SSC22-WKII-08

Tartan Artibeus: A Batteryless, Computational Satellite Research Platform

Bradley Denby” Emily Ruppel® Vaibhav Singh Shize Che
Zac Manchester

Swarun Kumar

Chad Taylor Fayyaz Zaidi
Brandon Lucia

{bdenby, eruppel, vaibhav3, sche, cataylor, fhz, swarunk, zmanches, blucia}@andrew.cmu.edu
Carnegie Mellon University

Abstract

Tartan Artibeus (TA1) is the first batteryless, computational
pocketqube satellite; its open-source hardware and software
launched into low-Earth orbit (LEO) in January 2022. TA1 is
a 1p (125 cm?) pocketqube built around the Tartan Artibeus
Bus (TAB), which connects independently-designed modules
into a batteryless, computational satellite. In TA1, TAB incor-
porates an electrical power supply (EPS) module that harvests
solar energy into a supercapacitor, a fault-tolerant command
and data handling (C&DH) module, a radio-communication
module, and a configurable computational payload module.
The open-source hardware [17] and software [18] of TA1
supports independently designed modules oblivious to the bat-
teryless nature of the power system via adherence to TAB’s
well-defined communication protocol serviced by a C&DH
board. TAB allows the C&DH board to manage indepen-
dent subsystems for power savings and to provide isolation
for reduced impact of faults. The C&DH software supports
frequent power cycles via task-based, intermittent execution.
These features guarantee forward program progress and free
subsystem developers to focus on each payload application.
To evaluate the computational nanosatellite design TAB
enables, we integrate many subsystems, including a radio
module, a GNSS module, and a computing payload. The radio,
which is based on OpenLST [33] hardware and software,
demonstrates the ease of using existing modules with TAB.
To the best of our knowledge, TA1 is the first 1p pocketqube to
have a GPS module without COCOM limits. The computing
payload includes hardware to accelerate machine inference
and can be reprogrammed in orbit. The TA1 mechanical,
hardware, and software designs are open source to reduce the
barrier to entry for orbital edge computing (OEC) research.

1 Introduction

Large, expensive, monolithic satellites dominate low-Earth
orbit (LEO) Earth observation. Space vehicles (SVs) like

*Both authors contributed equally to this work

WorldView-3 [22], Earth-Observing 1 [50], and Landsat-
8 [39] cost hundreds of millions of dollars each [26] and
require over a dozen years of “arduous” development [39].
To justify such time and expense, these SVs must operate for
decades. Extremely high cost demands extremely low risk; as
a result, designers often select satellite subsystems for their
“flight heritage” and not for their cutting-edge capabilities. By
the end of a satellite mission, some components may be more
than a quarter century behind the state-of-the-art.

Monolithic, expensive satellites usually take this approach.
For these satellites, a ground segment closely manages op-
erations via a bent pipe [35]: ground stations transmit com-
mands to the satellite, and the satellite responds with raw, un-
processed sensor data. Innovation often concentrates around
the sensor payload of these monolithic, expensive satellites.
Generally, these systems perform minimal onboard comput-
ing [1,7,11] and instead focus on reliable remote control from
the ground.

Recently, there has been a proliferation of LEO launches
with nanosatellites. A typical nanosatellite is four orders of
magnitude cheaper, three orders of magnitude less massive,
and four orders of magnitude smaller than a typical, mono-
lithic satellite. Rather than operate for decades, a nanosatellite
operates for a few years at most or a few weeks at least. Lower
costs and shorter missions reduce per-device risk and support
use of cutting-edge, commercial, off-the-shelf (COTS) hard-
ware. If hardware lacking flight heritage fails, the nanosatellite
can be quickly replaced.

Higher per-device risk tolerance of nanosatellites provides
opportunities to deploy more advanced subsystems to orbit
compared to expensive, monolithic satellites. However, most
nanosatellites still adhere to the same concept of operations
(CONOPS) as monolithic satellites; i.e., a bent pipe [20]. New
Earth-observation capabilities enabled by large constellations
— e.g., daily global coverage — are limited by continued
adherence to a bent-pipe CONOPS [37]. Additionally, new
challenges — e.g. effectively managing a large constellation
by remote control [37] — arise in a more crowded LEO.

Recent work observes, enumerates, and characterizes some

(a) TA1 Assembled.

(b) TA1 Board Stack.

Figure 1: TA1 Satellite. TA1’s modular stacking design (visi-
ble at right in a prototype) easily integrates new payloads.

of these challenges [15, 16,40]. For example, a proliferated
LEO exacerbates the downlink bottleneck: Earth-observation
satellites and constellations observe much more data than
can be downlinked per orbit revolution. These challenges are
addressed by orbital edge computing (OEC): colocating com-
puting resources with sensors on orbit to process data before
transmission. OEC makes better use of limited communica-
tion opportunities by pre-processing and selecting valuable
data for transmission. However, this technique generally re-
quires significant energy for computation on the satellite.

Thus, the volume and surface area constraints of nanosatel-
lites make OEC particularly challenging to deploy. Limited
surface area and low-cost requirements prevent nanosatel-
lites from leveraging over-provisioned solar panels. Limited
volume constrains the amount of energy that can be stored
inside the device (i.e., the capacity of the energy buffer). In
this work, we import techniques of intermittent computing
from cutting-edge computer systems research to reconcile
the benefits of OEC with the constraints of a nanosatellite
platform. We buffer energy with a supercapacitor instead of a
battery — a choice that is further motivated in Section 2.2.

Because evaluating all proposed OEC schemes in orbit is
not practical, previous work developed the cote software li-
brary to assess proposals in simulation [16]. TA1 integrates
with cote and any other space simulation environment via
TAB to provide a hardware-in-the-loop evaluation platform.
In this work, we present a low-cost, open-source [17,18] satel-
lite to augment simulated OEC evaluation with both hardware-
in-the-loop (before launch) and in orbit (after launch).

We present Tartan Artibeus (TA1), an open-source hard-
ware [17] and software [18] pocketqube satellite for OEC
research. Figure | provides exterior and interior views of TA1.
The TA1 command and data handling (C&DH) module serves
as an arbiter between standard subsystem modules and the
batteryless electrical power system (EPS), which harvests
energy into a supercapacitor. To abstract the batteryless, in-
termittent operation from other subsystems, TA1 introduces
the Tartan Artibeus Bus (TAB): a framework for integrating
independently-developed satellite subsystem modules. TAB
extends the open-source OpenL.ST [33] serial communica-

tion protocol to support OEC operations. The C&DH module
uses TAB to operate satellite subsystems oblivious to the
batteryless, intermittent nature of the satellite. Further, TAB
supports integration with external simulation tools like cote
for hardware-in-the-loop evaluation. TA1 leverages TAB to
provide an open source platform for OEC research.

In summary, Tartan Artibeus provides the following contri-
butions to computational space systems research:

* TA1 complements software-based OEC simulation with a
batteryless, hardware platform for real-world evaluation.

* TAB provides a communication framework for easy inte-
gration of flight hardware with both software simulation
environments and new hardware research modules (e.g. ex-
perimental payloads).

e TA1 is an open-source hardware [17] and software [18]
reference implementation of a flight-ready picosatellite for
in-situ OEC evaluation.

e TA1 software includes three reference apps that exercise
TAB and provide a model for OEC research CONOPS.

2 Background

LEO satellite systems proliferate as new launch services [24]
provide increasing access to space. Nanosatellite deployments
in particular exhibit rapid growth [62] since the standardiza-
tion of the “cubesat” form factor [49]. Satellites continue to
reduce in size with the recent proposal of the “pocketqube”
standard [52] and deployments of “chipsats” [70]. We provide
an overview of existing LEO nanosatellites, opportunities to
leverage batteryless and intermittent computing in space, and
the emerging field of orbital edge computing (OEC).

2.1 Existing Nanosatellites

Smaller satellite sizes and costs support deployments of large
numbers of devices to LEO. For the first time, satellite con-
stellations consist of hundreds of devices [10,37] instead of
dozens. Now, some of the largest LEO constellations con-
sist almost entirely of nanosatellites. A nanosatellite masses
between 1kg and 10kg. Often, a nanosatellite adheres to
the cubesat standard [49] to leverage COTS components and
launch services. Momentum toward even smaller designs, like
the pocketqube standard [52], promise even lower unit costs.

While a cubesat consists of integer multiples of
10cmx10cmx10cm (“1U”) volumes, and each 1U volume
must mass no more than 1.33 kg, a pocketqube consists of
integer multiples of 5cmx5 cmx5cm (“1p”) volumes. Each
1p volume of a pocketqube must mass no more than 0.25 kg
(i.e., 250 g). Thus, even a 3p pocketqube cannot meet the 1 kg
threshold to be considered a nanosatellite and might more ac-
curately be described as a picosatellite. Satellites smaller than
a picosatellite — i.e., a chipsat — may be even cheaper to

launch in high quantity, but they do not yet enjoy the benefits
of standardized COTS components and launch services.

For decades, universities and other education-focused or-
ganizations launched and operated the majority of LEO
nanosatellites. More recently, multiple business organiza-
tions [10,37] have deployed large nanosatellite constellations
for commercial Earth-observation. These constellations en-
able new geospatial applications — e.g., observing the entire
Earth in a single day [37]. However, effectively managing
satellites by remote control — i.e., via a bent-pipe — grows in-
creasingly difficult with larger constellation populations [37].

The smaller size of emerging satellites creates new chal-
lenges. Nanosatellites face exacerbated downlink bottle-
necks [16], limited data quality due to volume constraints [15],
and less harvested power [40]. In contrast, monolithic satel-
lites enjoy large engineering margins for power. These sys-
tems may harvest more than 3 kW via solar arrays. A 3U
nanosatellite with low-risk, body-mounted solar panels har-
vests less than 10 W of power — three orders of magnitude
less than a large SV. Picosatellites and chipsats face more
stringent power budgets. As satellites become smaller, their
design must address increasingly strict operating constraints.

2.2 Batteryless and Intermittent Computing:
Failure is an Option

As nanosatellites reduce in size and mass, multiple challenges
emerge for supporting batteries. First, batteries begin to oc-
cupy an outsized fraction of the SV body. Second, as thermal
mass declines, the EPS experiences wider temperature swings
that may damage rechargeable batteries [34]. At low temper-
atures energy and power delivery reduce [47], and at high
temperatures thermal runaway is a risk [6]. Finally, the EPS
must carefully manage battery depth of discharge to guarantee
operation over deployments spanning even just three to five
years [9]. Supercapacitors avoid these concerns with higher
power density [32], wider operating temperature ranges [31],
and higher cyclability [71] with the primary concession that
supercapacitors exhibit lower energy density (and total en-
ergy storage capacity) than batteries of the same volume. TA1
therefore introduces a batteryless nanosatellite design that
buffers harvested energy in one or more supercapacitors.

Smaller satellites also limit the surface area of low-risk,
body-mounted solar panels, constraining access to harvested
power. A batteryless nanosatellite draws power stored in its
energy buffer when operating power exceeds harvested power.
When satellite subsystems deplete the energy buffer, power
fails and the SV must power down while the buffer refills.
Power failures typically spell disaster for a satellite, but bat-
teryless satellites continue execution across power failures
using techniques from the field of intermittent computing [41].
Intermittent computing strategies preserve program state by
strategically writing to non-volatile memory preserved across
power failures [4,5,12,27,30,42-44,53,55,59-61].

ol . § 5 Restarta No

= (Plain C poth /v- - main() Progress

2 start at\ ;3 Start { Steps

4= main o Starta :

8 | Tasks 0 .. next tat;k’.I:thmugh
x : tasks

o & ¥

G5 : 3 :

=g : :

Tlos :

c| 25 ¥ Time

o>

Figure 2: Intermittent Execution. Hardware turns on and off
as the energy buffer drains and refills. These power failures
interrupt software execution. In C-language programs, such
power failures prevent forward program progress. Task-based
code preserves progress after each task completes.

Figure 2 illustrates the operating states of hardware and
software as a device executes intermittently. After refilling the
energy buffer, the device turns on and begins running code un-
til the buffer depletes and the device turns off to await the next
operating period. Figure 2, top, demonstrates the problem of
running unmodified code on an intermittently-powered device.
After a power failure, execution restarts from the beginning of
the program and all progress is lost. In contrast, programmers
may use intermittent zasks to decompose a program into a
sequence of atomic code regions to preserve progress at task
boundaries [12,27,41-43,68]. On reboot, the program begins
at the start of the failed task. One challenge under an intermit-
tent execution model involves extended periods with no power
because little or no energy can be harvested (e.g. in eclipse).
Programmers may extend operation in eclipse by reducing
the frequency and power of expensive operations [45].

By framing nanosatellite operation as intermittent, devel-
opers ensure a more resilient and lower-risk design. Many
tools and programming models exist to scale with capacitor
size [5,12,13,30,43,44]. Intermittent tasks are robust to re-
boots, regardless of the cause. Tasks are idempotent by design,
so re-executing a task due to errors like a watchdog timeout
allows the program to continue operating and only re-run the
failed task. Further, tasks allow programs to tolerate power
system degradation because the entire program need not com-
plete at once for the mission to succeed. One can effectively
derate for capacitor aging (i.e. reduced capacitance over time)
by breaking code into smaller tasks. An intermittent execu-
tion model allows system developers to aggressively increase
computing load since the energy buffer will recharge and
execution will resume if a power failure occurs.

2.3 Orbital Edge Computing

To address the exacerbation of the downlink bottleneck due to
increasing constellation populations, orbital edge computing
colocates computational hardware with sensors in satellites

0x22 0x69 0x06 OxHH OxHH OxHH OxHH OxHH 0x10

Start Start Body HW ID HWID MSGID MSGID Dest Opcode
Byte 0 Byte 1 Length LSByte MSByte LSByte MSByte ID

(a) common_ack byte structure

0x22 0x69 0x0e @xHH OxHH OxHH OxHH OxHH 0x14
Start Start Body HW ID HW ID MSGID MSGID Dest Opcode
Byte 0 Byte 1 Length LSByte MSByte LSByte MSByte ID
OxHH OxHH OxHH OxHH OxHH OxHH OxHH OxHH
Sec Sec Sec Sec Ns Ns Ns Ns
LSByte MSByte LSByte MSByte

(b) app_set_time byte structure
0x06 OR
0x22 0x69 xQe OxHH OxHH OxHH OxHH OxHH 0x12
Start Start Body HW ID HWID MSGID MSGID Dest Opcode
Byte 0 Byte 1 Length LSByte MSByte LSByte MSByte ID

OxHH OxHH OxHH OxHH
Optional

Optional Optional

Delay Delay Delay

MSByte
(c) app_reboot byte structure

0x22 0x69 OxHH OxHH OxHH OxHH OxHH OxHH ox11
Start Start Body HW ID HW ID MSGID MSGID Dest Opcode
Byte 0 Byte 1 Length LSByte MSByte LSByte MSByte ID

ASCII Up to 249 chars (not null terminated)

(d) common_ascii byte structure

Figure 3: (a) The byte structure of the common_ack TAB
command. The header bytes compose the entire command.
(b) The byte structure of the app_set_time command with
both header bytes and payload bytes. (c) The byte structure of
the app_reboot command, which includes optional payload
bytes. (d) The byte structure of the common_ascii command,
which contains a variable number of payload bytes.

to process data at the edge [15, 16,40]. While monolithic
satellites eschew such hardware to avoid increased risk of
failure, nanosatellites are free to use more recent computa-
tional devices. For example, the lower cost and more frequent
replacement rate of nanosatellites reduce the risk of deploy-
ing computational hardware that is merely “radiation tolerant”
instead of “radiation hardened.”

An OEC satellite collects data, processes data at the orbital
edge, and uses the results to intelligently transmit information
to the ground. For example, many Earth-observation satel-
lites collect image data. These satellites capture a sequence
of images along the satellite’s ground track. Each image in
this sequence is a ground track frame (GTF), often consisting
of a large geographic region. Under a bent pipe, a satellite
attempts to downlink as many GTFs to the ground segment
as the limited communication opportunities support. These
frames are then split into hundreds or thousands of smaller
tiles (each consisting of a smaller geographic region) for anal-
ysis. An OEC satellite instead processes tiles at the orbital
edge, supporting more intelligent use of the limited downlink.

To evaluate the efficacy of OEC proposals, our prior work
developed the cote simulation environment [16]. This soft-
ware tool models satellite orbital mechanics, rotation of the
Earth and ground stations, and satellite subsystem characteris-

Original OpenLST Commands TAB-Specific Commands

m,reboot \
app_get_time

app_set_time
app_get_telem
app_telem
bootloader_ping
bootloader_erase
bootloader_write_page
bootloader_ack
bootloader_nack
common_nack

common_ack
Qmmon,ascii)

Figure 4: Left: Commands unique to the original OpenLST
software. Middle: Commands common to both the original
OpenLST software and TAB. Right: Commands unique to
TAB and aimed at supporting OEC research.

app_ranging bootloader_jump

app_ranging_ack bootloader_write_page_ext
app_get_callsign bootloader_write_page_addr32
app_set_callsign common_data

app_callsign

tics such as harvested and stored energy, data collection, com-
putation, communication, and radio bitrates. Researchers used
this tool to propose and evaluate the computational nanosatel-
lite and computational nanosatellite pipelines (CNPs) [16].
A CNP distributes computational tasks across computational
nanosatellites in a constellation. With a sufficient number of
satellites, a CNP completes processing of all tiles in a frame
before the ground track frame period (GTFP): the time be-
tween observation of new ground track frames.

In this work, we present Tartan Artibeus (TA1), a low-cost,
fully open-source hardware [17] and software [18] satellite
for use as an OEC research and evaluation platform. Using
the Tartan Artibeus Bus (TAB), researchers easily integrate
independently-designed hardware and software modules with
TA1. TAB allows TA1 to integrate with cote or other soft-
ware for hardware-in-the-loop simulation. TA1 can also be
deployed to orbit for in-situ evaluation of OEC proposals.

3 TAB: The Tartan Artibeus Bus

The Tartan Artibeus Bus (TAB) accomplishes three main
goals: (i) augmenting software simulation of OEC proposals
with hardware-in-the-loop, (ii) integrating unmodified COTS
subsystems into an intermittent, batteryless satellite, and (iii)
operating in LEO as a proof of concept. TAB uses a stan-
dardized communication protocol for transferring commands
and data among independent satellite modules. This serial
communication protocol consists of 17 commands that adhere
to a well-defined message structure. Users may easily extend
the protocol with additional commands. TAB implements a
core subset of OpenLLST [33] commands and an additional
set of new commands to better support OEC research.
Unlike the OpenLST communication protocol, which sup-
ports development and operation of the OpenLST radio, TAB
aims to facilitate (i) interaction between software simulation
environments and research hardware (hardware-in-the-loop);
(i) integration between independently-designed satellite sub-

common_ack app_set_time

Required payload: Required payload:
None Seconds and nanoseconds
Optional payload: Optional payload:

None None
Reply: Reply:
common_ack If success: If failure:
common_ack common_nack

Figure 5: Left: The specification of the common_ack TAB
command. This command contains no optional or required
payload bytes and always elicits a common_ack reply. Right:
The specification of the app_set_time TAB command. This
command requires seconds and nanoseconds payload bytes.
The command recipient sends a common_ack to indicate suc-
cess or a common_nack to indicate failure.

systems; and (iii) in-flight operation of deployed satellites.
We greatly appreciate the open-source release of OpenL.ST
hardware and software and, in the same spirit, release TAB
for open-source use in space and computer systems research
athttp://intermittent.systems. We provide reference
TAB implementations both as C header and implementation
files and as a single Python script to allow straightforward
integration with other projects.

In Section 3.1, we describe the anatomy of a TAB command
and compare the smaller, more general TAB command set to
the larger, application-specific set of OpenLST commands.
We highlight commands unique to TAB that aim to better
support OEC research goals. We describe the TAB commu-
nication protocol in Section 3.2. In Section 3.3, we illustrate
the versatility of TAB for hardware-in-the-loop simulation,
seamless subsystem integration, and in-flight operation of
deployed satellites.

3.1 TAB Commands

Every TAB command consists of two sections: a header and a
payload. The header contains the start bytes, length, hardware
ID, message ID, destination ID, and the command “opcode.”
Thus, the TAB header consists of a constant number of 9 bytes.
The payload contents vary by command. Command payloads
range from 0 to 249 bytes.

Figure 3 (a) illustrates the structure of the common_ack
command, which consists entirely of header bytes. To pre-
serve compatibility with the OpenLST protocol, we retain
the two start byte values of 0x22 and 0x69. The length byte
indicates the number of remaining bytes in the command and
therefore always takes a value between 0x06 and 0xff, inclu-
sive. The hardware ID, which consists of two bytes with the
least-significant byte first, indicates the ID of the satellite or
device targeted by the command. The message ID, which also
consists of two bytes with the least-significant byte first, acts
similarly to a nonce and allows a reply to be paired with its

Communication C&DH
Station (src) Module

Destination ID: @xa Destination ID: @xb

common_ascii 'S
Destination Byte: @xad) ©0xad & 0x0b != 0x0b N\

Forward to C&DH via UART = dst <- @xad & 0x0f A
Forward to dst Reply:

common_ack
dst <- Oxda & 0x0f Destination Byte: Oxda

dst off-satellite;
A~ forward to COM o

Ground Payload

Module (dst)

Destination ID: @xc Destination ID: @xd

Oxda & Ox0b != 0x0b
Oxda & 0x0a == 0x0a 4~ Forward via RF
Reply received

Figure 6: A ground station sends an RF command. The TA1
radio module receives the command and forwards it to the
C&DH module, which parses the destination and delivers the
message to the computational payload. The reply follows the
same sequence in reverse.

initiating command. TAB uses the upper and lower nibble of
the destination byte to support intra-satellite communication
among independent subsystems. Command recipients parse
the opcode byte to determine the proper TAB reply.

Figure 3 (b), (c), and (d) present three examples of TAB
commands with payload bytes. The app_set_t ime command
consists of a constant number of payload bytes. The first
four payload bytes represent the seconds since the J2000
[46] epoch (least-significant byte first), and the next four
payload bytes represent the remaining nanoseconds (again,
least-significant byte first). This command allows an external
source to set the real-time clock (RTC) of a TAB module.
The app_reboot command exemplifies a payload with op-
tional bytes. The four payload bytes (least-significant byte
first) are optional — their presence or absence is indicated by
the length byte in the header — and represent the delay be-
fore executing a reboot procedure. Finally, the common_ascii
command consists of a variable number of payload bytes. The
command, which should be used for debugging messages (see
common_data for generic data transfer), contains 0 to 249
ASCII-encoded character bytes as indicated by the header
length byte (and, thus, requires no null-character termination).

We include a full list of TAB commands in Figure 4. For
reference, we illustrate the larger set of application-specific
OpenLST commands, the overlap between these commands
and the core TAB commands, and additional TAB commands
that support OEC research. In keeping with the OpenL.ST
convention, TAB commands are categorized by app-focused
commands, bootloader-focused commands, and commands
common to both domains. For specification of the remaining
commands, see our open-source reference implementations in
C [18] and Python [19] and the accompanying documentation.

3.2 TAB Protocol

Under the TAB protocol, every command elicits a single re-
ply. The reply varies by command and by command content.

Commands and replies are paired by the header message ID
bytes; every reply mirrors the message ID of the initiating
command. Commands are addressed by a hardware ID, which
indicates the destination device, and the destination ID, which
supports communication among satellite submodules.

The TAB protocol augments the function of the destination
ID byte compared to the OpenLST protocol in a backwards-
compatible manner. In TAB, the upper nibble of the destina-
tion ID indicates the originating module, and the lower nibble
of the destination ID indicates the target module. Thus, the
upper and lower nibble of the destination ID in a reply are
swapped when compared to the upper and lower nibble of the
destination ID of the initiating command.

We adhere to a single-command, single-reply protocol to
encourage simple command logic and predictable behavior.
A command-reply structure fosters intuitive operation and
makes debugging straightforward. Such a protocol naturally
limits the scope of command-triggered logic, because any
such logic must complete swiftly to produce a timely reply.
This point is particularly important in the energy-constrained
regime of small satellites. Further, limited command-triggered
logic supports portable protocol implementations without the
need for integration with MCU-specific interrupts.

Figure 5, left, illustrates the specification for a common_ack
command, which always elicits a common_ack reply. This
example demonstrates the expected behavior of an in-flight
basic check from a ground station to a deployed satellite. See
Section 5.1 for a more detailed description of this use case.

Figure 5, right, specifies the app_set_time command,
which elicits either a common_ack reply or a common_nack
reply depending on the command result. This example il-
lustrates how a software simulation package can initialize
the RTC of a hardware-in-the-loop satellite module during
pre-flight testing and evaluation. If the simulator receives a
common_ack, then the simulation can continue. If the simula-
tor instead receives a common_nack, then the simulation can
be aborted with an error message for the operator.

Figure 6 traces multiple “hops” of a common_ascii com-
mand. This example demonstrates use of the destination
ID byte to support communication among independently-
designed satellite modules. A computational payload board
requires an ASCII-encoded TLE to calculate the satellite posi-
tion given its RTC time. This TLE, which is generated on the
ground, must be received by the radio module, forwarded to
C&DH, and then delivered to the computational payload. See
Section 5.3 for a more detailed description of this use case.

3.3 TAB Use Cases

Because the TAB specification is agnostic to the physical
layer, it can be deployed regardless of the communication
medium. TAB aims to facilitate interaction between software
simulation environments and research hardware (hardware-in-
the-loop), integration between independently-designed satel-

lite subsystems, and in-flight operation of deployed satellites.
For hardware-in-the-loop simulations, we connect a satel-
lite submodule to a software simulation package via USB-
to-serial. Both the satellite submodule and the simulation
software leverage reference implementations of TAB. The
satellite submodule implements TAB over its UART pins, and
the simulation software implements TAB over its serial port.
Independently-designed satellite subsystems in TA1 commu-
nicate using TAB via connected UART pins. For in-flight
operation of deployed satellites, TAB commands are encoded
for RF transmission and decoded by a receiving radio. See
Section 4.5 for a more detailed description of this use case.

4 Tartan Artibeus

Tartan Artibeus (TA1) is the first batteryless, computational
pocketqube satellite; its open-source hardware and software
launched into low-Earth orbit (LEO) in January 2022. TA1 is
a 1p (125 cm?) pocketqube built around the Tartan Artibeus
Bus (TAB), which connects independently-designed modules
into a batteryless, computational satellite. TA1 incorporates
an electrical power supply (EPS) module that harvests solar
energy into a supercapacitor, a fault-tolerant command and
data handling (C&DH) module, a radio communication mod-
ule, and a configurable computational payload module. We
present an overview of the major components of TA1.

4.1 Energy Harvesting and Storage

TA1 mounts five solar panel PCBs to five of the six pock-
etqube faces. The sixth pocketqube face is reserved for the
baseplate and is described in Section 4.6. The solar panels are
electrically connected to the internal electrical power system
(EPS) PCB. The power module conditions the solar panel
voltages and currents and stores the harvested energy in a
5.6 F supercapacitor. We provide additional details for the
solar panels, EPS, and energy storage.

Solar Panels: A custom solar panel PCB covers five of
the six 25 cm? faces of the TA1 pocketqube. Each solar panel
PCB contains four square solar cells. A single solar cell mea-
sures 1.88 cm on each side. We first connect two cells in series
to increase panel voltage, and we then connect two pairs of
cells in parallel to increase panel current. Figure 7a provides
a diagram of the solar panel PCB design that illustrates the
solar cell connections and the corresponding bypass diodes.

Using the standardized value for solar spectral irradiance
of 1366.1 W/ m? [2] and the datasheet efficiency of 29.4% at
the time of manufacture [3], each solar cell exhibits a maxi-
mum power (MP) voltage of 2.441 V and an MP current of
58.88 mA. Thus, a single solar panel provides an MP voltage
of 4.882 V and an MP current of 117.8 mA. Therefore, each
solar panel provides up to 0.5751 W of power to the internal
EPS PCB module. After an extended deployment [3], MP
voltage falls to 2.246 V and efficiency falls to 26.5%. Thus,

(b) TA1 Supercapacitor.

(a) TA1 Custom Solar Panel.

Figure 7: Figure 7a shows an annotated picture of an assem-
bled solar panel. Bypass diodes allow current to flow while
protecting against the possibility of inoperable solar cells. Fig-
ure 7b contains an image of the supercapacitor used to buffer
energy in TA1 next to the satellite chassis for scale.

MP current falls to 56.97 mA. For each solar panel, these
values correspond to an MP voltage of 4.492V and an MP
current of 113.9 mA with an overall MP of 0.5116 W.

Internal EPS PCB Module: Figure 8 shows a high-level
schematic of the TA1 power system, which uses a dual input-
output booster design [14,40,51]. The input booster charges
the capacitor up to 5.5 V, at which point the voltage supervisor
enables the output booster. The output booster provides a
stable 3.3V to the VDD rail and discharges the capacitor as
low as 2.0V before the supervisor disables the output booster.
The lower threshold of 2.0 V avoids inefficient charging from
the input booster’s “cold-start” region.

To reduce the effort of building flexible applications for
TA1, the EPS design takes on some complexity to shield
application subsystems. First, the dual booster system sup-
ports peripherals that cannot tolerate the full voltage range
experienced by the capacitor. This approach simplifies periph-
eral subsystem hardware development — the developers can
expect a 3.3 V input to the subsystem that is stable until the
device powers down. The separate power rails for each periph-
eral subsystem minimize the effort on the part of the C&DH
module to disable peripherals to save power. Features like the
hardware-defined hysteresis thresholds also reduce the flight
software complexity by removing the need for software inter-
vention [14,44,45]. Finally, the EPS includes onboard mea-
surement hardware to capture load current, harvested power,
and capacitor voltage without involving off-board subsystems.
A four-port op-amp buffers the voltage measurements and
passes the results to a 16-bit ADC that can be accessed by
any subsystem via [2C. The ADC and op-amp are both pow-
ered by VDD, so when VDD is low, both are powered off.
However, the op-amp will sink current from its inputs if they
are higher voltage than VDD, which would reduce the system
efficiency during charging. High impedance voltage dividers
between the measured voltages and the op-amp prevent extra
current from draining.

(3.3V) : o ICOMM
| z IEXPT
age
- Supervi L
g 5.4v-2v | 'z IGNSS

CTRL

Booster Booster

TPS6300

SPV1040

Figure 8: TA1 Power System.

Supercapacitor: On TA1, the EPS buffers energy in a
5.6 F supercapacitor, the FTOH565ZF (FTH) [31]. With a to-
tal energy storage capacity of over 80 J and a maximum power
output of more than 8 W, the FTH approaches the maximum
energy and power that can be stored in a 1p pocketqube form
factor with a capacitor. We also select the FTH for its manage-
able effective series resistance (ESR) over a wide temperature
range. We expect the FTH’s ESR to increase to no more than
4.2Q at —40°C and no more than 600 mQ at 85°C. ESR
limits the power a supercapacitor can supply, so lower is bet-
ter. We perform altitude testing to confirm that the capacitor
performance is not impacted by vacuum.

4.2 Command and Data Handling

TA1 aims to minimize the hardware and software components
responsible for persisting execution context across power fail-
ures (see Section 2.2). Thus, TA1 concentrates flight control
and persistency management software onto the C&DH mod-
ule. Hardware and software design choices allow C&DH to
coordinate peripheral subsystems via TAB while maintaining
a large degree of isolation among these subsystems. Figure 9
shows the design of the C&DH module PCB.

The C&DH module uses intentional hardware choices
to provide power-failure awareness at little cost to the
peripheral subsystems. First, the C&DH MCU is an
MSP430FR5994 with 256kB of byte-addressable, non-
volatile FRAM (NVM) [66]. Byte-addressable NVM reduces
the cost of persisting state compared to technologies like
Flash that can only be read/written at a page-granularity [12].
Second, the C&DH module uses level shifters [65] to electri-
cally isolate peripheral subsystems from the C&DH module.
This isolation prevents current from leaking across the pe-
ripheral connections when they are unpowered. Finally, the
C&DH module contains two critical sensors that provide
telemetry and position data accessible by peripheral subsys-
tems: a 9-DoF IMU [58] and a GPS unit (with COCOM
limits removed) [29]. The C&DH module hardware simpli-
fies application development on TA1, and the design of the
programming interface is just as important.

Figure 10 shows an example program written with tasks (in

) that handles interrupts from the TAB (in), sup-
ported by the failure-aware programming interface (keywords
shown in blue) . The application atomically walks through

Q0000000000000 00
Q
O

Figure 9: C&DH module hardware. The C&DH MCU, the
MSP430, gathers telemetry from the GNSS and IMU. Using
level shifters (LS1-3), the C&DH MCU communicates over
the TAB to the attached subsystems.

tasks by persistently updating the active task. If power fails in
the middle of a task, execution will resume from the start of
the task on the next boot. Because TA1 is designed to support
compute-bound applications, the code does not contain any
low-power wait states. Tasks execute opportunistically until
power fails.

To execute correctly, intermittent tasks must handle write-
after-read (WAR) data accesses when a failed task is re-
executed [41]. Effectively, the dynamic execution gets out
of sync with the persistent state and leads to corrupted values.
To prevent WAR bugs, programmers use the C&DH logging
interface to write variables involved in WAR conflicts to an
undo-log [43]. On reboot, the log is replayed to restore the
state of non-volatile memory to the start of the failed task.
Programmers may use a variety of tools to identify variables
involved in WAR conflicts [41,42, 59], but we recommend
that they avoid using the modified code these tools produce.
The performance gap between code produced by the produc-
tion MSP430 GCC implementation [67] and LLVM-based
compiler tooling [36] is prohibitive for real systems.

The C&DH board’s non-blocking TAB implementation
relies on interrupt service routines (ISRs) to process and store
packets that arrive on its UART ports. However, managing
concurrent access to shared data is a challenge for any embed-
ded system. Intermittent execution exacerbates the problem
by introducing the possibility of a power failure during an
interrupt leaving partial updates to shared state. To overcome
this limitation, the C&DH software minimizes the interface
between application-defined tasks and peripheral-triggered
interrupts [55], illustrated on the right side of Figure 10. The
C&DH software defines a restricted set of buffers that each
interrupt may write into and tasks may read from. Interrupts
mark the buffers as “ready” when they may be read by tasks,
at which point tasks may extract data from the buffers and
mark them as empty. Consecutive interrupts can add to the
same buffer of data, but interrupts may not read from this
buffer nor any other persistent data. Instead, ISRs share data

Runtime init. *Restart
Hardware Init.
Restore Undo-Log

Resume
Telem. Task Tasks

log(telem_ptr)
get_telemetry();
next_task = EXPT

TAB: EXPT Interrupt
data = get_uart(expt)

. buffer(expt,data)
t
"¢ (data == DONE) {

EXPT Task ¢ tL:g?nmi*

set_complete(expt) }
get_expt_pkt() 771 =
respond_expt() EXPT ISR %omplete

ag

next_task = COMM | Buffers

Figure 10: Power-failure-aware program. C&DH programs
are written as a series of tasks (in green). The power-failure-
aware runtime components (in blue) correctly restart the pro-
gram after a power-failure. Interrupts from the TAB (in or-
ange) share data with tasks through a managed buffer (center).

via the buffer interface, and use static variables for state that
should be retained across invocations of the ISR. Following
the task/interrupt interfacing rules prevents power failures
from corrupting shared data. By providing the underlying
persistence and initialization guarantees, the C&DH board
supports a wide range of application payloads.

4.3 Computational Payload

The computational payload board consists of a custom-
designed PCB around and an STM32L496RGT3 microcon-
troller unit (MCU). This MCU contains an ARM Cortex-M4
core: a well-documented [69], high-performance (80 MHz)
MCU with extensive open-source software support (e.g.,
libopencm3 [38]). The STM32L4 series supports multiple
levels of ultra low-power modes, while STM32L.496 MCUs
offer the maximum amounts of integrated SRAM (320kB)
and Flash (1 MB). We select the STM32L.496RGT3 for its
tolerance of extended temperature ranges (—40 °C to 125 °C)
and industrial applications rating. Additionally, the LQFP64
package supports reliable hand-soldering. We illustrate the
custom PCB design and an assembled board in Figure 11.

The ARM Cortex-M4 includes a single-precision hard-
ware floating point unit (FPU), hardware support for digital
signal processing (DSP) instructions, hardware support for
single-instruction, multiple data (SIMD) multiplication, and
multiply-accumulate (MAC) instructions [57]. As a result,
the MCU core supports hardware acceleration of machine
inference. The MCU also includes an internal real-time clock
(RTC) with support for operation in a low power (320nA)
state while persisting 32 backup registers. Both the SRAM
and Flash provide hardware error detection.

In the payload PCB, we populate both the high-speed and
low-speed crystal oscillator pins with components rated for
the extreme temperatures of space. We also populate the

TA EXPT v1.0.1

BT LRETS LR LARX LR

(@) ol Ii\@
|§©©©@©© POOOOO®

Figure 11: Left: The computational payload board design.
Right: An assembled computational payload board.

backup power pin with a supercapacitor containing enough
capacitance to support RTC persistence for hours. We break
out the DCMI digital camera interface pins for future use with
satellite sensors. We attach a high-capacity (16 MB) external
Flash storage chip with an optional quad-SPI high-speed in-
terface for storage of machine learning models and captured
data. The PCB breaks out UART pins for use with TAB.

Because space systems require accurate timekeeping for
task scheduling, event timestamps, and navigation, the TA1
computational payload board tightly integrates operation of
the on-chip RTC with its CONOPS. The RTC includes a
date register and a time register. The date register stores year,
month, and day by encoding the digits in the BCD format,
and the time register stores hour, minute, and second in the
same format. The date and time registers start ticking after
initialization and are handled completely by hardware logic.
To ensure the registers tick at the correct frequency, the RTC
clock source (either LSE, LSI, or HSE) generates a 1 Hz clock
signal by prescaling its frequency.

TA1 uses the on-chip RTC peripheral to keep time for mod-
ule applications. When the computational payload module
receives power, MCU software initializes the RTC peripheral
with the LSI clock source. Upon receipt of an app_set_time
TAB command, the MCU software initializes the date and
time registers. Because the app_set_time TAB command
uses the Julian day format and the RTC registers use the Gre-
gorian format, the MCU software calculates a conversion.
The MCU software implements a well-known procedure for
this conversion [23].

4.4 Radio Communication

The TA1 radio communication module takes inspiration from
the OpenL.ST [33] radio hardware and software. The origi-
nal OpenLST hardware measures 6 cm X 5cm — too large
to fit into a pocketqube form factor. In addition to using a
few difficult-to-source or deprecated components, the original
OpenLST hardware makes use of three voltage domains (5V,
3.6V, and 3.3 V) To simplify assembly, reduce cost, and up-

date the design for integration with other TA1 modules, we
heavily modify the OpenLST hardware design. We illustrate
the custom PCB design and an assembled board in Figure 12.

The TAl radio communication module measures
43 mm x 43 mm so that it easily fits inside of a pocketqube.
We replace the deprecated power amplifier (PA) with a mass-
market alternative. Following recommendations provided by
the documentation of this alternative PA, we omit the difficult-
to-source SAW filter of the original OpenLST hardware and
instead deploy a network of discrete components for filtering.
These changes eliminate all voltage domains except for 3.3 V.

To support rapid testing, the radio communication board
includes two signal path options between the PA and the an-
tenna. Soldering one capacitor selects the “test” signal path,
which terminates at a u.FL connector for use with a COTS
50 ©Q impedance antenna. Because no COTS antenna exists in
a form-factor compatible with the pocketqube standard, the
radio communication board also supports a second, “flight”
signal path. Soldering the selection capacitor to a different set
of pads completes this “flight” signal path, which terminates
at a solder point preceded by pads for an L-matching network.
TA1 uses a custom-designed, nitinol antenna. After matching
the antenna length to the half-wavelength of the center oper-
ating frequency, the appropriate passive components match
the antenna impedance to the signal path.

Despite significant hardware changes, the OpenLST soft-
ware remains largely unchanged. As in OpenLST, the TA1
radio leverages the CC1110 RF MCU. We modify GPIO soft-
ware logic to support an alternative RF switch, and we modify
frequency specification variables to reflect the 401.82 MHz at
which the board is licensed to operate. TAB makes integration
of pre-existing modules seamless and straightforward.

4.5 Radio Link Analysis

Under a bent-pipe CONOPS, RF communication plays a key
role in the satellite mission. Even under OEC, RF communi-
cation occupies an indelible position in satellite operations:
delivering processed data to the ground segment. Therefore,
the RF CONOPS requires sufficient link budget and appro-
priate error correction in the packet design. Error correction
plays a particularly important role in satellite missions due to
artifacts inherent to long range, high velocity satellite com-
munications such as the doppler effect. These effects are less
prevalent in terrestrial communication scenarios.

Because the small form factor and associated power con-
straints of TA1 prevent boosting transmit power arbitrarily
high (within the FCC regulations), we use a modified version
of OpenLST [33] based on the popular CC1110 [25] radio
transceiver platform for low power operation of the RF sub-
system. We describe the packet structure, link budget, and the
ground station demodulation and decoding pipeline of TA1.

Packet Structure and Transmit Pipeline: Figure 13(a)
shows the packet structure in the radio communication mod-

*@)@@@@@@@@@@@@@@

TA COMM 401 v0.3.0

® @ i
@@@@@@@@@@@@@@@

Figure 12: Left: The radio communication board design.
Right: An image of an assembled communication board.

ule, which is based on the CC1110 pipeline. It contains a
4 byte preamble consisting of an alternating sequence of
1010... bits and a 2 byte sync word that can be set by the user.
The preamble sequence helps in packet detection and the sync
word aids in byte-level synchronization as well differentiat-
ing packets from other sources transmitting using the same
platform in the absence of the address field. This sequence
is followed by the length and payload fields. The former in-
dicates the length in bytes of the payload. The maximum
payload length is 255 bytes. Finally, a 16-bit CRC concludes
the payload to ensure bit error detection and correction.

After packet creation, the bits undergo appropriate coding
and modulation before being transmitted over the air. Fig-
ure 13(b) describes the bits-to-symbol encoding and modu-
lation pipeline. Bits are first whitened using a 9-bit pseudo-
random sequence [64] defined by the generator polynomial
2% +x° +x°. Data whitening ensures bit randomization, which
protects against DC bias introduced in the transmit signal
due to a burst of continuous Os or 1s. The whitened data is
then convolutionally encoded [54] using a half rate encoder
defined by the generator polynomials g; : x> +x' +2° and
g2 : x>+ 2% +x! +x9, respectively, to ensure robustness to
channel-induced errors. Post encoding, the data is interleaved
using a 4 x 4 interleaver to ensure robustness to burst errors
that can be introduced due to channel fading. The interleaved
bits are encoded in 2-FSK modulation and transmitted over
the air using the baud rate of approximately 7.5 Kbaud. Both
the modulation format and baud rate are user-specific fields
that can be modified based on need. It should be noted that the
preamble and sync word fields do not undergo the whitening,
encoding, and interleaving transformations, while the rest of
the fields in the packet do.

RF Characteristics and Link Budget: The 2-FSK modu-
lation essentially encodes bits 0 and 1 using two frequencies,
—f/2 and f/2 respectively, separated by a two-sided band-
width of f (approximately 7.5 kHz in TA1). This fact can be
seen as two prominent peaks in the frequency spectrum of the
received signal. The link budget analysis can be broken down
as follows:

10

Convolutional Encoding, Interleaving
Preamble | Sync Word | Length Payload CRC
4 bytes 2 bytes | 1byte 0-255 bytes 2 bytes
(a) Packet Format
Data_| “;Irl::ll:l‘g — Con\}lso::tt:onal — x4 — 2FSK |, Rr
Bits o L Interleaving Modulation | s I
q 18 i

(b) Transmit Pipeline

Figure 13: TA1 radio communication module (a) packet for-
mat, and (b) transmit pipeline

1. Transmitter: The RF signal is transmitted from the satel-
lite using a maximum transmit power of 1 W (30 dBm).
This transmit power can be throttled based on the power
availability on the satellite. Assuming unity gain antenna
at the satellite, these factors provide an Equivalent Iso-
lated Radiated Power (EIRP) of 30 dBm.

2. Pathloss: The orbital altitude of 500 km along with trans-
mit frequency of 401.82 MHz results in a free space path
loss of 138.5 dB. Note that the actual distance can vary,
depending on the exact relative distance between the
satellite and the ground station, which varies as the satel-
lite moves in its orbit.

3. Receiver: Any SDR-based ground station would receive
the signal at a bandwidth slightly higher than the trans-
mitter to ensure decent oversampling factor that can be
used to average out noise. Receiving the satellite signal at
a 5x oversampling results in a noise floor of —128 dBm.
Accounting for a 6 dB noise factor introduced by any
hardware, we can safely assume an effective receiver sen-
sitivity of —116 dBm. In order to ensure a good signal-
to-noise-ratio (SNR) of 10 dB for 2FSK modulation, any
received signal with power over —106 dBm should be
decodeable. Removing path loss from EIRP and account-
ing for a 10 dB antenna gain at the ground station, the
received signal power at the ground station comes out
to be —98.8 dBm, which in turn results in a SNR of
approximately 18 dB. This SNR is more than sufficient
to ensure successful decoding. While the numbers used
in this analysis are typical values, in case of higher path
loss or higher bandwidth (noise floor) or lower transmit
power, a higher gain antenna with a low noise amplifier
can be used at the ground station to ensure sufficient
SNR for successful decoding.

Demodulation and Decoding Pipeline: While on-chip
decoders use the exact same parameters like bandwidth, gain,
etc. for demodulation and decoding, employing an SDR-based
ground station provides more flexibility to record at higher
gain and debug in low SNR scenarios. We create a demodula-
tion and decoder script to process the received signal from any
SDR operating at any acceptable receiver bandwidth (> 2 x

S

TAOGLAS

©B

AGGBP.SLS.25A

(a) TA1 chassis. (b) TA1 baseplate.

Figure 14: TA1 Mechanical Components. The TA1 chassis
(left) and baseplate (right) comply with the pocketqube stan-
dard and electrically attach key components.

the transmit bandwidth). Using a higher bandwidth at the
SDR provides a higher oversampling factor that gives two
benefits: a larger number of RF samples to yield a higher
preamble and syncword detection gain, and a larger number
of samples to disambiguate the FSK symbol frequency while
demodulation. Our packet detection and demodulation bene-
fits from these two aspects. We first detect the packet using
a large number RF samples to improve the chance of detec-
tion and then demodulate to bits. In comparison, an on-chip
system first demodulates to bits and then detects the packet
using much fewer bits thus reducing the chance of detection.
Upon demodulation to bits, we reverse the steps described in
Figure 13(b) to recover the transmitted message.

4.6 Baseplate, Chassis, and Mechanics

The TA1 stacked-PCB design inside the pocketqube form
factor eliminates many mechanical questions encountered
by cubesats. For TA1, the mechanical design effort concen-
trates in the chassis, the sliding baseplate required by the
pocketqube standard, and compliance testing required by the
launch provider. Figure 14a shows the 115 g aluminum chas-
sis, co-designed with the solar panel PCBs also pictured. The
in-house mechanical design group TechSpark at Carnegie
Mellon University modeled and manufactured the chassis.
The chassis connects to the baseplate using four standard
M2 screws, and custom aluminum standoffs affix the stack
of modules to the baseplate to provide an electrical chassis
ground to the modules.

The baseplate is a critical component of the TA1 design that
resolves mechanical, electrical and compliance requirements.
Figure 14b shows a labeled image of the baseplate. In addi-
tion to the connection to the chassis, the baseplate electrically
connects to all of the pins used by TAB to communicate be-
tween modules and exposes them for testing, debugging, and
pocketqube standard compliance. In the pocketqube standard,
the baseplate is primarily defined as the interface to the pock-

11

etqube launcher. In addition to adhering to the required dimen-
sions, the baseplate must provide mechanical “kill switches”
that keep the satellite powered off until deployment. Lever-
aging the baseplate module connections, the kill switches
short the supercapacitor voltage to chassis ground when the
satellite is inside the launcher, depressing the switches. Con-
necting the supercapacitor to ground over a low resistance
(100) prevents any errant harvested energy from accruing
in the supercapacitor before launch. Beyond its required func-
tionality, TA1 utilizes the baseplate to mechanically secure
the GNSS antenna [63](Figure 14b, B), provide a convenient
connection to the solar panels (Figure 14b, C), and hold the
antenna release mechanism (Figure 14b, D). The radio mod-
ule nitinol antenna is secured before launch by wrapping it
against the baseplate and tying it to a nichrome wire [48] with
fishing line [8]. On first boot, the C&DH module activates a
high power transistor that shorts the supercapacitor to ground
over the nichrome wire. The resulting current flow causes the
nichrome wire to heat up and melt away the monofilament
fishing line, releasing the antenna.

Once the pocketqube standards are met, compliance with
the launch provider must be satisfied. To mechanically test
TA1, we carry out qualification level testing on the final TA1
flight unit for random vibration and sine burst testing [21].
No damage was incurred on TA1 throughout these tests,
and the unit functioned as expected afterwards. Additionally,
TA1 must meet outgassing requirements set by the launch
provider [56]. We apply a conformal coating to both sides
of each module and the baseplate to prevent substantial out-
gassing from any of the electrical components. Interestingly,
the conformal coating resulted in an unspecified conflict with
the pocketqube standard. The coating increased the friction
between the edge of the TA1 baseplate and the pocketqube
launcher rail [52] and prevented TA1 from sliding freely. To
launch, the coating had to be removed along the 2 mm over-
lap between the baseplate and the rail. Future revisions to the
pocketqube standard should specify the acceptable coefficient
of friction between the baseplate and the launcher rail.

S TAB Reference Applications

To evaluate the TA1 implementation of TAB, we present
three reference applications. These applications illustrate the
concept of operations (CONOPS) of TA1. Each application
makes use of TAB. The first application, “ping,” exercises the
TAT1 radio module. The second application, “data,” exercises
both the radio module and the C&DH module. TAB messages
are received by the radio module, parsed, and forwarded to
the C&DH module destination. The third application, “cote,”
exercises the radio module, the C&DH module, and the com-
putational payload module. TAB messages are received by the
radio module, parsed, and forwarded to the C&DH module
for delivery to the computational payload module.

5.1 Application 1: Ping

The “ping” application consists of a single command,
which generates a single reply. A ground station emits a
common_ack via RF (see Section 4.5) for reception by TA1.
To be accepted, the hardware ID of the common_ack must
match the hardware ID of TA1. All TA1 modules have been
programmed with this hardware ID.

This application aims to elicit a reply from the radio mod-
ule. Therefore, the common_ack destination ID contains the
radio module ID as the lower nibble. To indicate that the reply
should be transmitted via RF, the upper nibble contains the
ground station ID. Upon reception, the radio module gener-
ates a common_ack response. The upper and lower nibbles of
reply destination ID are swapped as described in Section 3.2.

5.2 Application 2: Data

The “data” application demonstrates the ability of TAB to sup-
port communication between modules. This application re-
quests telemetry stored on the C&DH module. Every minute,
TA1 collects data from the IMU on the C&DH board as well
as the time, date, position, and status information from the
GNSS and power introspection information from the ADC on
the EPS. These data are pushed onto a stack until a telemetry
request command arrives. In response, the C&DH module
pops the most recent telemetry for reply.

5.3 Application 3: cote

The “cote” application consists of a single command that
ultimately results in a single reply. However, this application
exercises three TA1 modules: the radio module, the C&DH
module, and the computational payload module. This “cote”
application implements a limited version of the open-source
cote simulator for computational nanosatellites [16]. Specif-
ically, we port the cote implementation of SGP4 [28] from
C++ to C for execution on the computational payload MCU.
Given a TLE via a common_ascii command, the payload
board leverages the MCU RTC to calculate the current posi-
tion of the satellite and generate a message containing these
coordinates. See Figure 6 for a diagram of this application.

6 Additional TAB Applications

TAB supports over-the-air upload of new software applica-
tions after deployment to orbit. Post-deployment updates
make TA1 a flexible orbital edge computing research plat-
form. In the lab, we have demonstrated this upload mecha-
nism and the ability to time-multiplex several programs on a
single payload board. This feature provides a first step toward
dynamic multitenancy and new, flexible “software-defined
nanosatellite constellations.”

12

The application upload mechanism delivers new programs
to the satellite via RF; upon delivery, these programs are
stored for execution. Our implementation uses Intel’s line-
oriented HEX format, which includes a per-line start code,
byte count, address, record type, data, and checksum. The
start code specifies the record type and, if the line start code
indicates a data record, the TA1 ground support software [19]
parses data from that line for transmission. After collecting
all data lines, the data are split into 128-byte “chunks” for
use in the bootloader_write_page TAB command. These
commands are sent to the computational payload board, where
the program data are written into storage.

Simultaneous deployment of multiple programs requires a
more general TAB command than the backwards-compatible
bootloader_write_page command. Specifically, in order
to make use of the entire address range of the program storage,
TAB introduces the bootloader_write_page_addr32 com-
mand. This new, more general command writes the 128 byte
TAB payload starting at the address in memory specified in
the command. In the lab, we exercise this new, more general
TAB command by demonstrating a computational payload
board with three user programs. Each user program executes
in response to a TAB bootloader_jump command.

7 Conclusion

We present Tartan Artibeus, an open source hardware [17]
and software [18] 1p pocketqube satellite launched into LEO
in January 2022. Built around the Tartan Artibeus Bus (TAB),
TAT1 integrates independently-designed modules into a bat-
teryless, computational satellite. TAB positions TA1 as a plat-
form for computational nanosatellite research by supporting
(i) interaction between software simulation environments and
research hardware (hardware-in-the-loop); (ii) integration be-
tween independently-designed satellite subsystems; and (iii)
in-flight operation of deployed satellites.

We provide in-depth descriptions of the satellite mechanics,
PCB hardware design, software, system CONOPS, and radio
communication to serve as a blueprint for other organizations
working in computational space systems. Detailed bills of
material (BOMs), MCU software, communication protocol
and CONOPS documentation, and ground station software
are available publicly. TA1 serves as a low-cost, compliance-
tested research platform and satellite for LEO operations.

Acknowledgments

We thank members of the CMU ABSTRACT research
group for feedback and discussion on the topic of this pa-
per. This work was generously funded by the Kavci¢-Moura
Endowment Fund and National Science Foundation Award
#2111751.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

J. Andersson, M. Hjorth, F. Johansson, and S. Habinc.
Leon processor devices for space missions: First 20
years of leon in space. In SMC-IT. IEEE, 2017.

ASTM. Standard extraterrestrial spectrum reference e-
490-00. Technical report, American Society for Testing
and Materials, 2000.

Azur Space Solar Power.
3230c, 2018.

D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola,
D. Brunelli, B. M. Al-Hashimi, G. V. Merrett, and
L. Benini. Hibernus++: a self-calibrating and adap-
tive system for transiently-powered embedded devices.
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 35(12):1968-1980, 2016.

D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-
Hashimi, D. Brunelli, and L. Benini. Hibernus: Sustain-
ing computation during intermittent supply for energy-
harvesting systems. IEEE Embedded Systems Letters,
7(1):15-18, 2015.

T. M. Bandhauer, S. Garimella, and T. F. Fuller. A
critical review of thermal issues in lithium-ion batteries.
Journal of the Electrochemical Society, 158(3):R1, 2011.

R. Berger, S. Chadwick, E. Chan, R. Ferguson, P. Flem-
ing, J. Gilliam, M. Graziano, M. Hanley, A. Kelly,
M. Lassa, et al. Quad-core radiation-hardened system-
on-chip power architecture processor. In Aerospace
Conference. IEEE, 2015.

Berkley. FireLine Original. https://www.berkley-
fishing.com/products/fireline-original-
1316955, 2022.

R. Buckle. Life testing of cots cells for optimum battery
sizing. In 2019 European Space Power Conference
(ESPC), pages 1-7. IEEE, 2019.

J. Cappaert. Building deploying and operating a cubesat
constellation-exploring the less obvious reasons space is
hard. In Proc. AIAA/USU Conf. Small Satellites, 2018.
S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau,
R. Castano, A. Davies, R. Lee, D. Mand], S. Frye, et al.
The eo-1 autonomous science agent. In Joint Conference
on Autonomous Agents and Multiagent Systems, 2004.

Triple junction solar cell

A. Colin and B. Lucia. Chain: tasks and channels for re-
liable intermittent programs. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations, pages 514-530. ACM, 2016.

A. Colin and B. Lucia. Termination checking and task
decomposition for task-based intermittent programs. In
Proceedings of the 27th International Conference on
Compiler Construction, CC 2018, pages 116-127, 2018.

13

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

A. Colin, E. Ruppel, and B. Lucia. A reconfigurable
energy storage architecture for energy-harvesting de-
vices. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, pages
767-781, New York, NY, USA, 2018. ACM.

B. Denby and B. Lucia. Orbital edge computing: Ma-
chine inference in space. IEEE Computer Architecture
Letters, 2019.

B. Denby and B. Lucia. Orbital edge computing:
Nanosatellite constellations as a new class of computer
system. In Architectural Support for Programming Lan-
guages and Operating Systems, 2020.

B. Denby and E. Ruppel. Tartan artibeus hard-
ware. https://github.com/cmuabstract/tartan-
artibeus-hw, 2022.

B. Denby, E. Ruppel, S. Che, C. Taylor, and F. Zaidi.
Tartan artibeus software. https://github.com/
cmuabstract/tartan-artibeus-sw, 2022.

B. Denby, E. Ruppel, and C. Taylor. Tartan
artibeus ground support. https://github.com/
cmuabstract/tartan-artibeus-gnd-sw, 2022.

K. Devaraj, R. Kingsbury, M. Ligon, J. Breu, V. Vit-
taldev, B. Klofas, P. Yeon, and K. Colton. Dove high
speed downlink system. In Proc. AIAA/USU Conf. Small
Satellites, 2017.

EXO Luanch. Mechanical Testing Falcon 9 Rideshare,
2020.

W. Ferster. Digitalglobe adding infrared ca-
pability to worldview-3 satellite. Space News,
https://spacenews.com/digitalglobe-adding-infrared-
capability-worldview-3-satellite/, 2012.

H. F. Fliegel and T. C. Van Flandern. Letters to the edi-
tor: a machine algorithm for processing calendar dates.
Communications of the ACM, 1968.

W. Frick and C. Niederstrasser. Small launch vehicles-a
2018 state of the industry survey. In Proc. AIAA/USU
Conf. Small Satellites, 2018.

Grant Christiansen, Texas Instruments. CC1110-
CC1111 Datasheet. https://www.ti.com/lit/ds/
swrs033h/swrs033h.pdf, 2010.

W. Harwood. Nasa launches usd 855 million landsat mis-
sion. CBS News, https://www.cbsnews.com/news/nasa-
launches-855-million-landsat-mission/, 2013.

J. Hester, K. Storer, and J. Sorber. Timely execution
on intermittently powered batteryless sensors. In Pro-
ceedings of the 15th ACM Conference on Embedded
Network Sensor Systems. ACM, 2017.

F. R. Hoots and R. L. Roehrich. Models for propagation
of norad element sets: spacetrack report no. 3. Technical

report, Aerospace Defense Command, Peterson AFB,
Office of Astrodynamics, 1980.

[29] Hyperion Technologies. Gnss200. https://space-
for-space.com/wp-content/uploads/2020/04/
HT_GNSS200_v2.1-flyer.pdf, 2019. Accessed:
2022-05-25.

H. Jayakumar, A. Raha, and V. Raghunathan. Quickre-
call: A low overhead hw/sw approach for enabling com-
putations across power cycles in transiently powered
computers. In VLSI Design and 2014 13th International
Conference on Embedded Systems, 2014 27th Interna-
tional Conference on, pages 330-335. IEEE, 2014.

Kemet Electronics Corporation. Supercapacitors FT
Series. https://content.kemet.com/datasheets/
KEM_S6014_FT.pdf, 2020.

[32] B. K. Kim, S. Sy, A. Yu, and J. Zhang. Electrochemi-
cal supercapacitors for energy storage and conversion.
Handbook of Clean Energy Systems, pages 1-25, 2015.

[33] B. Klofas. Planet releases openlst, an open radio so-
lution. https://www.planet.com/pulse/planet-openlst-
radio-solution-for-cubesats/, 2018.

[34] V. Knap, L. K. Vestergaard, and D.-I. Stroe. A review
of battery technology in cubesats and small satellite
solutions. Energies, 13(16):4097, 2020.

[35] W.J. Larson and J. R. Wertz. Space mission analysis
and design. Microcosm, 1992.

[36] C. Lattner and V. Adve. Llvm: A compilation frame-
work for lifelong program analysis & transformation.
In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 75-86. IEEE,
2004.

L. Leung, V. Beukelaers, S. Chesi, H. Yoon, D. Walker,
and J. Egbert. Adcs at scale: Calibrating and monitoring
the dove constellation. In Proc. AIAA/USU Conf. Small
Satellites, 2018.

LibOpenCM3. Libopencm3. http://libopencm3.org/,
2022.

[39] T.R. Loveland and J. R. Irons. Landsat 8: The plans, the
reality, and the legacy. Remote Sensing of Environment,
2016.

B. Lucia, B. Denby, Z. Manchester, H. Desai, E. Ruppel,
and A. Colin. Computational nanosatellite constella-
tions: Opportunities and challenges. GetMobile: Mobile
Computing and Communications, 2021.

[30]

[31]

[37]

[38]

[40]

[41] B.Luciaand B. Ransford. A simpler, safer programming
and execution model for intermittent systems. In ACM
SIGPLAN Notices, volume 50, pages 575-585. ACM,

2015.

K. Maeng, A. Colin, and B. Lucia. Alpaca: Intermit-
tent execution without checkpoints. In Proceedings
of the 2017 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 2017.

[42]

14

[43] K. Maeng and B. Lucia. Adaptive dynamic checkpoint-
ing for safe efficient intermittent computing. In Pro-
ceedings of the 12th USENIX conference on Operating
Systems Design and Implementation, pages 129-144.
USENIX Association, 2018.

K. Maeng and B. Lucia. Supporting peripherals in in-
termittent systems with just-in-time checkpoints. In
Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 1101-1116, 2019.

K. Maeng and B. Lucia. Adaptive low-overhead schedul-
ing for periodic and reactive intermittent execution. In
Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 1005-1021, 2020.

D. D. McCarthy and P. K. Seidelmann. Time: from
Earth rotation to atomic physics. Cambridge University
Press, 2018.

B. McKissock, P. Loyselle, and E. Vogel. Guide-
lines on lithium-ion battery use in space applica-
tions. https://ntrs.nasa.gov/api/citations/
20090023862/downloads/20090023862.pdf, 2009.

McMaster-Carr. Easy-to-Form Nickel Chromium.
https://www.mcmaster.com/8880K82/, 2022.

A. Mehrparvar, D. Pignatelli, J. Carnahan, R. Munakat,
W. Lan, A. Toorian, A. Hutputanasin, and S. Lee. Cube-
sat design specification rev. 13. Technical report, Cal-
ifornia Polytechnic State University, San Luis Obispo,
2014.

E. M. Middleton, S. G. Ungar, D. J. Mandl, L. Ong,
S. W. Frye, P. E. Campbell, D. R. Landis, J. P. Young,
and N. H. Pollack. The earth observing one (eo-1)
satellite mission: Over a decade in space. IEEE Journal
of Selected Topics in Applied Earth Observations and
Remote Sensing, 2013.

M. Nardello, H. Desai, D. Brunelli, and B. Lucia. Ca-
maroptera: A batteryless long-range remote visual sens-
ing system. In Proceedings of the 7th International
Workshop on Energy Harvesting & Energy-Neutral Sens-
ing Systems, ENSsys’19, page 8-14, New York, NY,
USA, 2019. Association for Computing Machinery.

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52] S. Radu, M. Uludag, S. Speretta, J. Bouwmeester,
A. Dunn, T. Walkinshaw, P. Kaled Da Cas, and C. Cap-
pelletti. The pocketqube standard issue 1. Technical

report, TU Delft, 2018.

B. Ransford, J. Sorber, and K. Fu. Mementos: System
support for long-running computation on rfid-scale de-
vices. Acm Sigplan Notices, 47(4):159-170, 2012.

Robin Hoel, Texas Instruments. FEC Implemen-
tation. https://www.ti.com/lit/an/swrall3a/
swrall3a.pdf, 2007.

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

E. Ruppel and B. Lucia. Transactional concurrency
control for intermittent, energy harvesting, computing
systems. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation. ACM, 2019.

SpaceX. Rideshare Payload User’s Guide.
https://storage.googleapis.com/rideshare-

static/Rideshare_Payload_Users_Guide.pdf,
2022.

ST. Pm0214 programming manual: Stm32 cortex-m4
mcus and mpus. Technical report, ST, 2020.

StMicroelectronics. 9-axis inemo inertial module (imu):
3d magnetometer, 3d accelerometer, 3d gyroscope with
i2c and spi. https://www.st.com/en/mems—-and-
sensors/1lsm9dsl.html, 2015. Accessed: 2022-05-
25.

M. Surbatovich, L. Jia, and B. Lucia. I/o dependent
idempotence bugs in intermittent systems. In Proceed-
ings of the 2019 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications. ACM, 2019.

M. Surbatovich, L. Jia, and B. Lucia. Automatically
enforcing fresh and consistent inputs in intermittent sys-
tems. In Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design
and Implementation, PLDI 2021, page 851-866, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

M. Surbatovich, B. Lucia, and L. Jia. Towards a formal
foundation of intermittent computing. Proceedings of
the ACM on Programming Languages, 4(OOPSLA),
Nov. 2020.

M. Swartwout. A statistical history of university-class
satellites. 2018.

15

[63] Taoglas.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

AGGBP.SLS.25A -
GPS/GLONASS/Galileo/BeiDou 25mm Active Patch
with SAW/LNA/SAW. https://www.taoglas.com/
product/aggbp-sls-25a-gps-glonass-galileo-

beidou-25mm-active-patch-with-saw-lna-saw/,

2022.

Texas Instruments. Data Whitening and Random
TX Mode. https://www.ti.com/lit/an/swra322/
swra322.pdf, 2022.

Texas Instruments Inc. 4-bit bidirectional multi-voltage
level translator for open-drain & push- pull. https:
//www.ti.com/product/LSF0204, 2021. Accessed:
2022-05-25.

TI Inc. Products for msp430frxx fram. http:
//www.ti.com/1lsds/ti/microcontrollers-16-
bit-32-bit/msp/ultra-low-power/mspd30frxx-
fram/products.page, 2017. Accessed: 2017-04-08.
TI Inc. User’s guide msp430 gcc toolchain. https:
//www.ti.com/1lit/ug/slau646f/slaubd6f.pdf,
2020. Accessed: 2022-05-25.

K. S. Yildirnm, A. Y. Majid, D. Patoukas, K. Schaper,
P. Pawelczak, and J. Hester. Ink: Reactive kernel for tiny
batteryless sensors. In Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems,
pages 41-53. ACM, 2018.

J. Yiu. The Definitive Guide to ARM Cortex-M3 and
Cortex-M4 Processors. Newnes, 2013.

Zac Manchester. KickSat.
github.io/kicksat/, 2015.

D. Zogbi. Supercapacitors: A 25-year market re-
view. https://www.tti.com/content/ttiinc/en/
resources/marketeye/categories/passives/me-
zogbi-20200806.html, 2020. Accessed: 2021-11-11.

http://zacinaction.

