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Abstract—Random jammers that overpower transmitted sig-
nals are a practical concern for many wireless communication
protocols. As such, wireless receivers must be able to cope with
standard channel noise and jamming (intentional or uninten-
tional). To address this challenge, we propose a novel method to
augment the resilience of the recent family of universal error-
correcting GRAND algorithms. This method, called Erasure De-
coding by Gaussian Elimination (EDGE), impacts the syndrome
check block and is applicable to any variant of GRAND. We
show that the proposed EDGE method naturally reverts to the
original syndrome check function in the absence of erasures
caused by jamming. We demonstrate this by implementing and
evaluating GRAND-EDGE and ORBGRAND-EDGE. Simulation
results, using a Random Linear Code (RLC) with a code rate
of 105/128, show that the EDGE variants lower both the Block
Error Rate (BLER) and the computational complexity by up to
five order of magnitude compared to the original GRAND and
ORBGRAND algorithms. We further compare ORBGRAND-
EDGE to Ordered Statistics Decoding (OSD), and demonstrate
an improvement of up to three orders of magnitude in the BLER.

I. INTRODUCTION

What do a Wi-Fi router, a Bluetooth speaker, and a leaky
microwave oven have in common? They all broadcast wire-
less signals in the same frequency range. Modern wireless
technologies ensure reliable communication by employing
techniques, such as subcarrier frequency hopping [1] or cyclic
prefixing [2]. Yet, powerful interference, such as a leaky
microwave oven operating at a nearby frequency, may disrupt
communication between devices, e.g., by rendering a substan-
tial portion of the subcarrier frequencies unusable. Under such
adversarial conditions, although the received signal strength in-
dicator (RSSI) may alert the receiver about channel anomalies
[3], the retrieved data that is overpowered by interference is
practically lost.

The purpose of this work is to add resilience against such
jamming events. We consider a channel model in which a
powerful jammer impacts the transmitted data randomly, at
a bit-level. In this case, the individual non-jammed bits are
subject to the additive white Gaussian noise (AWGN) of
the channel, and the jammed bits are impacted by a more
extreme, additive noise. We aim to develop an error correction
algorithm that provides data recovery capabilities under these
adversarial conditions. We propose doing so in conjunction
with Guessing Random Additive Noise Decoding (GRAND),
a recently proposed error correction decoder algorithm that
can work with any codebook [4]. Besides the original hard-

information GRAND algorithm, soft-information-based vari-
ants are also available [5]-[7]. Among them, the Ordered
Reliability Bits GRAND (ORBGRAND) [8] lends itself to
practical hardware implementations while maintaining a near
maximum-likelihood (ML) decoding performance [9].

In this work, we propose a jamming-resilient algorithm
based on GRAND algorithm and its variants. Our method
seeks to perform error-correction on the non-jammed bits of
the received frame, and perform erasure-correction on the
jammed bits. It does so by:

1) Identifying jammed bits through RSSI observation;

2) Performing ECC on non-jammed bits. As jammed bits
occur randomly in any part of the received codeword, a
challenge is to error-correct a partial code that changes
on each communication. This challenge requires a uni-
versal decoding approach, for which we use hard- and
soft-information variants of the GRAND algorithm;

3) Having error-corrected the non-jammed bits, determin-
ing the values of the jammed bits through Gaussian
elimination.

We achieve this capability by empowering the syndrome check
function of any GRAND-based algorithm with the ability of
restoring the erased bits in a received frame. This upgraded
syndrome check method is called Erasure Decoding by Gaus-
sian Elimination, or EDGE in short.

In general, most existing error-and-erasure decoding (EED)
are based on specific decoding schemes. Some EED schemes
are designed to retrieve corrupted frames rather than bits in the
presence of erasures. This includes schemes, such as random
linear network coding (RLNC) [10], [11], product/staircase
codes [12] and fountain codes [13]. On the other hand, our
proposed EDGE method operates at the bit-level, and can be
used with any linear code.

We introduce two variants of the EDGE subroutine: one
with hard-information (GRAND-EDGE) and the other with
soft-information (ORBGRAND-EDGE) decoding. Simulation
results demonstrate that the EDGE subroutine improves both
the block-error rate (BLER) performance and the computa-
tional complexity by up to five orders of magnitude, under ad-
versarial channel conditions. We also compare ORBGRAND-
EDGE with the Ordered Statistics Decoding (OSD) algorithm
[14] which is also based on Gaussian elimination. We show
that the proposed ORBGRAND-EDGE algorithm improves the
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Fig. 1. A component-level description of the GRAND algorithm family, with
in-detail syndrome generation process.

BLER by up to three orders of magnitude while achieving
lower complexity compared to OSD.

The rest of the paper is organized as follows. The back-
ground on GRAND is detailed Section II. In Section II, the
EDGE subroutine and its applications with universal hard- and
soft-decoding variants, GRAND-EDGE and ORBGRAND-
EDGE, are presented. The benefits of the proposed universal
error-and-erasure decoding via simulation results are presented
in Section IV, followed by concluding remarks in Section V.

II. THE GRAND ALGORITHM

Guessing Random Additive Noise Decoding (GRAND)
[4] is a recently introduced universal algorithm capable of
decoding any code, using codebook membership checks. For
a received (hard-information) frame vector r, the membership
(syndrome) check is performed as

H-r', (1)

where H is the codebook-specific parity-check matrix of a
linear code. Unlike traditional decoding algorithms, GRAND
focuses on the noise component of the received frame. If (1) is
not equal to an all-zero vector (0), then the received sequence
r is not a member of the codebook due to noise-corrupted
bits. The GRAND algorithm trials putative error sequences,
represented by e, in maximum likelihood order. It subtracts
each of them from r until it finds one that satisfies

H-(roe)’ =0. )

where & is the modulo-2 sum operator.

Different ordering of guessing noise sequences lead to
different variations of GRAND. A high-level description of the
GRAND algorithm family is depicted in Fig. 1. Among the
variants, Ordered Reliability Bits GRAND (ORBGRAND) [7]
is a soft-information decoding algorithm that orders the puta-
tive noise sequences based on the logistic weight (LW) of
their sorted LLR magnitudes, and is amenable to hardware
implementation [9].

III. THE GRAND-EDGE ALGORITHM

In this Section, the channel model is characterized first.
Then the EDGE subroutine is explained in detail, followed
by a closer look at the Gaussian elimination process. Finally,
the proposed GRAND-EDGE algorithm is described.
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Fig. 3. Isolation of erasures (re) from the received (hard-decision) codeword
and corresponding parity-check columns (He) from the H-matrix, followed
by the calculation of erasure syndrome (se).
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A. Channel Model

In this work, we consider an AWGN channel model that is
randomly disrupted by a jammer, as depicted in Fig. 2. The
additive channel noise instance, represented by n, is added
to the modulated signal x carried over a specific frequency.
A powerful jammer instance j, activated with a probability ¢
may be added to the transmitted signal. We assume that the
probability of jamming € is on the bit-level rather than the
frame-level. Therefore, the received signal y can be expressed
as

3)

_Jx+n+j with probability ;
Y=Yz +n otherwise.

The jammer is also modeled as AWGN, but with a variance
that is far greater than that of the channel AWGN. Therefore,
if the received signal magnitude is suspiciously stronger than
expected, then it is assumed that the signal is jammed and its
value is invalidated.

For frame-level jamming or erasures, such as lost frames
due to undecodable preambles, can also be converted to bit-
level erasures by simple interleaving techniques, such as in
[15].

B. The EDGE Subroutine

Letp = {0,1,--- N —1} represent the total set of O-indexed
indices of the received vector of length N, and let q represent
the set of imputed (erased) indices in the received vector, such
that q has e elements, q C p, and ¢; < g;+1,Vi. As shown
in Fig. 3, given q, let us split the received vector r and the
parity-check matrix H

r=reUre,

“4)
H=H, UH,,

where r and r. represent the erased and non-erased subsets
of r with sizes e and N — e, respectively. Similarly, H is
a (N — k) x e matrix that contains the columns of H which
correspond to the erased bits, and H. contains the remaining



Fig. 4. Gaussian elimination example using two elementary row operations to transform He into reduced row echelon form (RREF), to find re from sj}. 1s
and Os in the matrix and the vector are indicated by black and white, respectively. Leading 1s at each column of He are represented by red.

Algorithm 1: EDGE Subroutine Initialization
Imputs : r, H, q, N —k, e
Outputs: r, ro, He, E

1 Ter[q], re<r\re

2 Ho + H[q], H. + H\ H,

3 if N —k < e then

4 ‘ no unique solution, terminate decoding

5 end

6 E + GaussianElimination(H,)

Algorithm 2: The EDGE Subroutine
Imputs :r., ro, He, E, q, N —k, e
Outputs: r, success
se = E-H;  r¢
if sele : N — k — 1] # 0 then

‘ success = 0, terminate subroutine
end
re =se[0: e —1]
r < rc. Ure using q
success = 1

N S R W N =

columns. Note that the original sets in (4) can be reconstructed
from the separated subsets, using q. The parity-check equation
described in (1) can be expanded as

H. rl ®H. -r] =0. (5)
Here, all the components are known on the receiver side except
re. Let us define the erasure syndrome, se, as

s =H. r/, (6)

e

and transfer it to the right-hand side of (5) in the binary
domain, to obtain
H. r] =s/. (7

e

as visualized in Fig. 3.

The EDGE subroutine performs Gaussian elimination on
the linear set of equations in (7) to find re. To find a unique
solution for re, the number of equations must not be smaller
than the number of variables. In other words, the number of
rows of He must be equal to or greater than its columns,
therefore, we must first satisfy e < N — k.

The initialization procedure for the EDGE subroutine is
described in Algorithm 1, where r¢, re, H, are prepared (lines
1-2) and whether the number of erasures could be recovered

by the code is determined (lines 3-5). This is followed by the
Gaussian elimination process using He, to store the required
operations in an elimination matrix, E (line 6). These stored
Gaussian elimination operations are later used to reduce the
erasure restoration complexity, explained in Section III-C.

The EDGE subroutine is described in Algorithm 2. First, the
erasure syndrome is calculated se using H. and r¢, and the
Gaussian elimination matrix E. If the resulting s, is error-free
(lines 2-4), then the erased sequence r, is substituted from se
(line 5) and the complete received sequence is restored (line
6). Otherwise, the subroutine is terminated with no success
(line 3).

C. The Gaussian Elimination Process

The Gaussian elimination process reduces the linear set of
equations into a form from which the variables can be directly
obtained. For our purpose, we review the binary matrix case
of Gaussian elimination [16]. To achieve this form, the H,
matrix should be modified into a reduced row-echelon form
(RREF), with the particular structure of [I|0]" where I and
0 represent identity and all-zero matrices, respectively. Note
that there is a unique RREF for any matrix. If the RREF of a
matrix yields an all-zero column, there is no unique solution
for re.

An example of the Gaussian elimination process is depicted
in Fig. 4. Starting from the leftmost column, a leading 1
is first identified for each column. If the row index of the
leading 1 does not match its column index, an elementary
swap operation takes place to place the leading 1 cell to the
diagonal of the matrix. This row with the leading 1 is then
subtracted from the other rows that also hold a 1 on the
subject column, to ensure there is a single 1 remaining. The
process is sequentially continued for all the columns in He.
The equivalent swap and add operations are also applied to
the transposed s/ , to obtain s’ at the end. Changes to the
H, and sz are denoted with an asterisk (*).

In practice, Gaussian elimination is costly with a complexity
of O(n?). To reduce its impact, it can be performed only
once at the initialization (refer to Algorithm 1) and all the
operations towards obtaining the RREF H can be stored in an
elimination matrix, E. This way, the final SZT can be obtained
by

siT =E-se, (®)

which has the same effective complexity as the syndrome
check operation of GRAND, see (1).
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Fig. 5. Two examples are shown for erased bits restoration using the EDGE
algorithm, with 5 erased bits and n — k = 8. In both cases same indices are
erased from the same codebook, yielding the same H.. The result of Case 1
is consistent and is therefore valid. In Case 2, the result is inconsistent due
to incurred errors and therefore is invalid.

D. The GRAND-EDGE Algorithm Family

Refer to Fig. 5, where two arbitrary Gaussian elimination
examples are illustrated using the same He, with e = 5 and
N — k = 8. In the first case, se does not incur any channel
errors. Therefore, the transformed s is in the form of [re|0],
in other words, the last NV —k — e equations with 0 coefficients
naturally yield 0. In the second case, the se is infused with
channel errors that yield an s; with nonzero entries in its last
N — k — e indices. For the EDGE subroutine, this indicates
that there are errors in the channel. When errors are involved,
erased indices cannot be accurately restored, and an additional
error-correction decoder is required.

The process of the proposed GRAND-EDGE algorithm is
described in Algorithm 3. Note that the EDGE subroutine
(line 6) replaces the syndrome check function of GRAND.
If the EDGE subroutine fails, then the GRAND algorithm
generates the next putative error pattern and combines it with
the received part of the codeword (lines 6-7, followed by line
4). As discussed in Section II, the agenda of the error pattern
generation depends on the GRAND variant. For simplicity,
inputs and parameters for soft-information GRAND variants
are not shown in the algorithm, instead, we refer to [5], [8]
for details.

When there are no erasures in the received codeword, then
r« — Ho = @, with r, = r and H, = H. Hence, the
expression in (6) becomes the same as in (1), and GRAND-
EDGE reverts to GRAND algorithm. Therefore, the proposed
GRAND-EDGE does not present a computational burden to
the original algorithm in the absence of erasures in the channel.

IV. PERFORMANCE ASSESSMENT

Simulations are carried over the channel model described in
Fig. 2, where the channel and jammer AWGN are generated
through independent Gaussian processes. The overpowered
jammer SNR is set to -100 dB. The probability of jamming,

Algorithm 3: The GRAND-EDGE Algorithm

Imputs : r, HG l,q

Outputs: G

e+ 0

iter =0

{rc, re, He, E} «+ EDGE_Init(r, H,q, N — k, e)

while success = 0 A iter # maxlters do
r;<rc.de
{success,r*} «<EDGE(, re, He, E, q, N — k, ¢)
e < NextErrorPattern(iter)
iter = iter + 1

end
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€, is generated through an independent Bernoulli process for
each transmitted symbol. Prior to decoding, a threshold is
required to decide whether the received signal is jammed. For
that purpose, we follow the empirical rule; any signal that is
observed within 3 standard deviations of the modulated signal
space is considered non-jammed, and is jammed otherwise.
Note that different approaches for determining jamming in
the channel can also be used with the proposed algorithm,
but are beyond the scope of this paper. For all evaluations, a
random linear code (RLC) with code length N = 128 with
k = 105 information bits is featured, which is generated using
the simulator on-the-fly. The abandonment threshold [4] is set
to a Hamming weight of 3 for both GRAND and GRAND-
EDGE. The logistic weight threshold [7] is set to 104 for
ORBGRAND and ORBGRAND-EDGE.

A. GRAND-EDGE Performance

Fig. 6(a) presents the error correction performance for
the proposed GRAND-EDGE algorithm against the GRAND
algorithm. The x-axis represents the channel SNR, and ¢ is
fixed for each simulation and is represented in the legend.
We observed that GRAND-EDGE outperforms GRAND by
up to five orders of magnitude, because it has the capability
of restoring erased bits whereas GRAND attempts to guess
their values iteratively.

Fig. 6(e) shows the average number of iterations (codebook
queries) for each BLER curve. With improving AWGN SNR
conditions, the GRAND algorithm gets stuck in guessing the
jammed bits in an attempt to find the correct codeword. This
yields a high average number of iterations, even at high SNRs.
On the other hand, the efficient handling of the erased bits by
the EDGE routine helps the GRAND-EDGE algorithm reduces
the avarage number of iterations compared to GRAND, by up
to more than five orders of magnitude.

Fig. 6(b) and Fig. 6(f) present the GRAND-EDGE perfor-
mance against GRAND over a simulated set of bit jamming
probability values €. The channel SNR values are fixed and are
represented in the legend. Similar to Fig. 6(a), the GRAND-
EDGE algorithm achieves superior BLER performance as
the channel conditions improve. On the other hand, the
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Fig. 6. Top: BLER performance comparison of the proposed GRAND-EDGE and ORBGRAND-EDGE algorithms against their GRAND-only counterparts,
using RLC[128,105]. The comparisons are carried out with various channel AWGN SNR and bit-jamming probabilities as indicated in the x-axis labels and
the legends. Bottom: Average number of iterations for each evaluated algorithm with matching legends.

average number of iterations of GRAND-EDGE increases
as € decreases. This is because GRAND-EDGE abandons
decoding if the number of erasures is beyond its capability (if
e > N — k). Nonetheless, the average number of iterations of
GRAND-EDGE is always smaller or equal to that of GRAND,
sometimes by up to five orders of magnitude less. Finally,
we note that both the BLER performance and the average
number of iterations of GRAND-EDGE meet the performance
of GRAND at ¢ = 0. This is because the GRAND-EDGE
algorithm reverts to the GRAND algorithm when there is
no erasure in the channel, as mentioned previously in Sec-
tion III-D.

B. ORBGRAND-EDGE Performance

Fig. 6(c) and Fig. 6(d) present the BLER performance
evaluation for the proposed ORBGRAND-EDGE algorithm
against the ORBGRAND algorithm, i.e. when soft-information
is involved in decoding the received codeword. Compared to
GRAND, the ORBGRAND algorithm can find more errors by
taking advantage of the bit-reliability information (LLRs). As

a result, ORBGRAND demonstrates better BLER performance
compared to GRAND. On the other hand, the improvement in
BLER with ORBGRAND-EDGE is not as dramatic compared
to the gains in hard-information GRAND-EDGE. This is
because ORBGRAND can prioritize jammed indices for bit-
flipping as long as their values are beyond the predetermined
threshold. Nonetheless, we observe a BLER gain of up to one
order of magnitude when ORBGRAND is enhanced with the
EDGE subroutine.

Compared to the GRAND-EDGE performance in Fig. 6(a)
with ¢ = 0.02, the ORBGRAND-EDGE performance in
Fig. 6(c) experiences an error floor. As a result, at high SNR
regimes, GRAND-EDGE outperforms ORBGRAND-EDGE.
This is due to the differences in the bit-flipping agenda of
these two variants. With a logistic weight of 104, only the
least reliable 104 indices and a subset of their combinations
are considered for bit-flipping in ORBGRAND [8]. Therefore,
when a jammed index is overlooked by the jamming detection,
ORBGRAND-EDGE does not erase the bit, and it is likely
considered an index reliable enough that it is never considered
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Fig. 7. ORBGRAND-EDGE performance compared to the OSD algorithm,
using RLC[128,105]. The bit-level jamming probabilities are set to € =
{0.02,0.05,0.1} and x-axis represents the channel AWGN SNR.

for bit-flipping. On the other hand, even when a jammed index
is overseen, the GRAND-EDGE algorithm evaluates all non-
erased indices for bit-flipping. As a result, especially when
the € is small, GRAND-EDGE can outperform ORBGRAND-
EDGE. Although more sophisticated pre-decoding jamming
detection patterns can be implemented [17], they are beyond
the scope of this work.

Fig. 6(g) and Fig. 6(h) present the computational complex-
ity comparison for ORBGRAND-EDGE and ORBGRAND,
with respect to channel SNR and bit-jamming probability,
respectively. Compared to GRAND, ORBGRAND has better
(less) computational complexity in general, due to the efficient
identification of bit-flipping indices. On the other hand, when
ORBGRAND is augmented with the EDGE subroutine, the
average number of iterations reduces by up to five orders
of magnitude. Similar to the observations made in GRAND,
ORBGRAND-EDGE reverts to the ORBGRAND algorithm
when e = 0. Different than GRAND-EDGE, the computational
complexity of ORBGRAND-EDGE begins to reduce as ¢
reduces further. This is because the complexity of the linear
set of equations reduces with reducing ¢, and with the help
of soft information ORBGRAND-EDGE can find the erro-
neous component of the received codeword faster compared
to GRAND-EDGE.

Fig. 7 compares the BLER performance of the proposed
ORBGRAND-EDGE algorithm against the Ordered Statistics
Decoding (OSD) algorithm [14], using RLC[128,105]. Similar
to EDGE, OSD performs Gaussian elimination to find the most
likely transmitted codeword. However, the Gaussian elimina-
tion in OSD is always performed over k£ columns, whereas
in EDGE it is only performed over up to N — k columns.
Moreover, OSD requires multiple permutations which adds to
its implementation complexity. Nonetheless, it can be observed
from Fig. 7 that the ORBGRAND-EDGE outperforms OSD
by up to three orders of magnitude in BLER.

V. CONCLUSION

In this work, we introduced an adversarial model, whereby
a jammer randomly overpowers bits of a transmitted signal,

effectively causing erasures. To address this adversarial chan-
nel condition, we generalized the syndrome check component
of the universal GRAND algorithm family to support erasure
decoding. The proposed GRAND-EDGE algorithm and its
variants address bit-level errors and erasures simultaneously.
The erasure decoding component (i.e., the EDGE subroutine)
presents no additional computational complexity when there is
no detected erasure in the channel, reverting to the syndrome
check function of the GRAND algorithm in that case. The
proposed EDGE algorithm can be used with both hard and
soft variants of GRAND, which we demonstrated through the
implementation of GRAND-EDGE and ORBGRAND-EDGE.
Compared to their original counterparts, the EDGE-enhanced
GRAND algorithms achieve up to five orders of magnitude
improvement both in terms of error-correction performance
in terms of computational complexity under the considered

adversarial model.
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