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Abstract

Tartan Artibeus (TA1) is the first batteryless, computational

pocketqube satellite; its open-source hardware and software

launched into low-Earth orbit (LEO) in January 2022. TA1 is

a 1p (125 cm3) pocketqube built around the Tartan Artibeus

Bus (TAB), which connects independently-designed modules

into a batteryless, computational satellite. In TA1, TAB incor-

porates an electrical power supply (EPS) module that harvests

solar energy into a supercapacitor, a fault-tolerant command

and data handling (C&DH) module, a radio-communication

module, and a configurable computational payload module.

The open-source hardware [17] and software [18] of TA1

supports independently designed modules oblivious to the bat-

teryless nature of the power system via adherence to TAB’s

well-defined communication protocol serviced by a C&DH

board. TAB allows the C&DH board to manage indepen-

dent subsystems for power savings and to provide isolation

for reduced impact of faults. The C&DH software supports

frequent power cycles via task-based, intermittent execution.

These features guarantee forward program progress and free

subsystem developers to focus on each payload application.

To evaluate the computational nanosatellite design TAB

enables, we integrate many subsystems, including a radio

module, a GNSS module, and a computing payload. The radio,

which is based on OpenLST [33] hardware and software,

demonstrates the ease of using existing modules with TAB.

To the best of our knowledge, TA1 is the first 1p pocketqube to

have a GPS module without COCOM limits. The computing

payload includes hardware to accelerate machine inference

and can be reprogrammed in orbit. The TA1 mechanical,

hardware, and software designs are open source to reduce the

barrier to entry for orbital edge computing (OEC) research.

1 Introduction

Large, expensive, monolithic satellites dominate low-Earth

orbit (LEO) Earth observation. Space vehicles (SVs) like

∗Both authors contributed equally to this work

WorldView-3 [22], Earth-Observing 1 [50], and Landsat-

8 [39] cost hundreds of millions of dollars each [26] and

require over a dozen years of “arduous” development [39].

To justify such time and expense, these SVs must operate for

decades. Extremely high cost demands extremely low risk; as

a result, designers often select satellite subsystems for their

“flight heritage” and not for their cutting-edge capabilities. By

the end of a satellite mission, some components may be more

than a quarter century behind the state-of-the-art.

Monolithic, expensive satellites usually take this approach.

For these satellites, a ground segment closely manages op-

erations via a bent pipe [35]: ground stations transmit com-

mands to the satellite, and the satellite responds with raw, un-

processed sensor data. Innovation often concentrates around

the sensor payload of these monolithic, expensive satellites.

Generally, these systems perform minimal onboard comput-

ing [1,7,11] and instead focus on reliable remote control from

the ground.

Recently, there has been a proliferation of LEO launches

with nanosatellites. A typical nanosatellite is four orders of

magnitude cheaper, three orders of magnitude less massive,

and four orders of magnitude smaller than a typical, mono-

lithic satellite. Rather than operate for decades, a nanosatellite

operates for a few years at most or a few weeks at least. Lower

costs and shorter missions reduce per-device risk and support

use of cutting-edge, commercial, off-the-shelf (COTS) hard-

ware. If hardware lacking flight heritage fails, the nanosatellite

can be quickly replaced.

Higher per-device risk tolerance of nanosatellites provides

opportunities to deploy more advanced subsystems to orbit

compared to expensive, monolithic satellites. However, most

nanosatellites still adhere to the same concept of operations

(CONOPS) as monolithic satellites; i.e., a bent pipe [20]. New

Earth-observation capabilities enabled by large constellations

— e.g., daily global coverage — are limited by continued

adherence to a bent-pipe CONOPS [37]. Additionally, new

challenges — e.g. effectively managing a large constellation

by remote control [37] — arise in a more crowded LEO.

Recent work observes, enumerates, and characterizes some
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Figure 3: (a) The byte structure of the common_ack TAB

command. The header bytes compose the entire command.

(b) The byte structure of the app_set_time command with

both header bytes and payload bytes. (c) The byte structure of

the app_reboot command, which includes optional payload

bytes. (d) The byte structure of the common_ascii command,

which contains a variable number of payload bytes.

to process data at the edge [15, 16, 40]. While monolithic

satellites eschew such hardware to avoid increased risk of

failure, nanosatellites are free to use more recent computa-

tional devices. For example, the lower cost and more frequent

replacement rate of nanosatellites reduce the risk of deploy-

ing computational hardware that is merely “radiation tolerant”

instead of “radiation hardened.”

An OEC satellite collects data, processes data at the orbital

edge, and uses the results to intelligently transmit information

to the ground. For example, many Earth-observation satel-

lites collect image data. These satellites capture a sequence

of images along the satellite’s ground track. Each image in

this sequence is a ground track frame (GTF), often consisting

of a large geographic region. Under a bent pipe, a satellite

attempts to downlink as many GTFs to the ground segment

as the limited communication opportunities support. These

frames are then split into hundreds or thousands of smaller

tiles (each consisting of a smaller geographic region) for anal-

ysis. An OEC satellite instead processes tiles at the orbital

edge, supporting more intelligent use of the limited downlink.

To evaluate the efficacy of OEC proposals, our prior work

developed the cote simulation environment [16]. This soft-

ware tool models satellite orbital mechanics, rotation of the

Earth and ground stations, and satellite subsystem characteris-

Figure 4: Left: Commands unique to the original OpenLST

software. Middle: Commands common to both the original

OpenLST software and TAB. Right: Commands unique to

TAB and aimed at supporting OEC research.

tics such as harvested and stored energy, data collection, com-

putation, communication, and radio bitrates. Researchers used

this tool to propose and evaluate the computational nanosatel-

lite and computational nanosatellite pipelines (CNPs) [16].

A CNP distributes computational tasks across computational

nanosatellites in a constellation. With a sufficient number of

satellites, a CNP completes processing of all tiles in a frame

before the ground track frame period (GTFP): the time be-

tween observation of new ground track frames.

In this work, we present Tartan Artibeus (TA1), a low-cost,

fully open-source hardware [17] and software [18] satellite

for use as an OEC research and evaluation platform. Using

the Tartan Artibeus Bus (TAB), researchers easily integrate

independently-designed hardware and software modules with

TA1. TAB allows TA1 to integrate with cote or other soft-

ware for hardware-in-the-loop simulation. TA1 can also be

deployed to orbit for in-situ evaluation of OEC proposals.

3 TAB: The Tartan Artibeus Bus

The Tartan Artibeus Bus (TAB) accomplishes three main

goals: (i) augmenting software simulation of OEC proposals

with hardware-in-the-loop, (ii) integrating unmodified COTS

subsystems into an intermittent, batteryless satellite, and (iii)

operating in LEO as a proof of concept. TAB uses a stan-

dardized communication protocol for transferring commands

and data among independent satellite modules. This serial

communication protocol consists of 17 commands that adhere

to a well-defined message structure. Users may easily extend

the protocol with additional commands. TAB implements a

core subset of OpenLST [33] commands and an additional

set of new commands to better support OEC research.

Unlike the OpenLST communication protocol, which sup-

ports development and operation of the OpenLST radio, TAB

aims to facilitate (i) interaction between software simulation

environments and research hardware (hardware-in-the-loop);

(ii) integration between independently-designed satellite sub-
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Figure 5: Left: The specification of the common_ack TAB

command. This command contains no optional or required

payload bytes and always elicits a common_ack reply. Right:

The specification of the app_set_time TAB command. This

command requires seconds and nanoseconds payload bytes.

The command recipient sends a common_ack to indicate suc-

cess or a common_nack to indicate failure.

systems; and (iii) in-flight operation of deployed satellites.

We greatly appreciate the open-source release of OpenLST

hardware and software and, in the same spirit, release TAB

for open-source use in space and computer systems research

at http://intermittent.systems. We provide reference

TAB implementations both as C header and implementation

files and as a single Python script to allow straightforward

integration with other projects.

In Section 3.1, we describe the anatomy of a TAB command

and compare the smaller, more general TAB command set to

the larger, application-specific set of OpenLST commands.

We highlight commands unique to TAB that aim to better

support OEC research goals. We describe the TAB commu-

nication protocol in Section 3.2. In Section 3.3, we illustrate

the versatility of TAB for hardware-in-the-loop simulation,

seamless subsystem integration, and in-flight operation of

deployed satellites.

3.1 TAB Commands

Every TAB command consists of two sections: a header and a

payload. The header contains the start bytes, length, hardware

ID, message ID, destination ID, and the command “opcode.”

Thus, the TAB header consists of a constant number of 9 bytes.

The payload contents vary by command. Command payloads

range from 0 to 249 bytes.

Figure 3 (a) illustrates the structure of the common_ack

command, which consists entirely of header bytes. To pre-

serve compatibility with the OpenLST protocol, we retain

the two start byte values of 0x22 and 0x69. The length byte

indicates the number of remaining bytes in the command and

therefore always takes a value between 0x06 and 0xff, inclu-

sive. The hardware ID, which consists of two bytes with the

least-significant byte first, indicates the ID of the satellite or

device targeted by the command. The message ID, which also

consists of two bytes with the least-significant byte first, acts

similarly to a nonce and allows a reply to be paired with its
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Figure 6: A ground station sends an RF command. The TA1

radio module receives the command and forwards it to the

C&DH module, which parses the destination and delivers the

message to the computational payload. The reply follows the

same sequence in reverse.

initiating command. TAB uses the upper and lower nibble of

the destination byte to support intra-satellite communication

among independent subsystems. Command recipients parse

the opcode byte to determine the proper TAB reply.

Figure 3 (b), (c), and (d) present three examples of TAB

commands with payload bytes. The app_set_time command

consists of a constant number of payload bytes. The first

four payload bytes represent the seconds since the J2000

[46] epoch (least-significant byte first), and the next four

payload bytes represent the remaining nanoseconds (again,

least-significant byte first). This command allows an external

source to set the real-time clock (RTC) of a TAB module.

The app_reboot command exemplifies a payload with op-

tional bytes. The four payload bytes (least-significant byte

first) are optional — their presence or absence is indicated by

the length byte in the header — and represent the delay be-

fore executing a reboot procedure. Finally, the common_ascii

command consists of a variable number of payload bytes. The

command, which should be used for debugging messages (see

common_data for generic data transfer), contains 0 to 249

ASCII-encoded character bytes as indicated by the header

length byte (and, thus, requires no null-character termination).

We include a full list of TAB commands in Figure 4. For

reference, we illustrate the larger set of application-specific

OpenLST commands, the overlap between these commands

and the core TAB commands, and additional TAB commands

that support OEC research. In keeping with the OpenLST

convention, TAB commands are categorized by app-focused

commands, bootloader-focused commands, and commands

common to both domains. For specification of the remaining

commands, see our open-source reference implementations in

C [18] and Python [19] and the accompanying documentation.

3.2 TAB Protocol

Under the TAB protocol, every command elicits a single re-

ply. The reply varies by command and by command content.
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Commands and replies are paired by the header message ID

bytes; every reply mirrors the message ID of the initiating

command. Commands are addressed by a hardware ID, which

indicates the destination device, and the destination ID, which

supports communication among satellite submodules.

The TAB protocol augments the function of the destination

ID byte compared to the OpenLST protocol in a backwards-

compatible manner. In TAB, the upper nibble of the destina-

tion ID indicates the originating module, and the lower nibble

of the destination ID indicates the target module. Thus, the

upper and lower nibble of the destination ID in a reply are

swapped when compared to the upper and lower nibble of the

destination ID of the initiating command.

We adhere to a single-command, single-reply protocol to

encourage simple command logic and predictable behavior.

A command-reply structure fosters intuitive operation and

makes debugging straightforward. Such a protocol naturally

limits the scope of command-triggered logic, because any

such logic must complete swiftly to produce a timely reply.

This point is particularly important in the energy-constrained

regime of small satellites. Further, limited command-triggered

logic supports portable protocol implementations without the

need for integration with MCU-specific interrupts.

Figure 5, left, illustrates the specification for a common_ack

command, which always elicits a common_ack reply. This

example demonstrates the expected behavior of an in-flight

basic check from a ground station to a deployed satellite. See

Section 5.1 for a more detailed description of this use case.

Figure 5, right, specifies the app_set_time command,

which elicits either a common_ack reply or a common_nack

reply depending on the command result. This example il-

lustrates how a software simulation package can initialize

the RTC of a hardware-in-the-loop satellite module during

pre-flight testing and evaluation. If the simulator receives a

common_ack, then the simulation can continue. If the simula-

tor instead receives a common_nack, then the simulation can

be aborted with an error message for the operator.

Figure 6 traces multiple “hops” of a common_ascii com-

mand. This example demonstrates use of the destination

ID byte to support communication among independently-

designed satellite modules. A computational payload board

requires an ASCII-encoded TLE to calculate the satellite posi-

tion given its RTC time. This TLE, which is generated on the

ground, must be received by the radio module, forwarded to

C&DH, and then delivered to the computational payload. See

Section 5.3 for a more detailed description of this use case.

3.3 TAB Use Cases

Because the TAB specification is agnostic to the physical

layer, it can be deployed regardless of the communication

medium. TAB aims to facilitate interaction between software

simulation environments and research hardware (hardware-in-

the-loop), integration between independently-designed satel-

lite subsystems, and in-flight operation of deployed satellites.

For hardware-in-the-loop simulations, we connect a satel-

lite submodule to a software simulation package via USB-

to-serial. Both the satellite submodule and the simulation

software leverage reference implementations of TAB. The

satellite submodule implements TAB over its UART pins, and

the simulation software implements TAB over its serial port.

Independently-designed satellite subsystems in TA1 commu-

nicate using TAB via connected UART pins. For in-flight

operation of deployed satellites, TAB commands are encoded

for RF transmission and decoded by a receiving radio. See

Section 4.5 for a more detailed description of this use case.

4 Tartan Artibeus

Tartan Artibeus (TA1) is the first batteryless, computational

pocketqube satellite; its open-source hardware and software

launched into low-Earth orbit (LEO) in January 2022. TA1 is

a 1p (125 cm3) pocketqube built around the Tartan Artibeus

Bus (TAB), which connects independently-designed modules

into a batteryless, computational satellite. TA1 incorporates

an electrical power supply (EPS) module that harvests solar

energy into a supercapacitor, a fault-tolerant command and

data handling (C&DH) module, a radio communication mod-

ule, and a configurable computational payload module. We

present an overview of the major components of TA1.

4.1 Energy Harvesting and Storage

TA1 mounts five solar panel PCBs to five of the six pock-

etqube faces. The sixth pocketqube face is reserved for the

baseplate and is described in Section 4.6. The solar panels are

electrically connected to the internal electrical power system

(EPS) PCB. The power module conditions the solar panel

voltages and currents and stores the harvested energy in a

5.6 F supercapacitor. We provide additional details for the

solar panels, EPS, and energy storage.

Solar Panels: A custom solar panel PCB covers five of

the six 25 cm2 faces of the TA1 pocketqube. Each solar panel

PCB contains four square solar cells. A single solar cell mea-

sures 1.88 cm on each side. We first connect two cells in series

to increase panel voltage, and we then connect two pairs of

cells in parallel to increase panel current. Figure 7a provides

a diagram of the solar panel PCB design that illustrates the

solar cell connections and the corresponding bypass diodes.

Using the standardized value for solar spectral irradiance

of 1366.1 W/m2 [2] and the datasheet efficiency of 29.4% at

the time of manufacture [3], each solar cell exhibits a maxi-

mum power (MP) voltage of 2.441 V and an MP current of

58.88 mA. Thus, a single solar panel provides an MP voltage

of 4.882 V and an MP current of 117.8 mA. Therefore, each

solar panel provides up to 0.5751 W of power to the internal

EPS PCB module. After an extended deployment [3], MP

voltage falls to 2.246 V and efficiency falls to 26.5%. Thus,
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5.1 Application 1: Ping

The “ping” application consists of a single command,

which generates a single reply. A ground station emits a

common_ack via RF (see Section 4.5) for reception by TA1.

To be accepted, the hardware ID of the common_ack must

match the hardware ID of TA1. All TA1 modules have been

programmed with this hardware ID.

This application aims to elicit a reply from the radio mod-

ule. Therefore, the common_ack destination ID contains the

radio module ID as the lower nibble. To indicate that the reply

should be transmitted via RF, the upper nibble contains the

ground station ID. Upon reception, the radio module gener-

ates a common_ack response. The upper and lower nibbles of

reply destination ID are swapped as described in Section 3.2.

5.2 Application 2: Data

The “data” application demonstrates the ability of TAB to sup-

port communication between modules. This application re-

quests telemetry stored on the C&DH module. Every minute,

TA1 collects data from the IMU on the C&DH board as well

as the time, date, position, and status information from the

GNSS and power introspection information from the ADC on

the EPS. These data are pushed onto a stack until a telemetry

request command arrives. In response, the C&DH module

pops the most recent telemetry for reply.

5.3 Application 3: cote

The “cote” application consists of a single command that

ultimately results in a single reply. However, this application

exercises three TA1 modules: the radio module, the C&DH

module, and the computational payload module. This “cote”

application implements a limited version of the open-source

cote simulator for computational nanosatellites [16]. Specif-

ically, we port the cote implementation of SGP4 [28] from

C++ to C for execution on the computational payload MCU.

Given a TLE via a common_ascii command, the payload

board leverages the MCU RTC to calculate the current posi-

tion of the satellite and generate a message containing these

coordinates. See Figure 6 for a diagram of this application.

6 Additional TAB Applications

TAB supports over-the-air upload of new software applica-

tions after deployment to orbit. Post-deployment updates

make TA1 a flexible orbital edge computing research plat-

form. In the lab, we have demonstrated this upload mecha-

nism and the ability to time-multiplex several programs on a

single payload board. This feature provides a first step toward

dynamic multitenancy and new, flexible “software-defined

nanosatellite constellations.”

The application upload mechanism delivers new programs

to the satellite via RF; upon delivery, these programs are

stored for execution. Our implementation uses Intel’s line-

oriented HEX format, which includes a per-line start code,

byte count, address, record type, data, and checksum. The

start code specifies the record type and, if the line start code

indicates a data record, the TA1 ground support software [19]

parses data from that line for transmission. After collecting

all data lines, the data are split into 128-byte “chunks” for

use in the bootloader_write_page TAB command. These

commands are sent to the computational payload board, where

the program data are written into storage.

Simultaneous deployment of multiple programs requires a

more general TAB command than the backwards-compatible

bootloader_write_page command. Specifically, in order

to make use of the entire address range of the program storage,

TAB introduces the bootloader_write_page_addr32 com-

mand. This new, more general command writes the 128 byte

TAB payload starting at the address in memory specified in

the command. In the lab, we exercise this new, more general

TAB command by demonstrating a computational payload

board with three user programs. Each user program executes

in response to a TAB bootloader_jump command.

7 Conclusion

We present Tartan Artibeus, an open source hardware [17]

and software [18] 1p pocketqube satellite launched into LEO

in January 2022. Built around the Tartan Artibeus Bus (TAB),

TA1 integrates independently-designed modules into a bat-

teryless, computational satellite. TAB positions TA1 as a plat-

form for computational nanosatellite research by supporting

(i) interaction between software simulation environments and

research hardware (hardware-in-the-loop); (ii) integration be-

tween independently-designed satellite subsystems; and (iii)

in-flight operation of deployed satellites.

We provide in-depth descriptions of the satellite mechanics,

PCB hardware design, software, system CONOPS, and radio

communication to serve as a blueprint for other organizations

working in computational space systems. Detailed bills of

material (BOMs), MCU software, communication protocol

and CONOPS documentation, and ground station software

are available publicly. TA1 serves as a low-cost, compliance-

tested research platform and satellite for LEO operations.
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