇒ !z ∈ Range
(
A1/2

)

where !z is known and the positive compact operator A is given by the measure-
ments. In order to apply Picard’s criteria to reconstruct the unknown region a series
is computed where one divides by the sequence of eigenvalues (or singular values)
of the compact operator A. Since this sequence tends to zero (usually rapidly)
this could result in numerical instabilities. Therefore, we will develop a regular-
ization strategy for the factorization method motivated by the previous works in
[1–3, 16, 26]. In [1, 2] the linear sampling method was studied by appealing to
the analytical techniques in the factorization method and then applying a suitable
regularization strategy. Whereas in [3] a new qualitative method known as the gen-
eralized linear sampling method was developed and uses a specific cost-functional
for the regularization scheme in applying the linear sampling method. What we
present here is mainly influenced by [16,26]. Loosely speaking, we have the result
that for a positive compact operator A : X → X∗ where X is a Hilbert space and
X∗ is the corresponding dual-space then

! ∈ Range
(
A1/2

)
⇐⇒ lim inf

α→0
〈xα , Axα〉X×X∗ < ∞

where xα (defined below) is the regularized solution to Ax = !. The regularization
scheme that is used to compute xα can be taken to be any of the standard tech-
niques i.e. Tikhonov regularization, Spectral cutoff and Landweber iteration. Here
〈· , ·〉X×X∗ is the sesquilinear dual-pairing between X and X∗. The main analyti-
cal tool one needs to prove this result is the spectral decomposition for the given
positive compact operator A : X → X∗.

The preceding sections are organized as follows. First, we will briefly discuss
the theory behind the regularized version of the factorization method for a positive
compact operator A : X → X∗ where X is a Hilbert space. The analysis presented
here was initially studied in [26]. Then, we consider two inverse shape problems
coming from inverse scattering. First, we will consider the problem of recovering
an isotropic scatterer from far-field measurements. Lastly, we will consider the
problem of recovering a sound soft scatterer from near-field measurements.

2. Regularized Factorization Method

In this section, we will discuss the theoretical framework that was developed
in [14] for the regularized factorization method. The analysis here generalizes
the main result in [16]. To begin, we assume that we have a given data operator
denoted by A : X → X∗ acting on the Hilbert space X that is positive and compact.
Again, we note that here we take the notation that X∗ denotes the dual space of
X as well as 〈· , ·〉X×X∗ denoting the sesquilinear dual-product between X and X∗.
Furthermore, assume that there is a separable Hilbert pivoting space H with dense
inclusions X ⊆ H ⊆ X∗ i.e. a Gelfand triple of Hilbert spaces.

Now in [14] it is proven that the operator A has a spectral decomposition
provided that either X is a complex Hilbert space or the bilinear form

(x, y) )−→ 〈y , Ax〉X×X∗ for any x, y ∈ X

is symmetric. Under these assumptions we have that

Ax =
∑

λn(x, xn)X !n or Ax =
∑

λn〈x, !n〉X×X∗ !n(2.1)
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for any x ∈ X. Here the decreasing sequence λn ∈ R>0 converges to zero whereas
{xn}n∈N is an orthonormal basis of X and {!n}n∈N is an orthonormal basis of X∗.
Moreover, {!n}n∈N is the corresponding dual-basis for {xn}n∈N such that

〈xm , !n〉X×X∗ = δmn for any n, m ∈ N.

This gives that {λn; xn; !n} ∈ R>0 ×X ×X∗ is the singular value decomposition of
the compact operator A. Now just as in [24] we can define the regularized solution
of Ax = ! to be xα which is given by

xα =
∑ φ(λn;α)

λn
〈xn, !〉X×X∗ xn.(2.2)

The real-valued function φ(t;α) denotes the filter associated with a given regular-
ization technique. Here we will assume that φ(t;α) :

(
0,λ1

]
→ R≥0 satisfies that

for all 0 < t ≤ λ1

lim
α→0

φ(t;α) = 1 and φ(t;α) ≤ Creg for all α > 0.

Now, due to the fact that A is positive and compact we have that there is a bounded
linear ‘square root’ operator denoted Q : X → H such that A = Q∗Q where the
adjoint Q∗ is defined by

(Qx, h)H = 〈x, Q∗h〉X×X∗ for all h ∈ H and x ∈ X

see Theorem 2.2 of [14] for details. We also obtain that

! ∈ Range(Q∗) ⇐⇒
∑ 1

λn
|〈xn, !〉X×X∗ |2 < ∞

from Theorem 2.2 of [14] which is proven in a similar as was Picard’s Criteria (see
for e.g. Theorem 1.28 of [5]). Then by appealing to the properties of the filter
function φ(t;α) it can be shown that

! ∈ Range(Q∗) ⇐⇒ lim inf
α→0

〈xα , Axα〉X×X∗ < ∞.

This can be done by using the fact that

〈xα , Axα〉X×X∗ =
∑ φ2(λn;α)

λn
|〈xn, !〉X×X∗ |2(2.3)

along with some simple estimates of the above quantity using the properties of the
filter function. Some common filter functions are given by

φ(t;α) =
t2

t2 + α
, φ(t;α) = 1 −

(
1 − βt2

)1/α
and φ(t;α) =






1, t2 ≥ α,

0, t2 < α

(2.4)

which corresponds to Tikhonov regularization, Landweber iteration (with α = 1/m
for some m ∈ N and constant β < 1/λ2

1) and the Spectral cutoff respectively. It is
clear that these filter functions satisfy the above constraints (see for e.g. [20]).

Note, that the classical factorization method (i.e. without regularization) is
given by using (2.3) with α = 0. Formally, this would imply that φ(t; 0) = 1 and
therefore one would be dividing by the singular values λn. This is not numerically
stable since λn → 0 as n → ∞. This will be seen in one of our numerical examples
provided in a later section.
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Now, assume that the operator A : X → X∗ also has the following factorization

A = S∗TS where S : X → V and T : V → V ∗

with V also being a Hilbert space. Here the adjoint operator S∗ : V ∗ → X∗ is given
by

〈Sx, v〉V ×V ∗ = 〈x, S∗v〉X×X∗ for all v ∈ V and x ∈ X.(2.5)

Furthermore, we assume T is bounded and strictly coercive on Range(S) i.e.

β‖Sx‖2
V ≤ 〈Sx, TSx〉V ×V ∗ for all x ∈ X.

If we assume that S is a compact and injective then we have that A : X → X∗ is
positive and compact. From the previous discussion, this implies that A = Q∗Q
where Q is the ‘square root’ of the operator. Notice, that we have the estimate

β‖Sx‖2
V ≤ ‖Qx‖2

H = 〈x , Ax〉X×X∗ = 〈Sx, TSx〉V ×V ∗ ≤ ‖T‖V →V ∗‖Sx‖2
V

for all x ∈ X by appealing to the boundedness and coercivity of the operator T .
We can conclude, by Theorem 1 of [10] that Range

(
Q∗) = Range(S∗). Putting

everything together we have the following result.

Theorem 2.1. Let A : X → X∗ have the factorization A = S∗TS such that
S : X → V and T : V → V ∗ are bounded linear operators where X and V are
Hilbert spaces. Assume that S is compact and injective as well as T being strictly
coercive on Range(S). Then we have that

! ∈ Range(S∗) ⇐⇒ lim inf
α→0

〈xα , Axα〉X×X∗ < ∞

where xα is the regularized solution given by (2.2) to Ax = !.

Proof. For details of the proof see [14]. !
Notice, that the result in Theorem 2.1 can be reformulated using the spectral

decomposition of A such that

! ∈ Range(S∗) ⇐⇒ lim inf
α→0

∑ φ2(λn;α)

λn
|(!n, !)X∗ |2 < ∞(2.6)

where we have used (2.3). Here φ(t;α) again denotes the filter function used to
find the regularized solution to Ax = !. From this we have related the range
of S∗ to the spectral decomposition of A just as in the traditional factorization
method but we have a regularization step. This allows one to have a rigorous range
characterization without having unstable numerical reconstructions due to the fact
that λn tend to zero rapidly. In the preceding section we will see how to apply
Theorem 2.1 to inverse shape problems coming from inverse scattering. We note
that this method has been used (without proof) for numerical examples in [7,28]
for recovering scatterers with the classical factorization method.

3. Applications to Inverse Scattering

In this section, we will see how the theory developed in section 2 can be applied
to solving inverse shape problems. Here we are interested in problems coming from
the area of inverse scattering. This comes up in many areas of engineering and
medical imaging. The goal is to recover the shape of an object using the measured
scattering data with little to no a priori information about the object. The scatterer
will be illuminated by an incident wave and we will show how to recover the scatterer
from the measured scattering data using the regularized factorization method.
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3.1. An example with far-field measurements. We will now consider the
inverse shape problem of reconstructing an isotropic scatterer using far-field mea-
surements. This problem has been studied by many researchers with many inter-
esting reconstruction methods for e.g. [3,4,22]. Here we will apply Theorem 2.1 to
solve the inverse shape problem as well as provide some numerical examples. The
classical factorization method was studied for this problem in [22].

To begin, let D ⊂ Rm (for m = 2 or 3) denote the unknown inhomogeneous
isotropic scattering region with Lipschitz boundary. Here we assume that the in-
cident plane wave given by ui(x) = eikx·d is used to illuminate the scatterer where
d ∈ S = unit sphere/circle. The parameter k > 0 denotes that wave number.
The incident plane wave’s interaction with the scatterer D results in the radiating
scattered field us(x, d) that satisfies

∆us + k2(1 + q)us = −k2qui in Rm(3.1)

∂ru
s − ikus = O

(
r−(m+1)/2

)
as r → ∞.(3.2)

Here (3.2) is the Sommerfeld radiation condition and is assumed to hold uniformly
with respect to the angular direction(s) with r = |x|. The contrast q ∈ L∞(Rm)
defines the deviation in the refractive index from the background. Therefore, we let
n(x) = 1 + q(x) denote the refractive index which is the material parameter with
the presence of the scatterer such that supp(q) = D.

Assuming that there is a constant qmin where

0(q) ≥ qmin > 0 and 1(q) ≥ 0 for a.e. x ∈ D

then the analysis in chapter 8 of [8] implies that (3.1)–(3.2) has a unique solution
us ∈ H1

loc(Rm). Since us is a radiating solution to Helmholtz equation in Rm \ D
we have the expansion

us(x, d) = γ
eikr

r(m−1)/2

{
u∞(x̂, d) + O

(
1

r

)}
as r → ∞

where u∞(x̂, d) denotes the corresponding far-field pattern for (3.1)–(3.2). This
quantity depending on the incident direction d and the measurement direction
x̂ = x/r. The constant

γ =
eiπ/4

√
8πk

in R2 and γ =
1

4π
in R3.

For this model we will assume that the far-field pattern is measured from the
scattered field far away from the scatterer D. This implies that we have access to
the measured far-field operator

F : L2(S) −→ L2(S) such that (Fg)(x̂) =

∫

S
u∞(x̂, d)g(d) ds(d).(3.3)

In order to solve the inverse shape problem of recovering D from the knowledge of
F we will appeal to Theorem 2.1 along with the factorization analysis in [22].

We now derive and use the factorization the far-field operator F to solve the
inverse problem. For this, motivated by (3.1)–(3.2) we consider the problem

∆w + k2(1 + q)w = −k2qf in Rm
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along with (3.2) for any f ∈ L2(D). Therefore, we note that w ∈ H1
loc(Rm) satisfies

(see for e.g. [8])

w(x) = k2

∫

D
q(y)Φ(x, y)

[
w(y) + f(y)

]
dy for any x ∈ Rm.(3.4)

Here Φ denotes the fundamental solution for Helmholtz equation given by

Φ(· , y) =






i
4H(1)

0 (k| · −y|) for m = 2,

eik|·−y|

4π| · −y| for m = 3
(3.5)

where H(1)
0 is the first kind Hankel function of order zero. Using the fact that

Φ(x, y) = γ
eik|x|

|x|(m−1)/2

{
e−ikx̂·y + O

(
1

|x|

)}
as |x| → ∞

from (3.4) we can conclude that the far-field pattern for w is given by

w∞(x̂) = k2

∫

D
q(y)e−ikx̂·y[w(y) + f(y)

]
dy.(3.6)

From this, we define the operator

H : L2(S) −→ L2(D) such that Hg =

∫

S
eiky·dg(d)ds(d)

∣∣∣
D

and its adjoint

H∗ : L2(D) −→ L2(S) such that H∗ϕ =

∫

D
e−ikx̂·yϕ(y)dy

for any g ∈ L2(S) and ϕ ∈ L2(D). Lastly, we define the bounded linear operator
T : L2(D) → L2(D) such that

Tf = k2q[w + f ]
∣∣
D

for any f ∈ L2(D).

It is well-known that F corresponds to the far-field pattern when ui is replaced by
Hg. The representation (3.6) implies that

Fg = k2

∫

D
q(y)e−ikx̂·y[wg(y) + (Hg)(y)

]
dy

where wg is the scattered field for f = Hg. We now have the factorization

F = H∗TH

where the operators T and H are as defined above.
Notice, that we have a symmetric factorization of the far-field operator that is

needed to apply the theory in section 2. We now need that the operators used in
the factorization do indeed satisfy the assumptions of Theorem 2.1. To this end, it
is well known that H is is compact and injective as well as

!z = e−ikx̂·z satisfies !z ∈ Range(H∗) ⇐⇒ z ∈ D.

The last piece of the puzzle is the coercivity of the middle operator. As it stands,
the middle operator T is not strictly coercive on the range of H. In order to solve
this problem we consider the operator

F# =
∣∣0(F )

∣∣ +
∣∣1(F )

∣∣.
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where

0(F ) =
1

2
(F + F ∗) and 1(F ) =

1

2i
(F − F ∗).

Note, that 0(F ) and 1(F ) are self-adjoint compact operators by definition which
implies that the absolute value can be compute via the spectral decomposition i.e.
the Hilbert-Schmidt Theorem. From the analysis of the operator T (see for e.g.
chapter 4 [25] for details) we have that

F# = H∗T#H

where the new operator T# is strictly coercive on L2(D). Therefore, by appealing
to Theorem 2.1 we have that

z ∈ D ⇐⇒ lim inf
α→0

(gαz , F#g
α
z )L2(S) < ∞(3.7)

provided that gαz is the regularized solution to F#g = !z.
Numerical examples: We now give some numerical reconstructions using

(3.7) in two dimensions. To this end, we assume that the scatterer has small area.
Then, we can exploit the Born approximation for the scattered field to simplify
the calculations of the synthetic data. Therefore, we will compute the synthetic
far-field data using the approximation

u∞(x̂, d) ≈ k2

∫

D
q(y)e−iky·(x̂−d) dy.

In all of the preceding examples we will take a constant contrast in the scatterer as
well as a fixed wave number given by q = 1 + i and k = 4, respectively. We let the
boundary of the scatterer to be given by

∂D = r(θ) (cos(θ), sin(θ)) for 0 ≤ θ ≤ 2π.

Here the radial function r(θ) is given by either

r(θ) = 0.5
(
| sin(θ)|10 + 0.1| cos(θ)|10

)−1/10
or r(θ) = 0.5

(
1 − 0.25 sin(4θ)

)

for a rounded square shaped scatterer or star shaped scatterer, respectively.
In Figure 1–4, we plot the discretized version of the reciprocal to (3.7) in order

to recover the scatterer. For this, we will take a fixed regularization parameter
α = 10−6 in all our examples. Now, we need to define the discretized far-field
operator with random noise added as

Fδ = [u∞(x̂i, dj) (1 + δEi,j)]
64
i,j=1

with random complex-valued matrix E satisfying ‖E‖2 = 1. Here, we take x̂i, dj to
be equally spaced points on the unit circle given by

x̂i = di = (cos θi, sin θi) with θi = 2π(i − 1)/64.

Therefore, following [14] we have that the imaging functional that discretizes the
reciprocal to (3.7) is given by (see also (2.3))

W (z) =




64∑

j=1

φ2(σj ;α)

σj

∣∣(uj , !z)
∣∣2



−1

with !z = [e−ikx̂i·z]64i=1.

Here σj are the singular values and uj are the left singular vectors of

Fδ,# =
∣∣0(Fδ)

∣∣ +
∣∣1(Fδ)

∣∣
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Figure 1. Reconstruction of the rounded square shaped scatterer
with the Tikhonov filter given in (2.4). Left: reconstruction with
no added noise and Right: reconstruction with 10% added noise.

Figure 2. Reconstruction of the star shaped scatterer with the
Tikhonov filter given in (2.4). Left: reconstruction with no added
noise and Right: reconstruction with 10% added noise.

and the filter function φ(t;α) is given by (2.4). To reiterate, the absolute value of
a self-adjoint matrix is given by its eigenvalue decomposition.

By Theorem 2.1 and (3.7) we expect that W (z) > 0 for z ∈ D and W (z) ≈ 0
for z /∈ D. In the following examples for this section, we plot the imaging function
W (z) along with the true shape of the scatterer given by the dotted lines.

We will also check the influence of the filter function on the numerical recon-
struction. The numerical examples in [14] seem to suggest that the reconstruction
does not depend heavily on the regularization scheme used. We test that here where
we present the reconstructed star shaped scatterer with multiple filter functions.
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Figure 3. Reconstruction of the star shaped scatterer with the
Spectral cutoff filter given in (2.4). Left: reconstruction with no
added noise and Right: reconstruction with 10% added noise.

Figure 4. Reconstruction of the star shaped scatterer with the
Landweber filter given in (2.4). Left: reconstruction with no added
noise and Right: reconstruction with 10% added noise.

In Figure 2–4, we reconstruct the star shaped scatterer with the three filter
functions given in (2.4). As we can see, the choice of filter function seems to cause
little to no differences in the numerical reconstruction.

Lastly, we wish to show that the regularization step is needed to insure stable
reconstructions. In Figure 5–6, we again recover the the star shaped scatterer.
Here we plot the imaging functional W (z) without regularization (i.e. α = 0
corresponding to the classical factorization method) and with regularization (i.e.
α = 10−3). We give the reconstruction when no error is added to the data and 10%
random noise is added to the data. As we can see, the case without regularization
fails to recover the scatterer when noise is added to the far-field data.
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Figure 5. Reconstruction of the star shaped scatterer with the
Tikhonov filter given in (2.4). Left: reconstruction without regu-
larization and Right: reconstruction with regularization. Here no
error is added to the far-field data.

Figure 6. Reconstruction of the star shaped scatterer with the
Tikhonov filter given in (2.4). Left: reconstruction without reg-
ularization and Right: reconstruction with regularization. Here
10% error is added to the far-field data.

3.2. An example with near-field measurements. We will now consider
the inverse shape problem of reconstructing a sound soft scatterer using near-field
measurements. One of the main difficulties when using a factorization method with
near-field measurements is the fact that the near-field operator does not have a sym-
metric factorization as is needed to apply Theorem 2.1. Due to this, researchers
have developed analytical tools for post-processing the near-field measurements to
give the corresponding operator a symmetric factorization. One way to achieve
this is by using the Outgoing-to-Incoming operator. This was done in [17] for the
classical factorization method using near-field measurements. In [16] non-physical
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sources where used to insure that the near-field operator admits a symmetric factor-
ization. Recently, in [13] a Dirichlet-to-Far-Field operator was used to convert the
near-field measurements into far-field measurements for a direct sampling inversion
method. This is advantageous due to the fact that the far-field operator usually
admits a symmetric factorization as we have seen in the previous section.

Now, we will formulate the inverse scattering problem under consideration and
then apply the Dirichlet-to-Far-Field operator to the measurements in order to
apply Theorem 2.1. To this end, we will assume that the unknown scatterer is
denoted by D ⊂ Rm where ∂D ∈ C2 is a closed curve/surface such that Rm \ D is
connected. Again, we let k > 0 denote the associated wave number. The scatterer
is illuminated by a point source incident field ui(· , y) = Φ(· , y) given by (3.5) where
y is the location of the point source on the curves/surface Γ. We will assume that
the scatterer D is contained in the region inclosed by the Γ such that dist(Γ, D) > 0.
Therefore, the radiating scattered field us(· , y) ∈ H1

loc(Rm \ D) satisfies

∆us + k2us = 0 in Rm \ D and us(· , y) = −ui(· , y) on ∂D(3.8)

along with the radiation condition (3.2). It is well known that for every y ∈ Γ there
is a unique scattered field. So we may assume that the scattered field us(x, y) is
known/measured for all x, y ∈ Γ. Therefore, we now define the so-called near-field
operator

N : L2(Γ) −→ L2(Γ) given by (Ng)(x) =

∫

Γ
us(x, y)g(y) ds(y).

Here in inverse shape problem is to recover D from the knowledge of the near-field
operator N .

To this end, just as in the previous example we begin by deriving a factorization
for the near-field operator. In order to continue, we make the assumption that k2

is not a Dirichlet eigenvalue of the negative Laplacian in D. For this, motivated by
(3.8) we consider the problem

∆w + k2w = 0 in Rm \ D and w = −f on ∂D

along with (3.2) for any f ∈ H1/2(∂D). From the analysis done in [13] we have
that the solution w ∈ H1

loc(Rm \ D) has the integral representation

w(x) = −
∫

∂D
Φ(x,ω)

[
S−1f

]
(ω) ds(ω) for any x ∈ Rm \ D(3.9)

where

S : H−1/2(∂D) −→ H1/2(∂D) such that Sϕ =

∫

∂D
Φ(· ,ω)ϕ(ω) ds(ω)

∣∣∣
∂D

for any ϕ ∈ H−1/2(∂D). By the assumption on k it is known that S has a bounded
inverse (chapter 1 in [25]) which implies that (3.9) is well defined. Now, we define
the bounded linear operator

M : L2(Γ) −→ L2(∂D) given by Mg =

∫

Γ
Φ(· , y)g(y) ds(y)

∣∣∣
∂D

(3.10)

and the dual-operator

M( : L2(∂D) −→ L2(Γ) given by M(ϕ =

∫

∂D
Φ(ω, ·)ϕ(ω) ds(ω)

∣∣∣
Γ
.(3.11)
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Notice, that the dual-operator is with respect to the bilinear L2 dual-product 〈· , ·〉L2

such that

〈ϕ, Mg〉L2(∂D) = 〈M(ϕ, g〉L2(Γ) for all g ∈ L2(Γ) and ϕ ∈ L2(∂D).

For the mapping properties of the operators M and M( see chapter 6 in [27]. It
is well-known that the near-field operator is the trace on Γ for the solution to (3.8)
provided that the incident field ui(· , y) is replaced by Mg. Therefore, by equation
(3.9) we have that

Ng = −
∫

∂D
Φ(x,ω)

[
S−1Mg

]
(ω) ds(ω)

∣∣∣
Γ

for all g ∈ L2(Γ).

By the definition of the operator M and its dual-operator we can conclude that

N = −M( S−1 M.(3.12)

Notice, that (3.12) is not a symmetric factorization as in Theorem 2.1 due to the
transpose rather than the adjoint. This implies that we must continue our analysis
of the near-field operator in order to continue.

We could employ the so-called Outgoing-to-Incoming operator as in [17]. From
this the classical factorization method was studied in in [17] for three types of scat-
terers using near-field measurements. More recently, in [13] it has been shown that
the near-field data can be transformed into the far-field data for the corresponding
problem. We will now, use the analysis in [13] to augment the measurements to
use the regularized factorization method for this problem.

We now define the Dirichlet-to-Far-Field operator which is a main component
of the analysis. Now, let v ∈ H1

loc(Rm \ Int(Γ)) be the unique solution to

∆v + k2v = 0 in Rm \ Int(Γ) with v|Γ = f(3.13)

along with the radiation condition (3.2) for any f ∈ H1/2(Γ). Then, just as in [15]
we can define Dirichlet-to-Far-Field operator given by

Q : H1/2(Γ) −→ L2(S) such that (Qf)(x̂) = v∞(x̂), ∀ x̂ ∈ S.(3.14)

Now, we have that

(Q M(ϕ)(x̂) =

∫

∂D
e−ikx̂·ωϕ(ω)ds(ω) for any ϕ ∈ L2(∂D)(3.15)

by the asymptotic relations for the fundamental solution as |x| → ∞. Therefore,
by (3.15) we define the bounded linear operator

H : L2(S) −→ L2(∂D) given by (Hg)(ω) =

∫

S
eikω·x̂g(x̂)ds(x̂)

∣∣∣
∂D

for any g ∈ L2(S). This corresponds to the trace of Herglotz wave function on the
boundary of the scatterer. From this, we see that Q M( = H∗. Now take the
transpose the expression to obtain that (H∗)( = MQ(. We can now show that

(
(H∗)(g

)
(ω) =

∫

S
e−ikω·x̂g(x̂)ds(x̂)

∣∣∣
∂D

=

∫

S
eikω·x̂g(−x̂)ds(x̂)

∣∣∣
∂D

= (HRg)(ω)
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where the operator

R : L2(S) −→ L2(S) is given by (Rg)(x̂) = g(−x̂).

Clearly, R is a bounded linear operator with R = R−1. From this we can conclude
that H = MQ(R. By the definition of Q and R we obtain that

QNQ(R = −H∗S−1H where QNQ(R : L2(S) −→ L2(S)(3.16)

by appealing to the factorization in (3.12).
We can now relate the transformed operator QNQ(R to the far-field operator

for the scattering problem (3.8) where the incident field is given by a plane wave.
Indeed, by (3.16) and equation (1.55) in [25] we have that QNQ(R = F where
F is the corresponding far-field operator. This is important for our analysis here
since F does have a symmetric factorization. From Theorem 1.15 in [25] we have
that

F = GS∗G∗ which implies that QNQ(R = GS∗G∗

where S∗ is the adjoint of S defined above. The operator G maps the trace on ∂D
to the far-field pattern for w where

G : H1/2(∂D) −→ L2(S) is given by Gw
∣∣
∂D

= w∞.

Recall, w ∈ H1
loc(Rm \ D) can be written using (3.9) and satisfies (3.2). Just as in

the previous section we consider
(
QNQ(R

)
#
=

∣∣0
(
QNQ(R

)∣∣ +
∣∣1

(
QNQ(R

)∣∣.

By appealing to Lemma 1.14 of [25] we again can conclude that we have the fac-
torization (

QNQ(R
)
#
= GS∗

# G∗

where S∗
# is a strictly coercive operator. The last piece we need to complete the

puzzle is the fact that G∗ is compact and injective (see Theorem 1.15 of [25]) along
with

!z = e−ikx̂·z satisfies !z ∈ Range(G) ⇐⇒ z ∈ D.

Therefore, by appealing to Theorem 2.1 we have that

z ∈ D ⇐⇒ lim inf
α→0

(
gαz ,

(
QNQ(R

)
#
gαz

)

L2(S)
< ∞(3.17)

provided that gαz is the regularized solution to
(
QNQ(R

)
#
g = !z.

In order to apply (3.17) we need to compute the operators Q and R. To due
so, assume that Γ = ∂B(0; ρ) for fixed ρ > 0 in two dimensions then by appealing
to separation of variables and the asymptotic expansions for Hankel functions to
obtain a formula for Q. Indeed, we can use the fact that

v(r, θ) =
∞∑

|n|=0

fn

H(1)
n (kρ)

H(1)
n (kr)einθ for all n ∈ Z

where fn are the Fourier coefficients for f along with the asymptotic formula

H(1)
n (kr) =

√
2

πkr
eikr−inπ/2−iπ/4 + O(r−3/2) as r → ∞
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to derive a computable formula for Q. From [15] we have that the explicit formula

(Qf)(θ) =

2π∫

0

Q(θ,φ)f(φ)dφ where Q(θ,φ) =
(1 − i)

2π
√
πk

∞∑

|n|=0

ein(θ−φ−π/2)

H(1)
n (kρ)

with f(φ) = f
(
ρ(cosφ , sinφ)

)
. Here, the constant radius ρ is assumed to be large

enough such that D ⊂ B(0; ρ). When Γ 5= ∂B(0; ρ) we can define Dirichlet-to-Far-
Field operator Q by using boundary integral equations. See Section 2 of [25] for
a detailed construction. Now we need an explicit formula for the operator R. To
this end, we can use the expression given in [13] to write R as an integral operator
with explicit kernel function. This expression uses the fact that x̂ = (cos θ , sin θ)
for θ ∈ [0, 2π) in two dimensions. Now, by appealing to sum of angles formula we
obtain

− cos(θ) = cos(θ + π) and − sin(θ) = sin(θ + π)

which implies that

(Rg)(θ) = g(θ + π).

This formula uses the notation that g(θ) = g
(
(cos θ , sin θ)

)
. Therefore, by using

the Fourier series representation for g we can conclude that

(Rg)(θ) =

2π∫

0

R(θ,φ)g(φ)dφ where R(θ,φ) =
1

2π

∞∑

|n|=0

ein(θ−φ+π).

For either Q or R we have that the series for the kernel function can be truncated
to approximate the operators. It is shown in [13,15] that the truncated series is a
valid approximation for both operators.

Numerical examples: Just as in the previous section, we will provide some
numerical examples of (3.17) for recovering a sound soft scatterer. To this end, we
again assume that the boundary of the scatterer is given by

∂D = r(θ) (cos(θ), sin(θ)) for 0 ≤ θ ≤ 2π.

Here we take r(θ) to be given by either

r(θ) = 0.25(2 + 0.5 cos(3θ)) or r(θ) = 0.75
√

0.75 cos2(θ) + 0.07 sin2(θ)

for an acorn shaped scatterer or peanut shaped scatterer, respectively. In all our
examples we take Γ = ∂B(0; 5) (i.e. the disk with radius=5) and the wave number
k = 4. The location of the sources and receivers will be given by

xi = yi = 5(cos θi, sin θi) with θi = 2π(i − 1)/64.

This corresponds to 64 equally spaced points on the disk.
Now, we need to compute the scattering data us(xi, yj) by solving (3.8). There-

fore, we use the fact that the scattered field is given by the series expansion

us(x, yj) =
∞∑

|n|=0

cn(yj)H
(1)
n (k|x|)einθx for each j = 1, · · · , 64.

The above representation is given by using separation of variables in R2 \D for the
Helmholtz equation. Notice, that the radiation condition (3.2) is satisfied by the

asymptotic formula for the Hankel functions H(1)
n (k|x|) as |x| → ∞. Just as in [13]



Prepublication copy provided to Isaac Harris. Please give confirmation to AMS by March 5, 2023.

Not for print or electronic distribution. This file may not be posted electronically.

REGULARIZED FACTORIZATION METHOD 57

we will truncate the above series representation for |n| = 0, · · · , 15 and solve for
the series coefficients cn(yj) such that

us(x̃, yj) = −Φ(x̃, yj) for all x̃ ∈ ∂D

and for each j = 1, · · · , 64. This is done by insuring that the above equality holds
for each x̃i = r(θi) (cos(θi), sin(θi)) for each i = 1, · · · , 64. So we solve the resulting
64 × 31 linear system of equations for each series coefficient cn(yj). Once we have
solved for the coefficients we have that the approximate scattering data on the
measurement curve Γ is given by

us(xi, yj) ≈
15∑

|n|=0

cn(yj)H
(1)
n (5k)einθi .

The discretized near-field operator with random noise added is given by

Nδ = [us(xi, yj) (1 + δEi,j)]
64
i,j=1

with random complex-valued matrix E satisfying ‖E‖2 = 1.
Another piece we need in order to apply (3.17) is the discretization of the

operators Q and R. From the definition given earlier in this section we have that
these operators can be written as integral operators with an explicit kernel given by
an infinite series. To approximate the operators, we must first truncate the series
representation for the kernel functions. Therefore, we now let

Q̃(θ,φ) =
(1 − i)

2π
√
πk

10∑

|n|=0

ein(θ−φ−π/2)

H(1)
n (5k)

and R̃(θ,φ) =
1

2π

10∑

|n|=0

ein(θ−φ+π).

This corresponds to the truncated series for the kernel functions. We note that in
[13,15] the approximate property of the truncated series approximates was estab-
lished. Using that

(Qf)(θ) ≈
2π∫

0

Q̃(θ,φ)f(φ)dφ and (Rg)(θ) ≈
2π∫

0

R̃(θ,φ)g(φ)dφ

we can employ a standard 64 point Riemann sum collocation approximation for the
integrals. From this we obtain a 64 × 64 discretization of the operators given by

Q =
[
Q̃(θi, θj)

]64
i,j=1

and R =
[
R̃(θi, θj)

]64
i,j=1

.

Again, we have taken θi = 2π(i − 1)/64 for i = 1, · · · , 64.
Now that we have the discretized operators we define the discretized far-field

transform of the near-field operator as given by QNδQ(R. Therefore, we again let
σj be the singular values and uj be the left singular vectors of the matrix

(
QNδQ

(R
)
#
=

∣∣0
(
QNδQ

(R
)∣∣ +

∣∣1
(
QNδQ

(R
)∣∣.

By (3.17) we have that the imaging functional

W (z) =




64∑

j=1

φ2(σj ;α)

σj

∣∣(uj , !z)
∣∣2



−1

with !z = [e−ikx̂i·z]64i=1

with filter function φ(t;α) given by (2.4) can be used to approximate the scatterer
D. Just as in the previous section we have that W (z) > 0 for z ∈ D and W (z) ≈ 0
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Figure 7. Reconstruction of the ball shaped scatterer with the
Tikhonov filter given in (2.4). Left: reconstruction with no added
noise and Right: reconstruction with 10% added noise.

Figure 8. Reconstruction of the peanut shaped scatterer with the
Tikhonov filter given in (2.4). Left: reconstruction with no added
noise and Right: reconstruction with 10% added noise.

for z /∈ D by appealing to Theorem 2.1. In all our examples, we take the fixed
regularization parameter α = 10−6 and plot the imaging functional.

As we see, in Figures 7–10 the filter function used in the reconstruction gives
little to no difference computational results. Just as in the previous section, this
implies that the reconstruction seems to not be sensitive with respect to the regu-
larization scheme used in the imaging functional.

4. Conclusions

In this paper, we have discussed a regularized version of the factorization
method as well as its application to inverse scattering. Note, that this method
was originally used in an application to diffuse optical tomography in [26]. We
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Figure 9. Reconstruction of the peanut shaped scatterer with the
Spectral cutoff filter given in (2.4). Left: reconstruction with no
added noise and Right: reconstruction with 10% added noise.

Figure 10. Reconstruction of the peanut shaped scatterer with
the Landweber filter given in (2.4). Left: reconstruction with no
added noise and Right: reconstruction with 10% added noise.

have seen that this method gives a new theoretically valid and analytically rigorous
method for solving inverse shape problems. Moreover, we have applied this method
to both near and far-field data sets. From our numerical investigation we see that
the choice of regularization scheme seems to have little effect on the reconstructions.
A future direction of this research can be to provide theoretical justification of the
regularized factorization method for a perturbed data operator. Also, the question
of how to pick the regularization parameter is still open. In all our examples, we
take the regularization parameter ad-hoc but one should determine a discrepancy
principle to optimize the resolution of the imaging functional. From this, the main
novelty of this paper is two fold. First, we have given a more extensive numerical
study of this new qualitative reconstruction method. We have also, given another
analytical and computation method for applying a factorization method for the
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near-field operator that lacks the symmetric factorization needed in the typical
analysis. Also, we can apply the regularized factorization method to other imaging
modalities such as electrical impedance tomography.

Acknowledgments: The research of I. Harris is partially supported by the NSF
DMS Grant 2107891.
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