Lost in Space: Visual Satellite Navigation

Kyle McCleary!, Paulo R.M. Fisch!, Saral Tayal', Zac Manchester’, and Brandon Lucia'

Abstract— The large-scale proliferation of nanosatellites has
led to a need for a low-cost, timely, and effective method
for orbit determination (OD). In this work, we develop visual
nanosatellite OD using a low-cost onboard camera and onboard
processing as inputs to an OD filter. We achieve similar accuracy
to ground radar (on the order of 100 m), but much faster.

I. INTRODUCTION

As the proliferation of nanosatellites continues and con-
stellation sizes grow, locating and tracking tiny satellites, is
a key requirement. Nanosatellites have many applications,
including disaster response [1], agriculture [2], and land use
classification [3]. These applications require knowledge of
a satellite’s orbit to allow communication to the ground.
Existing techniques for nanosatellite orbit determination
(OD) are impractically expensive or imprecise, relying on
expensive, power-hungry satellite components or complex,
costly ground infrastructure.

The goal of this work is to make OD cheap and practical,
using low-cost visual sensing and machine vision algorithms
that are efficient enough to run onboard small satellites. We
describe a system that models Earth’s landmarks, trains a
model to run onboard a satellite to identify those landmarks,
and uses a straightforward state-estimation algorithm to
localize a satellite. Our results show that automatically iden-
tifying landmarks on Earth is feasible. We show that training
a machine learning (ML) model to find those landmarks and
running that model on a nanosatellite is within the satellite’s
power, energy, and time constraints. We then show that we
enable 100 m precision OD with no ground infrastructure,
and with simple, low-cost, hardware on the satellite.

TABLE I
COMPARISON OF ORBIT DETERMINATION (OD) METHODS

Property/Method GPS OD Ground Radar | Visual OD
Largest Dimension | 71 mm [4]
Mass 31 g [4]
Power 1-2 W [4]
Cost ~$5k
OD Time
Precision

A. Current Post-Launch Satellite Location Methods

Existing techniques for post-launch satellite localization
are costly and complex. Some satellites include a Global
Positioning System (GPS) receiver for precise OD [7], [8],
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Fig. 1. Block diagram of end-to-end orbit determination pipeline.

[91. A GPS receiver usable in space at high speeds is
expensive and large, which precludes use in very small
satellites [10], [11]. Other satellite missions use terrestrial
radar [8], [12] to locate the satellite after launch, which
can sometimes take months, and may fail to ever uniquely
identify the satellite [12]. Table I summarizes these existing
methods.

B. Visual Orbit Determination

We develop visual OD using a low-cost onboard camera
and on-satellite ML inference. Visual OD is simple and
cheap. Modern cameras are available for two-to-three orders
of magnitude cheaper than GPS receivers [13], [14], and
recent work [15] showed the feasibility of onboard ML
inference. The technique works by first capturing images and
processing them to match automatically inferred landmarks
on Earth (e.g., distinctive coastal regions). The technique
then uses a standard Kalman filter to fully determine the
orbit in a short period of time. Figure 1 shows an overview.

The main contribution of this paper is a novel, visual-only
approach to OD using a combination of cheap cameras, on-
satellite ML inference, and extended Kalman filtering. We
hope to test the end-to-end initial OD process on orbit later
in 2023.

II. SATTELITE IMAGE GEOLOCATION

Visual OD begins with the image capture and processing
pipeline shown in Figure 2. The image pipeline first classifies
an image as a particular Region of Interest (ROI) on Earth.
The pipeline then detects pre-defined Locations of Interest
(LOIs) in the image. ROI classification uses a general net-
work that classifies across all regions of Earth. LOI detection
runs one of several ROI-specific detection networks to find
LOIs. A series of LOIs can be used by an OD filter pipeline
(described below) to determine the satellite’s orbit.

A. Data Gathering

We developed our ROI and LOI models based on well-
known ML model architectures and open data sources that
we curated and combined to produce a useful system. We
first describe the data we use to train our models.
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Fig. 2. Image pipeline. Captured images are cropped and fed into a Region
of Interest (ROI) classification network. If classified as uninteresting, the
pipeline returns to capture. Otherwise, the class flows to the Landmark
Detection (LD) network selector. The original image is sectioned into
smaller images, which flow to the LD network selector. The LD selector
uses the ROI class to feed the images to the corresponding LD network.
The output of the LD network is then passed to the OD filter.
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We trained our models using Landsat [16] and
MODIS [17] images downloaded from Google Earth En-
gine [18]. Using the specifications of the OV5640-C cam-
era [14] (representative of a low-cost nanosatellite sensor),
we calculate expected ground sample distance (GSD) and
footprint of imagery captured at a 400 km altitude. The
physical dimensions of the scene are derived using the focal
plane dimensions, the focal length, and the distance to the
scene. After computing a scene’s dimensions we compute
GSD.

To define classes for ROI classification, we perform a
distinctness study using NASA’s Blue Marble imagery [19].
It begins by taking a box from Blue Marble of a size from a
representative orbit and camera combination (e.g., 400x300
km) and then shifting it pixel-by-pixel to find the greatest
normalized correlation coefficient and the second greatest
normalized correlation coefficient across Blue Marble. The
difference between the correlation coefficients is the dis-
tinctness for that box. This process is repeated by selecting
boxes originating from every pixel on Blue Marble. Then, the
process is repeated again for boxes of a range of sizes. The
distinctness for each pixel is recorded and summed during
this process. The most distinct pixels are shown in Figure 3.

We then divide Earth into regions according to the Military
Grid Reference System (MGRS) [20]: regions of roughly
6 degrees of longitude by 8 degrees of latitude. The most
distinct regions from the distinctness study were used to
select MGRS cells to act as classes for ROI classification.
For training the ROI classification network, we collected 5
random 300x300 km MODIS images at 600 m/pixel from
every day in 2020 over each ROI and labeled them using
the corresponding MGRS cell. This ensured good coverage
of weather, lighting, and seasonal variations, and led to a
training set with over 100,000 images. Additionally, 20 ran-
dom crops per day in 2020 were used for the “uninteresting”
class. The validation set contains a random crop from every
day in 2019 for each ROI from both Landsat and MODIS.

To define a set of LOISs to detect, we divide the NASA Blue
Marble imagery at 500 m spatial resolution into the appro-
priate ROIs. We then use the OpenCV [21] implementation
of the fine grained saliency approach [22] on each region to
create a saliency map. Next, we select a window size based
on desired LOI size. We use 50x50 pixel windows for 25x25

Fig. 3.
represent the top percentile of distinct pixels in the image.
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The process for choosing LOIs within a region. The first image
shows the highest saliency location in the image. The second image
demonstrates the zeroing of the first location and the second highest saliency
location in the image. The third image shows the 25th iteration of this
approach. The final image shows the output boxes.

kilometer LOIs. The window is slid over the saliency map
and the location with the highest sum of all pixels in the
window is recorded as a LOI. The pixels in the window are
then set to 0, reducing overlap, and the process is repeated
to find the next LOI. This process is shown in Fig. 4. We
generate 100 LOIs per region using this method.

Each LOI Detection (LD) network was trained using 5
random 200x200 km crops from every day in 2020 from
Landsat images over the corresponding ROI, downsampled
to a spatial resolution of 200 m. The dimensions were
selected as representative of the sectioning of a higher-
resolution 2592x1944 pixel image into smaller 1024x1024
pixel images for processing on orbit. The images are labeled
using georeferenced images and recording bounding boxes
and classes for every LOI in the image.

B. Region of Interest Classification

Using our assembled datasets, we built ROI and LOI
networks that provide inputs to our OD filter. The first
step in the image pipeline is classifying each image into
a class referencing a predesignated ROI on the Earth, or an
“uninteresting” class. We perform coarse ROI classification
because many regions of Earth are uninteresting and the ROI
classifier filters these without invoking LD, saving processing
time and energy. The ROI classifier is a modified ResNet-
50 convolutional neural network (CNN) [23] pre-trained on
ImageNet and fine-tuned using our dataset.

C. Landmark Detection and Geolocation

After classifying the satellite image into a region, the next
step is to identify geographic LOIs in the image and their



absolute positions on the surface of the Earth. We accomplish
this by using a separate LD network for each ROI with
classes specific to that ROI. The LD network locates LOIs
in the satellite image and assigns classes to them, along with
a confidence score. Each LOI class is tied to a latitude and
longitude. The center point of the classified box found by the
LD network is then mapped to the latitude and longitude of
the class. The latitude, longitude, and score for each point are
passed to the OD filter. The method used for LOI detection
is a YOLOv8 CNN [24] pre-trained on the COCO dataset
and fine-tuned using our dataset.

III. ORBIT DETERMINATION

The OD filter takes in the information generated by the
Image Pipeline in the form of unit vectors pointing from the
camera to known landmark locations on the Earth’s surface
and outputs an estimated state comprising of the satellite’s
position and velocity. The filter consists of two main stages:
a least-squares estimator and an Extended Kalman Filter
(EKF).

The batch nonlinear least-squares algorithm described
in [25] is used to determine an initial coarse state estimate
from the first few landmark vectors produced by the Image
Pipeline. This initial coarse estimate is used to provide a
sufficiently accurate guess to initialize the EKF, which is then
used to update the state estimate for all future measurements.

The initial state estimate from the batch least-squares
algorithm is then used to initialize a square-root EKF [26],
[27]. .

IV. RESULTS

We evaluated our implementation of visual OD to show
that we are able to rapidly localize a satellite to a precision on
the order of 100 m in one pass over a ROI. We first describe
the capability of ROI classification to accurately classify
each image into the correct ROI or as “uninteresting.” We
then demonstrate the ability of the LD networks to find
LOIs in an ROI image with an acceptable degree of error.
Additionally, we characterize the latency of the LD network
on representative computing hardware for nanosatellites. The
performance of the image pipeline is then used to inform
testing of the OD filter, and end-to-end simulation results of
the entire pipeline are presented.

A. Region of Interest Classification

The ROI classification network achieves an average clas-
sification accuracy over 90% on the validation set. In the
future, a more in-depth test set will be gathered and the ROI
classification network will be refined.

B. Landmark Detection Performance and Latency

Fig. 5 shows the performance of a single trained network
on the validation set. The network achieves a median LOI
distance error of 325.6 m across all confidence scores, which
is measured by taking the center point of the predicted
location and comparing to the center point of the true
location. Given that each pixel is 200x200 m, a median
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Fig. 5. The scatter plot shows the distance error for each location detected
by the LD network and the associated confidence score. The plotted line is
the median of 0.02 confidence-interval buckets, e.g. the circled point is the
median of all points in the 0.96 to 0.98 confidence score range. The higher
confidence values, i.e. the ones that will weigh more heavily in the OD
filter, have a median distance error of 214 m, which is near the practical
limit of what can be expected given imagery with a GSD of 200 m.

distance error of 325.6 m from the center of the LOI is
less than two pixels of error. The detections corresponding
to confidence scores greater than 0.96 made up more than
half of the total detections. These detections had a median
distance error of 214 m, which is roughly a pixel of error.

The latency of LD model inference for a 1024x1024 pixel
image on some representative devices is shown in Table II.
The Jetson Orin running in 15W mode is representative of
a larger CubeSat mission, and the Raspberry Pi Zero 2 is
representative of a smaller CubeSat mission.

TABLE I
MODEL LATENCIES ON REPRESENTATIVE DEVICES

Jetson Orin@15W | Raspberry Pi Zero 2
YOLOvV8n-fp32 43.5 ms 3,527 ms
YOLOv8s-fp32 82.9 ms 24,814 ms
YOLOv8m-fp32 178.9 ms 86,262 ms
YOLOVSI-fp32 278.6 ms OOM
YOLOvV8x-fp32 475.5 ms OOM
YOLOvV8n-int8 17 ms 2,786 ms
YOLOVS8s-int8 25.4 ms 6,077 ms
YOLOv8m-int8 55.6 ms 12,360 ms
YOLOVSI-int8 82.0 ms 24,100 ms
YOLOvV8x-int8 135.3 ms 94,240 ms

C. Orbit Determination

The batch least-squares method can provide state estima-
tion with two pairs of measurements separated by a few
seconds. We used a dataset generated with satellite data that
was extracted from an emulated ISS orbit using the Skyfield
API [28] flying over Italy and Florida. Fig. 6 shows the error
in measurement AY = Yirue — Ymodel Varying linearly with
the resolution of the on-board camera.

D. Extended Kalman Filter performance

When fed with an initialized first state from least squares,
the EKF can track the satellite’s orbit to a precision on the
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Fig. 6.  Error of least squares optimization initial estimation increases

almost linearly with the resolution of the on board camera
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Fig. 7. EKF further improves estimates after least squares optimization

from 350m to 290m after 10 minutes of continuous measurement.

order of hundreds of meters over the course of ten minutes.
Velocities are tracked to an accuracy of the order of 0.1m/s.
Fig. 7 shows the norm of the position error at the last time
step after running the EKF for 10 minutes with constant
measurement acquisition at 1Hz.

V. CONCLUSIONS AND FUTURE WORK

We demonstrated visual OD for a low-cost nanosatel-
lite equipped with a low-cost camera and only onboard
ML inference. The technique enables future satellites to
quickly localize with no costly components or human-in-
the-loop sensing. Building on this work, we will incorporate
computation and energy constraints into the process and
determine the impacts of these constraints on state error.
Additionally, the networks will be further developed to be
more robust to varying satellite altitudes, look angles, and
camera characteristics. We also plan to use these same im-
ages for attitude determination using a combination of optical
flow and LOI matching, along with inertial measurements.
We plan to launch a demonstration of the technique in
a PocketQube [11] containing an OV5640-C camera and
microcontroller in Fall 2023. We hope to test the proposed
method on orbit and measure its performance.
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