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Abstract

Sparse shrunk additive models and sparse random feature models have been developed separately
as methods to learn low-order functions, where there are few interactions between variables, but
neither offers computational efficiency. On the other hand, ¢2-based shrunk additive models are
efficient but do not offer feature selection as the resulting coefficient vectors are dense. Inspired
by the success of the iterative magnitude pruning technique in finding lottery tickets of neural
networks, we propose a new method—Sparser Random Feature Models via IMP (ShRIMP)' —to
efficiently fit high-dimensional data with inherent low-dimensional structure in the form of sparse
variable dependencies. Our method can be viewed as a combined process to construct and find
sparse lottery tickets for two-layer dense networks. We explain the observed benefit of SHRIMP
through a refined analysis of the generalization error for thresholded Basis Pursuit and resulting
bounds on eigenvalues.

From function approximation experiments on both synthetic data and real-world benchmark
datasets, we show that SHRIMP obtains better than or competitive test accuracy compared to state-
of-the-art sparse feature and additive methods such as SRFE-S, SSAM, and SALSA. Meanwhile,
SHRIMP performs feature selection with low computational complexity and is robust to the pruning
rate, indicating a robustness in the structure of the obtained subnetworks. We gain insight into the
lottery ticket hypothesis through SHRIMP by noting a correspondence between our model and
weight/neuron subnetworks.

Keywords: Random Feature Model, Pruning, Sparse Feature

1. Introduction

Kernel regression is an established choice for learning a target function from data with solid theoret-
ical foundation (Hearst et al., 1998; Zhang, 2005). Kernel methods are general-purpose methods for
estimating a function by fitting measurements to a representative function in a Reproducing Kernel
Hilbert Space (Campbell, 2002). The power of the method is derived from the Representer Theorem
which connects finite measurements and continuous function space; however, kernel ridge regres-
sion does not take into account additional structure in the underlying target function, which can be
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limiting when additional structure is known to be present. In many physical settings (Harris, 2019),
functions may arise naturally as sums of functions, each with a limited variable interaction. Such
low-order structure (Kuo et al., 2010) may also be used to reduce the complexity of the system being
modeled (Potts and Schmischke, 2021a,b). The Multiple Kernel Learning line of literature (Génen
and Alpaydin, 2011; Bach, 2008; Xu et al., 2010) and more recent methods such as shrunk additive
models (Kandasamy and Yu, 2016; Liu et al., 2020) have been developed to exploit such low-order
structure. However, these methods are computationally inefficient due to the cost of kernel ridge
regression and minimal £;-norm optimization (Liu et al., 2020), as well as repeated computation of
the kernel at test and prediction periods.

In an independent line of work, the well-studied random features model as introduced in Rahimi
and Recht (2008c) allows for an approximation to the kernel function of interest without the compu-
tational cost of constructing a full kernel matrix, with bounds given in Rahimi and Recht (2008b,a);
Avron et al. (2017); Cortes et al. (2010). However, neither the generic random features model nor
the shrunk additive model offers the possibility of simple model compression or feature selection.
Kernel methods have been investigated in the context of feature selection (Kumar et al., 2009) and
in sparse additive models (Huang et al., 2010; Yin et al., 2012; Ravikumar et al., 2009), and recent
work by Hashemi et al. (2021) introduces the sparse random features model with coefficient vec-
tor recovered using basis pursuit. However, it is a priori unclear what coefficient sparsity means,
especially in the ¢; sense, for random feature models.

Inspired by the success of the iterative magnitude pruning (IMP) technique for finding sparse
subnetworks of neural networks with comparable performance (Frankle and Carbin, 2019; Zhou
et al., 2019), we propose a new ¢2-based method—Sparser Random Feature Models via Iterative
Magnitude Pruning (SHRIMP)—to efficiently fit high-dimensional data with inherent low-order
structure. This method can be viewed as a combined process to construct and find lottery tickets of
two-layer dense networks: it randomly initializes a fixed first layer with only low-order interactions
by using sparse random weights instead of dense weights (Stage I) and applies neuron pruning to
find a sparser subnetwork by IMP (Stage II). From experiments on both synthetic data and real-
world benchmark datasets, we show that SHRIMP is better or competitive against both random
sparse feature models and shrunk additive models. We offer a refined analysis of the thresholded
£1-based sparse random feature model based on Hashemi et al. (2021), and through our experiments
and further discussion offer insight into the success of our method.

We connect our work to the larger active literature on random features learning and the theory
of neural networks. Neural networks in certain regimes have been found to be kernel machines
(Jacot et al., 2018; Chizat et al., 2019), and thus linear regression has been revisited as a model
for neural network behavior (Liang and Rakhlin, 2020; Hastie et al., 2019). In particular, there has
been a concentrated interest in the generalization and double descent behaviors of random features
regression (Montanari et al., 2019; Jacot et al., 2020; d’ Ascoli et al., 2020); these works study ReLU
features, while the closest model to our setting is that of Liao et al. (2020). As random features
regression has become essential for studying neural networks in the kernel regime, we hope that
random features pruning can be used to study neural network pruning; much of the current theory
on neural network pruning has been existential in nature (Orseau et al., 2020; Malach et al., 2020;
Pensia et al., 2020). Moreover, the lottery ticket hypothesis has one of the greatest implications for
model compression, helping alleviate problems related to massive neural networks, such as unequal
access to computing resources among researchers, and the environmental impact of deep learning.

Our main contributions are as follows:
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1. We propose a two-stage algorithm, SHRIMP, to learn sparse random feature models with low-
order interactions efficiently via an iterative magnitude pruning technique. It is surprising that
{2-based SHRIMP finds sparser models than basis pursuit, which is a staple among algorithms
used for sparse recovery and feature selection.

2. Experiments on both synthetic and real-world datasets verify that with proper choice of the
order ¢ in the low-order function model, SHRIMP obtains better or matching test performance
compared to existing sparse feature or shrunk additive models while at the same time being
scalable to high-dimensional settings. Beyond the effectiveness and efficiency, we show that
SHRIMP is robust to parameters such as pruning rate and exhibits surprising support recovery
ability with odd/even separation.

3. We offer a refined analysis of the main theorem from Hashemi et al. (2021) that allows us to
connect our experimental findings with initial theoretical results from the compressed sensing
literature; one perspective of our method is that it situates itself between ¢o-based and £j-
based methods. Our analysis on the evolution of the spectrum of the Gram matrix during
the SHRIMP algorithm iterations offers additional insight into the benefit of SHRIMP over
random pruning.

4. By connecting our SHRIMP model to the process of finding winning lottery tickets for a two-
layer fully connected neural network initialized with a random sparse subnetwork and with
neurons pruned by IMP, we shed light on the successful performance of IMP as a mechanism
for finding lottery tickets.
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Figure 1: Illustration of the relationship between SHRIMP and different types of pruning.

1.1. Related Work

Sparse Random Feature Models and Shrunk Additive Models. In high-dimensional settings
arising from modeling physical systems, the underlying governing function is well-approximated
as being a sum of low-order functions; that is, the function can be written as a sum of component
functions, such that only g variables out of a total of d variables are active in each component,
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with ¢ « d (DeVore et al., 2011; Kuo et al., 2010). Recent methods such as SALSA (Kandasamy
and Yu, 2016) and SSAM (Liu et al., 2020) are kernel-based methods that directly exploit such
low-order structure. Separately, the random Fourier features model of Rahimi and Recht (2008c)
is a popular choice in approximating a kernel function when there are many data samples and the
construction of the kernel matrix is computationally expensive. Additive kernels were considered
in Vedaldi and Zisserman (2012), while coefficient sparsity was investigated in Yen et al. (2014);
Ozcelikkale (2020). The first work (to our knowledge) to combine these approaches—exploiting
low-order structure and random features together—was the work of Hashemi et al. (2021), which
uses an ¢1-based approach with sparse random features in order to learn a low-order function. A
detailed comparison of SHRIMP with sparse random feature models (Hashemi et al., 2021; Elesedy
et al., 2020) and shrunk additive models (Kandasamy and Yu, 2016; Liu et al., 2020) is listed in
Table 1.

Table 1: Comparison of sparse random feature models: SRFE-S (Hashemi et al., 2021), shrunk
additive models such as SALSA (Kandasamy and Yu, 2016), SSAM (Liu et al., 2020), and
IMP in Linear Regression (Elesedy et al., 2020). Here, d denotes the data dimension, ¢
denotes the interaction order of features, and 7}, indexes the pruning iteration. The feature
number with N corresponds to the number of non-zero components in the feature vector
by ¢1-regularization; Ny, denotes the number of features remaining after IMP.

Property SHRIMP SALSA SSAM SRFE-S IMP in LR
Sample sparsity v/ X v v/ X
Low-order Interaction v v/ v i X
Feature sparsity i X v i v
Computational Efficiency i v/ X X i
Regularization implicit £o fo-norm  #1-norm {1-norm implicit £o
Feature model random feature  kernel kernel random feature linear

# Features™ (;l) ‘n — Npest (Z) (Z) — N, (g) ‘n—>Ns d—>d-T,

Lottery Ticket Hypothesis and Iterative Magnitude Pruning. Frankle and Carbin (2019) pro-
posed the lottery ticket hypothesis and a corresponding iterative magnitude pruning (IMP) procedure
for compressing overparameterized neural networks, which is a primary inspiration for our algo-
rithm. The IMP procedure prunes weights based on their magnitude and then retrains the pruned
subnetwork from the same initial weights as the original network at each pruning iteration. IMP
is demonstrated empirically to find a sparse subnetwork (i.e., winning ticket) with comparable test
accuracy to the original dense network. Follow-up work (Zhou et al., 2019; Ramanujan et al.,
2020; Malach et al., 2020) theoretically proves that for an overparameterized neural network with
randomly-initialized weights under some conditions, there exists a subnetwork of it that can obtain
competitive performance. Furthermore, Elesedy et al. (2020) initiated a theoretical analysis of a
simplified form of IMP, where the algorithm prunes a single weight per iteration, and the solution is
obtained by gradient flow (i.e., min ¢5-norm estimator) in linear models. However, this is not a prac-
tical sparse estimation method in linear models due to the inefficiency of one-weight-per-iteration
pruning and computation of gradient descent with ¢ — co. Instead, our work applies proportional
IMP to neuron pruning and utilizes the implicit regularization of the pseudo-inverse to reduce com-
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putational cost significantly. The work Zhang et al. (2021a) analyzes the geometric structure of
the model throughout the pruning process; we corroborate these ideas by providing results on the
eigenvalues of the Gram matrix throughout the pruning. However, our work does not focus solely
on the lottery ticket hypothesis but should serve as a stand-alone method for low-order function
approximation.

1.2. Notations

Throughout the paper, AT denotes the Moore-Penrose inverse of a matrix A, and hence ¢ = A'y
is the minimal />-norm estimator in the overparameterized regime, and the least-square estimator in
the underparameterized regime. We denote the number of data points by m, the dimension of data
by d, and the number of features by N. Measurement noise ¢y, is defined as y = f(x)) + ex with
either |ey| < E = 2v or ey i.i.d. drawn from N(0, v2), Vk € [m].

2. Preliminaries

Low order functions arise naturally in the physical world and are used as a form of the reduced-
complexity model for such systems (Potts and Schmischke, 2021a,b). Let us first recall the definition
for an order-g function, as well as definitions for bounded p-norm functions and g-sparse feature
weights from Hashemi et al. (2021).

Definition 1 (Order-q Function, (Hashemi et al., 2021)) For any d,q, K € N} with q < d, a
function f : C¢ — C is an order-q function of at most K terms if there exist functions q1, . .., gK
C? — C such that

1 K 1 K
f(zy,...,xq) = = gy, my,) = = > gilzls,), (1)
j=1 =1

where S; < [d] is an index subset of [d] and x|s; is the restriction of x onto the indices.

In general, such a decomposition is not unique. However, the set of order-¢q functions forms
a vector space, as the sum of two order-¢g functions is itself an order-¢q function, and the space is
closed under scalar multiplication. Additionally, if we let |-| be a function norm, then we can define

, 1
17l = mf\/K(|91”2 o4 lgrl),

where the infimum is taken over all possible order-g decompositions of f. If each g; lies in a Repro-
ducing Kernel Hilbert Space (RKHS), then f lies in the direct sum of the component Reproducing
Kernel Hilbert Spaces with RKHS norm defined as above (Aronszajn, 1950).

Definition 2 (Bounded p-norm Function, (Hashemi et al., 2021)) Fix a probability density func-
tion p : R¢ — R and a function ¢ : R? x R* — C. A function f : R* — C has finite p-norm with
respect to ¢(x; w) if it belongs to the class

Flrp) = {f(w) - | et 111, = szp‘j((;’))‘ <oo}. @
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Definition 3 (¢g-sparse Feature Weights, (Hashemi et al., 2021)) Ler d,q,n € N, with ¢ < d,
and let p : R? — R be a probability distribution. A collection of N = n(‘;) weight vectors
wi,...,wp is called a set of q-sparse feature weights if it is generated as follows: for each index
subset S; < [d],|S;| = q draw n i.i.d. random vectors z,...,2z, ~ p, and construct q-sparse
features {wj, }1._, by setting supp(wj, ) = S;j and wj, |s; = zx, k € [n].

Let X € R™*? be a data matrix consisting of m d-dimensional samples, and let W e RV >4
be the matrix of N d-dimensional feature weights constructed according to Def. 3. Construct the
random feature matrix A = ¢(X W*) so that AA* approximates a kernel matrix of interest. For
example, let ¢(-) := [cos(-) sin(-)] 2 (with A = [sin(XW*) cos(XW*)]), ¢ = d, and p be
the normal distribution, Ey [ A A*] is the kernel matrix of the Gaussian kernel (Rahimi and Recht,
2008c). In the more general case of ¢ < d, with p as a normal distribution, Ey/[ AA*] is the kernel
matrix corresponding to a direct sum of Gaussian kernels, each defined over R? x R%. See the
appendix for more precise approximation bounds.

3. Sparser Random Feature Models via Iterative Magnitude Pruning

Algorithm 1 SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

Input: Training dataset (X', )) € C™*? x C™, parametric basis function ¢(- ; w), feature sparsity
level g, pruning rate p € (0, 1), iterations of pruning 7" € N ..

Stage 1. Constructing: Draw N = n(g) g-sparse features {w) };V: 1 according to Def. 3, form the
matrix W € RV*?, and construct a random feature matrix A € R™*N by A = (X W*).

Stage II. Pruning: Compute the min /5-norm solution cg = Ay and set Py = {1,..., N}.
fort=1,...,Tdo

Get the feature index set P, by pruning p x |P;_1| features from ¢;_; with ¢; denoting the
ascending sorted (by absolute value) array of ¢; by

Pr={i€Prr:leiril 2 ¢y pepp,_, )

Update the min ¢o-norm solution: ¢; = A;Dty, where Ap, is the column submatrix of A with
index set P;.

end
Output: the pruned minimal /3 norm estimator and feature index pair set {(c;, P;)}_;.

In this section, we first present the SHRIMP algorithm and then illustrate its connection to the
lottery ticket hypothesis and network pruning. To address the challenge of targeting low-order addi-
tive structure efficiently with feature selection, we propose a two-step SHRIMP method (Algorithm
1) to find a sparse low-order random feature subnetwork of a fully connected neural network: first,
we initialize a sparse random feature model by constructing low-order random feature weights as
a subnetwork of the dense network, according to Def. 3; second, SHRIMP finds a sparse winning
lottery ticket ¢4+ by forming a set of sparse min /o-norm estimators {ct}thl via IMP and selecting
the best model via a validation dataset. At test time, with the best model {cs+, Py} chosen, we

2. Here sin and cos are element-wise operations on the matrix X W™*. We concatenate two resulting matrices
sin(X W*) and cos(X W*)] together.
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transform the test data via A" = (X755 W3,) and predict via y'est = Alesle,.. For synthetic
data, the validation and test data are randomly drawn from the same distribution as the training data;
for real-world data, we randomly split the training data into training and validation sets.

Discussion on Computational Complexity. At each step ¢, SHRIMP gets the min £>-norm so-
lution by solving a linear system ¢; = A;)ty rather than computing pseudo-inverse directly, so
each step has computational cost at most O(Nym? + m?) in the worst case (it is possible to lever-
age random sketching to solve Ap, , based on the previous computation of Ap,). Additionally,
|Py| = Ny = N(1 —p)tand t € [0,T] with p € (0,1) and (1 — p)’ N = 1. Hence, N, is
at most Zg;o N1-p!t=N (1_}1)/ M) Np_l & NT. Meanwhile, the complexity of ¢; min-
imization is known to be at least polynomial in N; for example, the complexity of interior-point
methods to obtain the min /1-norm estimator is O(N®). SRFE is solved using the spgll pack-
age in Python/MATLAB (van den Berg and Friedlander, 2019, 2008). A detailed comparison of
computational time required by SHRIMP and SRFE with different scales of data is in Figure 2.

Connection to Neural Network Pruning. Consider a two-layer fully connected neural network
f(x) with activation function ¢(-) (see also Figure 1(a)),

N

f@) =) aip(wiz). 3)

i=1

Winning tickets are defined as sparse subnetworks that reach test accuracy comparable to the orig-
inal network (Frankle and Carbin, 2019). Finding winning lottery tickets is known to be computa-
tionally hard in the worst case (Frankle and Carbin, 2019; Malach et al., 2020; Zhang et al., 2021b),
and this poses a challenge to understanding why certain pruning methods tend to work well in prac-
tice. Pruning methods for neural networks generally fall into two categories: weight pruning and
neuron pruning (Malach et al., 2020). Weight pruning (Figure 1 (a) to (b)) involves a set of binary
mask vectors u; € {0, 1}¢, equivalent to pruning the first layer weights, resulting in the network

N
fu(@) =] ai((wi O uw)*), (4)
i=1
while neuron pruning (Figure 1 (a) to (c)) involves a set of binary scalars b; € {0, 1}, equivalent to
pruning entire neurons, resulting in the network

fn(z) =

=

Il
—

(biai)p(w; x). 5)

)

A sparse subnetwork is the result of applying both types of pruning, as shown in Figure 1(d).
The SHRIMP method first fixes the weight subnetwork at a specified sparsity level determined
by the choice of low-order parameter g (Figure 1(e)); it then adaptively “prunes” the neurons by
finding a sparse coefficient vector (Figure 1(f)). In other words, for each subset S; < [d], |S;| = ¢,
we define u; € {0,1}%,supp(u;) = S;, and then adaptively prune c so that the result is

1 K n
[ (x) = e 21 ;(bj,écj,é)qﬁ((wj,ﬂ Ouj)*x), (6)
i
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where K = (‘;). Using the notation of Algorithm 1, if s is the sparsity level of ¢+, then we can
compress the number of nonzero entries of Wpy, ¢« to (¢ + 1)s. This is in contrast to the standard
random feature model with dense W, ¢, where there are (d + 1) N non-zeros. Note that SHRIMP
performs best when the target function is a sum of low-order components, so that the selected model
is actually a pruned sparse model. Experiments shown in Table 2 corroborate this finding, with “Avg
size” (#features) much smaller than V. Explicitly capturing the low-order structure is an advantage
of SHRIMP.

4. Experiments

In this section, show generalization error results on synthetic and real-world datasets. We then
illustrate several benefits of SHRIMP compared to other approaches including computational effi-
ciency, robustness to pruning rate, and sparse support recovery, as well as other benefits of iterative
magnitude pruning.

4.1. Function Approximation

To demonstrate the performance of SHRIMP on low-order functions, we first test different models
on synthetic functions with & = [z, 72, ..., 24]7. See the appendix for additional experiments.
* Simple additive functions: fi(x) = Z?;ll x; + exp(—z4) and fo(x) = cos(zy) + sin(xs);
* Functions with pairwise behavior (from Liu et al. (2020)): f3(x) = (221 — 1)(2z2 — 1) and
f4(:p) = (21’1 — 1)(21‘2 — 1) + (21’1 — 1)(21‘3 — 1) + (2x2 — 1)(2.%3 — 1);

* Low-order non-smooth functions Hashemi et al. (2021): fs5(x) = sinc(zq)sinc(z3)? +
sinc(xs);

* Ishigami example used for uncertainty and sensitivity analysis Ishigami and Homma (1990);
Hashemi et al. (2021): fs(x) = sin(x1) + 7sin?(z2) + 0.124 sin(z1);

* An order-2 function with many order-1 components: f7(x) = cos(z1)z3 + ¥324 + Z?:?) x;.

Experimental Results. Table 2 reports the test mean-squared error (MSE) for the function ap-
proximations { fl(a:)}zz1 and corresponding optimal ¢>. As shown in Table 2, SHRIMP consis-
tently outperforms other function approximations, often by an order of magnitude. This is consis-
tent across low- (s/*) and high-dimensional (s7*) settings. In particular, SHRIMP performs notably
better than SALSA Kandasamy and Yu (2016), which explicitly constructs the additive kernel ma-
trix and performs kernel regression. One notable example is fg, the Ishigami function; SHRIMP
is the only method that attains a test MSE less than 1 in the low-dimensional setting. In addition,
SHRIMP succeeds in finding sparse models. The best-performing SHRIMP model often has orders
of magnitude fewer features, performing significant model compression (from initial 20000 features
to “Avg size” in Table 2), and often moving from the overparameterized to the underparameterized
setting via this compression. When more variables are involved, e.g., f1, which is order-1 but in-
volves all the variables, #features retained also increases. On the other hand, for fo, which is a
simple sum involving two trigonometric terms, SHRIMP retains only 19 features yet attains the best
test error by a significant margin.

3. See the appendix for more results on g = d.
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Table 2: Comparison of the test errors of SHRIMP, Min /5, SALSA, and SRFE-S with ¢ = ¢,.
Avg size denotes the average pruned model size of SHRIMP taken over three runs. 's de-
notes the setting with different (m, d, ¢) pairs: s{* = (140,10, ¢,), s3* = (1400, 100, g+ ),
where [ denotes low dimension and h denotes high dimension, and all methods use g = ¢
(the ground-truth order). The best MSE for each f;(x) over all models is in purple. From
the comparison between slq* and s%* , SHRIMP is the best overall, and is significantly more
scalable to the high-dimensional setting.

Setting  Model fi(x) fa(x) fa(x) fa(x) f5(x) Je(x) fr(x)

SRFE-S 7.85e-04 1.98e-05 1.15e-01 1.27e-01 7.52e-03 1.11 7.49e-02
Min {5 4.37e-20 5.45e-24 8.20e-02 5.94e-02 7.36e-03 7.18 2.98e-02
s?* SALSA 1.59e-12  1.26e-15 8.80e-02 6.14e-02 7.32e-03 6.99 2.72e-02
SHRIMP  1.37e-22 7.90e-32 4.98e-12 2.54e-12 6.39e-04 2.58e-02 2.83e-05

Avgsize* 3100.33 29 147 171.67 39 80.33 187
SRFE-S 1.52e-03 8.71e-06 1.99 4.54 1.16e-01 4.59 4.40e-01
Min 4 1.68e-20 3.51e-24 2.01 4.75 1.16e-01 8.34 1.49¢-01
s%* SALSA 1.99e-11  2.54e-13 1.60 3.16 8.49¢-02 7.35 1.34e-01
,,,,,,, SHRIMP _1.6le-22 1.11e-30  1.26e-02  5.11e-01 _ 1.50e-02  2.68 _ 5.82¢-02
Avg size 3355 19 61.33 64 42.67 13 229
Order ¢, 1 1 2 2 3 2 2

4.2. Real-world Datasets

We test SHRIMP on eight real-world datasets from the UCI repository (http://archive.ics.
uci.edu/ml) and follow the experimental setup (https://github.com/kirthevasank/
salsa) in Kandasamy and Yu (2016). We compare the test errors with shrunk additive models,
SALSA (Kandasamy and Yu, 2016) and SSAM Liu et al. (2020), and the sparse model by Lasso. For
the experiments with SHRIMP, we use 90% of the original training dataset as training data and 10%
as validation data to select the best model from models trained with ¢ € {1,2,3,...,dy.qer} and
the pruning rate p(%) € {15, 25, 35}, which is a similar selection strategy to SALSA Kandasamy
and Yu (2016). For practical consideration, we usually only use dy.qer = max{10, d}, and then
g € {1,2,...,max{10,d}}. From Table 3, SHRIMP attains the best test errors on the Propulsion
and Galaxy datasets and has comparable results on all other datasets while still being significantly
more efficient to implement.

4.3. Application to State Estimation for Robotics

We apply SHRIMP to a real-world application—state estimation for robotics*—and compare the
performance and execution time with SALSA Kandasamy and Yu (2016). According to the data
scource (Wei et al., 2022), the truck data is obtained by tele-operating a scale 1/5, four-wheel drive,
Ackermann steering vehicle. We apply SHRIMP and SALSA to infer next-timestamp positions,

4. This problem has a low-order nature since it is a dynamic system, for example, next time step positions pos, ¢+1 =
POSx,t + vely s * dt, where vel, ¢ depends on other features except pos_x and pos_y, so the order is less than the
number of total features.
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Table 3: Test MSE on eight real-world benchmark datasets. The results of SALSA, SSAM, and
Lasso are taken from Liu et al. (2020) and Kandasamy and Yu (2016). The best MSE for
each dataset is in purple.

Dataset (m, d) SHRIMP (¢, np) SALSA (q) SSAM Lasso
Propulsion (200,15)  1.02 x 1079 (2,84)  8.81 x 1073 (8) NA 2.48 x 1072
Galaxy (2000, 20) 541 x 107%(3,575) 1.35x 107% (4) NA 2.39 x 1072
Airfoil (750, 41) 2.65 x 1071 (2,30)  5.18 x 107! (5) 4.87 x 10~} 5.20 x 1071
CCPP (2000, 59) 6.55 x 1072 (2,49)  6.78 x 1072 (2) 6.94 x 1072 7.40 x 1072
Insulin (256, 50) 1.24 x 10° (1, 60) 1.02x10°(3)  1.01 x 10°  1.11 x 10°
Telemonit (1000,19) 6.00 x 1072 (4,86)  3.47 x 1072 (9) 6.89 x 1072 8.63 x 102
Housing (256, 12) 3.94 x 1071 (7,15) 262 x 1071 (1) 3.79 x 107! 4.4 x 101
Skillcraft (1700,18)  5.81 x 1071 (8,21) 547 x 1071 (1) 543 x 107! 6.65 x 107!

angles, velocities, and angular velocity (w) given current positions, angles, velocities, angular ve-
locity, and controls (with twist linear and twist angular features) by training and validating with
X € R699%9 and test on different trajectories with test data Xj.q; € R1399X9  We use the same
early stopping criterion for SALSA and SHRIMP (with 25% as the pruning rate and N = 2000).
The mean and standard deviation of training and inference time is based on the of function approx-
imations seven states in Table 4. As shown in Table 4, the test MSE of SHRIMP on state estimation
(pos_x, pos_y, angle_x, and angle_y) is significantly better than that estimated by SALSA; the test
MSE on velocities of SHRIMP are slightly higher but very close to that of SALSA. SHRIMP shows
the benefit of computational efficiency in both training and inference time over SALSA. SALSA
needs to compute a kernel for inference, but SHRIMP only inferences with a low-dimensional
weight vector.

Model pos_x pos_y angle_x angle_y vel x vel_y w training_time inference_time

SHRIMP  1.64e-07 1.73e-07 2.93e-08 3.12e-08 7.59e-03 8.49e-03 1.39e-02 9.28 £1.99  5.94e-02 £ 5.05e-03
SALSA  3.50e-04 2.82e-04 1.44e-05 2.29e-05 6.26e-03 7.15e-03 9.24e-03 31.49 +£4.90 1.05e+00 £ 1.90e-01

Table 4: Test MSE and training/inference time comparison: SHRIMP vs. SALSA.

4.4. Properties of SHRIMP

Computational Efficiency. To compare the time efficiency of SHRIMP to SRFE-S (Hashemi
et al. (2021) with ¢;-minimization), we approximate the function fs(x) = 3 cos(x3) + 4sin(z4) +
2sin(z2) using varying values for the parameters m, d, and N. Figure 2 Left shows that at equal
parameter choices, m,d, N, SHRIMP is significantly faster than SRFE-S. In particular, as m in-
creases, the cost of SHRIMP over varying N increases linearly, while the cost of basis pursuit
increases exponentially. In addition to offering better generalization error, SHRIMP is significantly
less computationally intensive.

To compare training and inference time efficiency of SHRIMP to SALSA Kandasamy and Yu
(2016), we implement SHRIMP in MATLAB and compare it with the official code of SALSA with
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4. EXPERIMENTS

function and test them on the same function f(x) with only ¢ = 1,...,5 for both methods without
any early stopping. Figure 2 Right shows that as the number of data increases’, the training and
inference time of SALSA increase fast since both stages need to compute kernels. In contrast,
SHRIMP (with a proper choice of N) © is more computationally efficient and scalable with large
datasets, especially for inference time; even with ten times more initial features (N = 2000), the
inference time grows slowly since the resulting model is sparse (Npesr < V). This shows the
benefits of random sparse features over kernel methods in the applications of online model severing
and mobile device inference, which requires less model size.

2 102 —e— SHRIMP-N200 -
— = = ) -
SHRIMP, d=100, m=100 /)< - SHRIMP-N2000 -
104 =% L1, d=100, m=100 - 2 -
—— SHRIMP, d=100, m=500 L7 £ 1004 - SALSA Pl
-x= L1, d=100, m=500 L > 1 == A
10°{ —— SHRIMP, d=100, m=1000 7 100 P
=% L1, d=100, m=1000 e s ] m—==" e "°
e = o
5 ®

=
o
4

time (sec)

1-e sHRIMPN200 -7
SHRIMP-N2000 T

—%- SALSA -

H

e

2
Y
\

inference time (sec)

10° 104
#features (N_t)

#data (m)

Figure 2: Time comparison. Left: training and validation time of SHRIMP vs. SRFE-S (L) as a
function of #features in Python; Right: training (with validation) and inference time of
SHRIMP vs. SALSA as a function of #data in MATLAB.

Robustness to Pruning Rate. We study the robustness of SHRIMP to the pruning rate on real-
world datasets by using a range of pruning rates p(%) € {15, 20, 25, 30, 35, 40, 45,50} and com-
paring the best g chosen by validation dataset and corresponding test MSE. Figure 3 shows that the
best ¢ is almost invariant over all pruning rates, and the corresponding test MSEs remain within a
small range. Hence, SHRIMP exhibits robustness to the pruning rate, indicating a corresponding
robustness in the structure of good subnetworks.

Sparse Support Recovery. We illustrate the power of SHRIMP as a method for sparse support
recovery on a simple order-1 additive function fs(x) = 3cos(x3) + 4sin(x4) + 2sin(za) with
separate component functions on each coordinate. We sample m = 1000 points uniformly from
[—1,1]° and apply SHRIMP with N = 10000 (Ny = 20000 features), ¢ = g« = 1, and pruning rate
p = 20%. Figure 4 shows that both the sparse support set and the even/odd property are recovered by
SHRIMP. At first, when Ny = 20000, the min ¢5-norm solution has many small weights distributed
across false coordinates {x3, z5}. At the first key point N; = 8192, most unnecessary weights on
sin have been pruned; after N; = 879, remaining weights are only on {9, z3, x4} with correct
even/odd partition. The best test MSE is at [Ny = 38, where the resulting vector is extremely sparse

5. Note that since the training and inference time of SALSA and SSAM do not depend on the number of features /N and
SSAM is generally slower than SALSA due to the computation of ¢; minimization, we provide two N's for SHRIMP

to compare their computational costs with SALSA.
6. Note that if we start SHRIMP with an extremely large N and the number of data is small (m « ), the elapsed time
for first few iterations will be long and the training time will be longer than SALSA.

11
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Figure 3: Robustness of pruning rate of SHRIMP shown by test MSE and the corresponding best ¢

over four datasets. Note the lines of best ¢ of Airfoil and CCPP are at 2 and shifted on
purpose for illustration. Test MSE of propulsion is also shifted 0.01 up for illustration.
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Figure 4: Illustration of support recovery of SHRIMP with fs(x) = 3cos(xs) + 4sin(z4) +
2sin(z2). Top and bottom left: Support recovery plots with Ny = 20000 (t =
0),8192 (t = 4),879 (t = 14), 38 (t = 28) with y-axis corresponding to the weight mag-
nitude; Bottom right: Test MSE tracking of the pruning from N; = 20000 to N; = 12
with pruning iteration ¢ € [0, 33].

and matches the support set exactly. Along the pruning process, the subnetworks found by SHRIMP
maintain a comparative or better test error with only a small fraction of weights. In other words,
winning tickets found by SHRIMP exhibit the ability to recover sparse low-order interactions in
random feature models.

Benefits of Iterative Magnitude Pruning Compared to Random Pruning. We explore the role
of IMP in sparse random feature models by showing the test MSE curves for approximating func-
tions {fa(x), f5(x), f7(x)} as defined above, using a different number of features V; (see Figure
5). We train and evaluate models with SHRIMP, minimal ¢5- and ¢1-norm (SRFE-S Hashemi et al.
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5. THEORETICAL ANALYSIS

(2021)) estimators with the same {V;} set. Figure 5 illustrates the role and benefit of IMP in finding
sparse winning subnetworks. SHRIMP (in blue) has a similar computational cost compared to plain
min-/5 (in orange), the only difference being in sorting and comparing the absolute weights; at the
same time, SHRIMP achieves better test error with a sparser resulting model (i.e., lower N;). The
resulting sparse subnetwork behaves better than even the overparameterized solution of plain min £
in the middle plot of f5(x), which also shows the double descent curve. SRFE-S is inefficient due
to the computation of ¢; minimization and is comparably flatter than the other two models, which
indicates that it does not benefit from a smaller /V; solution. Hence, the pruning by IMP is efficient
and obtains sparser and better subnetworks than the models obtained by ¢; and ¢ regularization.

t ——SHRIMP
ARV N\ o)+ Plain min-I2
~—SRFE-S

i T
1Ny —o—SHRIMP iN=m —=—SHRIMP
! —+—Plain min-12 Shoanges ! —&—Plain min-12
——SRFE-S 10° ——SRFE-S

R o

Test MSE
Test MSE

107 ;
10° 10° 10° 10° 10° 10°

Figure 5: Test MSE of sparse random feature models obtained by SHRIMP, min ¢>-norm estima-
tion, min /1 -norm estimation (SRFE-S). From left to right: fa(x), f5(x), f7(x).

Spectrum of SHRIMP pruning compared to Random Pruning. Figure 6 shows the maximal
and minimal eigenvalues of AgA//N; throughout pruning for the function f7(x) = cos(z1)zs +
T37y4 + 2?23 x; (Note that we observe similar spectrum patterns for other kinds of functions as
well). We notice that for all methods excluding SHRIMP use variance 1/¢g—which results in the best
generalization error over all cases—these values are essentially constant (up to numerical instability
for small N;). The case for small variance is predicted by the random features approximation of
Rahimi and Recht (2008c¢), as the kernel approximation is good, while the case for high variance is
predicted by Hashemi et al. (2021), where mutual coherence is low. However, SHRIMP with low
variance has a decreasing maximum eigenvalue throughout the pruning process, providing some
explanation for the good performance of SHRIMP (with Theorem 5); it is important to both perform
magnitude pruning and choose a proper variance, as SHRIMP is a two-stage procedure.

5. Theoretical Analysis

In this section, we first provide Theorem 5, improving the analysis of the generalization error for
thresholded Basis Pursuit from Hashemi et al. (2021). Thresholded Basis Pursuit performs basis
pursuit followed by a pruning step, keeping only the top s entries of the resulting coefficient vector.
Our analysis refines the result of Hashemi et al. (2021) by exposing the role of the maximum singular
value of A in the resulting generalization bound. Moreover, we remove the explicit dependence on
the number of features /N, demonstrating that a smaller maximum singular value indicates better
generalization. For the proofs of all statements in this section, we refer the reader to the appendix.

For sake of comparing with SRFE-S in Hashemi et al. (2021), we restate SRFE-S according to
our two-stage paradigm in Definition 4.
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Figure 6: Maximal and minimal eigenvalue of ASAE /Ny (AEAS /N in the underparameterized
setting) with weight vectors w ~ N(0,0%1) for f,, (x) (i.e., fz(z)). Blue: SHRIMP;
Orange: Random pruning. Test MSE for low variance o2 = 1/¢ (solid): SHRIMP(1.19e-
05); Random pruning (0.023). Test MSE for high variance o2 = 1000 (dashed): SHRIMP
(4.52); Random pruning (4.07).

Definition 4 (Sparse Random Feature Expansion with Sparse Feature Weights (SRFE-S)) With
the same input as Algorithm I and a stability parameter 1, SRFE-S constructs a random feature ma-
trix A following Stage I in Algorithm 1 and solves

¢t = arg min ey st |Ac—y| <nvm (7)

in Stage Il. The resulting pruned estimator cﬁ| st by SRFE-S keeps the s largest (in magnitude)

coefficients on the support set S* and sets c?- =0,Vj e [N]\S*

Theorem 5 (Generalization Bounds for Thresholded Basis Pursuit) For a bounded p-norm func-
tion f as defined in Def. 2, construct the dictionary matrix A from Stage I in Algorithm 1 with m

samples {(zy, yp)},, where T, ~ N(0,v%1y), yp = f(zi) + ex with |ex] < 2v or e ~
N(0,v2), and w ~ N(0,0%1,), and ¢(x;w) = exp(i{x,w)). Assume the conditions the fol-

(\/H(;s—l)>3

lowing conditions: (1) v?0? > % — 1>; (2) number of features satisfies N =

2
;% (1 + dyoda /1 + \/% log 5 + \/% log (15) ; (3) number of measurements m > 4(2v%0? +

1)%log NTZ Suppose fgﬁ is estimated by BP (i.e., min {1-norm estimator) with n = min{n’, 77},
where 1/ = \/2(62 Hsz + Ap?) 4 o[ 2max(ATA) () and 7 = 2\/62\\fH% + 202 + K2, (c*) with

m

approximation error € and i p(c) := min{|c — 2|, : z is s-sparse}. Apply an additional pruned
step with sparsity s, then with probability at least 1 — 56, the generalization error is bounded by

I

where

1
2 8 1 Z * * 3 *
fo@) - 1@ < (D10 (§)) " (251t - sl + (raa(e))?) 2l -

+ I€571(C*),
2

®)

* . Amax(A* A
et = Sl = Cmin {20113 + 202 4 12,4 (00 2 1T + 0 4 o 2R g
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5. THEORETICAL ANALYSIS

and ks 1(c*) is bounded by X2 £ |

Theorem 5 connects the numerical results on the decaying maximum singular value of A, the
empirical success of SHRIMP, and refined theory from a similar setting (finding a sparse coefficient
vector in a low-order random features model that has good generalization error). Moreover, in
our new analysis, the role of the norm of the smallest entries of the coefficient vector is explicitly
revealed: the smaller the norm of the vector of small entries, the better the implied generalization.
This result is directly connected to Belkin et al. (2020). Thus, we connect the ¢1-based methods of
previous work with /3-based methods through this new analysis.

Corollary 6 (Generalization Bounds for Order-q Functions) Fix ¢ > 0. For an order-q func-
tion as in Def. 1 with at most K terms, and fix the sparsity s = nK with N = n(‘;) and

2 2

tures N = (1 + dyoda |1+ \/12 log %5 \/q log 6) , and number of measurements m =

4(272%0% + 1)max{2‘1 d,0} (v20% + 1) min{2q,2d—2q} log . Then the generalization error corre-
sponding to the thresholded {1 estimator with the s largest elements (in magnitude) is bounded by

(9((1 +C'sim4 log%(%)>\/e2 (Z) 711> + EQ) with probability at least 1 — 50, where || f|| :=
% i1 il

2
K « (Z) Assume the following conditions: v*c* > 3 ((\/H(QS_I)) ? - 1), number of fea-

Note that Corollary 6 improves the generalization bound of SRFE-S (Def. 4) in Hashemi
et al (2021) from depending on the number of features N to the sparsity level s in the 1 +
C'stm ™4 log4( ) term.

Then we shed light on the maximal and minimal eigenvalues of the Gram matrices of SHRIMP
observed in Figures 6. The bounds in Proposition 7 below are obtained using techniques inspired
by Chen and Schaeffer (2021).

Proposition 7 (Bounds on Eigenvalues of Gram Matrix) Consider data {x1,...,xy,}i.i.d. drawn
from N'(0,+21,), weights {wy, ... ,wn} iid. drawnfrom N(0,0%1,), and the Fourier feature ma-
trix a; i = ¢(x;,wy), where p(x,w) = exp(z'(m,w>). Fix the feature sparsity q < d as in Def. 1
and consider the regime m < N. Let )\k( AA*) be the kth eigenvalue of the scaled Gram matrix.
Then the expectation of the maximum eigenvalue \1 and the minimum eigenvalue A, of the matrix

%AA* satisfy

N—1)m N —1)(m*—m _4q
IE)\1>2—( Ng) +( )]5[2 )(47202“) 4 9)
-1 1 —1 g
E\y, < & ++(C m+1> (49%0* +1)" %, (10)
C m C

where ¢ = N /m.

Remark 8 Using Markov’s inequality, for c — 1%, i.e. N = m, we have
1 _q
o (NAA*> < N? (4y20% + 1) 4 N (1)
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with probability 1 — N7P for 0 < p < 1. If v?0% = O(1), then we observe the benefit of small
q (i.e., low-order interactions); if ¢ — d (in the high dimensional setting), then the minimum
eigenvalue becomes arbitrarily small while the maximum remains above 2, and thus the system

_9
is ill-conditioned. In particular, the conditioning is directly related to the size of (47202 + 1) 4,

Further Discussion. We connect our results to £g-based methods. First we note the explicit con-
nection to SINDy (Zhang and Schaeffer, 2019), which algorithmically is similar to SHRIMP, except
instead of pruning the smallest magnitude coefficients, it prunes the all entries smaller than some
threshold. However, their results are about coefficient recovery, and generalization bounds for ¢g-
based methods are sparse in the literature. From Remark 2 in Nikolova (2013), the iterates of
SHRIMP are each local minimizers of an {y-regularized problem, which gives insight to the be-
havior of SHRIMP; However, SHRIMP arrives in an adaptive and greedy nature, depending on the
solution of the previous one. Further discussion on these topics is given in the appendix.

6. Discussion

We propose a new method, Sparser Random Feature Models with IMP, to exploit low-order addi-
tive structure in a learning problem, which often occurs in many domains of interest. In this method,
we explicitly construct a sufficiently overparameterized sparse feature matrix in order to approxi-
mate a given underlying low-order function, and then prune coefficients by adaptively solving a
min ¢2-norm problem and applying iterative magnitude pruning. This can be seen as an instance
of feature selection or neuron pruning in the neural network pruning literature. We test our method
on both synthetic and real datasets: SHRIMP vastly exceeds other methods on synthetic data; it is
often better or at least competitive on real datasets. We illustrate the relationship between low-order
structure and pruning, corresponding to weight and neuron pruning, respectively, and show the IMP
has the greatest effect when combined with sparse feature models. Our analysis provides general-
ization bounds for thresholded BP and bounds on eigenvalues of Gram Matrix, which explains the
benefits of our method. We hope to shed some light on the lottery ticket hypothesis in a simple
model, similar to how regression is once again being studied in the context of deep learning theory;
our method corresponds to certain pruning methods in two-layer neural networks.

More robust generalization bounds can be given to our SHRIMP model—for example, in the
context of random features regression, studying the eigenspectrum of a pruned sub-Gram matrix
throughout our algorithm is a possible extension of our work. Another possible future direction is
to adaptively discover the low-order structure as we go, instead of fixing the parameter ¢ in advance.
This results in a setting more closely tied to practical pruning and allows for greater flexibility (e.g.,
if the underlying function is a sum of functions of various orders), and may shed light on what a
pruned network is learning.
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A. EXPERIMENTAL DETAILS OF FUNCTION APPROXIMATION REFERENCES

Appendix

The appendix is organized as follows:
* Appendix A: Experimental Details of Function Approximation
* Appendix B: Additional Experiments
* Appendix C: Proofs of Theorems in Section 5

* Appendix D: Further Discussion

Appendix A. Experimental Details of Function Approximation

Data Generation. We generate the data X x y € R™*¢ x R™ in the following way: (1) sample
m d-dimensional points &1, ..., &, with z; ~ Unif[—1, 1]%, except for the Ishigami function ’
from Unif[—n, 7]%; (2) For each, function f;, y; = fi(z;). Note that we include no additive noise
in our experiments, although the observed behavior is robust to the presence of noise.

Experimental Set-up. In the function approximation experiments, models are evaluated in both
low-dimensional (s?* and sld with m = 140,d = 10) and high-dimensional (SZ* and sfll with
m = 1400,d = 100) settings. The results for ¢ = ¢, are in Table 2, and the full results with
both sparse (¢ = ¢4) and dense features (¢ = d) are in Table 5 in the appendix. For SRFE-S,
Min /5, and SHRIMP in s{* and s7*, we sample w according to Def. 3 and p = N (0,q'1;)
with ¢ = ¢4 as the actual order of those low-order functions.®, We set n = N/ (Z) with N =

10000 in our experiments and form the random feature matrix W € RV*?, The dictionary A =

[cos(XWT),sin(XWT)] e R™*2N_ For SHRIMP, we set 0.2 as the pruning rate and validate on

10% of the training set to choose the best pruned model. For SALSA, we form the kernel matrix K
d 2

by K;;j = Zi(ng)l exp —M ;note that By [AAT] = K.

Each model is evaluated by the average of test mean squared errors over three runs. For the sake
of completeness, we also experiment with the same functions with ¢ = d for all functions (s? and
s;{f in Table 2—which corresponds to standard kernel regression and random feature regression with
standard Gaussian kernel. Here, random weights are drawn W ~ A/ (O, d='1 d) and fully dense.

Appendix B. Additional Experiments

B.1. Comparing Function Approximations with Sparse and Dense Features

Table 5 shows the full results of function approximation with sparse (¢ = ¢.) and dense features
(q = d). As shown in Table 5, for both the low-dimensional (s?*, sfl) and high-dimensional (sz* , sﬁ)
settings, models with ¢ = ¢. (i.e., s?* and s;ll*), where the low order ¢ matches the actual order
of functions, have significantly better performance for all methods over corresponding models with
q=d(.e., sfl and sz). This shows the benefit of our use of low-order structure compared to previous
random features work with dense features. However, with dense features ¢ = d, the advantage of

7. It is the traditional sampling way for Ishigami function.
8. In the low-order case, since the actual orders are known and are small enough such that (;l) < N, we can use the
actual order qy.
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pruning over other methods fades: pruning over all functions performs comparably to standard ¢;
and /5 based methods in both low and high dimensions since all features add to the representative
capacity, and when SHRIMP does perform worse, it is very slight. This is also exhibited as the
average size of the model is much larger when using dense features as opposed to sparse features.

Table 5: Full comparison of the test errors of SHRIMP, Min ¢35, SALSA, and SRFE-S with g = ¢
and ¢ = d. *Avg size denotes the average pruned model size of SHRIMP over three
runs. Ts denotes the setting with different (m,d,q) pairs: sf* = (140,10, g«), sf =
(140,10, d), sf* = (1400, 100, gs), s¢ = (1400, 100, d), where [ denotes low dimension
and h denotes high dimension. The best MSE for each f;(x) over all models is in purple.
In s?’* and 5;11*’ all the methods use ¢ = ¢, (the ground-truth low order) to interpolate the
functions and achieve better test performance than sfl and sﬁ (which use dense features),
respectively. From the comparison of slq* and 5%* , our SHRIMP method is scalable to the
high-dimensional setting.

Setting!  Model fi(x) fa(x) fa(x) fa(x) f5(x) fo(x) fr(x)
SRFE-S  7.85e-04 1.98¢-05 1.15¢-01 127e-01 7.52¢-03  1.11  7.49e-02
Min 4o 4.37e-20 5.45e-24 8.20e-02 5.94e-02  7.36e-03 7.18 2.98e-02
s?* SALSA 1.59e-12  1.26e-15 8.80e-02  6.14e-02  7.32e-03 6.99 2.72e-02
SHRIMP  1.37e-22 7.90e-32 4.98e-12 2.54e-12 6.39e-04 2.58e-02  2.83e-05
S Avgsize* 310033 29 147 171,67 39 8033 187
SRFE-S 5.35e-02 1.47e-03 5.56e-02 1.64e-01 4.11e-03 1.27e+01 9.17e-02
Min /4 1.71e-02  1.93e-03 3.50e-02 1.0le-01 4.62e-03 1.45¢+01 6.15e-02
5] SALSA 1.68e-02 1.91e-03 3.38e-02 9.67e-02 4.62e-03 1.44e+01 6.05e-02
SHRIMP  1.70e-02 1.63e-03 3.51e-02 9.81e-02 6.57e-03 1.60e+01 5.91e-02
S Avgsize 6726  77.67 1872 12020 45033 534233 3933
SRFE-S 1.52e-03  8.71e-06 1.99 4.54 1.16e-01 4.59 4.40e-01
Min /5 1.68e-20 3.51e-24 2.01 4.75 1.16e-01 8.34 1.49e-01
s;{* SALSA 1.99e-11  2.54e-13 1.60 3.16 8.49e-02 7.35 1.34e-01
SHRIMP  1.61e-22 1.11e-30 1.26e-02 5.11e-01  1.50e-02 2.68 5.82e-02
S Avgsize 3355 1 19 6133 64 4267 13 229
SRFE-S 1.43e-01 2.35e-02 1.55e+00 3.05e+00 8.20e-02 1.69e+01 2.06e-01
Min /o 6.01e-02  2.33e-02 1.55e+00 3.05e+00 8.20e-02 1.40e+01 8.33e-02
sz SALSA 2.62e+04 1.23e+03 4.63e+03 3.34e+04 3.20e+02 2.44e+04 4.66e+04

SHRIMP  6.07e-02  2.35e-02 1.55e+00 3.07e+00 9.33e-02 1.4le+01 8.32e-02

Avg size 6663 14933.33 8199 6908.67 717 14730.67  8328.67

Order ¢, 1 1 2 2 3 2 2

B.2. Additional Iterative Magnitude Pruning Curves

We show comprehensive curves in Figure 7 and 8 to illustrate the role of IMP in sparse random
feature models using the functions defined in Section 4 with different number of features N;. For
sake of completeness, Figure 7 shows more types of test MSE curves with approximating functions
fi(x), fa(x), fa(x), fé(x), which are not included in Section 4 due to page limit. Except for fi(x),
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where the pruned curve has a little better test performance over the best solution of SRFE-S but with
more number of features since the coefficient vector of function fi(x) = Z?;ll x; + exp(—xzq) is
comparably dense with random sparse features, SHRIMP find sparser estimators with better perfor-

mance than SRFE-S and plain min #2-norm estimator on other functions.
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Figure 7: Test MSE of sparse random feature models obtained by SHRIMP, min ¢s-norm esti-
mation, min ¢;-norm estimation (SRFE-S). From left to right and from top to bottom:
fi(x), fs(x), fa(x), f¢(x) as defined in Section 4. Blue: SHRIMP; Orange: Plain min
{9; Green: SRFE-S.

Furthermore, we include additional curves comparing the aforementioned methods to the naive
pruning method (where the weights are kept fixed without retraining after each pruning step) in
Figure 8. As shown in those figures, naive pruning usually has worse performance than the original
minimal ¢»-norm solution, let alone SHRIMP, which verifies the benefit of retraining from the same
initialization of iterative magnitude pruning as Frankle and Carbin (2019) suggests.

B.3. Results on High-Order Functions

In addition to low-order functions, we present test MSE curves of high-order functions with different
methods in Figure 9 for completeness. All experiments are with m = 140,d = 10,q = d since
the ground-truth order ¢* = d, and the same experimental settings as the synthetic experiments
in Section 4. For f3, (x) and fp,, (), SHRIMP results in better performance with sparser models.
However, for fy,(x), which has underlying dense weights, SHRIMP can only have comparable
performance to SRFE-S but with a sparser coefficient vector.
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Figure 8: Test MSE of sparse random feature models obtained by SHRIMP, native pruning method,
min ¢s-norm estimation, min #1-norm estimation (SRFE-S). From top to bottom and left
to right: fo(x), f5(x), f7(x), f3(x), fa(x), fe(x) as defined in Section 4, respectively.
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Figure 9: Test MSE of high-order functions approximated by sparse random feature models ob-
tained by SHRIMP, min ¢s-norm estimation, min ¢;-norm estimation (SRFE-S). Left:

fny ()
|]2)~"/2. Blue: SHRIMP; Orange: Plain min £5; Green: SRFE-S.

sin(Y)%_, 2;); Middle: fp,(z)

cos(l_[?l=1 x;); Right: fr,(x) = (1 +

B.4. Experiments on Different Variances of Random Features

We show the performance of random feature models with different variances of w on functions with
varying smoothness. We compare SHRIMP and min #5 solutions on the following functions:

* Sum of low-frequency functions only (i.e., smooth function): f,, (&) = cos(z1)z3 + r3ry +

d
ija Zj

* Low-freq + High-freq: f,(z) = cos(z1 + 2) + 5cos(2x3 + 1014)
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* High-freq + High-freq: f,,(») = sin(92z1) + 10 cos(10x2)

For all functions, we set d = 10,q = g, m = 200, N = 1500, and average over 10 trials. We give
the test errors of SHRIMP vs the minimum ¢,-norm solution at three different variances: 1/g, 1, 100
in Table 6. For the smooth function f,, with only low-frequency component functions, SHRIMP
outperforms the min ¢, norm at all corresponding variances, and as o2 increases, performance
degrades. This implies that sampling at lower frequencies may have an implicit bias toward smooth
functions. When there are higher-frequency component functions, such as f,, and f,,, performance
improves as o2 increases; in this case, we need to sample at higher frequencies. Moreover, for f,,
increasing o2 allows for more gains: for this function a 0 ~ 170 seems to do the best from a course
sweep over o2 ranging up to 200.

We can visualize the behavior of different types of functions with high variance w through the
spectrum in Figure 10. We plot the maximum eigenvalue of the Gram matrix throughout SHRIMP
and random pruning for f,, and f,,, where the weights are drawn from A/ (0, 100I), a relatively
high variance. We notice that for f,,, the maximum eigenvalue of SHRIMP qualitatively matches
that of random pruning throughout the pruning process. However, for f,,, the behavior of the
maximum eigenvalue of SHRIMP seems to more closely match that of SHRIMP with low variance
on smooth functions (such as those given in the main paper), where the maximum eigenvalue of
SHRIMP is smaller than that of random pruning for essentially the entire pruning process. We
discuss some explanations for this behavior in Section D, as well as some limitations of our current
theory in explaining this phenomenon.

Model min {2 SHRIMP Optimal g
o? 1/q 1 100 1/q 1 100
fas 0.041 0.034 2452 1.19e-05 2.99¢-04 0.137 2
fas 55205 40.023 9.734  14.411 12.778  4.935 2
fay ~ 186.283 184.581 47.864 73.381  50.650 10.334 1

Table 6: Test MSE of {f,, }?_, with random feature models with different variances.

B.5. Experiments on Kernel Approximation

We show an example of kernel approximation with f(x) = 22 + w223 + 7129 + 24 and d = 5 in
this section to illustrate the benefit of sparse random features beyond kernel approximation capacity.
As Figure 11 shows, the minimal /5 regression on a random features model is equivalent to the
minimum RKHS kernel regression on the kernel matrix corresponding to the random feature matrix.
In Figure 11, the blue lines represent the test MSE of the minimal {3 estimator for sparse random
feature models (i.e., ¢ = ATy) with increasing number of features (NNV), while the orange lines
represent the test MSE of estimators from kernel regression with the kernel K defined in Section
4. Notice that the top-middle plot, ¢ = 2 equals the actual order g, of the function, and exhibits
very interesting behavior as N grows. Instead of asymptotically approaching the orange line as
the plots with ¢ = 3,4,5 do, the test error curve of the sparse random feature model with min
£o-norm estimator is significantly better than what can be obtained with kernel regression, which is
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Figure 11: Illustration of benefit of sparse random feature models beyond a RKHS understanding
by comparing with kernel approximation method on f(x) = 22 + xox3 + T172 + 74.
From top to down and from left to right: ¢ = 1, 2, 3,4, 5.

surprising. This implies a benefit of sparse random feature models beyond a RKHS understanding,
which would necessitate a more robust statistical study beyond approximation capacities.

Appendix C. Proofs of Theorems in Section 5

C.1. Proof of Theorem 5

Proof [Proof of Theorem 5] Denote ¢! as the minimal {1 norm solution obtained by basis pursuit,
cﬁ\ st as the pruned solution with zeros on 7 ¢ S*%, where S* is the support set of the s largest
coefficients of ¢f, and c? as ¢* supported on S*, which is the support set of the s largest coefficients
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of c*. Since both cf|g; and c* are s-sparse, we have for any z,

a2 = 1@ =Bz wn)... oz wn)le’ - éls)]”
— |[6(z: 1), (25 wm))(H]s: — €2) + (e} — )]
<2l[¢(zw1), ..., bz wn)(gs — )’
+2l[0(z:01), - bz wn)l(cs — )P

2 (12)
<dslel — sl +2| )] d(z,wp)e
J¢s*

< ds|c; — &s:l3 +2| D |6(z,w))l[c]]
JES*

* i 2 *\\2
< dsleg — &ss]z + 2(ks1(c))

We provide two ways to bound |c% — ¢f|s: |2 by using an alternative 7’ or 7 instead of 7.

1. With the max singular value of A (or A\ ,x(A*A)). From (86) in Hashemi et al. (2021),
we have |ly — Ac*|* < 2m(é? | f|2 + 4v%) , then

ly — Acilz < |y — Ac™[2 + [A(c" — )2
< /2 (e[ £12 + 402) + A (A* A () (13)
=1'vm

Then i/ = y/2(e2 | £I2 + 402) + o 2esCA" ) (o),

m

2. With ;1. Follow the proof idea of (86), we have

ly — Acs[* < 2 (Z (f(@x) = £*()* + 4u2m)

k=1

14
<2<22(f(wk) Fo(@r))? + 2(f* (mr) — f2(n))? + 4v m) ()
i—1
< 4m €2||f||/2)+lﬂ?2 (c) +2v7) :== i*m

where (f(xi) — fZ(xx))? is bounded from Lemma 2 in Hashemi et al. (2021). Then 7j =
20/ 113+ 207 + K2 ().

From Stability of BP-based Sparse Reconstruction (Foucart and Rauhut, 2013) (which is also
Lemma 6 in Hashemi et al. (2021)), we have

C/Hs 1( )

NG + C'min{n’, 7} = C min{n’, 7} (15)

| —etll2 <
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4

where k5 1(c}) = 0 since ¢ is s-sparse. Then, if the coherence of A satisfies g4 < Vi1 Ve
have

|52 — etz < 3¢ — ell < 3C min{n', 7} := Cmin{n’, 7} (16)
by redefining C'.

Then for McDiarmid’s inequality, we have

2(4s] e —Cﬁ!suH2+2(Hs1( 7).

a7
\/T = 2\/7 QSHC — 3 + (Rs1(eM)?)

Putting everything together, we have

v(zk) —v(z1)| <

\/J ) ‘fgu(m) - f*(:c)‘Qd,u <m”3 i ’fﬁ-u(zw _ f*(zk)r
® k=1

(18)
AN EP o2y d
# (B0 (5)) sl = el + (run(e)?)’
For the first term, following (96) in Hashemi et al. (2021), we bound as follows:
1 N 2
m”2 Z ’féu(%) — f*(zk)‘ <2 Hcﬁ|$u — c;'H2 + ks1(c) (19)
k=1
where A satisfies 2s-RIP condition and cf|g; — ¢ is 2s-sparse.
Therefore, with probability at least 1 — &, we have the refined bound as follows:
8 NN o2\ 2 . .
\/f fo@) - @ dn < (S10g (5)) (251 = Flaslf + (ren(e))?) +2]eflse = i+ meater)
(20)

where

|t —c*lst ]2 < C'min {\/2(62 HfH,QJ +4v?) +

Amax(A*A)

m

ks2(c 2\/2HfH2+2V2+/€ (e )}

Furthermore, if we plug in x5 2(c*) < €|| f|, from (89) in Hashemi et al. (2021), we have

o = (s ()

(25 (cmm {«/2(@ 12+ 4v2) 44 22D gy o Jez gz v+ fei,l(c*)})? ¥ n§,1<c*>>
+2C min {«/2(& 12+ ) AR 2y o a1 4 0 4 ()} 4 hoale)

1
2

@n
|
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C.2. Proof of Corollary 6

Proof [Proof of Corollary 6] For the Corollary, since c* is s-sparse, ks, = 0,Vp and ¢ — ¢* = 0.
2
We can bound ‘ fgu(z) — f*(z)‘ using almost the same way as equation 12, but with a tighter

constant. Since both cf|g: and c* are s-sparse, |S* | JS*| < 2s and [cf|g: —c*]; = 0,Vi ¢ S*|JS*.
Then,

75 - PR = o), oz wm(e - els)f
? (22)

- ]w(z;wn]iesw([c*]iesuuy ~ [¢lsliest )

< 28]e” — |zt

Hence, the bound in Lemma 7 (with = 4/2(€| f|, + E?) ) changes to

I¢f]se — €*ll2 < 8Cn = 30y /22| FI3 + 42) = C e[ £ + 407 (23)

after redefining C'.
Furthermore, we can bound the difference in v from (91) in Hashemi et al. (2021) by

~ 1| . . 2 . 2
v(z0) = v(2)| < — || fhylz) = 1 @0)| = |2 — £(30)
4802(62\\f\\g + 4v?)

m

(24)
4s ﬁ
< e’ = eflselz =

where 2, results from perturbing z;, at the k** coordinate, and

4sC* (e[ fI5 + 42) |m 1 . 5 |8 1
= - Elog <5> = sC=(e”|| fIl; + 4v7) Elog (5> (25)

Therefore, with probability exceeding 1 — 4,
2 mn 2 8 1 I
1 1
\/de L@ = @[ dn<mh st - sl + (e (5) ) sheyetsz + a

<2|ﬁ | 81 1 %%C 2| F|2 + 402
<2es =2+ ( —log{ 5 ) ) s2Cy/e[f] +4v
< 0(2 +81s2m 1 logi(l/(;)) [f15 + 42

(26)

With order-q features, we have = \/262 (f}l)H\f\H? +2E?, where ||f| = + Zszl lgsll,-
Hence, the bound reduces to
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2
A= + E2

f 2 111
fo:(x) — f*(w)’ du < C’<2 + 81s2m™ 4 10g4(1/5))
(27

L (0
:=0<Q+c%%zh%hb)¢é@)u2+Eﬁ

C.3. Proof of Proposition 7
Proof [Proof of Proposition 7] Let X, € C™ be the ¢th row of A* for ¢ € [N], i.e.,

Xy = [¢($17 U.Jg), e 7¢(xm7 U.Jg)]
= [¢($17 wf)v s >d)(xma ‘-‘JZ)]'

We can decompose %AA* into the following sum of rank-1 matrices

A4 = D 1§ (o) (81 @) .. Smior)]. 28
N - NA - N P d(z1,we), s P(Tm, wy T1,W0)s s O(Tms wp)]. (28)

For a fixed ¢, each component of X/ X, takes the form exp(i{x;

Here, we quantify the effect of the conditioning of the linear system A A* (overparameterized
m, we will bound Ay, (- AA*) and Ay (5 AA¥).

— T, wp)).

setting) as N — m™. Since min(m, N) =
The Rayleigh quotient can be bounded by

1 1
—AA*" ) < —(A*v, A*v).

Xm—1} forms a subspace of C™ of dimension

(29)

for all unit vectors v € C™. The set X = {X1,...,
at most m — 1, thus there exists a unit vector z € C™ orthogonal to span(X). And

1 1
L ) < — *
)\m (NAA > <Z,AA Z>

| N
<= ), 2 X[ Xz

N l=m
=¥ Z Z zj 2 exp(i@; — Tp, we))

l=m j,k=1

N-m+1, 13 o ;

< ¥ + 2 Z z; z exp(i{x; — xp, wp)).
=m j#k
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The vector z is independent of wy for £ > m, therefore, applying expectations lead to:

1 N—-—m+1 1
E\, (NAA*> < 7+—E Z sz zi exp(i{x; — xp, we))

N l=m j#k
N—-m+1 1 u
B N T NEGJ Ewr .. wom_1 Z Z zjz;lEe, [eXp(ij — @, wp))]
l=m j#k
N-m+1 1 -
= N + NE:B Ew1,...,wm 1 Z 2 ZjZ) eXp <_mk - mj2>
l=m j#k
N—m+ 1 1 &
Nomtl LS g, (S e (oo — s13)
N N
l=m j#k
N — 1 (N-— 1 2 -4
< ]Tvn—i— +( m+]\f)m(47202+1) 1

3D

using Holder’s and Jensen’s inequalities (noting | z||3 = 1). Repeating for the maximum eigen-
value:

1 1
—AA* ) > —(z,AA*

and setting the unit vector to z = %X 1 yields

1 1 N

N
1
= <N2 2 XX, X} X1>

=1+ 2 Z exp(i{xy — j, w1 — wy))
(=2 j,k=1
N m
N 1 m
=1+ W= Dm Z Z exp(i{xy — T, w1 — wyp)),
=2 j,k=1
j#k
and thus
1 (N—1)m (N—=1)(m?>-m) ,, 5 5 _g
EX (NAA*> 22— g+ N (49%0% +1) 1. (33)
Consider a linear scaling N = ¢m for ¢ > 1, then
1 -1 1 -1 1 2 - _a
B, (Laa) < EZEL (et DT ey
N cm cm (34)
-1 1 -1 _a _a
< (20 1) T (420 1)
c m c
|
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Appendix D. Further Discussion

In this section, we provide further discussion and future research directions on how SHRIMP con-
nects to previous work on /p-regularized problems and random features approximations.

D.1. Connection to /y-regularized Problems

We first note the similarities of SHRIMP with the SINDy (Zhang and Schaeffer, 2019) algorithm.
SINDy prunes all features whose magnitude lies below a fixed A. Thus, SHRIMP can be considered
as an adaptive form of SINDy, where the A is chosen adaptively at each step depending on the data.
Zhang and Schaeffer (2019) prove under certain conditions that SINDy converges to a fixed point,
which is a local minimizer of the non-convex {y-regularized regression problem with regularization
parameter A\. However, the proof requires the matrix A to be full column-rank, which in our case,
is not guaranteed; in fact, one of the advantages of SHRIMP is that it can often move from the
overparameterized to the underparameterized setting.

A more general perspective on the minimizers of the /y-regularized regression problem is given
in Nikolova (2013). Remark 2 in Nikolova (2013) indicates that SHRIMP solves an {y-regularized
minimization problem at each step. Additionally, Theorem 3.2 indicates that when A has full rank
with probability one and when SHRIMP prunes in the underparameterized setting, each iterate is a
strict local minimum of the regularized regression problem. Thus, SHRIMP can be seen as solving
for local minimizers in a data-dependent sequence of ¢y-regularized regression problems.

However, there are still a few gaps in this direction. First, we focus on generalization perfor-
mance of pruned models, while most work on ¢y-regularization focus on sparse recovery. Moreover,
the results in Nikolova (2013) indicate that solutions of problems that SHRIMP is solving are local
minimizers of the regularized regression problem for any regularization parameter greater than zero,
but it is hard to compare which local minimizer is the best regarding test performance.

D.2. The variance of the random feature weights

In our experiments in Section 4, we set the variance of the w to be 1/¢, or the inverse of the order
of the function assuming oracle access. This is motivated by two reasons: first, in deep learning
initialization (He et al., 2015; Kumar, 2017) and corresponding theory (Ba et al., 2019), the variance
of the weights in a layer is the inverse of the input dimension or the number of weights in the layer.
Second, consider the bound for kernel approximation given in Rahimi and Recht (2008c), which is

, ¢ (o diam(M) > Neé?
Pr xsyugw |2(x) 2(y) — k(x,¥)| = e] <2 <> exp <_4(d—|—2) ; (35)

where M is a compact set.

If the data comes from a Gaussian distribution, with high probability they lie in a compact set
(M). When the dimension (d) increases, the diameter diam (M) grows as O(+/d). If we use low-
order features to approximate, the effective dimension is g, so the diameter grows as O(,/q). Thus,
setting o = 1/,/q mitigates this increase by allowing the numerator to be O(1).

However, the theory with respect to basis pursuit requires a variance that increases with q. Our
experiments in Section B.4 corroborate this theoretical gap. While smaller variance may suffice to
learn smooth or low-frequency functions, setting the variance to be small may not allow enough
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high-frequency weights to be sampled to learn higher frequency functions. One possible expla-
nation is that these higher frequency functions are better represented by functions in the RKHS
corresponding to kernel parameter matching that of the larger variances in the random features.
However, as shown in equation 35, the kernel approximation is much worse when o is large. Thus,
understanding this behavior is an interesting future direction.
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